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Abstract: Flood occurrence is increasing due to the expansion of urbanization and extreme weather
like hurricanes; hence, research on methods of inundation monitoring and mapping has increased to
reduce the severe impacts of flood disasters. This research studies and compares two methods for
inundation depth estimation using UAV images and topographic data. The methods consist of three
main stages: (1) extracting flooded areas and create 2D inundation polygons using deep learning;
(2) reconstructing 3D water surface using the polygons and topographic data; and (3) deriving a
water depth map using the 3D reconstructed water surface and a pre-flood DEM. The two methods
are different at reconstructing the 3D water surface (stage 2). The first method uses structure from
motion (SfM) for creating a point cloud of the area from overlapping UAV images, and the water
polygons resulted from stage 1 is applied for water point cloud classification. While the second
method reconstructs the water surface by intersecting the water polygons and a pre-flood DEM
created using the pre-flood LiDAR data. We evaluate the proposed methods for inundation depth
mapping over the Town of Princeville during a flooding event during Hurricane Matthew. The
methods are compared and validated using the USGS gauge water level data acquired during the
flood event. The RMSEs for water depth using the SfM method and integrated method based on
deep learning and DEM were 0.34m and 0.26m, respectively.

Keywords: 3D inundation mapping; remote sensing; CNN; SfM; LiDAR; GFI

1. Introduction

Flooding is one of the most destructive natural disasters, the severity and frequency
of which have increased in recent years due to the expansion of urbanization and extreme
weather such as hurricanes [1]. For example, Hurricane Harvey in 2017 caused about $125
billion in damage in the U.S. and ranked as the second-most costly hurricane to affect
the U.S. mainland since 1900 [2]. Hurricanes Irma and Maria followed within a month of
Hurricane Harvey and brought widespread death and destruction to Florida, Puerto Rico,
and the U.S. Virgin Islands, causing $50 billion and $90 billion in damages, respectively [3].
According to the National Hurricane Center report, 2017’s hurricanes caused more than a
quarter-trillion dollars in insured and uninsured losses [4]. Thus, studying efficient methods
to quickly estimate the magnitude of floods in terms of coverage area and inundation depth
is compelling for effective emergency response and damage assessment activities [5,6].

A variety of remote sensing systems are capable of providing spatial data that are
needed to create an inundation map [7,8]. However, critical factors such as spatial coverage,
data acquisition timing, and image quality impact the operational suitability of these
systems for flood mapping. Satellite remote sensing has been used as one of the powerful
tools for inundation mapping. The increasing availability of satellite imagery allows the
production of flood maps at a large scale [9,10]. However, the spatial resolution of freely
available data such as Landsat and Sentinel is not good enough to create precise and
detailed inundation maps, and very high-resolution satellite imagery such as QuickBird
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and Ikonos is relatively costly to acquire [11]. In addition, the acquisition of suitable optical
imagery constrained by clouds, and the satellite’s regular trajectory, view angle, and their
predefined schedule may fail to collect data at critical times, such as peak flood. With recent
technological advances, unmanned aerial vehicles (UAV) have been considered as effective
platforms for flood management applications. UAVs can acquire very high-resolution
imagery with flexibility in the frequency and time of data acquisition [12]. In contrast,
their short flight endurance and small-scale coverage remain areas of weakness for their
wide-scale implementation in remote sensing.

The extraction of 2D flood extent has been extensively studied, and several methods have
been developed to efficiently map inundation areas from remote sensing imagery [13-16].
Among these, convolutional neural networks (CNN) have shown promising results for 2D
inundation mapping. CNNs are becoming popular techniques for remote sensing tasks
due to their ability to automatically extract and learn directly from input data/images
and successfully handle large datasets. Recent studies used CNNs for automatically
extracting 2D inundation extent using remote sensing optical or Synthetic Aperture Radar
(SAR) imagery [17-21]. For optical imagery, Gebrehiwot et al. [18] fine-tuned and trained
Fully Convolutional Neural Networks (FCNs) to create a flood extent using UAV optical
images and achieved more than 95% accuracy segmenting the flood in non-vegetated areas.
Peng et al. [19] used a residual patch similarity convolutional neural network (ResPSNet)
to map urban flood hazard zones using pre- and post-Hurricane Harvey flood imagery in
Houston, Texas. They achieved a precision of 0.9002 and a recall of 0.9302. Sarker et al. [20]
applied an FCN model to detect the inundation area using Landsat satellite images in
Australia and achieved (76.7%) compared to SVM (45.27%) for the flood classification task.
Wau et al. [21] proposed a multi-depth flood detection CNN (MDFD-CNN) to classify and
extract the water region from SAR imagery. Kang et al. [22] fine-tuned an FCN to generate
flood extent maps from Gaofen-3 SAR images and achieved more than 90% accuracy
with a few training samples. Although the results demonstrate the highly promising
potential of deep learning methods for inundation mapping, CNN methods, like other
image classification approaches, are limited to extract only 2D flood extent, and water depth
cannot be measured from 2D imagery. The water depth information is critical for flood
management practices such as quantifying impacts and damages, better-characterizing
flood risk, implementing disaster risk reduction measures, assessing accessibility and
designing suitable intervention plans, calculating water volumes, and allocating resources
for water pumping.

Satellite altimetry data are one of the data sources for estimating floodwater depth.
Satellite altimetry measures the water’s depth by measuring the time taken for a sensor
pulse to travel from the satellite to the water surface and back to the satellite. Altimetry
data have been used to measure rivers and floodplains [23-25]. However, it is impossible
to estimate the inundation level of the entire flood extent using this approach, since satellite
altimeters can only measure floodwater depths along their trajectory/orbit. Water depths
can be also measured using photogrammetry methods, such as structure from motion
(SfM). SfM is a method of reconstructing the 3D structure of objects from a series of 2D
sequential images. Some researchers have used the SfM method for flood applications.
For example, Meesuk et al. [26,27] used the StM method to process multidimensional
views of photographs for flood mapping. Hashemi-Beni et al. [28] provided an overview
of the opportunities and challenges of 3D inundation mapping using SfM from UAV
images. Some of the challenges involve the weather conditions during a flooding event,
mainly the wind; unavailability of the ground control points (GCPS); and insufficient
tie-points for image calibration due to the homogenous appearance of the water surface.
Moreover, in spite of SfM’s 3D surface reconstruction ability, it cannot directly measure the
floodwater depths. It only creates a 3D surface or DEM and estimates water height above
mean sea level. The rapid advancement of Geographic Information Systems (GIS) has
given researchers an effective way of dealing with floodwater depth mapping complexity.
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The floodwater depth can be measured by spatial integration of SfM-based DEM and
pre-flood DEM.

Several methods have been proposed for quantifying inundation depth using remote
sensing-based flood extent maps [29-35]. Schumann et al. [29] and Matgen et al. [30] de-
veloped an inundation depth calculation model based on flood extent and DEM. They
used regression analysis to estimate floodwater depths at a given flood event. However,
the linear regression method is currently less applicable for remote sensing mapping.
Huang et al. [31] estimated inundation depth by combining satellite optical images and
DEM, assuming the flood surface was flat if the inundation area was sufficiently small. Ac-
cordingly, they “split” the inundation extent map generated from the satellite imagery into
750 m by 750m squared tiles and then “filled” the DEM up to the level for which the result-
ing flood extent was closest to the satellite imagery-based map. Then, the water surface was
created using a kriging interpolation method, and the floodwater depth was calculated as
the difference between the water surface and the DEM. Similarly, Cian et al. [32] presented
a method for estimating inundation depth using SAR imagery-based flood extent and
DEM. They used a change detection method to create a flood /water map. Then, DEM was
used to estimate flood elevation using a statistical analysis of terrain of inundation areas.
Recently, Manfreda et al. [33] developed a DEM-based method based on a geomorphic
descriptor—the geomorphic flood index (GFI)—to predict inundation extent and depth.
The GF]J, a descriptor of the basin’s morphology, was formulated to represent a flood hazard
metric. However, the water depth results are valid when the calculations and analyses
are done for a large area in a river basin or subbasin area. This method takes the flow
accumulation values of the entire river basin or sub-basin and a detailed calibration flood
map as input for floodwater depth calculation. This makes the method unsuitable for flood
mapping at a small scale or for pluvial flood mapping.

This research aims to develop and compare two methods for floodwater depth mapping:

1.  Estimating floodwater depth by reconstructing 3D water surface using StM and deep
learning methods

2. Estimating floodwater depth by reconstructing the 3D water surface using a deep
learning method and spatial analysis of topography information.

The performance of the measurements of floodwater depth highly depends on the
accuracy of the flood extent map, and DEM and any errors in the data can lead to an over-
or under-estimation of the floodwater depths [36]. Since deep learning methods have been
proven to be an efficient method for floodwater extent detection [18], the integration of
deep learning-based water extent maps and topographic data will potentially provide high
accuracy floodwater depth.

The paper is organized as follows: Section 2 presents the study areas and data used for
the research. Section 3 explains our proposed methodology and data processing procedures
to estimate floodwater depth. The implementation and results are presented in Section 4.
Finally, we conclude by summarizing our results in Section 5.

2. Study Area and Data

The town of Princeville, a flood-prone area in North Carolina in the USA, was selected
as our study area for this research (Figure 1). Princeville is located along the Tar River
in Edgecombe County and has been seriously affected by several flood events, including
Hurricane Floyd and Hurricane Matthew. They both caused widespread devastation when
the Tar river overflowed.
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Figure 1. Study area—Princeville, North Carolina.

The datasets used for the study include UAV imagery and Lidar data, which were
acquired by North Carolina Emergency Management. The flood imagery in Princeville
was collected during Hurricane Matthew in 2016 using a Trimble UX5 fixed-wing UAV.
Each image consisted of three bands (RGB) at 2.6 cm spatial resolution. The LiDAR data
was acquired in 2014 with two pulses per square meter (pls/m?) with an accuracy of
9.25 cm RMSE and was used to generate a pre-flood DEM over the town of Princeville. We
also collected USGS surface water gauge station information on the study area from the
NOAA website. USGS gauge stations collect time-series data that describe stream levels,
streamflow or discharge, reservoir and lake levels, surface-water quality, and rainfall.

3. Methodology

In this section, the two proposed methods for estimating flood depths are discussed.
The workflow for the methods is shown in Figure 2. The proposed approaches involve three
stages: (1) 2D inundation mapping; (2) 3D water surface generation; and (3) floodwater
depth estimation.

3.1. Stage 1: Flood Extent Mapping

The first stage of the methods involved automatically extracting the flood extent from
imagery data (e.g., UAV data). The flood extent mapping in this study was based on
the authors” approach [18], which fine-tuned a fully convolutional neural network with a
stride of 8 (FCN-8s) model. The FCN-8s was proposed by Long et al. [37] to train an end-
to-end directly from the input images for semantic segmentation. In this model, VGG16
fully-connected-based classification layers [38] were replaced by convolutional layers to
maintain the 2D structure of images. The data processing based on this method consisted
of training, testing, and evaluation stages. In the training stage, the network trained using
150 manually annotated UAV images (4000 x 4000-pixel size each) using stochastic gradient
descent (SGD) for 6 epochs with a learning rate of 0.001, and a maximum batch size of 2.
The Hurricane Matthew UAV images acquired in the city of Lumberton in 2016 were used
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to train the FCN-8s model, whereas the Hurricane Florence image collected over the city of
Princeville was used to test the model. The results were then georeferenced using 8 GCPs
available in the study area for geospatial data integration purposes, since the training
and testing images were not georeferenced initially. In the accuracy assessment stage,
the confusion matrix was calculated to analyze the performance of the FCN-8s. Finally,
the FCN-based extent map was converted to inundation polygons using raster to vector
conversion for further spatial data analysis, integration, and visualization. More detailed
information about the floodwater extent mapping approach can be found in [18].

(Flooded) Topographic data

(Preflooded)
2D Flood extent

polygon
(Deep leaming) | : Remove artifacts
| from polygon

bounndary

DEM Boundary cell

Clip DEM to ' & elevation extraction

flood extent

(Interpolation) from DEM

flood extent  Ji surface

Legend
Subtraction

Subtraction

- Stage 1
- Stage 2
- Stage 3

—=.m. Method 1

——— Method 2

Figure 2. The proposed methods for floodwater depth estimation.

3.2. Stage 2: Creating 3D Water Surface
3.2.1. Method 1: 3D Water Surface Reconstruction using SfM and CNN

In this approach, SFM was used to create a 3D point cloud or 3D digital surface model
of the study area from UAV imagery data. StM is a photogrammetry method to reconstruct
a 3D point cloud from a series of overlapped 2D photos of an area or an object taken
from different angles [39]. SFM employs feature-based image matching methods such
as scale-invariant feature transform (SIFT) to automatically identify matching features in
these input photos. The features are tracked from photo to photo and are used to estimate
the camera positions and orientations and the features’ coordinates, and finally, create a 3D
point cloud for features.

The point cloud created using the SfM approach is unclassified; 3D point cloud
classification is a crucial step to group water points, reconstruct 3D water surface, and
extract meaningful information from the inundation areas. However, the classification is
very challenging due to irregular geometric attributes and highly noisy and nonuniform
sampling of point cloud data. To overcome the issue of point cloud classification, we
proposed to employ the flood extent polygons created using the deep learning method
in stage 1 and spatial overlay analysis to classify the point cloud to water (water/flood)
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and no water (dry) points. Then, a noise removal method needed to be implemented
to identify and eliminate noise points and obvious outliers that do not represent the
actual water surface from the water point’s class. The noise removal stage is very critical,
as generating point clouds using photogrammetry containing water bodies tends to be
problematic due to the homogeneous appearance of the water surface and insufficient
tie-points for image matching and create noise points above and below the water surface.
The issues are especially troublesome as they adversely affect the water surface estimation
and consequently result in underestimating or overestimating water depth measurements.
We used a hydro-flattened approach to enhance the water point cloud surface by removing
artifacts, considering the water bodies to be flat bank to bank with a constant elevation
within each bank/polygon. Finally, the point cloud interpolation was done to create water
surfaces (flood DEM) with a 10 cm cell size.

3.2.2. Method 2: 3D Water Reconstruction using DEM and CNN

This research also investigated another method to create a 3D water surface by spatial
analysis of the flood extent extracted using the deep learning method and pre-flood DEM
elevation. In this approach, 3D water surfaces were obtained by intersecting the flood
extent polygons and the DEM and creating 3D water/dry interfaces. Thus, the elevation
of each inundation area’s boundary was computed by performing a statistical analysis of
their elevation values from the DEM. This approach assumes that the water surface of the
flooded areas is flat and has constant water elevation inside each detected flood /water
polygon. It should be noted that the assumption of a constant water surface elevation
across individual polygons may not completely accurate for extreme events due to complex
flow paths. It should be also noted that the elevation of the polygon vertices on the water—
vegetation or water-building interfaces should be modified, as there is an ambiguity in
the water level estimation in those areas. In other words, the line segments resulting from
the intersection of water and vegetation polygons or water and building polygons do not
necessarily represent the interfaces between dry and water areas [40,41]. Thus, assigning
a water elevation to any point located on those line segments could be inaccurate. In the
research, our algorithm assigned the mean water elevation of the polygon vertices located
on water/dry interfaces to these line segments and finally created a 3D water surface/mask
for the area. In this study, water surface and pre-flood DEM were created with 10 cm
cell sizes to match with the water surface (flood DEM) previously created in Section 3.2.1
for pixel by pixel floodwater comparison purposes. Although this method is fast and
straightforward, the 3D water surface quality heavily relies on the quality of DEM and
floodwater extent.

3.3. Stage 3: Floodwater Depth Estimation

In Stage 2, 3D water surfaces were created using two different methods. The inunda-
tion depth could simply be estimated for each pixel as the difference between the pre-flood
DEM and the 3D water surfaces created in stage 2 (Figure 3).

°® A’ Water surface
Iy — 4 R
Al
H \.__..__-___ ] ---..__/'
h Pre-flood DEM
A
Datum

Figure 3. A schematic description of inundation depth estimation.

Figure 3 represents a cross-section of a 3D water surface or mask (yellow line) and
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a cross-section of the pre-flood DEM and datum that are shown by green profile and red
dashed line, respectively. H is the elevation of the water surface above the datum, h is
the elevation of the earth’s surface before the flood event, and ID is the inundation depth.
Assume A is a point (pixel) on the earth’s surface and A’ is the location of the corresponding
point on the water surface (inundation area). The pre-flood DEM is considered as a
benchmark to estimate the floodwater depth. The elevation difference between the 3D
water surface (H) and its corresponding pixel point on the DEM (h) gives the inundation
depth (ID):

ID=H-h 1)

3.4. Evaluation and Comparison

The proposed approach’s performance was evaluated using the gauge station eleva-
tion obtained from the USGS website. The root mean squared error (RMSE) assessment
technique was used to quantify the floodwater depth error calculated using the proposed
methods. RMSE is used to measure how well a given model performs. Two RMSEs were
calculated to quantify the floodwater depth error calculated using our two proposed meth-
ods: a) SfM and deep learning classification, and b) deep learning, DEM, and spatial
analysis. Based on the RMSE results, the two methods’ performance were compared, and a
conclusion was made.

4. Implementation

The methodology for flood extent mapping and water depth measurements was imple-
mented using MATLAB, Pix4Dmapper, and ArcGIS. The computing unit was configured
with 32 GB memory, an Intel(R) Xeon(R) ES-2620 v3 @ 2.40GHz X2 processors memory,
and a single NVIDIA Quadro M4000 GPU.

4.1. Flood Extent Mapping Results

The UAV images were classified using FCN-8s to extract the flood extent map. Figure 4
illustrates the classification results (water, building, vegetation, and others), and the de-
tailed information on the performance of each classifier is described via the confusion
matrix in Table 1. As previously mentioned, vegetation and building polygons were needed
to modify the 3D water surface (3D inundation map) at building—water and vegetation—
water interfaces. The overall accuracy and kappa index achieved by FCN-8s were about
97% and 0.934, respectively.

For more detailed information on the implementation of stage 1 (deep learning image
classification) please see [18]. Our primary goal was to extract inundation areas (water class)
from the UAV imagery. The FCN-8s achieved 98.71% accuracy in extracting the inundation
areas in non-vegetated areas from the UAV imagery. Having an accurate flood extent map
is vital for floodwater depth measurements based on the proposed approaches, because
the flood extent map leads the classification of the SFM-based point cloud (method 1) and
spatial analysis/overlay (method 2).

Table 1. Confusion matrix of FCN-8s (unit: percentage).

Water Others Vegetation
water 98.71 0.85 0.44
others 1.51 95.52 2.97

vegetation data 1.31 98.43
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Water

(a) (b)

Figure 4. Two sample FCN-8s) results. (a) Input aircraft images acquired during Hurricane Matthew
in Lumberton, NC in Oct 2016; (b) classification results.

4.2. 3D Water Surface Reconstruction
4.2.1. Method 1: 3D Water Surface using SfM and CNN

Figure 5 shows the 3D water point classification and water surface creation results
using SfM and CNN methods. A total of 1800 UAV images with 4000 x 4000 pixels
size and 80% overlap between consecutive images were processed for 3D point cloud
generation using the SFM method. Four ground control points (GCPs) within our study
area were used for georeferencing. Note that acquiring remote sensing images using the
Real-Time Kinematic Global Navigation Satellite System (RTK-GNSS)-mounted UAV or
post-processing kinematic (PPK) technology can reduce the use of GCPs for georeferencing
purposes in the photogrammetry process. The use of RTK or PPK helps to avoid time-
consuming target deployment procedures and provides the position of each image with
centimeter-scale accuracy [42]. The point cloud resulting from SfM was unclassified; thus,
the flood extent polygons were overlaid on the 3D point cloud to identify the point data
within the inundation areas (Figure 5b) and classify the point clouds as flood and non-
flood points (Figure 5c). The quality of 3D flood point data was improved using a noise
removal process, and then a 3D water surface was created using the natural neighbor
interpolation technique. Voids in the point cloud occurred in some inundation areas where
the selection of sufficient tie-points to reference the UAV images was challenging due to the
water surface’s homogenous appearance. This may have affected the depth estimation in
those areas, since the elevation of the void areas was estimated by interpolation of nearby
point clouds.
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(a)

(b) (0)

Figure 5. Three-dimensional surface reconstruction using method 1. (a) SfM-based unclassified point cloud; (b) overlaying

flood extent polygons (red polygons) on the point cloud; (c) 3D point cloud classification for flood and non-flood point data.
Note: the figures show a small portion of the study area (clipped) for the sake of visualization of the dense point cloud.

(a)

4.2.2. Method 2: 3D Water Surface using DEM and CNN

Figure 6 shows the 3D water surface created using DEM and CNN (method 2). A
LiDAR-based DEM was created to represent the pre-flood elevation model of the study
area (Figure 6a). This DEM was created with a 10 cm cell size to match the SfM-based
pre-flood DEM for pixel-based computation. The LiDAR data was acquired by North
Carolina Emergency Management using a linear aerial sensor, collected at 2 points per
meter in 2014. The 3D water surface was created by intersecting the water polygons
extracted by CNN and the pre-flood DEM and extracting the water elevation (z) for the
water polygons boundaries from DEM (Figure 6b) with the assumption that inundation
areas have a constant water elevation within each water polygon.

Flood

(b) (c)

Figure 6. Three-dimensional surface reconstruction using DEM and CNN; (a) pre-flood DEM; (b) intersecting flood extent
polygons (red polygons) and DEM and extract Z value for each polygon; (c) 3D water surface (raster format).

4.3. Floodwater Depth Estimation Results

Figure 7 shows the inundation depth (ID) results for the water surfaces created by
two proposed methods for the study area. Figure 7b illustrates the 2D inundation map
created for the test image (Figure 7a) using FCN-8s. The results show the FCN-8s accurately
extracted the flood extent from the test UAV image. The IDs were estimated by subtracting
water surface raster data (stage 2) and pre-flood DEM. Floodwater depth estimates by
method 1 (SfM and CNN) and method 2 (DEM and CNN) are illustrated in Figure 7c,d,
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Flood
depth
| W

respectively. The maximum water depths measured using method 1 and method 2 were
1.86 m and 2.2 m, respectively; these depth values for both approaches were recorded in
the river area, as shown in Figure 7c,d (red areas). The areas with zero water depth or dry
areas are shown in black.

Flood

Flood
depth

(© (d)

Figure 7. Inundation depths results; (a) test image; (b) flood extent from CNN; (c) ID results for method 1; (d) ID results for

method 2.

The inundation depth maps were compared to determine how the spatial distribution
of water depth measurements are correlated. The floodwater depth rasters were compared
cell-by-cell, and a water depth difference surface was created (Figure 8a). Figure 8b shows
the histogram of flood depth differences between the two approaches. The maximum
and minimum absolute flood depth differences were 0.4 m and 0.001 m, respectively. The
mean difference value was 0.2 m with a standard deviation of 0.1 m. The performance of
the methods was also evaluated by comparing the IDs against the water gauge data. The
RMSEs measured for method 1 and method 2 using the gauge elevation data were 0.34 m
and 0.26 m, respectively. Based on the research results, method 2 offers better estimation
performance compared to method 1.

Two main factors affecting the quality and performance of the methods for inundation
depth estimation include a) the DEM quality, and b) the inundation extent map quality.

a.  DEM quality. Accurate topography data or DEM is indispensable for various remote
sensing applications, including flood mapping. The DEM generation methods, such
as LiDAR or photogrammetry, yield different levels of accuracy. LIDAR is generally
the preferred source for generating elevation data due to its high data quality and
ability to map beneath the canopy. For this research, we used two types of DEM:
pre-flood LiDAR, and (photogrammetric) SFM-based DEM. Method 1 used these



ISPRS Int. ]. Geo-Inf. 2021, 10, 144

11 0of 13

Depth

differences

04

two DEMs to estimate floodwater depths. Method 2, on the other hand, only used
pre-flood LiDAR-based DEM and spatial analysis to calculate floodwater depth.

b.  Inundation extent map quality. The flood extent map accuracy is also another factor
that affects the floodwater depth estimation approach’s performance, because the
3D point cloud classification in method 1 and the water elevation extraction in
method 2 highly depend on the flood extent polygon planimetric accuracy. Both
methods use the flood extent polygon as input for inundation depth estimations. One
of the advantages of the proposed approaches is using deep learning-based flood
extent polygons. The data-driven and deep learning methods like FCN8s have been
proven to be efficient for classification tasks and achieved promising results (with
98.7% accuracy) in extracting flooded areas, reducing the issue of overestimation or
underestimating floodwater depths.

Overall, using accurate flood extent and DEM can improve the performance of the
methods for flood depth estimations. The estimated floodwater depth values give addi-
tional information that can be used for rescue and damage assessment tasks.

Frequency distribution
18,000

16,000
14,000
12,000
10,000
8000
6000
4000
2000

(@) (b)

Figure 8. Floodwater depth comparison. (a) Water depth difference between method 2 and method 1; (b) a histogram that

shows frequencies distributions of the flood depth difference between the two methods.

5. Conclusions

The research proposes two approaches to calculate inundation depth using pho-
togrammetric and topographic data. The proposed approaches calculate inundation depth
information based on the integration of 3D flood extent and a DEM. These methods are
only different in how they reconstruct their 3D water surface. The first approach used
SfM to create a 3D point cloud for the area, and the water polygons were applied for
water point cloud classification. In contrast, the second method reconstructed the water
surface by intersecting the water polygons (2D flood extent) and a pre-flood DEM. The
deep learning segmentation method used for 2D inundation mapping allowed for pre-
cise and rapid floodwater depth estimation, which is highly advantageous for immediate
emergency response and damage assessments. The methods were compared and validated
using the USGS gauge water level data acquired during the flood event and demonstrated
promising results. The RMSEs measured for method 1 and method 2 were 0.34 m and
0.26 m, respectively. These results reveal that deep learning-based flood extent polygon
(with 98.7% accuracy) is a promising method to classify the SFM floodwater point cloud
and create a 3D water surface, which is a crucial step for water depth estimation. Future
work will focus on further validation and comparison of the proposed methods using more
in situ data in different study areas, and it will study the effects of image resolution and
DEM quality in 3D inundation mapping.
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