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Abstract—We have witnessed rapid advances in both face
presentation attack models and presentation attack detection
(PAD) in recent years. When compared with widely studied 2D
face presentation attacks, 3D face spoofing attacks are more
challenging because face recognition systems are more easily
confused by the 3D characteristics of materials similar to real
faces. In this work, we tackle the problem of detecting these
realistic 3D face presentation attacks and propose a novel anti-
spoofing method from the perspective of fine-grained classifica-
tion. Our method, based on factorized bilinear coding of multiple
color channels (namely MC_FBC), targets at learning subtle fine-
grained differences between real and fake images. By extracting
discriminative and fusing complementary information from RGB
and YCbCr spaces, we have developed a principled solution to
3D face spoofing detection. A large-scale wax figure face database
(WFFD) with both images and videos has also been collected as
super realistic attacks to facilitate the study of 3D face presen-
tation attack detection. Extensive experimental results show that
our proposed method achieves the state-of-the-art performance
on both our own WFFD and other face spoofing databases under
various intra-database and inter-database testing scenarios.

Index Terms—Face spoofing attack, presentation attack detec-
tion, wax figure face, face anti-spoofing.

I. INTRODUCTION

ACE has been one of the most widely used biometric

modalities due to its accuracy and convenience for per-
sonal verification and identification. However, the increasing
popularity and easy accessibility of face modalities make
face recognition systems (FRS) a major target of spoofing
such as presentation attacks [1]. This class of security threats
can be easily implemented by presenting the FRS a face
artifact, which is also known as presentation attack instrument
(PAI) [2]. A recent breach of biometrics database (BioStar)
leads to the compromise of as many as 28 million records
containing facial and fingerprint data, which can be exploited
by malicious hackers as PAIs.

Based on the way of generating face artifacts, face presen-
tation attacks can be classified into 2D (e.g., printed/digital
photographs or recorded videos on mobile devices such as
a tablet) and 3D (e.g., by wearing a mask or presenting a
synthetic model). Existing research on FRS has paid more
attention to 2D face PAI due to its simplicity, efficiency, and
low cost. However, as material science and 3D printing tech-
nology advance, creating face-like 3D structures or materials
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Fig. 1. Examples of 3D presentation attack cases. (a) Airport security system
fooled by silicon mask!, (b) Android phones fooled by a 3D-printed head?,
(c) iPhone X face ID unlocked by a 3D mask®.

has become easier and more affordable. When compared to
2D attacks, 3D face presentation attacks are more realistic
and therefore more difficult to be detected. The class of 3D
face presentation attacks includes wearing wearable facial
masks [3], building 3D facial models [4], through facial make-
up [5], [6], and using plastic surgery. Fig. 1 shows several
examples of 3D presentation attacks, which have successfully
fooled some widely used FRS in practice.

The vulnerability of current face recognition systems to
realistic face presentation attacks has facilitated a series of
studies on 3D face presentation attack detection (PAD) [7].
Existing methods tried to explore the difference between real
face skin and 3D fake face materials based on the reflectance
properties using multispectral imaging [8], [9], texture analy-
sis [10], [11], deep features [12], [13], or liveness cues [14],
[15]. They have achieved promising detection performance on
several existing 3D face spoofing databases [3], [16], [17],
[18]. However, since facial masks are often made of paper,
latex or silicone materials, these 3D face spoofing databases
have the limitations of small database size (mostly less than
30 subjects), poor authenticity (some based on 2D planar or
noncustomized masks [17], [19]), and low diversity in subject
and recording process, which might impede the development
of effective and practical PAD schemes. Several studies [7],
[20], [21], [22] have shown that a variety of 3D PAD methods
suffer from performance degradation on databases with more
diverse and realistic 3D face spoofing attacks.

In this work, we aim at detecting realistic 3D face spoofing
attacks which often pose greater threats to existing FRS (even
with face anti-spoofing modules) than their 2D counterparts.
Based on the fact that wax figure faces have already been
used for identity, personation, and fraud in the real world

IPicture is downloaded from https:/chameleonassociates.com/security-
breach/.

ZPicture is downloaded from http://www.floridaforensicscience.com/broke-
bunch-android-phones-3d-printed-head/.

3Picture is downloaded from https://boingboing.net/2010/11/05/young-
asian-refugee.html.
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Fig. 2. Photos with wax figure faces for fraud. In 2012, six suspects snapped
about 600,000 people out of nearly US$475 million under a pyramid sales
scam using photos taken with the wax figures at Hong Kong’s Madam
Tussauds Museum, (a) with the wax figure of chief executive Donald Tsang
Yam-Kuen, (b) with the wax figure of business tycoon Li Ka-Shing.

(as shown in Fig. 2), we first collect a large number of wax
figure faces based on both still images and moving videos as
super realistic 3D face spoofing attacks by expanding upon
our preliminary work [23]. Furthermore, we propose to treat
realistic face spoofing detection as a special class of fine-
grained image classification problems which focus on dif-
ferentiating between hard-to-distinguish object classes. Then
we introduce a new bilinear coding based method with state-
of-the-art performance of combining features for fine-grained
classification, which generates discriminative representations
for 3D face anti-spoofing. The main contributions of this work
are summarized below.

o A large-scale wax figure face database (WFFD) with both
images and videos is constructed as the super realistic
3D face presentation attack. It contains 2300 pairs of
matched faces from 745 subjects (totally 4600 faces), and
285 videos from 241 subjects (with over 45000 frames).

o A new 3D face anti-spoofing method, named MC_FBC,
is proposed based on factorized bilinear coding for mul-
ticolor channels. This is the first work addressing the
problem of detecting a realistic face PAD in a fine-
grained manner and use bilinear coding to improve the
discriminative power of feature representations.

« We have conducted extensive experiments on the pro-
posed WFFD and several publicly available databases.
Our findings show that the proposed method outperforms
several state-of-the-art methods under both intra- and
inter-database testing scenarios.

The rest of this paper is organized as follows. In Section II,
we briefly review related research in 3D face PAD methods and
spoofing databases. Section III introduces the WFFD database
with both photo-based and video-based wax figure faces as
super realistic 3D face spoofing attacks. The proposed 3D face
anti-spoofing method based on factorized bilinear coding is
presented in Section IV. Experimental results are reported in
Section V, and we make several conclusions about this work
and future research in Section VI.

II. RELATED WORK
A. 3D Face PAD methods
Detection of 3D fake faces is often more challenging
than detecting fake faces with 2D planar surfaces. Methods

designed for 2D face spoofing detection may fail to identify
3D face spoofing attacks, especially for those using recapture

effects [24] and spoofing medium contour detection [25]. Ex-
isting PAD methods for 3D face presentation attacks, mainly
based on the difference between real face skin and mask
material, can be broadly classified into five categories, namely,
reflectance-based, texture-based, shape-based, liveness-based,
and deep feature based.

Earlier studies [26], [27], [28] in 3D mask spoofing de-
tection were based on the reflectance difference of facial
skin and mask materials. For example, the distribution of
albedo values for illumination of various wavelengths was
first analyzed in [26] to find how different facial skins and
mask materials (silicon, latex, and skinjell) behave in terms of
reflectance. Texture-based methods explore the texture pattern
difference of real faces and masks with the help of texture
feature descriptors, such as the widely used Local Binary
Patterns (LBP) [3], [29], Binarized Statistical Image Features
(BSIF) [30], and Haralick features [10].

Shape-based 3D mask PAD methods use shape descrip-
tors [31], [32], [33] or 3D reconstruction [11] to extract
discriminative features from faces and 3D masks. Different
from reflectance-based or texture-based detection methods,
these schemes only require standard color images without the
need of special sensors. However, their detection performances
rely on the quality of 3D mask attacks, and may not be
robust to super realistic 3D face presentation attacks. More
recently, some methods explore liveness cues to detect 3D
face presentation attacks, such as thermal signatures [34], gaze
information [35], [36], and pulse or heartbeat signals [20],
[371, [38], [39]. Based on the intrinsic liveness signals, these
methods achieve outstanding performance on distinguishing
real faces from masks.

Instead of extracting hand-crafted features, deep feature
based methods automatically extract features from face im-
ages. Two deep representation approaches were investigated
in [40] for spoofing detection in different biometric modalities.
Image quality cues (Shearlet) and motion cues (dense optical
flow) were fused in [41] using a hierarchical neural network
for mask spoofing detection, which achieved a Half Total Error
Rate (HTER) of 0% on the 3DMAD database [3]. A network
based on transfer learning using a pre-trained VGG-16 model
architecture is presented in [42] to recognize photo, video, and
3D mask attacks. Based on the observation of the importance
of dynamic facial texture information, a deep convolutional
neural network-based approach was developed in [12], [21].
Both intra-dataset and cross-dataset evaluation on 3DMAD
and their supplementary dataset indicated the efficiency and
robustness of the proposed method.

Despite these advances in 3D face anti-spoofing, there are
limitations in each category of detection methods. For exam-
ple, the main limitation of reflectance-based methods is the
requirement of special and expensive devices to acquire mul-
tispectral images at varying wavelengths. Although texture and
shape-based methods are easy-to-implement, their robustness
to different mask spoofing attacks needs further investigation.
The liveness cues, such as pulse/heartbeat-based, are highly
dependent on lighting conditions and camera settings (e.g.,
exposure time and frame rates). Deep feature based approaches
are generally sensitive to dataset sizes and lack transparency.
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In addition, most of them [7], [20], [43], [21], [22], [44],
[35], [37], [38] still suffer from performance degradation when
applied to databases with more realistic face spoofing attacks.
How to improve the robustness and discriminative power of
representations to distinguish real faces from fake ones has
remained a long-standing open problem.

B. 3D Face Spoofing Databases

Existing 3D face spoofing databases create attacks mainly
based on wearable 3D face masks that are made of material
with face characteristics similar to real faces. 3DMAD [3]
is the first publicly available 3D mask database. It used
the services of ThatsMyFace* to manufacture 17 masks of
users, and recorded 255 video sequences with an RGB-D
camera of Microsoft Kinect device for both real access and
presentation attacks. With the development of 3D modeling
and printing technologies, more mask databases have been
created since 2016. 3DFS-DB [45] is a self-manufactured
and gender-balanced 3D face spoofing database, in which 26
printed models were made using two 3D printers. HKBU-
MARs [16], [20] is another 3D mask spoofing database
with more variations. It generated customized masks from
two companies (ThatsMyFace and REAL-F’), and created
videos from 12 subjects. To include more subjects, SMAD
database [17] has collected videos of people wearing silicone
masks from online resources. It contains 65 genuine videos
of people auditioning, interviewing, or hosting shows, and 65
imposter videos of people wearing a complete 3D (but not
customized) mask which fits well with proper holes for the
eyes and mouth.

For effective detection, more 3D face spoofing databases
provide multi-modality spoofing samples under special light-
ing conditions. The BRSU Skin/Face/Spoof Database [28]
provides multispectral SWIR (Short Wave Infrared) and RGB
color images for various types of masks and facial disguises.
The MLFP database [19] is another multispectral database
using latex and paper masks. It contains 1350 videos of 10
subjects in visible, near infrared (NIR), and thermal spectrums.
The ERPA database [34] provides RGB and NIR images of
both bona fide and 3D mask attack presentations captured
using special cameras. This is a small dataset with only 5
subjects involved. Both rigid resin-coated masks and flex-
ible silicone masks are considered. Similarly, the recently
released WMCA database [18] used multiple capturing de-
vices/channels, including color, depth, thermal, and infrared.
It contains 1679 videos with 347 bona fide and 1332 attacks
from 72 subjects; among them, 709 3D face spoofing attack
videos include fake head, rigid mask, flexible silicone masks,
and paper masks. The 3DMA [46] also collects 920 videos
captured in both visual and NIR modalities from 67 subjects.

These databases have played a significant role in design-
ing multiple detection schemes against 3D face presentation
attacks. However, the following issues have remained to be
addressed: (1) only a small number of 3D spoofing samples are
collected due to the difficulty and expense of mask production;

“http://thatsmyface.com/
Shttp://real-f.jp/en_the-realface.html

3

Fig. 3. 3D mask spoofing examples in existing databases. (a) 3DMAD, (b)
3DFS-DB, (c) HKBU-MARs, (d) SMAD, () WMCA.

(2) most of the 3D face spoofing attacks are of low quality
(e.g., using noncustomized masks [17], [19] or 2D cut-out
paper masks [19], [47]. Although soft/flexible masks are closer
to real faces, they are still easy to be recognized by humans [3],
[16], [18], [45] (as shown in Fig. 3); (3) they contain less
variations to simulate the real world scenarios in terms of
recording cameras, lighting settings, subject pose/age, and
facial expression/resolution. Therefore, we have introduced
wax figure faces as super realistic 3D face spoofing attacks
in [23] (with 4400 still faces). After that, Vareto et al. [48]
collected a wax figure database named SWAX with 1800 faces
and 110 videos from 55 people/waxworks.

In this paper, to overcome the limitations in both 3D face
spoofing databases and detection methods, we first expand the
wax figure face dataset to include both images and videos
with a high degree of diversity, aiming at more faithfully
simulating realistic spoofing attacks. Then we will design a
novel detection method based on the fusion of complementary
skin-inspired features in different color spaces to extract subtle
differences between real faces and realistic spoofing attacks.

III. WAX FIGURE FACE DATABASE

In this section, we introduce the super realistic Wax Figure
Face Database (WFFD) with both photo-based and video-
based wax figure faces to address the weaknesses in the
existing 3D face spoofing databases. Considering the difficulty
and expense in generating a large number of 3D wax figure
faces, we take advantage of the popularity and publicity of
numerous celebrity wax figure museums in the world, and
collect as many wax figure faces as possible from online
resources to construct such a database with a large size
and high diversity. These wax figure faces are all carefully
designed and made in clay with wax layers, silicone, or resin
materials, so that they are super realistic and similar to real
faces. In the physical domain, the attacker may fool the FRS
using just the life-size wax heads, which can be obtained with
relatively low cost (about 200 dollars) from online shopping
websites (such as eBay US and Taobao China).

A. Wax figure face database of still images

Our previous work [23] has been greatly expanded to qualify
wax figure faces as super realistic 3D face spoofing attacks.
We have thoroughly cleaned the dataset and removed images
with tiny faces or low quality due to lossy compression, and
then added 100 new pairs of images from 75 subjects to the
new database. Finally, a total of 2300 pairs of images (4600
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Fig. 4. Examples in the WFFD database. (a) in Protocol I, (b) in Protocol
II. Note that one subject may have several wax figures in each protocol.

faces with both real and wax figure faces) of 745 subjects
are collected. We have followed the three protocols designed
in [23]: Protocol I with wax figure faces and real faces grouped
manually from different devices and environmental conditions
(e.g., Fig. 4(a)); Protocol Il with wax figure and real faces
recorded in the same environment with the same camera
(e.g., Fig. 4(b)); and Protocol III combining the previous two
protocols to simulate real-world operational scenarios. Table I
provides the details about the statistics of images, faces, and
subjects in each protocol.

TABLE 1
DETAILS OF EACH PROTOCOL IN THE WFFD
#Image
Protocol Train Valid Test Total #Face #Subject
Protocol 1 600 200 200 1000 2000 462
Protocol 11 780 260 260 1300 2600 409
Protocol Il 1380 460 460 2300 4600 745

Note that the train, validation, and test subsets are non-overlapped.
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Fig. 5. Statistical distribution of the WFFD. (a) Gender, (b) ethnicity, (c) age,
(d) face resolution.

The statistical information about subject gender, age, eth-
nicity (detected by Face++%), and face resolution (cropped by
the dlib face detector [49]) in the WFFD is shown in Fig. 5.
It can be seen that the images in the WFFD are relatively
gender balanced - with about 60% of males and 40% of
females in both protocols. The ethnicity distribution in Fig.
5(b) contains a majority of White subjects (around 60%),
followed by about 20% Asians and 10% Blacks, and a small
percentage of Indians (no more than 2%). We can also see a
wide distribution of ages in Fig. 5(c). The two protocols have
similar distribution patterns in terms of age, with half subjects
being between 30 and 50 years old. Although the dimensions

Shttps://www.faceplusplus.com/face-compare-sdk/

of most face regions are between 100 x 100 and 500 x 500,
there is a big difference in the distribution between the first
two protocols. Matched and grouped manually, the dimensions
of face regions in Protocol I are generally larger than those
in Protocol II. Additionally, the images in Protocol I are
more diversified in terms of subject poses, facial expression,
recording environment, and devices than those in Protocol II.

B. Wax figure face database of videos

Inspired by the new generation of intelligent or robotic
wax figures which can move and interact with visitors (like
the one unveiled by Madame Tussauds in Shanghai in 2018),
we have further collected video-based wax figure faces from
online resources to obtain moving wax figure faces. Similar to
the collection of still wax figure faces, we first download as
many short videos with celebrity wax figure faces as possible.
Then we clean the dataset manually based on the selection
criterion that videos without frontal faces, or with faces but
containing a significant amount of occlusion or embedded text,
should be excluded from the dataset [50]. Finally, a total of
145 wax figure videos, as well as 140 real face videos have
been collected as the newly-constructed WFFD-V database.
All real and fake videos are between 60 and 420 frames in
length. More details of the WFFD-V with 285 gender-balanced
videos are included in Table II. They are randomly partitioned
into non-overlapped training, validation, and testing subsets in
the same ratio of 3:1:1 as the WFFD still image dataset for
performance evaluation.

TABLE IT
DETAILED CHARACTERISTICS OF NEWLY CONSTRUCTED WFFD-V
DATASET.
Video #Subject #Video #Frame
M Total F M  Total
Real 53 74 127 58 82 140 28970
Wax 47 76 123 61 84 145 16765
Total 96 145 241 119 166 285 45735

F denotes Female, and M denotes Male.

IV. 3D FACE ANTI-SPOOFING BASED ON FACTORIZED
BILINEAR CODING

With materials and shapes highly similar to real faces, 3D
face spoofing attacks often lead to performance degradation
of existing face PAD methods [29]. To detect realistic 3D
spoofing attacks, we propose to explore their subtle differences
from real faces based on generating discriminative features in
a fine-grained manner. Inspired by recent advances in fine-
grained classification [51], [52], [53], [54], and subtle variation
detection [55], we propose to tackle the problem of realistic
face spoofing detection by combining the skin color model
[56] with factorized bilinear pooling [57]. Originally proposed
for fine-grained visual recognition, bilinear pooling [58] has
become a popular tool for multimodal data fusion due to
its superiority in exploiting higher-order information among
complementary features. In this section, we first construct
complementary skin-inspired features in color space and then
present a novel method of factorized bilinear coding combin-
ing features extracted in different color spaces.
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A. Skin color model

Color spaces play an important role in image processing and
computer vision applications. RGB is the most widely used
color space for sensing, representing, and displaying color
images. However, due to the high correlation among the three
color components (red, green, and blue), RGB color space
representation is not necessarily the most appropriate choice
for face anti-spoofing. Alternative color-space representations
such as luminance/chrominance and hue/saturation are also
valid and competing choices. Instead of fusing features from
a single RGB color space as most previous bilinear pooling
schemes [57], [58], [59], [60], [54] did, we propose to take
multiple color spaces into account and extract more discrimi-
native features by combining multicolor space representations
for 3D face anti-spoofing.

Different from RGB color space, YCbCr color space en-
codes a color image similar to human eyes’ retina, which
separates the RGB components into a luminance component
(Y) and two chrominance components (Cb as blue projection
and Cr as red projection; for an analog version, as U and
V, respectively). YCbCr space is effective for color feature
extraction and has also achieved promising performance in
face-related applications (e.g., human face detection [56], 2D
face spoofing detection [61], and skin classification [62]).

Considering the high similarity between 3D face spoofing
attacks and real faces, we propose to take both RGB and
YCbCr color spaces of the face image as the input of CNN-
based feature extraction module to obtain robust facial color
texture descriptions. The key motivation behind combining dif-
ferent color textures is two-fold. First, each color-texture based
analysis can help capture the artifacts of spoofing attacks for
detection. The artificial face in face spoofing attacks is either
made of special materials different from human skins (e.g.,
silicon, latex, and skinjell mask) or passes through different
camera systems or printing systems (or display devices in
2D attacks) [63]. Therefore, artificial face images are likely
to suffer from different kinds of quality degradation issues -
e.g., the face production material artifacts, the PAI dependent
color variations, and limited color reproduction in 2D print
or replay spoofing, which do not occur in real faces. Second,
the fusion of two different color spaces, namely, the RGB with
highly correlated color components, and YCbCr with separated
luminance and chrominance components, has the potential of
learning complementary and robust subtle features for face
anti-spoofing (see the results in Section V-B and V-G).

B. Factorized bilinear coding

Bilinear pooling was introduced in [58] to provide robust
image representation for fine-grained image classification. In
bilinear pooling models, two feature vectors are fused by an
outer product (or Kroneker product of matrices); this way, all
pairwise interactions among the given features are considered
as follows:

Z= > zy M

where {x;|z; € RP,i € S}, {y;|ly; € RY,j € S} are two in-
put features, S is the set of spatial locations (combinations of

rows and columns), and Z € RP*? is the fused feature descrip-
tor. It can be seen that the size of the bilinear feature descriptor
can be large, which makes it computationally infeasible. To
generate more compact representations, we have employed the
factorized bilinear coding (FBC) [57] to more computationally
efficiently integrate the features from both RGB and YCbCr
color spaces for 3D face anti-spoofing.

Let x;, y; be the two features extracted from RGB and
YCbCr color spaces respectively, the FBC encodes the features
based on sparse coding, and learns a dictionary B with k atoms
that are factorized into low-rank matrices to capture the struc-
ture of the whole data space. Specifically, let the dictionary
B = [by, by, ..., b;] € RP9*k and FBC proposes to factorize
each dictionary atom b, € RPI(1 < [ < k) into U, V,',
where U; € RP*” and V; € R?*" are learnable low-rank
matrices (as the hyper-parameter rank r < p, q). Therefore,
the original bilinear features :czyjT can be reconstructed by

k
> U VT, with ¢, € R being the FBC code, and ¢!, being

él_lé [-th element of ¢, (1 < v < N, N is the number of pairs
in S). Then the sparsity-based FBC encodes the two input
features (x;, y;) into ¢, by solving the following optimization
problem,

2
+ AMleo||1 2)

k
T ! T
Ty — E ¢, UV,
=1

min
cy

where )\ is a trade-off parameter between the reconstruction
error and the sparsity. To obtain the FBC code ¢, the classical
LASSO method [64] has been adopted as shown in Eq. (3).

C:) = P(ijﬂSz o ‘7Tyj),
¢, = sign(c),) o max((abs(c},) — 3),0).

3)

where o denotes the Hadamard product, P € RExTk ig a
fixed binary matrix with only elements in the row /, columns
(I —1)r+1) to (Ir) being “1”, and U and V are the
transformations of U and V' to avoid matrix inversion with
heavy computation in the original LASSO method. They are
in the form of

UT=[U] =% I((q1],) o UT)] € RF>? 4)
VT — [‘/}T] — [ . IVT] c Rrkxq

S =3

where I € R™"* is an all “1” matrix, g; is the [-th column
of Q=(PUTUP" - VTVP)"IP)".

__ With Eq. (3), the FBC code ¢, can be obtained by learning
U and V instead of U and V. We can get all FBC codes c in
feature pair set S; then they are fused using the max operation
to attain the final global representation z = maz {e,}o ;.
The FBC module is applied to the features extracted by
the last convolutional layer of a CNN (e.g., VGG), then
followed by a fully connected (FC) layer for classification
using Softmax classifier. The whole process of the proposed
MC_FBC scheme is shown in Fig. 6.

C. Loss Function

To train the network, we utilize the focal loss function [65]
which reshapes the standard cross entropy loss in such a way
that the loss assigned to well-classified examples in binary
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RGB
space
.
-
YCbCr
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Fig. 6. Flowchart of the proposed MC_FBC scheme for 3D face anti-spoofing. The FBC module generates discriminative representations in a fine-grained
manner. MM module refers to "Matrix Multiplication’, and HP module refers to "Hadamard Product’ operation. The variables @; and y; are the features

learned from CNN, U and V are learnable parameters, P is a fixed binary matrix with only elements in specific rows and columns being

FBC code, and Z is the final global representation.

classification is downweighted. There are two compelling rea-
sons for such choice of loss function: 1) the higher similarity
of real faces and realistic 3D spoofing attacks in 3D face
spoofing will lead to harder examples with large errors while
the local loss function focuses on training on hard negatives
and reducing the loss contribution from easy examples; 2)
most 3D face spoofing databases have the problem of class
imbalance (e.g., more real samples than fake ones due to the
difficulty of collecting 3D spoofing attacks at a large scale).

Overall, our scheme is different from [57] in the following
two aspects. First, to get more discriminative color features,
we extract features from two different complementary color
spaces. Such diversity in terms of feature representation is
important to 3D face anti-spoofing, which is sometimes even
challenging for human-based inspection. Second, we replace
the original cross-entropy loss function with the robust focal
loss function to train the network. Originally designed for
dense object detection in [65], we have found that in the
scenario of anti-spoofing where training on a sparse set of hard
examples is common, it is important to prevent the majority of
easy negatives from dominating the detector. Such observation
contributes to the improved training performance of new loss
functions over the traditional ones.

V. EXPERIMENTAL RESULTS

In this section, we conduct extensive experiments to evaluate
our method. We first explore the influence of color spaces
on detection performance using the super realistic 3D face
spoofing database. Different feature fusion schemes are also
compared with our MC_FBC method. Then we present the
comparison results under intra-database testing on the WFFD
database and several 2D/3D face spoofing databases, and fi-
nally the performance under inter-database testing is evaluated
to show the generalizability of the proposed method.

A. Experimental settings

1) Implementation: Two backbone networks pretrained on
ImageNet [66] were fine-tuned on face spoofing datasets to
extract features for the FBC module, namely a relatively small
VGG-16 model [67] and ResNet-50 [68] (deeper and more
accurate). It is worth noting that the MC_FBC can be also

“1”

, Cy 18 the

applied to other network structures for further improvement of
detection performance. The reasons why we used VGG-16 and
ResNet-50 models are not only for their robust performance
in different detection tasks, but also for a fair comparison with
other bilinear pooling based methods where the two models,
especially the VGG-16, are widely used [57], [58], [59], [54].
The last pooling layer and the fully-connected layers were
removed in both networks. The learnable parameters U and
V' were updated by the back-propagation algorithm to get the
FBC code. We set the rank of U and V as one, the number of
dictionary atoms k as 2048, and A as 0.001 (according to [57]).
As for the training parameters, we fine-tuned the model using
SGD with an initial learning rate of 0.01 (decreased by a
factor of 10 for every 40 epochs until it reaches 0.0001),
weight decay as 5 x 1074, momentum as 0.9, and batch
size as 16 for VGG-16 model and 8 for ResNet-50 model.
The weighting factor and tune-able focusing parameter in the
focal loss function were all set to one. Input images are the
cropped faces based on the dlib face detector [49] with size
of 224 x 224. All experiments are conducted using PyTorch
on a workstation with Titan XP GPUs.

2) Databases: In addition to our WFFD database, we have
used two publicly available 3D face spoofing databases -
namely, 3DMAD [3] (the most widely-used) and HKBU-
MARs-V1+ [20] (with hyper-real 3D masks). As both
databases contain videos of 300 frames (3ADMAD with 255
videos and HKBU-MARs-V1+ with 180), 20 frames were
randomly selected for spoofing detection. The averaged scores
of these frames were computed as the final score. We have
followed the leave-one-out cross-validation (LOOCYV) protocol
settings for the two databases as previous works did [12],
[20], [37]. We have conducted 20 rounds of LOOCV with
each round randomly selecting 10 subjects for training and
6 for validation on 3DMAD, while 5 for training and 6 for
validation on HKBU-MARs-V1+ database. To validate the
generalization property, we also considered two 2D face spoof-
ing databases with both printed photo attacks and replayed
video attacks: MSU-USSA [24] and Oulu-NPU database [69].
MSU-USSA database was specifically created to simulate
face spoofing attacks with diversities of environment, image
quality, and acquisition device. It consists of 9,000 images
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TABLE III
COMPARISON RESULTS (%) OF DIFFERENT COLOR SPACES ON WFFD DATABASE UNDER PROTOCOL III

Color space Backbone-VGG-16 Backbone-ResNet-50
Accuracy APCER BPCER ACER | Accuracy APCER BPCER ACER
RGB 93.26 8.91 4.57 6.74 93.59 8.91 3.91 6.41
YCbCr 92.39 8.26 6.96 7.61 9391 8.70 3.48 6.09
YUV 87.83 11.09 13.26 12.18 92.93 9.78 4.35 7.07
HSV 87.07 16.30 9.57 12.94 91.74 10.65 5.87 8.26
YUV+YCbCr 91.09 10.87 6.96 8.92 93.37 5.87 7.39 6.63
RGB+HSV 93.15 8.26 5.43 6.85 93.91 6.30 5.87 6.09
RGB+YUV 94.24 7.17 4.35 5.76 94.89 5.87 4.35 5.11
RGB+YCbCr (MC_FBC) 94.57 6.09 4.78 5.44 95.22 5.65 3.91 4.78
(1,000 live subjects and 8,000 spoofing attacks) recorded with TABLE IV

two types of cameras. A five-fold subject-exclusive cross-
validation protocol was designed for this database. Oulu-
NPU database contains 4,950 videos of 55 subjects with

COMPARISON RESULTS (%) OF DIFFERENT FUSION METHODS ON WFFD
DATABASE UNDER PrROTOCOL III USING VGG-16

Fusion scheme Accuracy APCER BPCER ACER

. Original VGG-16 84.68 13.48 17.17 15.33

both real access and 2D face spoofing attacks. The videos Concatenation 3435 13.01 17.39 15.65
were recorded using six mobile devices in three sessions with Max score fusion 85.43 12.39 16.74 14.56
different illumination conditions, and they were divided into Mean score fusion 85.87 11.96 16.30 14.13
three subsets for training, validation, and testing, with four BP [58] 92.28 7.61 7.83 7.72
1 CBP [59] 90.87 8.48 9.78 9.13
protocols. FBC [57] 92.83 8.70 5.65 7.18
3) Evaluanon metrics: We report al.l experimental results FBC FL 9396 30T 157 674
following the ISO/IEC 30107-3 metrics [70]. Three types ~—Hic FBC CE 93.01 739 479 6.00
of errors, i.e., Attack Presentation Classification Error Rate MC_FBC 94.57 6.09 478 5.44

(APCER), Bona Fide Presentation Classification Error Rate
(BPCER), and Average Classification Error Rate (ACER) are
used in addition to the detection accuracy.

B. Ablation Study

1) The impact of multiple color spaces: We first demon-
strate the effectiveness of combining multiple color spaces
in detecting wax figure faces from real ones on the WFFD
dataset. Table III shows the comparison results under Pro-
tocol IIT with two features both from the same color space
(including RGB, YCbCr, YUV, and HSV) and from two
different color spaces as the input of FBC module. It can
be observed that in single color space, RGB and YCbCr
get higher classification accuracy and lower error rates than
YUV and HSV color space. However, using multiple color
spaces, especially combining the RGB with YCbCr, obtains
better results. Specifically, the proposed MC_FBC scheme
combining RGB and YCbCr color spaces achieved 94.57%
accuracy and 5.44% ACER under the VGG-16 model, while
the performance was further improved by the deeper ResNet-
50 model, with the highest accuracy of 95.22% and the lowest
ACER of 4.78%. This shows the complementary properties of
RGB and YCbCr spaces in generating more discriminative
representations.

2) Exploring different feature fusion schemes: We next

FL denotes Focal Loss, and CE denotes Cross Entropy Loss.

fusion, the learned features from VGG-16 model suffer from
a high ACER of over 14%. By contrast, bilinear pooling based
methods with richer information have dramatically improved
the detection performance - i.e., improving the classification
accuracy by over six percentage points and reducing the three
error rates (APCER/BPCER/ACER) by more than half on
average.

The FBC method achieved better results than the traditional
BP and CBP methods due to its more compact and discrim-
inative representation based on sparse coding. More compact
representations help to overcome the redundancy and bursti-
ness issues of traditional BP. We also present the comparison
results of the focal loss function in the proposed MC_FBC
scheme with the cross-entropy loss used in the original FBC.
For both schemes, the focal loss function can improve the
detection results in terms of classification accuracy and error
rates thanks to its generalization and robustness by giving
more attention to hard and misclassified examples. Overall, the
proposed MC_FBC scheme has achieved the highest accuracy
and lowest error rates (except the BPCER) on the Protocol III
when tested on the WFFD database.

TABLE V

COMPARISONS OF MODEL SIZE AND COMPLEXITY. PARAMS: PARAMETER
NUMBER; FLOPS: THE NUMBER OF FLOATING POINT OPERATIONS PER

compare the proposed MC_FBC scheme with several feature SECOND.

fusion schemes, including concatenation (simply combining Model VGG-16 ResNet-50

two feature vectors by concatenating them), score-level fusion Params  FLOPs | Params  FLOPs

of two color spaces, traditional bilinear pooling (BP) [58], wio FBC 138.36M  1548G | 2556 M 4.11G

compact bilinear pooling (CBP) [59], and factorized bilin- w/ FBC I577M  15.78G | 27.7IM _ 4.52G
w/ MC_FBC | 15.77M 31.13G | 27.71IM  8.63G

ear coding (FBC) [57]. As all these bilinear pooling based
methods fused features from VGG-16 model, we present
the comparison results in Table IV using VGG-16 network
as the backbone. We can see that without bilinear pooling

C. Model Complexity

We have compared the proposed model with the original
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TABLE VI
COMPARISON RESULTS (%) ON THE WFFD DATABASE

Method Protocol 1 Protocol 11 Protocol II1

EER APCER BPCER ACER |EER APCER BPCER ACER|EER APCER BPCER ACER
Multi-scale LBP [3] |[23.50 27.00 28.50  27.75 |31.15 36.15 27.69 3192 (2891 31.74 25.65 28.70
Image quality [71] |35.50 30.50 39.50 35.00 [38.85 39.23 4346 4135 |41.30 36.96 43.26  40.11
Color LBP [61] 31.50 36.00 28.50  32.25 |33.85 30.77 39.61 35.19 |31.52 33.26 3413  33.70
Haralick [10] 30.50 27.50 32.50  30.00 [32.69 33.08 36.54 34.81 3478 28.04 40.00 34.02
Recod [72] 17.00  25.50 14.50  20.00 [22.69 25.77 30.77  28.27 |21.30 2391 20.22  22.07
ResNet-50 [73] 16.50 21.00 18.50 19.75 | 17.31 19.23 21.92 20.58 |15.87 17.61 2043  19.02
VGG-16 [67] 14.50 14.50 18.00 16.25 [ 18.08 13.46 1577 14.61 | 14.78 13.48 17.17  15.33
CCoLBP [74] 29.50 26.50 26.00 26.25 [28.08 24.62 3423 2942 (28.04 26.52 29.13  27.83
Noise model [75] 31.00 31.00 48.50 39.75 |41.54 41.54 41.15 41.35 |38.00 38.04 4783 4293
Hybrid ResNet [76] | 8.50  9.00 13.00 11.00 | 11.00 11.38 13.31 1235 |1090 11.21 13.23 12.22
Human-based - 20.14 11.86  16.00 - 32.97 17.97 25.47 - 27.39 1531 21.35
FaceBagNet [77] 1528 19.50 13.00 16.25 |20.33 20.77 2192 2135 [14.60 17.39 12.39  14.89
CDCN [78] 16.50 17.50 18.00 17.75 [23.48 26.54 2538 2596 [19.22 19.13 19.57 19.35
DeepPixBiS [79] 6.50 8.50 4.00 6.25 | 844 1154 5.38 846 | 7.82 1152 4.50 8.04
MC_FBC-VGG-16 528 4.35 6.96 5.66 | 7.34 11.53 4.23 7.88 | 532 6.09 4,78 5.44
MC_FBC-ResNet-50 | 4.82  4.00 5.50 475 | 655  17.30 6.54 6.92 | 4.70 5.65 391 4.78

VGG-16/ResNet-50 and FBC models in terms of model size
and complexity. The comparison results within the same input
face size are shown in Table V. With one more stream to obtain
complementary facial color texture descriptions, the proposed
MC_FBC model has higher (almost twice) FLOPs for both
VGG-16 and ResNet-50 networks than the original FBC.
However, it keeps the same model size as the original FBC,
which is still much smaller than that of the VGG-16 model
without FBC, and only slightly higher than the ResNet-50
model. Considering the significant performance improvement
as shown in Table VI, we deem MC_FBC a good comprised
solution between cost and performance.

D. Comparison on the proposed database

1) WFFED database: Several face PAD methods were eval-
uated on the WFFD database, to show how they can work for
super realistic 3D presentation attacks. These PAD methods
have achieved promising performance in detecting 2D type
or 3D mask presentation attacks. Our benchmark set includes
multi-scale LBP [3], image quality assessment based [71],
color LBP [61], Haralick features [10], Recod method with
outstanding performance in a face spoofing detection compe-
tition [72], ResNet-50 based [73], [53], VGG-16 based [67],
Chromatic Co-Occurrence of LBP (CCoLBP) [74], noise
modeling based [75], Hybrid ResNet [76], FaceBagNet [77],
CDCN [78], and DeepPixBiS [79]. The experimental results
of all benchmark methods were obtained using the publicly
available codes. In addition, we have conducted a controlled
human-based detection experiment to test the ability of human
vision systems in distinguishing wax figure faces from real
ones. In our controlled experiment, 20 volunteers (10 men and
10 women, aged between 23 and 55) were asked to determine
whether the face is real or not using our self-developed
program. The classification error rates were calculated and
averaged as the final result of human-based spoofing detection.

Table VI compares the results of different face PAD
schemes. For Protocol I, we can see that the existing face
PAD methods for 2D or 3D mask attacks suffer from se-
vere performance degradation with high detection error rates
on WFFD, ranging from 8.5% to 48.5%. We attribute the
poor performance to high diversity and super realistic at-
tacks in the new database. Among them, the most learned
features [72], [73], [67], [76], [77], [78], [79] achieved better
results than hand-crafted features [3], [71], [61], [10]. Human-
based detection has achieved a lower ACER of 16%, but with
higher APCER than BPCER, suggesting that more wax figure
faces were mistaken for real ones. The proposed MC_FBC
scheme achieved the best results with ACER less than 6%
for both backbone networks. Similar performance differences
can be observed under Protocol II. However, most algorithms
achieved higher error rates for this protocol. Such results are
reasonable since recording real and wax figure faces in the
same scenario with the same camera results in less difference
between real and fake faces. Therefore, it is more difficult to
detect spoofing attacks in this homogeneous setting.

The overall results under Protocol III with different face
PAD methods have large differences, with the error rates
ranging from 3.91% to 47.83%. The best ACER was achieved
in the proposed ResNet-50 based MC_FBC scheme due to
the highly discriminative features, which significantly outper-
formed other algorithms and human based detection. Based on
pixel-wise binary supervision, the DeepPixBiS method [79]
also achieved better results, with all error rates lower than
9%. Human-based detection performs worse than machine-
based for all three protocols, which implies that real vs. wax
detection is nontrivial for the layperson. The image quality-
based [71], and noise modeling-based [75] methods, however,
performed worse on the WFFD because of the high diversity
of image quality in the proposed database.

2) Failure case analysis: Based on the detection results
of WFFD, we further analyze the failure cases in order to
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achieve a deeper understanding. In Fig. 7, we have shown the
failure cases with high probability in both MC_FBC method
and human-based detection results, which visually illustrate
the challenges of distinguishing between fake faces and real
ones even for human observers. From Fig. 7(a), we note that
most false detections with high probability in the proposed
MC_FBC method trend to have special face poses, which
on the contrary may become the cues for human to detect.
More interestingly, when compared with the proposed method,
human-based detection was more likely to mistake wax figure
faces for real ones for both protocols, as shown in Fig. 7(b)
(there are more red dots than green dots). This is in sharp
contrast with that in machine-based method in Fig. 7(a) (there
are nearly the same number of total green and red dots).

3) WFFD-V database: To detect moving wax figure faces
in the newly constructed WFFD-V database, we have ran-
domly selected 10 frames from each video, and the resulting
scores from the Softmax classifier were averaged to obtain
the final score. Table VII shows that the proposed method
achieved the best performance with an accuracy of 94.74% and
ACER of 5.23% using either VGG-16 or ResNet-50 network.
The last four rows of the table demonstrate the effect of
multiple color space fusion in improving the detection results.
Compared with the results in Table VI, we can observe that
the performance gap among different methods in detecting
video-based wax figure faces is smaller than detecting photo-
based ones, and most methods achieved lower error rates in
this dataset. This can be attributed to the lower diversity of the
WEFFD-V. Overall, the learning features, especially the bilinear
pooling based, patch-based [77], and pixel-wise supervision-
based [78], [79], performed better (with accuracy over 91%
and ACER less than 9%) than hand-crafted features. The
Haralick based method [10] obtained the worst performance
with an ACER over 20% in distinguishing between wax figure
face videos and real face ones.

E. Intra-database testing on existing databases

1) 3D mask spoofing databases: The spoofing detection
results on 3DMAD and HKBU-MARs-V1+ databases, are
shown in Tables VIII and IX. Besides the previous benchmark
set, we include three face PAD methods proposed for 3D
mask spoofing detection- namely, two heartbeat signal-based
methods using global or local rPPG-spectrum features [80],

A=

Protocol T

Protocol IT

(a)

9

TABLE VII
COMPARISON RESULTS (%) ON THE NEW WFFD-V DATABASE.

Method Accuracy APCER BPCER ACER

Color LBP [61] 84.21 20.69 10.71 15.70
Haralick [10] 78.95 27.59 14.29 20.94
Recod [72] 83.33 8.93 24.14 16.53
ResNet-50 [73] 87.72 10.34 14.29 12.32
VGG-16 [67] 89.25 11.61 9.91 10.76
CcoLBP [74] 80.70 20.69 17.86 19.27
Noise model [75] 80.04 15.18 24.57 19.87
Hy-ResNet [76] 89.47 10.34 10.71 10.53
FaceBagNet [77] 91.89 9.48 6.70 8.09
CDCN [78] 92.54 7.33 7.59 7.46
DeepPixBiS [79] 9342 6.47 6.70 6.58
BP [58] 91.23 6.90 10.71 8.81
FBC [57] 92.98 6.90 7.14 7.02
MC_FBC-VGG-16 94.74 6.90 3.57 5.23
MC_FBC-ResNet-50 94.74 6.90 3.57 5.23

[16], and the deep dynamic texture-based method [12]. With-
out publicly available codes, we have directly cited the re-
ported results under the same protocol. It can be seen that
the proposed MC_FBC method achieved 0% error rate on
3DMAD database, where several methods performed perfectly.
Note that this is because 3DMAD is a relatively easy dataset
for spoofing detection (with simple and rigid masks as shown
in Fig. 3). On a more realistic HKBU-MARs-V1+ database,
our method achieved 3.64% ACER using ResNet-50 as the
backbone network, slightly higher than the best result from
Haralick features (with 3.24%). We can also observe that all
methods have achieved higher error rates on HKBU-MARs-
V1+ (see Table IX) than on the 3DMAD database (see Table
VIII). Such results are reasonable because the mask spoofing
samples in the HKBU-MARs-V1+ are closer to real faces
and contain more realistic variations. Based on heartbeat
signal analysis, the methods using GrPPG [80] and LrPPG
features [16] were affected little by the spoofing quality,
showing better detection robustness on the two databases.

2) 2D face spoofing database: Tables X and XI show
the comparison results on the 2D face spoofing databases
(MSU-USSA and Oulu-NPU). In Table X, we also include

SR

]
»
) e 9/
0 ~ =
g ﬁm ‘3 Protocol IT

Fig. 7. Failure cases with high probability. (a) in the proposed MC_FBC method (with over 80% of the detection results from 20 randomly chosen epochs
using two backbone networks); (b) in human based anti-spoofing detection (with over 80% of the 20 volunteers). Note that images with red dots are wax
figure faces (but mistaken for real faces), while images with green dots are real faces (but mistaken for wax faces).
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TABLE VIII TABLE X
COMPARISON RESULTS (%) ON 3DMAD DATABASE COMPARISON RESULTS (%) ON MSU-USSA DATABASE
Method APCER BPCER ACER Method APCER BPCER ACER
Haralick [10] 0.00+ 0.0 0.004+0.0 0.00+0.0 Color LBP [61] 3.1£0.8 3.0£0.8 3.1£0.8
Recod [72] 4.70+19.4 0.00 £ 0.0 2.35+£9.7 Image distortion [24] 3.3+0.7 4.3£20 3.5£1.0
ResNet-50 [73] 0.00+ 0.0 0.004+0.0 0.00+0.0 Haralick [10] 9.1£0.9 8.8+0.9 8.9+£09
VGG-16 [67] 14.21 £16.7 3.33+£8.5 9.59£11.2 Recod [72] 3.3£04 34£1.3 3.3£07
GrPPG [80] - - 13.3+13.3 ResNet-50 [73] 7.6£0.9 89+26 8.3£1.0
LrPPG [16] - - 8.57+13.3" VGG-16 [67] 277£55 27.8+22 27.8+35
Deep dynamic ) i 176" Patch-CNN [81] - - 0.4+ O‘3i
textures [12] Depth-CNN [81] - - 2.2+0.7
BP [58] 0.00+0.0 0.00+0.0 0.00%+0.0 Two stream CNN [81] - - 0.240.2"
FBC [57] 0.00 £ 0.0 1.25+£3.5 0.61+1.8 Deep forest [82] - - 1.3£0.5
MC_FBC- 0.004+0.0 0.0040.0 0.00=+0.0 MC_FBC-VGG-16 1.0+05 29+1.0 1.94+0.5
VGG-16 MC_FBC-ResNet-50 1.5+05 1.6+£09 15+04
MC_FBC- 0.004£0.0 0.004+0.0 0.00%+0.0 " Using reported results.
ResNet-50
" Using reported results. 7.6% in the four protocols respectively, only slightly lower
TABLE IX than using VGG-16 as the backbone network. The CDCN
COMPARISON RESULTS (%) ON HKBU-MARS-V 1+ DATABASE method achieved superior performance to most methods under
Method APCER BPCER ACER the first three protocols with limited variations due to its pow-
Color LBP [61] 24.00+36.5 971+9.8 1672+ 20.2 erful discrimination ability in extracting intrinsic 2D spoofing
Haralick [10] 3.86 L 7.6 243 +38 324+ 6.8 patterns [78], [86]. Although the performance of our proposed
Recod [72] 17141272 15711274 1653+ 28.7 MC_FBC was not the best under Protocol I with unseen envi-
ResNet-50 [73] 17141292 1571 £26.9 1643 £ 28.1 ro.nment.al conditions, it has shown good roblllstness (ranking
VGG-16 [67] 16331378 710L112 1366 L1938 third, slightly lower than the best re.sult of noise model b?.SCd
CcoLBP [74] 1128 1341 12855300 1357319 method [75]) under Protocol 1V, which clombmes the previous
GIPPG [80] - - 1610 £ 205° three protocols and is the most chgllengmg scenario. Overal'l,
LiPPG [16] - . 367 L33" even though.the Proposed method'l's designed for 3D face apﬂ-
Deep dynamic - spoofing, it is still highly competl.tlve when compared against
textures [12] - - 13.44 state-of-the-art methods for detecting 2D face spoofing attacks.
BP [58] 9.09 £+ 30.2 3.55 £ 11.8 6.32 + 15.6
FBC [57] 9.09+£302 2.64+87 586+153 I Inter-database testing
MC_FBC- To study the generalization property against unseen attacks,
VGG-16 833+ 2887  0.00+£0.0 4174144 we have conducted inter-database evaluation on both the new
MC_FBC- WFFD and existing 3D mask spoofing databases. We first
ResNet-50 727£241 0 0.00£00 364121 show how well existing methods can perform in detecting

" Using reported results. Note that the result of 'Deep dynamic textures’ was

conducted on a subset of HKBU-MARs-V1+.

two new methods on MSU-USSA database, including two-
stream CNN in [81] combining Patch-CNN and depth-CNN,
and deep forest with multiscale LBP based method [82]. The
proposed MC_FBC method has achieved the ACER of 1.9%
and 1.5% using two backbone networks (VGG-16 and ResNet-
50) respectively, slightly higher than deep forest based method
(with ACER of 1.3%). Using not only full face images, but
also local patches extracted from the same face, the two-
stream CNN method performed the best with 0.2% ACER
in distinguishing the fake from real faces.

For the widely used Oulu-NPU database, we have added
several benchmark methods, including two leading methods
in face spoofing detection competition held in 2017 [72]
(GRADIANT and MixedFAXNet), and five recent works
(MILHP [83], CDCN [78], DeepPixeBiS [79], TSCNN [84],
and SAPLC [85]). The proposed MC_FBC method based on
ResNet-50 model achieved ACERs of 5.9%, 3.8%, 4.9%, and

moving wax figure faces using the still wax figure faces as
the training set. The face images in the training subset (2760)
in WFFD were used for training, and all 285 videos (each with
10 frames) in WFFD-V dataset were used for testing. Table XII
shows larger differences in the accuracy in the range of 52.50%
to 86.32% and ACER of 13.72% to 51.26% among different
detection methods. The last four rows show the effectiveness
of bilinear pooling fusion on improving the performance.
The proposed method demonstrates the best generalizability
with the lowest ACER of 17.41% and 13.72% using the
VGG-16 and ResNet-50 models respectively. We attribute
the outstanding performance to the complementary features
learned by the proposed method. Similar to the results in Table
VII, most learning feature based methods performed better in
detecting video-based wax faces than hand-crafted features.
We have further compared the generalizability of the pro-
posed method to unseen 3D mask spoofing attacks. For a
fair comparison, we have followed the protocols in [37],
[20]: training on 3DMAD uses random 8 subjects, training
on HKBU-MARSs-V1+ uses 6 subjects, and both testing uses
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TABLE XI
COMPARISON RESULTS (%) ON OULU-NPU DATABASE (NOTE THAT THIS DATASET IS FOR 2D SPOOFING ONLY).

Method Protocol I Protocol I1 Protocol 111 Protocol IV
AP BP ACER| AP BP ACER| APCER BPCER ACER APCER BPCER ACER

Color LBP [61] 50 208 129 [225 67 146 | 142492 86+59 11.4+4.6/29.24+37.5 23.3+13.3 26.3+16.9
GRADIANT [72] 1.3 125 6.9 3.1 19 2.5 2.6+3.9 50+£5.3 38+24 | 5.0£45 15.0+£7.1 10.0+£5.0
MixedFASNet [72] [0.0 175 88 |97 25 6.1 53+6.7 7.8+55 6.5+46 | 10.0+7.7 358+26.7 22.9+15.2
Recod [72] 33 133 83 158 42 100 |10.1+£139 89+93 95+6.7 |35.0£37.5 10.0+4.5 22.5+18.2
Noise model [75] 1.2 1.7 15 |42 44 43 40+18 38+12 36+16| 51+£6.3 6.1+5.1 5.6+5.7
MILHP [83] 83 0.8 4.6 56 5.3 54 1.5+1.2 64+66 4.0£29 |158+128 83+157 12.0%£6.2
CDCN [78] 04 1.7 10 |15 14 15 24+13 2.24+2.0 2.3+1.4|4.6+4.6 92+380 6.9+ 2.9
DeepPixBiS [79] 0.8 0.0 04 (114 0.6 6.0 [11.74+19.6 10.6 +14.1 11.14+9.4|36.74+29.7 13.3+16.8 25.0+12.7
TSCNN [84] 51 67 59 |76 22 49 39+28 73+11 56+16|11.3+39 97+48 98+4.2
SAPLC [85] 00 08 04 |28 22 25 47+42 31435 39421 |11.9+69 6.7+£55 93+44
MC_FBC-VGG-16 |57 87 72 |51 33 42 29+38 99+89 65+47| 63+£58 105+109 88+5.9
MC_FBC-ResNet-50({3.5 83 59 |33 42 38 34+35 63+42 49+37| 58+45 94+93 T76+54

All using reported results. ‘AP’ denotes ‘APCER’, and ‘BP’ denotes ‘BPCER’.

TABLE XII
INTER-DATABASE TESTING RESULTS (%) ON WFFD-V DATABASE.
Method Accuracy APCER BPCER ACER
Color LBP [61] 52.50 51.90 42.95 47.42
Haralick [10] 54.04 51.03 40.71 45.87
Recod [72] 67.72 18.62 46.43 32.52
ResNet-50 [73] 60.18 36.29 43.48 39.89
VGG-16 [67] 71.23 38.62 18.57 28.60
CcoLBP [74] 48.77 48.96 53.57 51.26
Noise model [75] 63.38 49.66 23.12 36.39
Hy-ResNet [76] 63.16 53.79 19.29 36.54
FaceBagNet [77] 67.81 40.17 23.93 32.05
CDCN [78] 79.91 20.09 20.09 20.09
DeepPixBiS [79] 80.83 23.10 15.09 19.10
BP [58] 77.50 28.79 15.98 22.39
FBC [57] 78.86 22.59 19.64 21.11
MC_FBC-VGG-16 82.46 24.83 10.00 17.41
MC_FBC-ResNet-50 86.32 11.72 15.71 13.72

all subjects. Besides the previous benchmark methods, the
latest 3D mask PAD method based on temporal similarity of
rPPG (TSrPPG) [20] is added to the benchmark set. Results
in Table XIII have justified the robustness of the MC_FBC
method, with the second lowest ACER using ResNet-50 as
the backbone under both inter-database test settings, while
the VGG-16 based MC_FBC performed slightly worse than
ResNet-50 model. Most methods have achieved higher error
rates using 3DMAD as the training set. The underlying reason
is that this database contains less variation in the collected data
than the HKBU-MARs-V1+ database. Therefore, the models
optimized for this database are not able to generalize well in
new acquisition conditions. Due to the good generalizability
of liveness cues, the TSrPPG method [20] has achieved the
best results using heartbeat signal in the time domain.

G. Visualization Analysis

To show the effectiveness of the proposed MC_FBC on ex-
tracting highly discriminative features, we present the visual-

ization results on WFFD samples using Grad-CAM [87]. Fig-
ure 8 presents the CNN activation heatmaps and correspond-
ing guided Grad-CAMs, which locate the class-discriminative
regions and highlight the high-resolution details respectively.
Note that Grad-CAM is not suitable for bilinear pooling [88];
thus we use Grad-CAM in the last convolution layer of VGG-
16 for all models.

From the first four columns in Figure 8, we can first observe
the complementary properties of RGB and YCbCr color spaces
in the proposed MC_FBC method. The first four rows show
little difference in the attention regions of two color channels
for real faces, both focusing on the nose and philtrum area. The
last four rows, however, present larger attention differences in
wax figure faces. We can observe from the first two rows that
RGB color space generally focuses on the eye and upper cheek
regions, while YCbCr color mainly focuses on the upper cheek
regions. For more confusing wax samples (see the example
in the seventh row with poor lighting conditions), YCbCr
channel seems to be more robust due to the separation of
luminance and chrominance components. However, the RGB
channel performs better on wax faces with facial occlusions
like eyeglasses (see the example in the last row). This can
be attributed to the larger attention regions of RGB channels.
Therefore, the fusion of features from complementary color
channels can contribute to highly robust and discriminative
representations in face anti-spoofing.

Combining with the last four columns in Figure 8, we can
compare the class-discriminative localization of the proposed
model with FBC and original VGG-16 models. It can be
observed from both Grad-CAMs and guided Grad-CAMs that
the high activation regions of FBC and MC_FBC models are
consistent over real faces, mainly around the nose region.
Larger nose regions (with both the apex and bridge of nose)
attract the attention of MC_FBC than the FBC model (with
just the apex of nose). By contrast, the VGG-16 model focuses
on nose or mouth regions over real faces, while for more
confusing input faces (see the example with smooth skin in the
fourth row), the attention distribution scatters almost randomly,
leading to erroneous detection. For the wax face samples in the
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TABLE XIII

INTER-DATABASE TESTING RESULTS (%) ON 3DMAD AND HKBU-MARS-V 1+ DATABASES.

Method 3DMAD — HKBU-MARs-V1+ HKBU-MARs-V1+ — 3DMAD
APCER BPCER ACER APCER BPCER ACER

Multi-scale LBP [3] 45.00 £ 2.9 43.93+2.9 44.46 £2.9 28.76 £ 5.9 28.62 £ 5.8 28.69 +5.9
Color LBP [61] 40.00 £ 2.0 39.29 £2.5 39.64 £2.2 34.70 £4.5 34.26 £4.8 34.48 £4.7
Haralick [10] 30.62£5.9 29.64 £5.7 30.13£5.8 21.47£3.8 21.18 £3.6 21.32 £ 3.7
ResNet-50 [73] 36.00 £ 8.4 35.14 £8.0 35.57 £ 8.2 23.35+8.9 23.06 £9.2 23.21+9.1
Recod [72] 32.50£4.6 31.07£3.9 31.78 £4.2 26.35+1.4 22.09£5.5 24.22 £2.7
VGG-16 [67] 32.50£5.0 31.78 £4.5 3214+ 34 52.71 £ 3.7 40.47+2.9 48.09 £ 2.4
GrPPG [80] - - 46.70 = 3.0 - - 31.50 £ 3.8
LrPPG [16] - - 39.20£0.8 - - 40.40 £ 2.7
TSrPPG [20] - - 23.50 £ 0.5 - - 16.10 + 1.0
BP [58] 48.08 £15.2 19.86 £22.7 3397+55 26.54+9.2 36.07+£10.5 31.31+£3.0
FBC [57] 34.75£9.9 21.19 £18.2 27.97+ 4.6 29.95+ 8.1 25.00+12.0  27.50+ 3.7
MC_FBC-VGG-16 26.25£0.2 25.36 £9.5 25.80£9.4 22.79£3.9 20.96 £2.0 2290 £ 4.4
MC_FBC-ResNet-50 | 25.00 & 2.0 25.78 £3.8 25.39+27 | 1857+3.6 16.10%X2.6 17.34+3.0
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3D denotes ‘3D face reconstruction’.

Input MC _FBC-RGB

MC_FBC-YCbCr

‘Wax

Fig. 8. Grad-CAM ([87]) attention visualization of the last VGG-16 feature
maps corresponding to real faces (the first four rows), and wax figure faces (the
last four rows) of the test data samples in WFFD. The first column represents
the input faces, and the even columns show the Grad-CAM heatmaps while
other odd columns show the guided Grad-CAMs. Red-colored regions of the
heatmaps represent highly focused regions, whereas blue regions represent
low priority ones. Note that red boxes present error detection.

last four rows, the proposed MC_FBC model mainly focuses
on eye areas and upper cheek region, the FBC model focuses
on either the upper cheek or the eyebrow regions, while the
focus of VGG-16 model seems to be mainly on the upper
cheek regions. For the more confusing input face (for example
in the last row), both VGG-16 and FBC lead to erroneous
detection, while the MC_FBC model is more robust thanks to
the learned complementary skin-inspired features.

VI. CONCLUSIONS

To detect realistic 3D face presentation attacks, we have
proposed to generate discriminative representations in a fine-
grained manner and combine complementary information in

multiple color spaces by bilinear coding in this paper. The
proposed MC_FBC approach fuses complementary features
from two color spaces (RGB vs. YCbCr) extracted via CNN
models (VGG-16 and ResNet-50) using factorized bilinear
coding. We have also constructed a new database (WFFD)
with wax figure faces containing both images and videos
with high diversity and large subject size as super realis-
tic face presentation attacks. Extensive experimental results
have demonstrated the superior performance of the proposed
method in detecting real faces from wax figure faces with
not only several existing PAD methods but also human-based
spoofing detection. Our method has achieved competitive
performance on other 3D mask and 2D face spoofing databases
in both intra-database and inter-database testing scenarios.
Both the code and databases will be made publicly available
at https://github.com/shanface33/Wax_Figure_Face_DB to fa-
cilitate the improvement and evaluation of different PAD
algorithms.

It should be noted that the best performance under inter-
database testing achieved by the proposed scheme still has
the error rate of over 10%. How to improve the detection
performance deserves further investigation. Super realistic
face spoofing attacks are indeed difficult to distinguish from
real ones even for humans. We envision that learning-based
methods, when combined with liveness cues, are a promising
direction to provide effective and generalized spoofing detec-
tion in the future. However, as Al technology keeps advancing
at a fast pace, it is likely that more challenging spoofing
attacks such as Deepfakes will become more powerful. As
many people believe, the arm race between spoofing and anti-
spoofing will never end.
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