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ABSTRACT 

 

High-resolution imagery is increasingly used to detect 

flooded areas during a crisis situation. The article presents a 

comparison of four image classification methods for flood 

extent mapping. The methods include Random Forest (RF), 

support vector machine (SVM), fully convolutional network 

(FCN), and normalized difference water index (NDWI). 

High-resolution UAV imagery collected during Hurricane 

Matthew (2016) flood events were used to evaluate the 

classification methods for generating an accurate flood 

extent map. In this study, a fully convolutional network 

fine-tuned to segment the inundation areas. RF, SVM, and 

NDWI are implemented using the same dataset used for 

mapping flood extents. The results show that the FCN 

achieved an overall accuracy of 97.72%, followed by NDWI 

with 96.0%, SVM with 88.9%, and 87.8 % of RF. The 

results imply that FCN is more efficient than RF, SVM, and 

NDWI on generating real-time flood extent maps. 

 

Index Terms— Flood, Remote Sensing, Convolutional 

Neural Networks, Fine-tuning, UAV, Data Analytic 

 

1. INTRODUCTION 

 

Flooding is a severe hazard, which poses a great threat to 

human life and property. Generating flood extent maps 

during extreme flood events is vital for planning and 

efficient management of affected areas [1]. Detecting non-

inundation areas are also equally important because these 

areas can serve as temporary shelters for the nearby affected 

areas. Several jurisdictions have begun considering the 

feasibility of relocating residential, commercial, and 

municipal structures, and the flood extent maps help to 

better understanding potential sites where relocation might 

be feasible.  

      The collection of geospatial information required to 

extract flooded areas is challenging and time-consuming 

using traditional survey techniques. Remote sensing 

technology in recent years has been regarded as an efficient 

means for generating flood extent maps and assess flood 

hazards over a large area at a given point of time.  

       Several manual, automatic or semiautomatic approaches 

have been introduced in the past decades for extracting 

flooded areas from remote sensing images 

including traditional photogrammetric techniques, spectral 

water indexes (e.g., NDWI), and machine learning 

classifiers. The traditional mapping techniques are based on 

satellite or aerial observation/stereoscopic methods or 

digitizing. However, when the flood covers large areas, 

these approaches are very time-consuming and does not 

satisfy the needs for real-time flood disaster responses [2]. 

The NDWI is another approach to delineate water content 

using the green and Near Infrared (NIR) bands of imagery. 

This method was proposed by McFeeters et al. [3] and is 

based on the concept that a water body has strong 

absorbability and low radiation in the range from visible to 

infrared wavelengths. Several studies are employing NDWI, 

to detect the flooded areas and delineate open water features 

effectively [4-5]. However, the main challenge of using 

NDWI for detecting inundation areas is that the water index 

is sensitive to built-up land and often results in over-

estimating water bodies [3]. There are many different 

formulas for NDWIs considering different pairs of bands. 

For example, Gao et al. [6] evaluated NDWI computed from 

the Near-Infrared (NIR) and Short-Wave Infrared (SWIR) 

channels for the detection of vegetation water liquids from 

satellite imagery. Their results show that NDWI is a good 

indicator of vegetation liquid water content and is less 

sensitive to atmospheric scattering effects than NDVI 

(Normalized Difference Vegetation Index). Machine 

learning classifiers are one of the other methods that have 

gained attention for extracting flooded areas from remote 

sensing images.  In the past decades, the field of machine 

learning has made rapid progress for remote sensing 

mapping applications creating massive opportunities that 

were not possible before. The most commonly adopted 

approach of machine learning is Random Forest (RF) and 

Support Vector Machine (SVM). The RF approach has been 

used in many studies for generating inundation maps [7-8]. 

Several researches have also shown that RFs can be 

successfully used to detect the floods, and extract inundated 

areas using remote sensing data; however, the algorithm can 

be slow and ineffective for real-time mapping as more 

precise predictions need a large sample size which results in 
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a slower classifier model [9]. SVMs are often claimed to be 

the best at dealing with complex classification problems 

such as flood detection for small datasets [10]. However, the 

complexity grows as the number of training samples 

increases. Recently, Deep learning is becoming an 

increasingly popular technique for remote sensing tasks due 

to their ability to handle large datasets for image analysis. 

However, a large amount of data is needed to build a deep 

learning model. With a small amount of data, the deep 

learning methods tend to overfit. Convolutional Neural 

Networks (CNNs) are the type of deep learning that has 

been successfully applied in several fields such as medical 

diagnosis [11], autonomous driving [12], and speech 

recognition [13]. The success of CNNs in these fields has 

motivated researchers in remote sensing community to 

investigate its potential in solving remote sensing problems. 

Unlike conventional machine learning approaches such as 

RF and SVM, CNNs can automatically extract features from 

images and successfully handle large training datasets. 

Although CNNs have been widely applied in several 

computer vision applications, its implementation in flood 

extent mapping needs further investigation, especially in 

terms of accuracy and processing time [14-15]. Gebrehiwot 

et al. [14] pretrained VGG-based fully convolutional 

network (FCN) to segment flooded areas from unmanned 

aerial vehicles (UAV) images and achieved more than 90% 

overall accuracy. Sarker, Chandrama, et al [15] proposed a 

fully convolutional neural network for mapping flood 

extents from Landsat satellite images and achieved a 

maximum precision rate of 76.7% compared to 45.27% for 

SVM classification. 

      Despite the research studies on the several inundation 

mapping methods for the classification of remote sensing 

data, studies that compare these methods are rare and have 

not been well documented. Based on that context, this 

research aims to evaluate and compare the performance of a 

fully convolutional network, RF, SVM, and NDWI 

approaches for flood extent mapping.  

       The paper is organized as follows. In Section 2, the 

study areas and the data used for the research are described. 

In Section 3, the methods to generate inundation maps and 

the experimental procedures are presented. The results and 

discussion are presented in Section 4. Finally, we conclude 

by summarizing our results in Section 5. 

 

2. STUDY AREAS AND DATA 

 

Three flood-prone areas in North Carolina, U.S., were 

selected as our study areas including Princeville, 

Lumberton, and Fair Bluff. The data used for the research 

include:  

• UAV high-resolution imagery collected during 

hurricane Matthew (2016) over the study areas. These 

data were acquired by the North Carolina Emergency 

Management (NCEM). The size of each image is 4,000 

x 4,000 with a resolution of 2.6 cm.  

• Airborne multispectral imagery collected by the 

National Agricultural Imagery Program from the study 

areas. Each image contains 4-bands (red, blue, green, 

and infrared) with  6,574 x 7,698 pixels and 50 cm 

resolution. 

 

3. METHODS AND DATA PROCESSING 

 

3.1. Inundation mapping using FCN 

The method used in the research is based on fine-tuning a 

pre-trained model to classify a new dataset. We fine-tuned 

the fully convolutional network with a stride of 8 (FCN-8s) 

proposed by Long et al. [16] to generate flood extent maps. 

The FCN-8s is the modified version of the VGG-16 CNN 

model, which is developed by Simonyan et al. [17]. The 

network is adjusted so that the convolutional layers replace 

the fully connected layers of the VGG-16 network. This 

enables the network to implement pixel-level classification 

rather than per-image class prediction, as VGG-16 originally 

was used for. The network is sketched in Figure 2. 

 

 
      Figure 1. FCN-8s architecture [17] 

 

To create a flood extent map, our research approach 

consisted of labeling, training, classification, and evaluation 

stages. In the labeling stage, 150 UAV images were labeled 

manually using a MATLAB labeler app. Each pixel in an 

image is assigned to a predefined class. In the training stage, 

we used 10-fold cross-validation technique to estimate the 

potential of FCN-8s. This approach involves randomly 

partitioned the set of observations into k equal-size folds. Of 

the K folds, the first fold is treated as a validation set, and 

the remaining k − 1 folds are used as training data. This 

procedure then repeated k times, with each of the k folds 

used exactly as a validation data. The purpose of this 

procedure is to give a less biased estimate of the model on 

unseen data. The network is trained using Stochastic 

Gradient Descent (SGD) for 6 epochs with a learning rate of 

0.001, and a maximum batch size of 4. During training, 512- 

by-512 pixels size of 32 patches were randomly cropped and 

rotated in each batch size to increase the diversity of the 

training samples. The training stage ended after 230,000 

iterations for all 10-fold experiments.  In the classification 

stage, the performance of the network was tested using the 

unseen testing images. In this stage, the trained network is 

applied to the testing images to predict multiple classes. The 

network learned to associate image segments and labels 

during training and predicted the class labels for the test set, 

here, water and no water classes. 
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3.2. Inundation mapping using RF and SVM classifiers  

An SVM classifier works by mapping the training sample 

data into a high dimensional feature space and finds the best 

hyperplane that separates all data points of one class from 

another class. It separates samples belonging to different 

classes by tracing maximum margin hyperplanes in the 

kernel space where samples are mapped. An RF classifier 

creates a set of decision trees from a randomly selected 

subset of the training set and aggregates the vote from 

different decision trees to decide the final output.  

     To evaluate the performance of the conventional machine 

learning approaches and comparison purposes, we trained 

the RF and SVM classifiers using the same set of training 

images used for the FCN-8s model. The classification 

learner in MATLAB is used to train the RF and SVM. 20% 

of pixels from each class were randomly selected as a 

training sample to train RF and SVM.  

 

3.3. Inundation mapping using NDWI 

The NDWI is an index for delineating and monitoring 

content changes in surface water. The NDWI is computed 

using the near-infrared and green band channels: 

           

                  NDWI =                               (1) 

 

Where the Green and NIR refer to the reflection in the green 

and near-infrared spectra, respectively. The NDWI product 

is dimensionless and varies from -1 to +1, where water 

features have positive values, and soil and terrestrial 

vegetation features have zero or negative values, owing to 

their typically higher reflectance of Near-Infrared than green 

light [4]. In this study, the NDWI is calculated from the 

multispectral image using ArcGIS software.  

 

4. RESULTS AND DISCUSSION 

 

The sections below describe the results of flood extent maps 

in support of flood management. 

 

4.1 Comparison of FCN-8s, RF, SVM, and NDWI 

Classification results 

The pixels of each image were labeled using the MATLAB 

Labeler App, and the FCN-8s, RF, and SVM classifiers 

were implemented in the MATLAB 2019b software while 

the NDWI was computed in ArcGIS 10.7. The computer 

was configured with 32 GB memory, an Intel(R) Xeon(R) 

ES-2620 v3 @ 2.40GHz ×2 processors memory, and a 

single NVIDIA Quadro M4000 GPU.  

        For this experiment, a confusion matrix was calculated 

to analyze the accuracy of the classification methods. The 

overall accuracy was calculated from the confusion matrix 

to assess the model's effectiveness by estimating the 

probability of the real value of the class label. Moreover, the 

kappa index was used to summarize the information 

provided by the confusion matrix. Kappa index measures 

how well the model performed as compared to how well it 

would have performed simply by chance.  

      The overall classification results and Kappa index of 

FCN-8S, RF, SVM, and NDWI on the test dataset are 

shown in Table 1.   

 

Table 1. Overall accuracy and Kappa index for FCN-8s, RF, 

SVM, and NDWI classifiers to detect flood extent 

 

 Overall 

Accuracy 

Kappa Index 

FCN-8s 97.2% 0.94 

RF 87.8% 0.79 

SVM 88.9% 0.82 

NDWI 96.0% 0.93 

 

The quantitative experimental results show the FCN-8s has 

a better classification performance than RF, SVM, and 

NDWI in generating flood extent maps using the high-

resolution remote sensing data.  

    

 
 (a)                 (b)                (c)                   (d) 

 

Figure 2. Classification results of NDWI and FCN-8s 

approaches. (a) The original image; (b) Labeled image; (c) 

Classification results of NDWI; (d) Classification results of 

FCN-8s   

 

As shown in Figure 2, the qualitative evaluation results 

show that as FCN-8s has better accuracy than NDWI to 

extract flooded areas. The NDWI has better classification 

results for only pure water or flood pixels. In addition to 

open water areas, the FCN-8s has better performance to 

extract flood extent in mixed pixels. 

      Finally, in terms of processing time, FCN-8s have more 

advantages compared to RF, SVM, and NDWI. Because 

FCN-8s can extract features automatically from the training 

images, while RF and SVM require to extract features 

manually from the input images using the traditional 

features extractor techniques. As a result, RF and SFM 

require more data preprocessing compared to the deep 

learning-based approaches. In this research, after training 

the FCN-8s, it took about three seconds to generate a flood 
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extent map of a 4,000 x 4,000 pixels size image using a 

single GPU (NVIDIA Quadro M4000), similar to the 

processing time taken to generate a flood extent from the 

same image using NDWI in ArcGIS.  

 

5. CONCLUSION  

 

Flooding is a severe hazard, which poses a great threat to 

human life and property. Generating inundation maps during 

extreme flood events is vital for planning and efficient 

management of affected areas. The research attempts to 

investigate the potential of FCN for inundation mapping by 

comparing it with RF, SVM, and NDWI. Experimental 

results indicated that the FCN-8s classifier is a suitable 

method for real-time flood mapping with an overall 

accuracy of 97.2% compared to 87.8 % of RF, 88.9 % of 

SVM, and 96% of NDWI classification. Transfer learning 

and fine-tuning a network allows to overcome the problem 

of scarce and expensive data in flood applications instead of 

training from scratch, which requires a large amount of 

annotated training samples.  The research results prove that 

the FCN-8s capable of extracting flooded areas in near real-

time, even though only 150 images were used for training 

compared to RF, SVM, and NDWI. 
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