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ABSTRACT

High-resolution imagery is increasingly used to detect
flooded areas during a crisis situation. The article presents a
comparison of four image classification methods for flood
extent mapping. The methods include Random Forest (RF),
support vector machine (SVM), fully convolutional network
(FCN), and normalized difference water index (NDWI).
High-resolution UAV imagery collected during Hurricane
Matthew (2016) flood events were used to evaluate the
classification methods for generating an accurate flood
extent map. In this study, a fully convolutional network
fine-tuned to segment the inundation areas. RF, SVM, and
NDWTI are implemented using the same dataset used for
mapping flood extents. The results show that the FCN
achieved an overall accuracy of 97.72%, followed by NDWI
with 96.0%, SVM with 88.9%, and 87.8 % of RF. The
results imply that FCN is more efficient than RF, SVM, and
NDWI on generating real-time flood extent maps.

Index Terms— Flood, Remote Sensing, Convolutional
Neural Networks, Fine-tuning, UAV, Data Analytic

1. INTRODUCTION

Flooding is a severe hazard, which poses a great threat to
human life and property. Generating flood extent maps
during extreme flood events is vital for planning and
efficient management of affected areas [1]. Detecting non-
inundation areas are also equally important because these
areas can serve as temporary shelters for the nearby affected
areas. Several jurisdictions have begun considering the
feasibility of relocating residential, commercial, and
municipal structures, and the flood extent maps help to
better understanding potential sites where relocation might
be feasible.

The collection of geospatial information required to
extract flooded areas is challenging and time-consuming
using traditional survey techniques. Remote sensing
technology in recent years has been regarded as an efficient
means for generating flood extent maps and assess flood
hazards over a large area at a given point of time.
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Several manual, automatic or semiautomatic approaches
have been introduced in the past decades for extracting
flooded areas  from  remote  sensing  images
including traditional photogrammetric techniques, spectral
water indexes (e.g., NDWI), and machine learning
classifiers. The traditional mapping techniques are based on
satellite or aerial observation/stereoscopic methods or
digitizing. However, when the flood covers large areas,
these approaches are very time-consuming and does not
satisfy the needs for real-time flood disaster responses [2].
The NDWI is another approach to delineate water content
using the green and Near Infrared (NIR) bands of imagery.
This method was proposed by McFeeters et al. [3] and is
based on the concept that a water body has strong
absorbability and low radiation in the range from visible to
infrared wavelengths. Several studies are employing NDWI,
to detect the flooded areas and delineate open water features
effectively [4-5]. However, the main challenge of using
NDWI for detecting inundation areas is that the water index
is sensitive to built-up land and often results in over-
estimating water bodies [3]. There are many different
formulas for NDWIs considering different pairs of bands.
For example, Gao et al. [6] evaluated NDWI computed from
the Near-Infrared (NIR) and Short-Wave Infrared (SWIR)
channels for the detection of vegetation water liquids from
satellite imagery. Their results show that NDWI is a good
indicator of vegetation liquid water content and is less
sensitive to atmospheric scattering effects than NDVI
(Normalized Difference Vegetation Index). Machine
learning classifiers are one of the other methods that have
gained attention for extracting flooded areas from remote
sensing images. In the past decades, the field of machine
learning has made rapid progress for remote sensing
mapping applications creating massive opportunities that
were not possible before. The most commonly adopted
approach of machine learning is Random Forest (RF) and
Support Vector Machine (SVM). The RF approach has been
used in many studies for generating inundation maps [7-8].
Several researches have also shown that RFs can be
successfully used to detect the floods, and extract inundated
areas using remote sensing data; however, the algorithm can
be slow and ineffective for real-time mapping as more
precise predictions need a large sample size which results in
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a slower classifier model [9]. SVMs are often claimed to be
the best at dealing with complex classification problems
such as flood detection for small datasets [10]. However, the
complexity grows as the number of training samples
increases. Recently, Deep learning is becoming an
increasingly popular technique for remote sensing tasks due
to their ability to handle large datasets for image analysis.
However, a large amount of data is needed to build a deep
learning model. With a small amount of data, the deep
learning methods tend to overfit. Convolutional Neural
Networks (CNNs) are the type of deep learning that has
been successfully applied in several fields such as medical
diagnosis [11], autonomous driving [12], and speech
recognition [13]. The success of CNNs in these fields has
motivated researchers in remote sensing community to
investigate its potential in solving remote sensing problems.
Unlike conventional machine learning approaches such as
RF and SVM, CNNs can automatically extract features from
images and successfully handle large training datasets.
Although CNNs have been widely applied in several
computer vision applications, its implementation in flood
extent mapping needs further investigation, especially in
terms of accuracy and processing time [14-15]. Gebrehiwot
et al. [14] pretrained VGG-based fully convolutional
network (FCN) to segment flooded areas from unmanned
aerial vehicles (UAV) images and achieved more than 90%
overall accuracy. Sarker, Chandrama, et al [15] proposed a
fully convolutional neural network for mapping flood
extents from Landsat satellite images and achieved a
maximum precision rate of 76.7% compared to 45.27% for
SVM classification.

Despite the research studies on the several inundation
mapping methods for the classification of remote sensing
data, studies that compare these methods are rare and have
not been well documented. Based on that context, this
research aims to evaluate and compare the performance of a
fully convolutional network, RF, SVM, and NDWI
approaches for flood extent mapping.

The paper is organized as follows. In Section 2, the
study areas and the data used for the research are described.
In Section 3, the methods to generate inundation maps and
the experimental procedures are presented. The results and
discussion are presented in Section 4. Finally, we conclude
by summarizing our results in Section 5.

2. STUDY AREAS AND DATA

Three flood-prone areas in North Carolina, U.S., were

selected as our study areas including Princeville,

Lumberton, and Fair Bluff. The data used for the research

include:

e UAV high-resolution imagery collected during
hurricane Matthew (2016) over the study areas. These
data were acquired by the North Carolina Emergency
Management (NCEM). The size of each image is 4,000
x 4,000 with a resolution of 2.6 cm.

e Airborne multispectral imagery collected by the
National Agricultural Imagery Program from the study
areas. Each image contains 4-bands (red, blue, green,
and infrared) with 6,574 x 7,698 pixels and 50 cm
resolution.

3. METHODS AND DATA PROCESSING
3.1. Inundation mapping using FCN

The method used in the research is based on fine-tuning a
pre-trained model to classify a new dataset. We fine-tuned
the fully convolutional network with a stride of 8 (FCN-8s)
proposed by Long et al. [16] to generate flood extent maps.
The FCN-8s is the modified version of the VGG-16 CNN
model, which is developed by Simonyan et al. [17]. The
network is adjusted so that the convolutional layers replace
the fully connected layers of the VGG-16 network. This
enables the network to implement pixel-level classification
rather than per-image class prediction, as VGG-16 originally
was used for. The network is sketched in Figure 2.
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Figure 1. FCN-8s architecture [17]

To create a flood extent map, our research approach
consisted of labeling, training, classification, and evaluation
stages. In the labeling stage, 150 UAV images were labeled
manually using a MATLAB labeler app. Each pixel in an
image is assigned to a predefined class. In the training stage,
we used 10-fold cross-validation technique to estimate the
potential of FCN-8s. This approach involves randomly
partitioned the set of observations into k equal-size folds. Of
the K folds, the first fold is treated as a validation set, and
the remaining k — 1 folds are used as training data. This
procedure then repeated k times, with each of the k folds
used exactly as a validation data. The purpose of this
procedure is to give a less biased estimate of the model on
unseen data. The network is trained using Stochastic
Gradient Descent (SGD) for 6 epochs with a learning rate of
0.001, and a maximum batch size of 4. During training, 512-
by-512 pixels size of 32 patches were randomly cropped and
rotated in each batch size to increase the diversity of the
training samples. The training stage ended after 230,000
iterations for all 10-fold experiments. In the classification
stage, the performance of the network was tested using the
unseen testing images. In this stage, the trained network is
applied to the testing images to predict multiple classes. The
network learned to associate image segments and labels
during training and predicted the class labels for the test set,
here, water and no water classes.
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3.2. Inundation mapping using RF and SVM classifiers

An SVM classifier works by mapping the training sample
data into a high dimensional feature space and finds the best
hyperplane that separates all data points of one class from
another class. It separates samples belonging to different
classes by tracing maximum margin hyperplanes in the
kernel space where samples are mapped. An RF classifier
creates a set of decision trees from a randomly selected
subset of the training set and aggregates the vote from
different decision trees to decide the final output.

To evaluate the performance of the conventional machine
learning approaches and comparison purposes, we trained
the RF and SVM classifiers using the same set of training
images used for the FCN-8s model. The classification
learner in MATLAB is used to train the RF and SVM. 20%
of pixels from each class were randomly selected as a
training sample to train RF and SVM.

3.3. Inundation mapping using NDWI
The NDWI is an index for delineating and monitoring

content changes in surface water. The NDWI is computed
using the near-infrared and green band channels:

(1

NDWI= hl

Where the Green and NIR refer to the reflection in the green
and near-infrared spectra, respectively. The NDWI product
is dimensionless and varies from -1 to +1, where water
features have positive values, and soil and terrestrial
vegetation features have zero or negative values, owing to
their typically higher reflectance of Near-Infrared than green
light [4]. In this study, the NDWI is calculated from the
multispectral image using ArcGIS software.

4. RESULTS AND DISCUSSION

The sections below describe the results of flood extent maps
in support of flood management.

4.1 Comparison of FCN-8s, RF, SVM, and NDWI
Classification results

The pixels of each image were labeled using the MATLAB
Labeler App, and the FCN-8s, RF, and SVM classifiers
were implemented in the MATLAB 2019b software while
the NDWI was computed in ArcGIS 10.7. The computer
was configured with 32 GB memory, an Intel(R) Xeon(R)
ES-2620 v3 @ 2.40GHz X2 processors memory, and a
single NVIDIA Quadro M4000 GPU.

For this experiment, a confusion matrix was calculated
to analyze the accuracy of the classification methods. The
overall accuracy was calculated from the confusion matrix
to assess the model's effectiveness by estimating the

probability of the real value of the class label. Moreover, the
kappa index was used to summarize the information
provided by the confusion matrix. Kappa index measures
how well the model performed as compared to how well it
would have performed simply by chance.

The overall classification results and Kappa index of
FCN-8S, RF, SVM, and NDWI on the test dataset are
shown in Table 1.

Table 1. Overall accuracy and Kappa index for FCN-8s, RF,
SVM, and NDWI classifiers to detect flood extent

Overall Kappa Index
Accuracy

FCN-8s 97.2% 0.94

RF 87.8% 0.79

SVM 88.9% 0.82

NDWI 96.0% 0.93

The quantitative experimental results show the FCN-8s has
a better classification performance than RF, SVM, and
NDWI in generating flood extent maps using the high-
resolution remote sensing data.

(b) (c) (d)

Figure 2. Classification results of NDWI and FCN-8s
approaches. (a) The original image; (b) Labeled image; (¢)
Classification results of NDWI; (d) Classification results of
FCN-8s

As shown in Figure 2, the qualitative evaluation results
show that as FCN-8s has better accuracy than NDWI to
extract flooded arecas. The NDWI has better classification
results for only pure water or flood pixels. In addition to
open water areas, the FCN-8s has better performance to
extract flood extent in mixed pixels.

Finally, in terms of processing time, FCN-8s have more
advantages compared to RF, SVM, and NDWI. Because
FCN-8s can extract features automatically from the training
images, while RF and SVM require to extract features
manually from the input images using the traditional
features extractor techniques. As a result, RF and SFM
require more data preprocessing compared to the deep
learning-based approaches. In this research, after training
the FCN-8s, it took about three seconds to generate a flood
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extent map of a 4,000 x 4,000 pixels size image using a
single GPU (NVIDIA Quadro M4000), similar to the
processing time taken to generate a flood extent from the
same image using NDWI in ArcGIS.

5. CONCLUSION

Flooding is a severe hazard, which poses a great threat to
human life and property. Generating inundation maps during
extreme flood events is vital for planning and efficient
management of affected areas. The research attempts to
investigate the potential of FCN for inundation mapping by
comparing it with RF, SVM, and NDWI. Experimental
results indicated that the FCN-8s classifier is a suitable
method for real-time flood mapping with an overall
accuracy of 97.2% compared to 87.8 % of RF, 88.9 % of
SVM, and 96% of NDWTI classification. Transfer learning
and fine-tuning a network allows to overcome the problem
of scarce and expensive data in flood applications instead of
training from scratch, which requires a large amount of
annotated training samples. The research results prove that
the FCN-8s capable of extracting flooded areas in near real-
time, even though only 150 images were used for training
compared to RF, SVM, and NDWI.
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