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Abstract—We have witnessed rapid advances in both face
presentation attack models and presentation attack detection
(PAD) in recent years. When compared with widely studied 2D
face presentation attacks, 3D face spoofing attacks are more
challenging because face recognition systems are more easily
confused by the 3D characteristics of materials similar to real
faces. In this work, we tackle the problem of detecting these
realistic 3D face presentation attacks and propose a novel anti-
spoofing method from the perspective of fine-grained classifica-
tion. Our method, based on factorized bilinear coding of multiple
color channels (namely MC FBC), targets at learning subtle fine-
grained differences between real and fake images. By extracting
discriminative and fusing complementary information from RGB
and YCbCr spaces, we have developed a principled solution to
3D face spoofing detection. A large-scale wax figure face database
(WFFD) with both images and videos has also been collected as
super realistic attacks to facilitate the study of 3D face presen-
tation attack detection. Extensive experimental results show that
our proposed method achieves the state-of-the-art performance
on both our own WFFD and other face spoofing databases under
various intra-database and inter-database testing scenarios.

Index Terms—Face spoofing attack, presentation attack detec-
tion, wax figure face, face anti-spoofing.

I. INTRODUCTION

FACE has been one of the most widely used biometric

modalities due to its accuracy and convenience for per-

sonal verification and identification. However, the increasing

popularity and easy accessibility of face modalities make

face recognition systems (FRS) a major target of spoofing

such as presentation attacks [1]. This class of security threats

can be easily implemented by presenting the FRS a face

artifact, which is also known as presentation attack instrument

(PAI) [2]. A recent breach of biometrics database (BioStar)

leads to the compromise of as many as 28 million records

containing facial and fingerprint data, which can be exploited

by malicious hackers as PAIs.
Based on the way of generating face artifacts, face presen-

tation attacks can be classified into 2D (e.g., printed/digital

photographs or recorded videos on mobile devices such as

a tablet) and 3D (e.g., by wearing a mask or presenting a

synthetic model). Existing research on FRS has paid more

attention to 2D face PAI due to its simplicity, efficiency, and

low cost. However, as material science and 3D printing tech-

nology advance, creating face-like 3D structures or materials
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Fig. 1. Examples of 3D presentation attack cases. (a) Airport security system
fooled by silicon mask1, (b) Android phones fooled by a 3D-printed head2,
(c) iPhone X face ID unlocked by a 3D mask3.

has become easier and more affordable. When compared to

2D attacks, 3D face presentation attacks are more realistic

and therefore more difficult to be detected. The class of 3D

face presentation attacks includes wearing wearable facial

masks [3], building 3D facial models [4], through facial make-

up [5], [6], and using plastic surgery. Fig. 1 shows several

examples of 3D presentation attacks, which have successfully

fooled some widely used FRS in practice.

The vulnerability of current face recognition systems to

realistic face presentation attacks has facilitated a series of

studies on 3D face presentation attack detection (PAD) [7].

Existing methods tried to explore the difference between real

face skin and 3D fake face materials based on the reflectance

properties using multispectral imaging [8], [9], texture analy-

sis [10], [11], deep features [12], [13], or liveness cues [14],

[15]. They have achieved promising detection performance on

several existing 3D face spoofing databases [3], [16], [17],

[18]. However, since facial masks are often made of paper,

latex or silicone materials, these 3D face spoofing databases

have the limitations of small database size (mostly less than

30 subjects), poor authenticity (some based on 2D planar or

noncustomized masks [17], [19]), and low diversity in subject

and recording process, which might impede the development

of effective and practical PAD schemes. Several studies [7],

[20], [21], [22] have shown that a variety of 3D PAD methods

suffer from performance degradation on databases with more

diverse and realistic 3D face spoofing attacks.

In this work, we aim at detecting realistic 3D face spoofing

attacks which often pose greater threats to existing FRS (even

with face anti-spoofing modules) than their 2D counterparts.

Based on the fact that wax figure faces have already been

used for identity, personation, and fraud in the real world

1Picture is downloaded from https://chameleonassociates.com/security-
breach/.

2Picture is downloaded from http://www.floridaforensicscience.com/broke-
bunch-android-phones-3d-printed-head/.

3Picture is downloaded from https://boingboing.net/2010/11/05/young-
asian-refugee.html.
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(a) (b)

Fig. 2. Photos with wax figure faces for fraud. In 2012, six suspects snapped
about 600,000 people out of nearly US$475 million under a pyramid sales
scam using photos taken with the wax figures at Hong Kong’s Madam
Tussauds Museum, (a) with the wax figure of chief executive Donald Tsang
Yam-Kuen, (b) with the wax figure of business tycoon Li Ka-Shing.

(as shown in Fig. 2), we first collect a large number of wax

figure faces based on both still images and moving videos as

super realistic 3D face spoofing attacks by expanding upon

our preliminary work [23]. Furthermore, we propose to treat

realistic face spoofing detection as a special class of fine-

grained image classification problems which focus on dif-

ferentiating between hard-to-distinguish object classes. Then

we introduce a new bilinear coding based method with state-

of-the-art performance of combining features for fine-grained

classification, which generates discriminative representations

for 3D face anti-spoofing. The main contributions of this work

are summarized below.

• A large-scale wax figure face database (WFFD) with both

images and videos is constructed as the super realistic

3D face presentation attack. It contains 2300 pairs of

matched faces from 745 subjects (totally 4600 faces), and

285 videos from 241 subjects (with over 45000 frames).

• A new 3D face anti-spoofing method, named MC FBC,

is proposed based on factorized bilinear coding for mul-

ticolor channels. This is the first work addressing the

problem of detecting a realistic face PAD in a fine-

grained manner and use bilinear coding to improve the

discriminative power of feature representations.

• We have conducted extensive experiments on the pro-

posed WFFD and several publicly available databases.

Our findings show that the proposed method outperforms

several state-of-the-art methods under both intra- and

inter-database testing scenarios.

The rest of this paper is organized as follows. In Section II,

we briefly review related research in 3D face PAD methods and

spoofing databases. Section III introduces the WFFD database

with both photo-based and video-based wax figure faces as

super realistic 3D face spoofing attacks. The proposed 3D face

anti-spoofing method based on factorized bilinear coding is

presented in Section IV. Experimental results are reported in

Section V, and we make several conclusions about this work

and future research in Section VI.

II. RELATED WORK

A. 3D Face PAD methods

Detection of 3D fake faces is often more challenging

than detecting fake faces with 2D planar surfaces. Methods

designed for 2D face spoofing detection may fail to identify

3D face spoofing attacks, especially for those using recapture

effects [24] and spoofing medium contour detection [25]. Ex-

isting PAD methods for 3D face presentation attacks, mainly

based on the difference between real face skin and mask

material, can be broadly classified into five categories, namely,

reflectance-based, texture-based, shape-based, liveness-based,

and deep feature based.

Earlier studies [26], [27], [28] in 3D mask spoofing de-

tection were based on the reflectance difference of facial

skin and mask materials. For example, the distribution of

albedo values for illumination of various wavelengths was

first analyzed in [26] to find how different facial skins and

mask materials (silicon, latex, and skinjell) behave in terms of

reflectance. Texture-based methods explore the texture pattern

difference of real faces and masks with the help of texture

feature descriptors, such as the widely used Local Binary

Patterns (LBP) [3], [29], Binarized Statistical Image Features

(BSIF) [30], and Haralick features [10].

Shape-based 3D mask PAD methods use shape descrip-

tors [31], [32], [33] or 3D reconstruction [11] to extract

discriminative features from faces and 3D masks. Different

from reflectance-based or texture-based detection methods,

these schemes only require standard color images without the

need of special sensors. However, their detection performances

rely on the quality of 3D mask attacks, and may not be

robust to super realistic 3D face presentation attacks. More

recently, some methods explore liveness cues to detect 3D

face presentation attacks, such as thermal signatures [34], gaze

information [35], [36], and pulse or heartbeat signals [20],

[37], [38], [39]. Based on the intrinsic liveness signals, these

methods achieve outstanding performance on distinguishing

real faces from masks.

Instead of extracting hand-crafted features, deep feature

based methods automatically extract features from face im-

ages. Two deep representation approaches were investigated

in [40] for spoofing detection in different biometric modalities.

Image quality cues (Shearlet) and motion cues (dense optical

flow) were fused in [41] using a hierarchical neural network

for mask spoofing detection, which achieved a Half Total Error

Rate (HTER) of 0% on the 3DMAD database [3]. A network

based on transfer learning using a pre-trained VGG-16 model

architecture is presented in [42] to recognize photo, video, and

3D mask attacks. Based on the observation of the importance

of dynamic facial texture information, a deep convolutional

neural network-based approach was developed in [12], [21].

Both intra-dataset and cross-dataset evaluation on 3DMAD

and their supplementary dataset indicated the efficiency and

robustness of the proposed method.

Despite these advances in 3D face anti-spoofing, there are

limitations in each category of detection methods. For exam-

ple, the main limitation of reflectance-based methods is the

requirement of special and expensive devices to acquire mul-

tispectral images at varying wavelengths. Although texture and

shape-based methods are easy-to-implement, their robustness

to different mask spoofing attacks needs further investigation.

The liveness cues, such as pulse/heartbeat-based, are highly

dependent on lighting conditions and camera settings (e.g.,

exposure time and frame rates). Deep feature based approaches

are generally sensitive to dataset sizes and lack transparency.
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In addition, most of them [7], [20], [43], [21], [22], [44],

[35], [37], [38] still suffer from performance degradation when

applied to databases with more realistic face spoofing attacks.

How to improve the robustness and discriminative power of

representations to distinguish real faces from fake ones has

remained a long-standing open problem.

B. 3D Face Spoofing Databases

Existing 3D face spoofing databases create attacks mainly

based on wearable 3D face masks that are made of material

with face characteristics similar to real faces. 3DMAD [3]

is the first publicly available 3D mask database. It used

the services of ThatsMyFace4 to manufacture 17 masks of

users, and recorded 255 video sequences with an RGB-D

camera of Microsoft Kinect device for both real access and

presentation attacks. With the development of 3D modeling

and printing technologies, more mask databases have been

created since 2016. 3DFS-DB [45] is a self-manufactured

and gender-balanced 3D face spoofing database, in which 26

printed models were made using two 3D printers. HKBU-

MARs [16], [20] is another 3D mask spoofing database

with more variations. It generated customized masks from

two companies (ThatsMyFace and REAL-F5), and created

videos from 12 subjects. To include more subjects, SMAD

database [17] has collected videos of people wearing silicone

masks from online resources. It contains 65 genuine videos

of people auditioning, interviewing, or hosting shows, and 65

imposter videos of people wearing a complete 3D (but not

customized) mask which fits well with proper holes for the

eyes and mouth.

For effective detection, more 3D face spoofing databases

provide multi-modality spoofing samples under special light-

ing conditions. The BRSU Skin/Face/Spoof Database [28]

provides multispectral SWIR (Short Wave Infrared) and RGB

color images for various types of masks and facial disguises.

The MLFP database [19] is another multispectral database

using latex and paper masks. It contains 1350 videos of 10

subjects in visible, near infrared (NIR), and thermal spectrums.

The ERPA database [34] provides RGB and NIR images of

both bona fide and 3D mask attack presentations captured

using special cameras. This is a small dataset with only 5

subjects involved. Both rigid resin-coated masks and flex-

ible silicone masks are considered. Similarly, the recently

released WMCA database [18] used multiple capturing de-

vices/channels, including color, depth, thermal, and infrared.

It contains 1679 videos with 347 bona fide and 1332 attacks

from 72 subjects; among them, 709 3D face spoofing attack

videos include fake head, rigid mask, flexible silicone masks,

and paper masks. The 3DMA [46] also collects 920 videos

captured in both visual and NIR modalities from 67 subjects.

These databases have played a significant role in design-

ing multiple detection schemes against 3D face presentation

attacks. However, the following issues have remained to be

addressed: (1) only a small number of 3D spoofing samples are

collected due to the difficulty and expense of mask production;

4http://thatsmyface.com/
5http://real-f.jp/en the-realface.html

Fig. 3. 3D mask spoofing examples in existing databases. (a) 3DMAD, (b)
3DFS-DB, (c) HKBU-MARs, (d) SMAD, (e) WMCA.

(2) most of the 3D face spoofing attacks are of low quality

(e.g., using noncustomized masks [17], [19] or 2D cut-out

paper masks [19], [47]. Although soft/flexible masks are closer

to real faces, they are still easy to be recognized by humans [3],

[16], [18], [45] (as shown in Fig. 3); (3) they contain less

variations to simulate the real world scenarios in terms of

recording cameras, lighting settings, subject pose/age, and

facial expression/resolution. Therefore, we have introduced

wax figure faces as super realistic 3D face spoofing attacks

in [23] (with 4400 still faces). After that, Vareto et al. [48]

collected a wax figure database named SWAX with 1800 faces

and 110 videos from 55 people/waxworks.

In this paper, to overcome the limitations in both 3D face

spoofing databases and detection methods, we first expand the

wax figure face dataset to include both images and videos

with a high degree of diversity, aiming at more faithfully

simulating realistic spoofing attacks. Then we will design a

novel detection method based on the fusion of complementary

skin-inspired features in different color spaces to extract subtle

differences between real faces and realistic spoofing attacks.

III. WAX FIGURE FACE DATABASE

In this section, we introduce the super realistic Wax Figure

Face Database (WFFD) with both photo-based and video-

based wax figure faces to address the weaknesses in the

existing 3D face spoofing databases. Considering the difficulty

and expense in generating a large number of 3D wax figure

faces, we take advantage of the popularity and publicity of

numerous celebrity wax figure museums in the world, and

collect as many wax figure faces as possible from online

resources to construct such a database with a large size

and high diversity. These wax figure faces are all carefully

designed and made in clay with wax layers, silicone, or resin

materials, so that they are super realistic and similar to real

faces. In the physical domain, the attacker may fool the FRS

using just the life-size wax heads, which can be obtained with

relatively low cost (about 200 dollars) from online shopping

websites (such as eBay US and Taobao China).

A. Wax figure face database of still images

Our previous work [23] has been greatly expanded to qualify

wax figure faces as super realistic 3D face spoofing attacks.

We have thoroughly cleaned the dataset and removed images

with tiny faces or low quality due to lossy compression, and

then added 100 new pairs of images from 75 subjects to the

new database. Finally, a total of 2300 pairs of images (4600
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A. Skin color model

Color spaces play an important role in image processing and

computer vision applications. RGB is the most widely used

color space for sensing, representing, and displaying color

images. However, due to the high correlation among the three

color components (red, green, and blue), RGB color space

representation is not necessarily the most appropriate choice

for face anti-spoofing. Alternative color-space representations

such as luminance/chrominance and hue/saturation are also

valid and competing choices. Instead of fusing features from

a single RGB color space as most previous bilinear pooling

schemes [57], [58], [59], [60], [54] did, we propose to take

multiple color spaces into account and extract more discrimi-

native features by combining multicolor space representations

for 3D face anti-spoofing.
Different from RGB color space, YCbCr color space en-

codes a color image similar to human eyes’ retina, which

separates the RGB components into a luminance component

(Y) and two chrominance components (Cb as blue projection

and Cr as red projection; for an analog version, as U and

V, respectively). YCbCr space is effective for color feature

extraction and has also achieved promising performance in

face-related applications (e.g., human face detection [56], 2D

face spoofing detection [61], and skin classification [62]).
Considering the high similarity between 3D face spoofing

attacks and real faces, we propose to take both RGB and

YCbCr color spaces of the face image as the input of CNN-

based feature extraction module to obtain robust facial color

texture descriptions. The key motivation behind combining dif-

ferent color textures is two-fold. First, each color-texture based

analysis can help capture the artifacts of spoofing attacks for

detection. The artificial face in face spoofing attacks is either

made of special materials different from human skins (e.g.,

silicon, latex, and skinjell mask) or passes through different

camera systems or printing systems (or display devices in

2D attacks) [63]. Therefore, artificial face images are likely

to suffer from different kinds of quality degradation issues -

e.g., the face production material artifacts, the PAI dependent

color variations, and limited color reproduction in 2D print

or replay spoofing, which do not occur in real faces. Second,

the fusion of two different color spaces, namely, the RGB with

highly correlated color components, and YCbCr with separated

luminance and chrominance components, has the potential of

learning complementary and robust subtle features for face

anti-spoofing (see the results in Section V-B and V-G).

B. Factorized bilinear coding

Bilinear pooling was introduced in [58] to provide robust

image representation for fine-grained image classification. In

bilinear pooling models, two feature vectors are fused by an

outer product (or Kroneker product of matrices); this way, all

pairwise interactions among the given features are considered

as follows:

Z =
∑

(i,j∈S)

xiy
>
j (1)

where {xi|xi ∈ R
p, i ∈ S}, {yj |yj ∈ R

q, j ∈ S} are two in-

put features, S is the set of spatial locations (combinations of

rows and columns), and Z ∈ R
p×q is the fused feature descrip-

tor. It can be seen that the size of the bilinear feature descriptor

can be large, which makes it computationally infeasible. To

generate more compact representations, we have employed the

factorized bilinear coding (FBC) [57] to more computationally

efficiently integrate the features from both RGB and YCbCr

color spaces for 3D face anti-spoofing.

Let xi, yj be the two features extracted from RGB and

YCbCr color spaces respectively, the FBC encodes the features

based on sparse coding, and learns a dictionary B with k atoms

that are factorized into low-rank matrices to capture the struc-

ture of the whole data space. Specifically, let the dictionary

B = [b1, b2, ..., bk] ∈ R
pq×k, and FBC proposes to factorize

each dictionary atom bl ∈ R
pq(1 ≤ l ≤ k) into UlV

>
l ,

where Ul ∈ R
p×r and Vl ∈ R

q×r are learnable low-rank

matrices (as the hyper-parameter rank r � p, q). Therefore,

the original bilinear features xiy
>
j can be reconstructed by

k∑
l=1

clvUlV
>
l , with cv ∈ R

k being the FBC code, and clv being

the l-th element of cv (1 ≤ v ≤ N , N is the number of pairs

in S). Then the sparsity-based FBC encodes the two input

features (xi,yj) into cv by solving the following optimization

problem,

min
cv

∣∣∣∣
∣∣∣∣xiy

>
j −

k∑

l=1

clvUlV
>
l

∣∣∣∣
∣∣∣∣
2

+ λ||cv||1 (2)

where λ is a trade-off parameter between the reconstruction

error and the sparsity. To obtain the FBC code cv , the classical

LASSO method [64] has been adopted as shown in Eq. (3).
{

c′v = P (Ũ>xi ◦ Ṽ
>yj),

cv = sign(c′v) ◦max((abs(c′v)−
λ
2 ), 0).

(3)

where ◦ denotes the Hadamard product, P ∈ R
k×rk is a

fixed binary matrix with only elements in the row l, columns

((l − 1)r + 1) to (lr) being “1”, and Ũ and Ṽ are the

transformations of U and V to avoid matrix inversion with

heavy computation in the original LASSO method. They are

in the form of
{

Ũ> = [Ũ>
l ] = [ 1

r
· I((ql1

>
rk) ◦U

>)] ∈ R
rk×p

Ṽ > = [Ṽ >
l ] = [ 1

r
· IV >] ∈ R

rk×q
(4)

where I ∈ R
r×rk is an all “1” matrix, ql is the l-th column

of Q = ((P (U>UP> · V >V P>))−1P )>.

With Eq. (3), the FBC code cv can be obtained by learning

Ũ and Ṽ instead of U and V . We can get all FBC codes c in

feature pair set S; then they are fused using the max operation

to attain the final global representation z = max {cv}
N

i=1.

The FBC module is applied to the features extracted by

the last convolutional layer of a CNN (e.g., VGG), then

followed by a fully connected (FC) layer for classification

using Softmax classifier. The whole process of the proposed

MC FBC scheme is shown in Fig. 6.

C. Loss Function

To train the network, we utilize the focal loss function [65]

which reshapes the standard cross entropy loss in such a way

that the loss assigned to well-classified examples in binary
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TABLE III
COMPARISON RESULTS (%) OF DIFFERENT COLOR SPACES ON WFFD DATABASE UNDER PROTOCOL III

Color space
Backbone-VGG-16 Backbone-ResNet-50

Accuracy APCER BPCER ACER Accuracy APCER BPCER ACER

RGB 93.26 8.91 4.57 6.74 93.59 8.91 3.91 6.41
YCbCr 92.39 8.26 6.96 7.61 93.91 8.70 3.48 6.09
YUV 87.83 11.09 13.26 12.18 92.93 9.78 4.35 7.07
HSV 87.07 16.30 9.57 12.94 91.74 10.65 5.87 8.26
YUV+YCbCr 91.09 10.87 6.96 8.92 93.37 5.87 7.39 6.63
RGB+HSV 93.15 8.26 5.43 6.85 93.91 6.30 5.87 6.09
RGB+YUV 94.24 7.17 4.35 5.76 94.89 5.87 4.35 5.11
RGB+YCbCr (MC FBC) 94.57 6.09 4.78 5.44 95.22 5.65 3.91 4.78

(1,000 live subjects and 8,000 spoofing attacks) recorded with

two types of cameras. A five-fold subject-exclusive cross-

validation protocol was designed for this database. Oulu-

NPU database contains 4,950 videos of 55 subjects with

both real access and 2D face spoofing attacks. The videos

were recorded using six mobile devices in three sessions with

different illumination conditions, and they were divided into

three subsets for training, validation, and testing, with four

protocols.

3) Evaluation metrics: We report all experimental results

following the ISO/IEC 30107-3 metrics [70]. Three types

of errors, i.e., Attack Presentation Classification Error Rate

(APCER), Bona Fide Presentation Classification Error Rate

(BPCER), and Average Classification Error Rate (ACER) are

used in addition to the detection accuracy.

B. Ablation Study

1) The impact of multiple color spaces: We first demon-

strate the effectiveness of combining multiple color spaces

in detecting wax figure faces from real ones on the WFFD

dataset. Table III shows the comparison results under Pro-

tocol III with two features both from the same color space

(including RGB, YCbCr, YUV, and HSV) and from two

different color spaces as the input of FBC module. It can

be observed that in single color space, RGB and YCbCr

get higher classification accuracy and lower error rates than

YUV and HSV color space. However, using multiple color

spaces, especially combining the RGB with YCbCr, obtains

better results. Specifically, the proposed MC FBC scheme

combining RGB and YCbCr color spaces achieved 94.57%

accuracy and 5.44% ACER under the VGG-16 model, while

the performance was further improved by the deeper ResNet-

50 model, with the highest accuracy of 95.22% and the lowest

ACER of 4.78%. This shows the complementary properties of

RGB and YCbCr spaces in generating more discriminative

representations.

2) Exploring different feature fusion schemes: We next

compare the proposed MC FBC scheme with several feature

fusion schemes, including concatenation (simply combining

two feature vectors by concatenating them), score-level fusion

of two color spaces, traditional bilinear pooling (BP) [58],

compact bilinear pooling (CBP) [59], and factorized bilin-

ear coding (FBC) [57]. As all these bilinear pooling based

methods fused features from VGG-16 model, we present

the comparison results in Table IV using VGG-16 network

as the backbone. We can see that without bilinear pooling

TABLE IV
COMPARISON RESULTS (%) OF DIFFERENT FUSION METHODS ON WFFD

DATABASE UNDER PROTOCOL III USING VGG-16

Fusion scheme Accuracy APCER BPCER ACER

Original VGG-16 84.68 13.48 17.17 15.33
Concatenation 84.35 13.91 17.39 15.65
Max score fusion 85.43 12.39 16.74 14.56
Mean score fusion 85.87 11.96 16.30 14.13
BP [58] 92.28 7.61 7.83 7.72
CBP [59] 90.87 8.48 9.78 9.13
FBC [57] 92.83 8.70 5.65 7.18
FBC FL 93.26 8.91 4.57 6.74
MC FBC CE 93.91 7.39 4.79 6.09
MC FBC 94.57 6.09 4.78 5.44

FL denotes Focal Loss, and CE denotes Cross Entropy Loss.

fusion, the learned features from VGG-16 model suffer from

a high ACER of over 14%. By contrast, bilinear pooling based

methods with richer information have dramatically improved

the detection performance - i.e., improving the classification

accuracy by over six percentage points and reducing the three

error rates (APCER/BPCER/ACER) by more than half on

average.
The FBC method achieved better results than the traditional

BP and CBP methods due to its more compact and discrim-

inative representation based on sparse coding. More compact

representations help to overcome the redundancy and bursti-

ness issues of traditional BP. We also present the comparison

results of the focal loss function in the proposed MC FBC

scheme with the cross-entropy loss used in the original FBC.

For both schemes, the focal loss function can improve the

detection results in terms of classification accuracy and error

rates thanks to its generalization and robustness by giving

more attention to hard and misclassified examples. Overall, the

proposed MC FBC scheme has achieved the highest accuracy

and lowest error rates (except the BPCER) on the Protocol III

when tested on the WFFD database.

TABLE V
COMPARISONS OF MODEL SIZE AND COMPLEXITY. PARAMS: PARAMETER

NUMBER; FLOPS: THE NUMBER OF FLOATING POINT OPERATIONS PER

SECOND.

Model
VGG-16 ResNet-50

Params FLOPs Params FLOPs

w/o FBC 138.36M 15.48G 25.56 M 4.11G
w/ FBC 15.77M 15.78G 27.71M 4.52G
w/ MC FBC 15.77M 31.13G 27.71M 8.63G

C. Model Complexity

We have compared the proposed model with the original
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TABLE VI
COMPARISON RESULTS (%) ON THE WFFD DATABASE

Method
Protocol I Protocol II Protocol III

EER APCER BPCER ACER EER APCER BPCER ACER EER APCER BPCER ACER

Multi-scale LBP [3] 23.50 27.00 28.50 27.75 31.15 36.15 27.69 31.92 28.91 31.74 25.65 28.70

Image quality [71] 35.50 30.50 39.50 35.00 38.85 39.23 43.46 41.35 41.30 36.96 43.26 40.11

Color LBP [61] 31.50 36.00 28.50 32.25 33.85 30.77 39.61 35.19 31.52 33.26 34.13 33.70

Haralick [10] 30.50 27.50 32.50 30.00 32.69 33.08 36.54 34.81 34.78 28.04 40.00 34.02

Recod [72] 17.00 25.50 14.50 20.00 22.69 25.77 30.77 28.27 21.30 23.91 20.22 22.07

ResNet-50 [73] 16.50 21.00 18.50 19.75 17.31 19.23 21.92 20.58 15.87 17.61 20.43 19.02

VGG-16 [67] 14.50 14.50 18.00 16.25 18.08 13.46 15.77 14.61 14.78 13.48 17.17 15.33

CCoLBP [74] 29.50 26.50 26.00 26.25 28.08 24.62 34.23 29.42 28.04 26.52 29.13 27.83

Noise model [75] 31.00 31.00 48.50 39.75 41.54 41.54 41.15 41.35 38.00 38.04 47.83 42.93

Hybrid ResNet [76] 8.50 9.00 13.00 11.00 11.00 11.38 13.31 12.35 10.90 11.21 13.23 12.22

Human-based - 20.14 11.86 16.00 - 32.97 17.97 25.47 - 27.39 15.31 21.35

FaceBagNet [77] 15.28 19.50 13.00 16.25 20.33 20.77 21.92 21.35 14.60 17.39 12.39 14.89

CDCN [78] 16.50 17.50 18.00 17.75 23.48 26.54 25.38 25.96 19.22 19.13 19.57 19.35

DeepPixBiS [79] 6.50 8.50 4.00 6.25 8.44 11.54 5.38 8.46 7.82 11.52 4.50 8.04

MC FBC-VGG-16 5.28 4.35 6.96 5.66 7.34 11.53 4.23 7.88 5.32 6.09 4.78 5.44

MC FBC-ResNet-50 4.82 4.00 5.50 4.75 6.55 7.30 6.54 6.92 4.70 5.65 3.91 4.78

VGG-16/ResNet-50 and FBC models in terms of model size

and complexity. The comparison results within the same input

face size are shown in Table V. With one more stream to obtain

complementary facial color texture descriptions, the proposed

MC FBC model has higher (almost twice) FLOPs for both

VGG-16 and ResNet-50 networks than the original FBC.

However, it keeps the same model size as the original FBC,

which is still much smaller than that of the VGG-16 model

without FBC, and only slightly higher than the ResNet-50

model. Considering the significant performance improvement

as shown in Table VI, we deem MC FBC a good comprised

solution between cost and performance.

D. Comparison on the proposed database

1) WFFD database: Several face PAD methods were eval-

uated on the WFFD database, to show how they can work for

super realistic 3D presentation attacks. These PAD methods

have achieved promising performance in detecting 2D type

or 3D mask presentation attacks. Our benchmark set includes

multi-scale LBP [3], image quality assessment based [71],

color LBP [61], Haralick features [10], Recod method with

outstanding performance in a face spoofing detection compe-

tition [72], ResNet-50 based [73], [53], VGG-16 based [67],

Chromatic Co-Occurrence of LBP (CCoLBP) [74], noise

modeling based [75], Hybrid ResNet [76], FaceBagNet [77],

CDCN [78], and DeepPixBiS [79]. The experimental results

of all benchmark methods were obtained using the publicly

available codes. In addition, we have conducted a controlled

human-based detection experiment to test the ability of human

vision systems in distinguishing wax figure faces from real

ones. In our controlled experiment, 20 volunteers (10 men and

10 women, aged between 23 and 55) were asked to determine

whether the face is real or not using our self-developed

program. The classification error rates were calculated and

averaged as the final result of human-based spoofing detection.

Table VI compares the results of different face PAD

schemes. For Protocol I, we can see that the existing face

PAD methods for 2D or 3D mask attacks suffer from se-

vere performance degradation with high detection error rates

on WFFD, ranging from 8.5% to 48.5%. We attribute the

poor performance to high diversity and super realistic at-

tacks in the new database. Among them, the most learned

features [72], [73], [67], [76], [77], [78], [79] achieved better

results than hand-crafted features [3], [71], [61], [10]. Human-

based detection has achieved a lower ACER of 16%, but with

higher APCER than BPCER, suggesting that more wax figure

faces were mistaken for real ones. The proposed MC FBC

scheme achieved the best results with ACER less than 6%

for both backbone networks. Similar performance differences

can be observed under Protocol II. However, most algorithms

achieved higher error rates for this protocol. Such results are

reasonable since recording real and wax figure faces in the

same scenario with the same camera results in less difference

between real and fake faces. Therefore, it is more difficult to

detect spoofing attacks in this homogeneous setting.

The overall results under Protocol III with different face

PAD methods have large differences, with the error rates

ranging from 3.91% to 47.83%. The best ACER was achieved

in the proposed ResNet-50 based MC FBC scheme due to

the highly discriminative features, which significantly outper-

formed other algorithms and human based detection. Based on

pixel-wise binary supervision, the DeepPixBiS method [79]

also achieved better results, with all error rates lower than

9%. Human-based detection performs worse than machine-

based for all three protocols, which implies that real vs. wax

detection is nontrivial for the layperson. The image quality-

based [71], and noise modeling-based [75] methods, however,

performed worse on the WFFD because of the high diversity

of image quality in the proposed database.

2) Failure case analysis: Based on the detection results

of WFFD, we further analyze the failure cases in order to
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achieve a deeper understanding. In Fig. 7, we have shown the

failure cases with high probability in both MC FBC method

and human-based detection results, which visually illustrate

the challenges of distinguishing between fake faces and real

ones even for human observers. From Fig. 7(a), we note that

most false detections with high probability in the proposed

MC FBC method trend to have special face poses, which

on the contrary may become the cues for human to detect.

More interestingly, when compared with the proposed method,

human-based detection was more likely to mistake wax figure

faces for real ones for both protocols, as shown in Fig. 7(b)

(there are more red dots than green dots). This is in sharp

contrast with that in machine-based method in Fig. 7(a) (there

are nearly the same number of total green and red dots).
3) WFFD-V database: To detect moving wax figure faces

in the newly constructed WFFD-V database, we have ran-

domly selected 10 frames from each video, and the resulting

scores from the Softmax classifier were averaged to obtain

the final score. Table VII shows that the proposed method

achieved the best performance with an accuracy of 94.74% and

ACER of 5.23% using either VGG-16 or ResNet-50 network.

The last four rows of the table demonstrate the effect of

multiple color space fusion in improving the detection results.

Compared with the results in Table VI, we can observe that

the performance gap among different methods in detecting

video-based wax figure faces is smaller than detecting photo-

based ones, and most methods achieved lower error rates in

this dataset. This can be attributed to the lower diversity of the

WFFD-V. Overall, the learning features, especially the bilinear

pooling based, patch-based [77], and pixel-wise supervision-

based [78], [79], performed better (with accuracy over 91%

and ACER less than 9%) than hand-crafted features. The

Haralick based method [10] obtained the worst performance

with an ACER over 20% in distinguishing between wax figure

face videos and real face ones.

E. Intra-database testing on existing databases

1) 3D mask spoofing databases: The spoofing detection

results on 3DMAD and HKBU-MARs-V1+ databases, are

shown in Tables VIII and IX. Besides the previous benchmark

set, we include three face PAD methods proposed for 3D

mask spoofing detection- namely, two heartbeat signal-based

methods using global or local rPPG-spectrum features [80],

TABLE VII
COMPARISON RESULTS (%) ON THE NEW WFFD-V DATABASE.

Method Accuracy APCER BPCER ACER

Color LBP [61] 84.21 20.69 10.71 15.70

Haralick [10] 78.95 27.59 14.29 20.94

Recod [72] 83.33 8.93 24.14 16.53

ResNet-50 [73] 87.72 10.34 14.29 12.32

VGG-16 [67] 89.25 11.61 9.91 10.76

CcoLBP [74] 80.70 20.69 17.86 19.27

Noise model [75] 80.04 15.18 24.57 19.87

Hy-ResNet [76] 89.47 10.34 10.71 10.53

FaceBagNet [77] 91.89 9.48 6.70 8.09

CDCN [78] 92.54 7.33 7.59 7.46

DeepPixBiS [79] 93.42 6.47 6.70 6.58

BP [58] 91.23 6.90 10.71 8.81

FBC [57] 92.98 6.90 7.14 7.02

MC FBC-VGG-16 94.74 6.90 3.57 5.23

MC FBC-ResNet-50 94.74 6.90 3.57 5.23

[16], and the deep dynamic texture-based method [12]. With-

out publicly available codes, we have directly cited the re-

ported results under the same protocol. It can be seen that

the proposed MC FBC method achieved 0% error rate on

3DMAD database, where several methods performed perfectly.

Note that this is because 3DMAD is a relatively easy dataset

for spoofing detection (with simple and rigid masks as shown

in Fig. 3). On a more realistic HKBU-MARs-V1+ database,

our method achieved 3.64% ACER using ResNet-50 as the

backbone network, slightly higher than the best result from

Haralick features (with 3.24%). We can also observe that all

methods have achieved higher error rates on HKBU-MARs-

V1+ (see Table IX) than on the 3DMAD database (see Table

VIII). Such results are reasonable because the mask spoofing

samples in the HKBU-MARs-V1+ are closer to real faces

and contain more realistic variations. Based on heartbeat

signal analysis, the methods using GrPPG [80] and LrPPG

features [16] were affected little by the spoofing quality,

showing better detection robustness on the two databases.

2) 2D face spoofing database: Tables X and XI show

the comparison results on the 2D face spoofing databases

(MSU-USSA and Oulu-NPU). In Table X, we also include

(a) (b)

Fig. 7. Failure cases with high probability. (a) in the proposed MC FBC method (with over 80% of the detection results from 20 randomly chosen epochs
using two backbone networks); (b) in human based anti-spoofing detection (with over 80% of the 20 volunteers). Note that images with red dots are wax
figure faces (but mistaken for real faces), while images with green dots are real faces (but mistaken for wax faces).
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TABLE VIII
COMPARISON RESULTS (%) ON 3DMAD DATABASE

Method APCER BPCER ACER

Haralick [10] 0.00± 0.0 0.00± 0.0 0.00± 0.0

Recod [72] 4.70± 19.4 0.00± 0.0 2.35± 9.7

ResNet-50 [73] 0.00± 0.0 0.00± 0.0 0.00± 0.0

VGG-16 [67] 14.21± 16.7 3.33± 8.5 9.59± 11.2

GrPPG [80] - - 13.3± 13.3
*

LrPPG [16] - - 8.57± 13.3
*

Deep dynamic

textures [12]
- - 1.76*

BP [58] 0.00± 0.0 0.00± 0.0 0.00± 0.0

FBC [57] 0.00± 0.0 1.25± 3.5 0.61± 1.8

MC FBC-

VGG-16
0.00± 0.0 0.00± 0.0 0.00± 0.0

MC FBC-

ResNet-50
0.00± 0.0 0.00± 0.0 0.00± 0.0

* Using reported results.

TABLE IX
COMPARISON RESULTS (%) ON HKBU-MARS-V1+ DATABASE

Method APCER BPCER ACER

Color LBP [61] 24.00± 36.5 9.71± 9.8 16.72± 20.2

Haralick [10] 3.86± 7.6 2.43± 3.8 3.24± 6.8

Recod [72] 17.14± 27.2 15.71± 27.4 16.53± 28.7

ResNet-50 [73] 17.14± 29.2 15.71± 26.9 16.43± 28.1

VGG-16 [67] 16.33± 37.8 7.10± 11.2 13.66± 19.8

CcoLBP [74] 14.28± 34.1 12.85± 30.0 13.57± 31.9

GrPPG [80] - - 16.10± 20.5
*

LrPPG [16] - - 8.67± 8.8
*

Deep dynamic

textures [12]
- - 13.44 *

BP [58] 9.09± 30.2 3.55± 11.8 6.32± 15.6

FBC [57] 9.09± 30.2 2.64± 8.7 5.86± 15.3

MC FBC-

VGG-16
8.33± 28.87 0.00± 0.0 4.17± 14.4

MC FBC-

ResNet-50
7.27± 24.1 0.00± 0.0 3.64± 12.1

* Using reported results. Note that the result of ’Deep dynamic textures’ was
conducted on a subset of HKBU-MARs-V1+.

two new methods on MSU-USSA database, including two-

stream CNN in [81] combining Patch-CNN and depth-CNN,

and deep forest with multiscale LBP based method [82]. The

proposed MC FBC method has achieved the ACER of 1.9%

and 1.5% using two backbone networks (VGG-16 and ResNet-

50) respectively, slightly higher than deep forest based method

(with ACER of 1.3%). Using not only full face images, but

also local patches extracted from the same face, the two-

stream CNN method performed the best with 0.2% ACER

in distinguishing the fake from real faces.

For the widely used Oulu-NPU database, we have added

several benchmark methods, including two leading methods

in face spoofing detection competition held in 2017 [72]

(GRADIANT and MixedFAXNet), and five recent works

(MILHP [83], CDCN [78], DeepPixeBiS [79], TSCNN [84],

and SAPLC [85]). The proposed MC FBC method based on

ResNet-50 model achieved ACERs of 5.9%, 3.8%, 4.9%, and

TABLE X
COMPARISON RESULTS (%) ON MSU-USSA DATABASE

Method APCER BPCER ACER

Color LBP [61] 3.1± 0.8 3.0± 0.8 3.1± 0.8

Image distortion [24] 3.3± 0.7 4.3± 2.0 3.5± 1.0

Haralick [10] 9.1± 0.9 8.8± 0.9 8.9± 0.9

Recod [72] 3.3± 0.4 3.4± 1.3 3.3± 0.7

ResNet-50 [73] 7.6± 0.9 8.9± 2.6 8.3± 1.0

VGG-16 [67] 27.7± 5.5 27.8± 2.2 27.8± 3.5

Patch-CNN [81] - - 0.4± 0.3
*

Depth-CNN [81] - - 2.2± 0.7
*

Two stream CNN [81] - - 0.2± 0.2
*

Deep forest [82] - - 1.3± 0.5
*

MC FBC-VGG-16 1.0± 0.5 2.9± 1.0 1.9± 0.5

MC FBC-ResNet-50 1.5± 0.5 1.6± 0.9 1.5± 0.4

* Using reported results.

7.6% in the four protocols respectively, only slightly lower

than using VGG-16 as the backbone network. The CDCN

method achieved superior performance to most methods under

the first three protocols with limited variations due to its pow-

erful discrimination ability in extracting intrinsic 2D spoofing

patterns [78], [86]. Although the performance of our proposed

MC FBC was not the best under Protocol I with unseen envi-

ronmental conditions, it has shown good robustness (ranking

third, slightly lower than the best result of noise model based

method [75]) under Protocol IV, which combines the previous

three protocols and is the most challenging scenario. Overall,

even though the proposed method is designed for 3D face anti-

spoofing, it is still highly competitive when compared against

state-of-the-art methods for detecting 2D face spoofing attacks.

F. Inter-database testing

To study the generalization property against unseen attacks,

we have conducted inter-database evaluation on both the new

WFFD and existing 3D mask spoofing databases. We first

show how well existing methods can perform in detecting

moving wax figure faces using the still wax figure faces as

the training set. The face images in the training subset (2760)

in WFFD were used for training, and all 285 videos (each with

10 frames) in WFFD-V dataset were used for testing. Table XII

shows larger differences in the accuracy in the range of 52.50%

to 86.32% and ACER of 13.72% to 51.26% among different

detection methods. The last four rows show the effectiveness

of bilinear pooling fusion on improving the performance.

The proposed method demonstrates the best generalizability

with the lowest ACER of 17.41% and 13.72% using the

VGG-16 and ResNet-50 models respectively. We attribute

the outstanding performance to the complementary features

learned by the proposed method. Similar to the results in Table

VII, most learning feature based methods performed better in

detecting video-based wax faces than hand-crafted features.

We have further compared the generalizability of the pro-

posed method to unseen 3D mask spoofing attacks. For a

fair comparison, we have followed the protocols in [37],

[20]: training on 3DMAD uses random 8 subjects, training

on HKBU-MARs-V1+ uses 6 subjects, and both testing uses
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TABLE XI
COMPARISON RESULTS (%) ON OULU-NPU DATABASE (NOTE THAT THIS DATASET IS FOR 2D SPOOFING ONLY).

Method
Protocol I Protocol II Protocol III Protocol IV

AP BP ACER AP BP ACER APCER BPCER ACER APCER BPCER ACER

Color LBP [61] 5.0 20.8 12.9 22.5 6.7 14.6 14.2± 9.2 8.6± 5.9 11.4± 4.6 29.2± 37.5 23.3± 13.3 26.3± 16.9

GRADIANT [72] 1.3 12.5 6.9 3.1 1.9 2.5 2.6± 3.9 5.0± 5.3 3.8± 2.4 5.0± 4.5 15.0± 7.1 10.0± 5.0

MixedFASNet [72] 0.0 17.5 8.8 9.7 2.5 6.1 5.3± 6.7 7.8± 5.5 6.5± 4.6 10.0± 7.7 35.8± 26.7 22.9± 15.2

Recod [72] 3.3 13.3 8.3 15.8 4.2 10.0 10.1± 13.9 8.9± 9.3 9.5± 6.7 35.0± 37.5 10.0± 4.5 22.5± 18.2

Noise model [75] 1.2 1.7 1.5 4.2 4.4 4.3 4.0± 1.8 3.8± 1.2 3.6± 1.6 5.1± 6.3 6.1± 5.1 5.6± 5.7

MILHP [83] 8.3 0.8 4.6 5.6 5.3 5.4 1.5± 1.2 6.4± 6.6 4.0± 2.9 15.8± 12.8 8.3± 15.7 12.0± 6.2

CDCN [78] 0.4 1.7 1.0 1.5 1.4 1.5 2.4± 1.3 2.2± 2.0 2.3± 1.4 4.6± 4.6 9.2± 8.0 6.9± 2.9

DeepPixBiS [79] 0.8 0.0 0.4 11.4 0.6 6.0 11.7± 19.6 10.6± 14.1 11.1± 9.4 36.7± 29.7 13.3± 16.8 25.0± 12.7

TSCNN [84] 5.1 6.7 5.9 7.6 2.2 4.9 3.9± 2.8 7.3± 1.1 5.6± 1.6 11.3± 3.9 9.7± 4.8 9.8± 4.2

SAPLC [85] 0.0 0.8 0.4 2.8 2.2 2.5 4.7± 4.2 3.1± 3.5 3.9± 2.1 11.9± 6.9 6.7± 5.5 9.3± 4.4

MC FBC-VGG-16 5.7 8.7 7.2 5.1 3.3 4.2 2.9± 3.8 9.9± 8.9 6.5± 4.7 6.3± 5.8 10.5± 10.9 8.8± 5.9

MC FBC-ResNet-50 3.5 8.3 5.9 3.3 4.2 3.8 3.4± 3.5 6.3± 4.2 4.9± 3.7 5.8± 4.5 9.4± 9.3 7.6± 5.4

All using reported results. ‘AP’ denotes ‘APCER’, and ‘BP’ denotes ‘BPCER’.

TABLE XII
INTER-DATABASE TESTING RESULTS (%) ON WFFD-V DATABASE.

Method Accuracy APCER BPCER ACER

Color LBP [61] 52.50 51.90 42.95 47.42

Haralick [10] 54.04 51.03 40.71 45.87

Recod [72] 67.72 18.62 46.43 32.52

ResNet-50 [73] 60.18 36.29 43.48 39.89

VGG-16 [67] 71.23 38.62 18.57 28.60

CcoLBP [74] 48.77 48.96 53.57 51.26

Noise model [75] 63.38 49.66 23.12 36.39

Hy-ResNet [76] 63.16 53.79 19.29 36.54

FaceBagNet [77] 67.81 40.17 23.93 32.05

CDCN [78] 79.91 20.09 20.09 20.09

DeepPixBiS [79] 80.83 23.10 15.09 19.10

BP [58] 77.50 28.79 15.98 22.39

FBC [57] 78.86 22.59 19.64 21.11

MC FBC-VGG-16 82.46 24.83 10.00 17.41

MC FBC-ResNet-50 86.32 11.72 15.71 13.72

all subjects. Besides the previous benchmark methods, the

latest 3D mask PAD method based on temporal similarity of

rPPG (TSrPPG) [20] is added to the benchmark set. Results

in Table XIII have justified the robustness of the MC FBC

method, with the second lowest ACER using ResNet-50 as

the backbone under both inter-database test settings, while

the VGG-16 based MC FBC performed slightly worse than

ResNet-50 model. Most methods have achieved higher error

rates using 3DMAD as the training set. The underlying reason

is that this database contains less variation in the collected data

than the HKBU-MARs-V1+ database. Therefore, the models

optimized for this database are not able to generalize well in

new acquisition conditions. Due to the good generalizability

of liveness cues, the TSrPPG method [20] has achieved the

best results using heartbeat signal in the time domain.

G. Visualization Analysis

To show the effectiveness of the proposed MC FBC on ex-

tracting highly discriminative features, we present the visual-

ization results on WFFD samples using Grad-CAM [87]. Fig-

ure 8 presents the CNN activation heatmaps and correspond-

ing guided Grad-CAMs, which locate the class-discriminative

regions and highlight the high-resolution details respectively.

Note that Grad-CAM is not suitable for bilinear pooling [88];

thus we use Grad-CAM in the last convolution layer of VGG-

16 for all models.

From the first four columns in Figure 8, we can first observe

the complementary properties of RGB and YCbCr color spaces

in the proposed MC FBC method. The first four rows show

little difference in the attention regions of two color channels

for real faces, both focusing on the nose and philtrum area. The

last four rows, however, present larger attention differences in

wax figure faces. We can observe from the first two rows that

RGB color space generally focuses on the eye and upper cheek

regions, while YCbCr color mainly focuses on the upper cheek

regions. For more confusing wax samples (see the example

in the seventh row with poor lighting conditions), YCbCr

channel seems to be more robust due to the separation of

luminance and chrominance components. However, the RGB

channel performs better on wax faces with facial occlusions

like eyeglasses (see the example in the last row). This can

be attributed to the larger attention regions of RGB channels.

Therefore, the fusion of features from complementary color

channels can contribute to highly robust and discriminative

representations in face anti-spoofing.

Combining with the last four columns in Figure 8, we can

compare the class-discriminative localization of the proposed

model with FBC and original VGG-16 models. It can be

observed from both Grad-CAMs and guided Grad-CAMs that

the high activation regions of FBC and MC FBC models are

consistent over real faces, mainly around the nose region.

Larger nose regions (with both the apex and bridge of nose)

attract the attention of MC FBC than the FBC model (with

just the apex of nose). By contrast, the VGG-16 model focuses

on nose or mouth regions over real faces, while for more

confusing input faces (see the example with smooth skin in the

fourth row), the attention distribution scatters almost randomly,

leading to erroneous detection. For the wax face samples in the
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TABLE XIII
INTER-DATABASE TESTING RESULTS (%) ON 3DMAD AND HKBU-MARS-V1+ DATABASES.

Method
3DMAD → HKBU-MARs-V1+ HKBU-MARs-V1+ → 3DMAD

APCER BPCER ACER APCER BPCER ACER

Multi-scale LBP [3] 45.00± 2.9 43.93± 2.9 44.46± 2.9 28.76± 5.9 28.62± 5.8 28.69± 5.9

Color LBP [61] 40.00± 2.0 39.29± 2.5 39.64± 2.2 34.70± 4.5 34.26± 4.8 34.48± 4.7

Haralick [10] 30.62± 5.9 29.64± 5.7 30.13± 5.8 21.47± 3.8 21.18± 3.6 21.32± 3.7

ResNet-50 [73] 36.00± 8.4 35.14± 8.0 35.57± 8.2 23.35± 8.9 23.06± 9.2 23.21± 9.1

Recod [72] 32.50± 4.6 31.07± 3.9 31.78± 4.2 26.35± 1.4 22.09± 5.5 24.22± 2.7

VGG-16 [67] 32.50± 5.0 31.78± 4.5 32.14± 3.4 52.71± 3.7 40.47± 2.9 48.09± 2.4

GrPPG [80] - - 46.70± 3.0 - - 31.50± 3.8

LrPPG [16] - - 39.20± 0.8 - - 40.40± 2.7

TSrPPG [20] - - 23.50± 0.5 - - 16.10± 1.0

BP [58] 48.08± 15.2 19.86± 22.7 33.97± 5.5 26.54± 9.2 36.07± 10.5 31.31± 3.0

FBC [57] 34.75± 9.9 21.19± 18.2 27.97± 4.6 29.95± 8.1 25.00± 12.0 27.50± 3.7

MC FBC-VGG-16 26.25± 0.2 25.36± 9.5 25.80± 9.4 22.79± 3.9 20.96± 2.0 22.90± 4.4

MC FBC-ResNet-50 25.00± 2.0 25.78± 3.8 25.39± 2.7 18.57± 3.6 16.10± 2.6 17.34± 3.0

3D denotes ‘3D face reconstruction’.

Fig. 8. Grad-CAM ([87]) attention visualization of the last VGG-16 feature
maps corresponding to real faces (the first four rows), and wax figure faces (the
last four rows) of the test data samples in WFFD. The first column represents
the input faces, and the even columns show the Grad-CAM heatmaps while
other odd columns show the guided Grad-CAMs. Red-colored regions of the
heatmaps represent highly focused regions, whereas blue regions represent
low priority ones. Note that red boxes present error detection.

last four rows, the proposed MC FBC model mainly focuses

on eye areas and upper cheek region, the FBC model focuses

on either the upper cheek or the eyebrow regions, while the

focus of VGG-16 model seems to be mainly on the upper

cheek regions. For the more confusing input face (for example

in the last row), both VGG-16 and FBC lead to erroneous

detection, while the MC FBC model is more robust thanks to

the learned complementary skin-inspired features.

VI. CONCLUSIONS

To detect realistic 3D face presentation attacks, we have

proposed to generate discriminative representations in a fine-

grained manner and combine complementary information in

multiple color spaces by bilinear coding in this paper. The

proposed MC FBC approach fuses complementary features

from two color spaces (RGB vs. YCbCr) extracted via CNN

models (VGG-16 and ResNet-50) using factorized bilinear

coding. We have also constructed a new database (WFFD)

with wax figure faces containing both images and videos

with high diversity and large subject size as super realis-

tic face presentation attacks. Extensive experimental results

have demonstrated the superior performance of the proposed

method in detecting real faces from wax figure faces with

not only several existing PAD methods but also human-based

spoofing detection. Our method has achieved competitive

performance on other 3D mask and 2D face spoofing databases

in both intra-database and inter-database testing scenarios.

Both the code and databases will be made publicly available

at https://github.com/shanface33/Wax Figure Face DB to fa-

cilitate the improvement and evaluation of different PAD

algorithms.

It should be noted that the best performance under inter-

database testing achieved by the proposed scheme still has

the error rate of over 10%. How to improve the detection

performance deserves further investigation. Super realistic

face spoofing attacks are indeed difficult to distinguish from

real ones even for humans. We envision that learning-based

methods, when combined with liveness cues, are a promising

direction to provide effective and generalized spoofing detec-

tion in the future. However, as AI technology keeps advancing

at a fast pace, it is likely that more challenging spoofing

attacks such as Deepfakes will become more powerful. As

many people believe, the arm race between spoofing and anti-

spoofing will never end.
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