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ABSTRACT: 

High-resolution remote sensing imagery has been increasingly used for flood applications. Different methods have been proposed for 

flood extent mapping from creating water index to image classification from high-resolution data. Among these methods, deep learning 

methods have shown promising results for flood extent extraction; however, these two-dimensional (2D) image classification methods 

cannot directly provide water level measurements. This paper presents an integrated approach to extract the flood extent in three-

dimensional (3D) from UAV data by integrating 2D deep learning-based flood map and 3D cloud point extracted from a Structure 

from Motion (SFM) method. We fine-tuned a pretrained Visual Geometry Group 16 (VGG-16) based fully convolutional model to 

create a 2D inundation map. The 2D classified map was overlaid on the SfM-based 3D point cloud to create a 3D flood map. The 

floodwater depth was estimated by subtracting a pre-flood Digital Elevation Model (DEM) from the SfM-based DEM. The results 

show that the proposed method is efficient in creating a 3D flood extent map to support emergency response and recovery activates 

during a flood event. 

 

 

1. INTRODUCTION 

Accurate information about the flood inundation extent and water 

depth is essential for relief activities. Flood risk maps can protect 

human lives and property damages by providing timely damage 

assessments to plan relief work efficiently. The use of remote 

sensing data to assess flood hazards in near real-time has been 

popular over the last few decades (Huang et al., 2018). Unmanned 

Aerial Vehicles (UAVs) have been rapidly developed as tools for 

inundation mapping tasks. UAVs survey offers a viable 

alternative to conventional systems because they deliver high-

resolution data at a lower cost from complex urban landscapes, 

inaccessible areas, and hazardous environments (Feng et al., 

2015, Boccardo et al., 2015). 

 

Several methods have been proposed to create a 3D inundation 

map from the remote sensing imagery. Since the pioneering work 

of Miller et al. (1958), DEMs have been widely analyzed for flood 

extent mapping. DEMs can be produced from field survey data, 

satellite and aerial images, and Light Detection and Ranging 

(LiDAR) data. Generating DEM  utilizing conventional field 

surveys and GPS needs more skilled manpower and is time-

consuming and expensive to execute over a large area. LiDAR 

has been widely used to create DEMs since it can map large 

spatial areas by less manpower. LIDAR is a remote sensing 

technology that uses light in the form of a pulsed laser to measure 

ranges or variable distances to the Earth. LiDAR has a minimum 

human dependency, weather/ light independence, is a fast 

acquisition and processing approach for DEM creation. However, 

the LiDAR instrument cannot record elevation data from flooded 

areas since the lidar lights absorbed by water. SfMs solve 

multicamera viewing problem that generates high-density point 

cloud from high-resolution overlapping images (Caroti et al., 

2015). SfM is the process of estimating the 3D structure of objects 

from the series of 2D images. The success of SfMs governed by 

the quality of the image resolution, degree of image overlaps, the 

relative motion of the camera with respect to the scene, and the 

presence of sharp edges (Watts et al, 2012, Remondino et al, 

2014). While SfM photogrammetry is increasingly used for 

mapping in various applications, only a few researchers have used 

SfM for flood mapping, and its potential has not yet been fully 

explored by the remote sensing community. Meesuk, et al. (2012) 

investigated the efficiency of SfM approaches and achieved 

promising results in terms of accuracy for mapping flood extents. 

In their another work Meesuk, et al. (2015), they used the SfM 

technique to detect hidden urban features from a sequence of 

ground-view images that significantly improved the accuracy of 

flood simulation results. Hashemi-Beni et al. (2018) provided an 

overview of the opportunities and challenges of 3D flood extent 

mapping using UAV and SfM. The main challenges include (1) 

poor environmental and weather conditions (such as wind) during 

a flooding event ; (2) availability and visibility of ground control 

points (GCPs); (3) insufficient tie-points for image calibration 

due to the homogenous appearance of the water surface.; (4) 

needs for reclassification of noisy points cloud generated from 

SfM to determine the extent of the flood. Based on this context, 

we proposed an integrated method (SfM and Deep learning) to 

classify a 3D flood point cloud and generate a 3D flood map. 

 

Deep neural networks such as Convolutional Neural Networks 

(CNNs) have been applied to many vision-related tasks for 

automatically extracting targets and demonstrated outstanding 

performance. CNNs applied to image classification (Ciregan et 

al., 2012), object detection (Girshick et al., 2014), scene labeling 

(Farabet et al., 2012), and object recognition (Taigman et al., 

2014). The most notable advantage of CNNs is that they can 

construct high-level features from a raw dataset in an incremental 

manner. CNNs are widely used for remote sensing tasks because 

of their ability to successfully handle large training data sets, 

often yielding higher classification accuracy. Many research 

studies used CNN for automatically extracting a 2D flood extent 

(Gebrehiwot et al., 2019, Sarker et al., 2019). Gebrehiwot et al. 

(2019) modified VGG-based FCNs to extract the flooded extent 

from UAV images. The CNN-based model was trained using 100 

manually labeled images and achieved more than 95% accuracy 

on extracting inundated areas. Sarker et al. (2019) proposed an 

FCN model for mapping flood extent in 2D from Landsat satellite 

images. A new satellite dataset from flooded areas across 
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Australia was used to evaluate the performance of the model. A 

comparison of their proposed model to the conventional support 

vector machines (SVM) classifier shows that the FCN is more 

accurate (76.7%) compared to SVM (45.27%) for the 

classification task. These deep learning-based studies are limited 

to extract 2D flooded areas and cannot provide water level 

measurements from 2D imagery.  To the best of our knowledge, 

the potential of CNNs for 3D flood extent mapping has not been 

explored and verified. 

 

This research attempts to fill this gap in the literature by exploring 

and verifying the potential of an integrated CNN and SfM 

approach for 3D inundation mapping. In this study, the 2D 

flooded areas will be automatically extracted using a deep 

learning method. The extracted flooded areas will be overlaid 

onto the 3D map generated by the SfM approach to determine the 

flood extent. The floodwater level will be estimated by 

subtracting the SfM-based DEM (water surface) with a pre-flood 

Lidar-based DEM. 

 

The paper is organized as follows. In Section 2, the study areas 

and the data used for the research are described.  Section 3 

explains the approaches used to create a 3D inundation map. The 

results and discussion are presented in Section 4. Finally, we 

conclude by summarizing our results in Section 5. 

 

 

2. STUDY AREAS AND DATA 

 

Two flood-prone areas, Lumberton and Princeville, in North 

Carolina, were chosen for this study. The city of Lumberton is 

located in Robeson County on the Lumber River, and the Town 

of Princeville is located along the Tar River in Edgecombe 

County. These locations have been highly affected by several 

flood events, including Hurricane Matthew and Hurricane 

Florence.  

 

The data used for the research include the following:  

• UAV high-resolution imagery collected during hurricane 

Matthew (2016) over the study areas. These data were 

acquired by the North Carolina Emergency Management 

(NCEM). The size of each image is 4,000 x 4,000, with a 

resolution of 2.6 cm.  

• The pre-flood LiDAR data acquired over the town of 

Princeville. This Quality Level 2 (QL2) LiDAR with two 

pulses per square meter (pls/m2) with an accuracy of 9.25-

cm RMSE was collected by the North Carolina Emergency 

Management in 2014. This data was used to estimate the 

water level measurements.  

 

 

3. METHODS AND DATA PROCESSING 

 

3.1 Creating 3D flood  map using SfM 

 

SfM is a photogrammetric method commonly used for creating 

3D models of a feature from overlapping 2D photographs taken 

from many locations and orientations. SfM works based on 

stereoscopic photogrammetry principles. That means 

triangulation is needed to calculate the 3D positions (x,y,z,) of 

objects from stereo pairs. In this study, we generated a 3D map 

from 80% overlapping UAV images. First, the pixels in the input 

images automatically identified matching features to create a 

point cloud model. These features can be corners or line segments 

and tracked from image to image to estimates the camera 

locations and orientations and the coordinates of the features. 

Based on the estimated camera positions, the locations of those 

points calculated and visualized as a 3D point cloud, in which 

each matchable pixels got its XYZ location in 3D space. Second, 

each set of three adjacent points connected into a triangular face 

to create a polygonal mesh model. Finally, the original images 

combined into a texture map and wrapped around the mesh to get 

a photo-realistic model. 

 

3.2 Flooded Area Extraction Using FCN-8s 

 

The second stage of the method involves extracting a 2D flood 

extent to classify the point cloud extracted from the SFM to water 

and non-water. For this task, a fully convolutional neural network 

(FCN) with a stride of 8 (FCN-8s) model was fine-tuned. The 

FCN-8s is composed of locally connected layers, such as 

convolution, pooling, and upsampling, without having any dense 

layer. This allows reducing the number of parameters and 

computation time. Given that all connections are local, FCN-8s 

can work on any image size. The FCN was proposed by Long et 

al. (2015) to train an end-to-end for semantic segmentation. In 

these models, VGG16 fully connected based classification layers 

were replaced by convolutional layers to maintain the 2-D 

structure of images. VGG-16 is a CNN architecture proposed by 

Simonyan et al. (2014) to investigate the effect of the 

convolutional network depth on its accuracy in the large-scale 

image recognition setting. The network is sketched in Figure 1. 

 

 
 

Figure 1. FCN-8s architecture (Skovsen et al., 2017) 

 

To extract the 2D flooded area, the method consisted of 

annotating, training, classification, and evaluation stages. In the 

annotating stage, 150 UAV images were labeled manually using 

a MATLAB labeler tool. The network is trained using Stochastic 

Gradient Descent (SGD) for 6 epochs with a learning rate of 

0.001, and a maximum batch size of 2. During training, 512- by-

512 pixels size of 32 patches were randomly cropped and rotated 

in each batch size to increase the diversity of the training samples. 

We used a 10-fold cross-validation technique to evaluate the 

potential of the FCN-8s model. The importance of using 10-fold 

cross-validation is to give a less biased estimate of the FCN-8s 

model on unseen data. The training stage ended after 230,000 

iterations for the experiments. In the classification stage, the 

performance of the network was tested using the unseen testing 

images. In the accuracy assessment stage, a confusion matrix was 

calculated to analyze the performance of the FCN-8s. 

 

 

4. RESULTS AND DISCUSSION  

 

4.1  SfM and FCN-8s Results 

 

The FCN-8s approach for 2D flood mapping was implemented in 

the MATLAB 2019b, and Agisoft Methashape and ARCGIS 

software were used for creating cloud point using SFM and 

implemented an integrated approach. The computer was 

configured with 32 GB memory, an Intel(R) Xeon(R) ES-2620 v3 

@ 2.40GHz ×2 processors memory, and a single NVIDIA Quadro 

M4000 GPU. 

 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLIV-M-2-2020, 2020 
ASPRS 2020 Annual Conference Virtual Technical Program, 22–26 June 2020

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLIV-M-2-2020-25-2020 | © Authors 2020. CC BY 4.0 License.

 
26



 
 

Figure 2. Point cloud model created by SfM 

 

Our test area in Princeville (yellow box in Figure 2) did not 

contain any GCPs for georeferencing purposes. Thus, the images 

of larger areas were processed (3000 UAV images) for using the 

available GCPs in that area in the triangulation and image-to-

image georeferencing. All analyses were done only for the study 

area.  

 

  
                    (a)                                               (b) 

  

                                                       
                                                   Nonflooded   Flooded 

               (c)                                              (d) 

 

Figure 3. (a) Orthophoto; (b) SfM based 3D flood map (side 

view); (c) SfM based 3D flood map (top view); (d) FCN-8s 

based 2D flood map 

 

Figure 3d shows the 2D flood extent extracted by FCN-8s. The 

FCN-8s based classification achieved an accuracy of over 97% 

on distinguishing flooded areas from non-flooded. Once the FCN-

8s model fine-tuned and trained with the dataset, the average 

processing time to extracted flooded areas was less than 2 seconds 

for a 4000x4000 pixels UAV image.  

 

4.2 UAV and Lidar based DEMs results 

 

The DEMs of the study area were generated using UAV data 

(figure 4a) and the preflooded Lidar data (figure 4b) to estimate 

the flood water level. 

  
                  (a)                                      (b) 

 

Figure 4. (a) UAV-based DSM (b) Lidar-based DSM 

 

4.3 An Integerated 3D Classfication Result  

 

  
(a)                                        (b) 

 
                                                  (c)        

                                

Figure 5. (a) 3D flood map (SfM); (b) FCN-8s extraction result;  

(c) Overlaid result 

As it is shown in Figure 5a, it is difficult to identify the flooded 

areas from the SfM based 3D map directly. Figure 5c shows the 

result of the integrated approach (deep learning and SfM) 

obtained by overlaying the deep learning-based flood areas on the 

SFM-based DEM. The result shows precisely the flooded areas. 

The depth of the floodwater estimated by subtracting the UAV 

and LiDAR based DEMs. The DEM created using LiDAR 

considered as a benchmark to estimate the floodwater depth since 

the LiDAR data was acquired before the flood event. The 

minimum and maximum floodwater depth values calculated in 

the flooded areas are 0.32 ft and 1.24 ft, respectively. The 

estimated floodwater depth values give additional information 

that can be used for rescue and damage assessment tasks. 

 

5.   CONCLUSION 

 
Flooding is a severe natural disaster that causes economic damage 

and loss of life and property. Accurate 3D mapping during 
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flooding events is vital for effective planning and rescue 

activities. The research proposed a method to create a 3D flood 

map by integrating SfM and deep learning. The results indicated 

that the deep learning-based method, such as FCN-8s, could 

accurately extract flooded areas with a classification accuracy of 

97%. By overlaying the deep learning-based 2D flood map on the 

SfM-based DEM provides water level information. The 3D flood 

extent map can be used to support emergency response, and 

recovery activates during a flood event. 
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