
Proceedings on Privacy Enhancing Technologies ; 2020 (4):461–490

Mihir Bellare, Wei Dai, and Phillip Rogaway
Reimagining Secret Sharing: Creating a Safer and More
Versatile Primitive by Adding Authenticity, Correcting Errors,
and Reducing Randomness Requirements
Abstract:
Aiming to strengthen classical secret-sharing to make
it a more directly useful primitive for human end-
users, we develop definitions, theorems, and efficient
constructions for what we call adept secret-sharing. Our
primary concerns are the properties we call privacy,
authenticity, and error correction. Privacy strengthens
the classical requirement by ensuring maximal confiden-
tiality even if the dealer does not employ fresh, uni-
formly random coins with each sharing. That might hap-
pen either intentionally—to enable reproducible secret-
sharing—or unintentionally, when an entropy source
fails. Authenticity is a shareholder’s guarantee that a
secret recovered using his or her share will coincide with
the value the dealer committed to at the time the secret
was shared. Error correction is the guarantee that re-
covery of a secret will succeed, also identifying the valid
shares, exactly when there is a unique explanation as
to which shares implicate what secret. These concerns
arise organically from a desire to create general-purpose
libraries and apps for secret sharing that can withstand
both strong adversaries and routine operational errors.

Keywords: Adept secret-sharing, computational secret
sharing, cryptographic definitions, secret sharing

DOI 10.2478/popets-2020-0082
Received 2020-02-29; revised 2020-06-15; accepted 2020-06-16.

1 Introduction
Overview. This paper strengthens classical secret-
sharing [17, 40] to obtain a primitive we call adept
secret-sharing (ADSS). Our initial reason for develop-
ing ADSS was to address use cases involving journal-
ists and whistleblowers. We were motivated by a con-

Mihir Bellare: University of California, San Diego, USA.
E-mail: mihir@eng.ucsd.edu
Wei Dai: University of California, San Diego, USA. E-mail:
weidai@eng.ucsd.edu
Phillip Rogaway: University of California, Davis, USA.
E-mail: rogaway@cs.ucdavis.edu

versation with journalist Laurent Richard [22, 36], by
the Snowden revelations [24], and by the development
of Sunder [39]. We recognized that unadorned Shamir
secret-sharing [40] wouldn’t do; for example, garbage
would be recovered if a share got accidentally corrupted,
and a strong adversary could force recovery of what-
ever secret it wanted by adjusting a single share. We set
out to develop a primitive that would guarantee more.
It would need to be versatile, easy to understand, and
support efficient and provably secure realizations.

Our approach is definitionally focused. Modern
cryptography has taught that stronger definitions lead
to conforming schemes that are easier to correctly use,
so less prone to misuse. Our definitions are motivated
by use cases, although no one use case fully motivates
all of our demands. This is customary. By way of anal-
ogy, no application we know requires the full strength
of IND-CCA public-key encryption [34], yet this has be-
come the accepted definitional target because it implies
other properties, such as nonmalleability [19], that are
useful in numerous settings. We strive to create defini-
tions that can play the same role for secret sharing that
IND-CCA plays for public-key encryption.

Sample use case. To start to appreciate why new def-
initions are needed, let us consider a realistic but ficti-
tious use case. German journalist D is visiting New York
when a source hands him a thumb drive of shocking,
classified files. D transfers the archive to his laptop,
encrypts it with a strong passphrase, and destroys the
thumb drive. D now wants to return to Berlin with these
materials, but fears he will be detained, or worse, before
he can publish. D mustn’t have the sensitive plaintext
on him at border crossings, where phone and laptop
contents may be copied by authorities.

To ensure that the material gets out no matter
what, D decides to give the encrypted archive and a
share of its decryption key to colleagues A, B, and C. He
intends that any two parties can reconstruct the archive.
D decides it would be safest to meet A at the Newark
airport, B at the Icelandair lounge where D will transit,
and to send C her materials over Signal.

To begin, D needs to generate a share c of his
passphrase for C. But the way secret-sharing schemes
generate shares is probabilistic: fresh coins are chosen

Reimagining Secret Sharing 462

Auth A share held by a user can recover, if anything, only
the one secret committed to at the time of the sharing,
regardless of what other shareholders contribute.

Errx Recovery will reconstruct the secret and identify the
valid shares if and only if there’s a unique plausible ex-
planation for what shares implicate what secret.

Priv Unauthorized sets of shares reveal the least possible
amount of information given the combined entropy of
the secret and the provided coins.

Fig. 1. Properties of ADSS. When uniform coins are used for
sharing, the Priv notion captures the complexity-theoretic for-
malization of the classical secret-sharing goal; otherwise, it asks
for more. Authenticity and error correction concern attacks on
the reconstruction of secrets—attacks that get participants to
reconstruct the wrong secret, or no secret at all.

with each sharing. So it would seem that D will need
to retain A’s share a until he meets A in Newark, and
must retain B’s share b all the way to Iceland. But this
is no good, for keeping a and b on the laptop along
with the encrypted achieve is equivalent to keeping the
archive as plaintext. A better choice might be to retain
the coins that generated the shares, using them, and
the passphrase, to regenerate a or b only when they are
needed. But it is unclear what security properties secret
sharing will have if an attacker learns retained coins.
With Shamir secret-sharing, acquiring them (e.g., by
confiscating the device) along with any one share (say c)
enables reconstruction of the secret. In any case, D needs
to use off-the-shelf tools, which, quite correctly, do not
support the retention of coins used for share generation.

The scenario motivates reproducible secret-sharing:
the ability to recompute a share, or a vector of shares,
as long as you still have the secret.

Continuing our example, we must report that, soon
after his arrival, D mysteriously vanished in Berlin.
Meanwhile, A fell ill with COVID-19. Parties B and C
nervously converge in Iceland. Unfortunately, C’s smart-
phone had already been hacked by a state intelligence
agency, her share c quietly replaced by c̃. When B and C
reconstruct the passphrase and use it to decrypt, the
plaintext looks fine—parties B and C don’t know that
anything is wrong—but the archive is less important
than they anticipated. It is not the original one. This
is possible, at least in principle, because, with classi-
cal secret-sharing, if someone can control a single share,
they may be able to control the secret that is recovered,
even without knowing other shares. Nothing in the clas-
sical secret-sharing definition excludes this. This possi-
bility motivates another non-standard aim: authenticity.

It guarantees that recovery using a share either fails or
recovers the secret originally associated to it. Schemes
like Shamir’s achieve nothing like this.

Finally, as an alternative continuation of our story,
party A, now recovered, meets up with B and C in Ice-
land. Party C’s share is still wrong. When A, B, and C
contribute their shares a, b, c̃ for recovery, a classical
secret-sharing scheme (like Shamir’s) will recover some-
thing—but something wrong. This time, the recovered
archive looks like random bits. The shareholders know
that something went wrong, but they don’t know what.
If they had the insight to try recovery again without us-
ing C’s share c̃ they would recover the correct secret. But
they don’t know to do this. How much nicer it would be
if the recovery algorithm itself would have said: “look,
share c̃ was bad, but shares a and b were fine, and impli-
cate the following passphrase.” A scheme like that enjoys
error correction. Our formalization strengthens robust-
ness [15, 31], which would actually be sufficient for this
example (but not, say, for 2-of-4 secret sharing).

We use the labels Auth (authenticity), Errx (error
correction), and Priv (privacy) for our main goals (the
last of these encompassing reproducibility). Fig. 1 pro-
vides a single-sentence description of each. Fig. 2 sum-
marizes definitional choices and their rationale more
broadly. As that figure makes clear, we have taken clues
from multiple directions—not just use cases—as to what
characteristics an ADSS scheme should enjoy.

Enhanced syntax. ADSS begins with an enriched syn-
tax, over which the security notions above can be de-
fined. Let us start by taking a look at the new syntax.

Unlike a classical secret-sharing scheme, the sharing
algorithm of an ADSS scheme is deterministic, surfacing
an input R that captures the provided coins. This en-
ables reproducibility (described above) and hedging (de-
scribed later). The sharing algorithm also takes in a
description of an access structure—the specification of
which sets of shareholders are authorized—rather than
being specific to one. This enables runtime selection of
the access structure and for the access structure itself
to be authenticated being crucial for security. Finally,
the sharing algorithm now takes in a string of associ-
ated data (AD), analogous to that seen in schemes for
authenticated encryption. Moving on, the recovery algo-
rithm of an ADSS scheme no longer operates on vectors
of shares, but on sets of shares [2]. This better models
the coming together of human participants who have
only their shares. And the algorithm not only returns
the original secret, but also identifies which shares were
deemed to be valid. This allows a shareholder to reject

Reimagining Secret Sharing 463

Characteristic Reasons
The sharing algorithm is deterministic but
surfaces an input R via which the caller
can provide “coins.” (In contrast, classical
secret-sharing is probabilistic.)

Some settings require reproducibility : the ability of a dealer to recompute a share. I Eg,
a dealer may distribute shares of a passphrase to different shareholders at multiple points
in time. I Or she may need to replace the share of a shareholder who has lost access to
it. I The analogous move from internal coins to coins provided across the interface was
pivotal for authenticated encryption (AE). I Without surfacing R one can’t investigate
the impact of different choices for it.

The coins R provided to the sharing algo-
rithm might not be uniform. They might
be fixed. They might depend on persistent
state.

I Failures in random-number generators are common. They arise from implementa-
tion errors or the inaccessibility of good randomness. I Install-time randomness or
maintaining state may be more feasible than per-sharing randomness. I Hedged and
deterministic encryption have proven to be useful. I Deterministic signature schemes
avoid security vulnerabilities that probabilistic signatures schemes are susceptible to.

A string of associated data (AD) can be
bound to a sharing.

I The AD might encode information like: time of deal or conditions under which recov-
ery may take place. I The inclusion of AD in AE has been very useful for applications.

An encoding of the intended access struc-
ture is provided as an input to the sharing
algorithm. It is authenticated.

I General-purpose libraries and user-facing tools need to support a variety of access
structures. A caller might not know which it needs until runtime. I Without authenti-
cating the access structure itself simple attacks are possible.

Recovery operates on set-valued inputs,
not the vector-valued inputs of classical
secret-sharing.

I When a group of human shareholder get together for a reconstruction ceremony there
may be no side-information to order them. I Without side information there is no way
to know even the number of shareholders needed to reconstruct.

Definitions envision shares being arbitrar-
ily changed or created.

I Real-world adversaries aren’t restricted to crossing-out shares from known sharehold-
ers, but can modify shares and create shares for new, alleged shareholders.

An incorrect secret should never be re-
turned: either one should get back the
original message or an indication of fail-
ure.

I Honest parties deserve to know if recovery was impossible. I Parties may be unable at
reconstruction time to assess if a recovered message “makes sense”. And “making sense”
is not evidence of authenticity, anyway (a common misunderstanding in encryption).
I Authenticity implies nonmalleability. Malleable schemes would allow an adversary to
adjust an unknown secret to one that better suits it.

Shares can have a designated non-secret
(“public”) portion.

I Secrets can be extremely long, which implies that some shares will be. Having to
store less privately can reduce the burden of custody. I It is desirable to be able to
store shares (at least the private part) in an HSM (hardware security module).

If shares get corrupted then the recovery
process must fix the problem if there’s an
unambiguous explanation as to what went
wrong.

I Shares can get corrupted for inconsequential reasons, like the accidental mixup of
shares from different sharings. I Robust secret-sharing is already recognized as useful,
but was formalized in a way that neither demands recovery from recoverable errors nor
forbids the recovery of junk when there is no authorized set of shareholders.

On recovery, particular shares can be
marked as trusted, or a known access
structure can be provided.

I If a shareholder reconstructs, she likely trust her own share. I If some shares were
signed by a trusted dealer, we can insist on using them. I The recovering party might
have side information on what access structure was used. I An adversary can try to
thwart recovery by adding a single share asserting a 1-of-1 access structure.

Fig. 2. Some ADSS definitional choices and their rationale. Considerations shaping our definitions include use cases, philosophical
arguments, and reasoning by analogy. Simplicity and strength were key desiderata.

a recovered secret if she has confidence in her own share
but it was not deemed valid. As for the shares them-
selves, the access structure and AD must be encoded in
each, to ensure that no side information needs be known
by the recovering party. And shares can have separate
secret and non-secret parts, so that shareholders need
only keep the first in private storage. This enables the
sharing of arbitrarily long secrets even when sharehold-
ers are only able to privately store a limited amount.
The syntactic changes just sketched may seem low-level
but are fundamental in enabling the capabilities we seek.

Enhanced security. A journalist could certainly share
her documents using Shamir secret-sharing [40]. This

provides privacy. But as our extended example illus-
trates, the adversary may have other goals in mind,
like disrupting recovery, either by making it fail or by
making shareholders recover something other than that
which the dealer shared. The adversary can attempt to
achieve this goal by infiltrating a shareholder’s system
(something nation-state adversaries are good at) and
changing her share. It can create entirely new sharehold-
ers that show-up for reconstruction. We want to defend
against such attacks to the maximal extent possible. To
do so, we develop Auth and Errx.

Authenticity (Auth), which we alternatively term
binding, ensures that when a user is given a share S,

Reimagining Secret Sharing 464

there is at most one secret M for which it might be
a share. The share is effectively a commitment to that
secret. A shareholder can thus regard her share as a
locked box containing some well-defined secret that she
does not yet know. (We do allow that if the dealer was
dishonest then nothing might be in that box.) In short,
authenticity concretizes the basic intuition that a share
is associated to some one particular thing.

Error correction (Errx) ensures that if some shares
from a sharing of a secret get corrupted, or new shares
are added, but there remains a single nontrivial expla-
nation as to what the secret must have been before the
shares got messed up, then the recovery process must
identify that one correct secret. It must also indicate
which shares implicate it. Recovery must fail if there is
no authorized subset of shares, or if there are two or
more explanations for what got corrupted. In short, an
Errx-secure scheme must fix what is fixable, and must
indicate if shares irreparably messed up.

Auth and Errx are different from verifiable secret-
sharing (VSS) [18]. VSS requires a reliable broadcast
channel, which may not be available; Auth and Errx
do not. Errx is related to but different from robust-
ness [15, 31], which aims to guarantee message recov-
ery despite the presence of some bad shares shuffled in
among an authorized collection of good ones. Errx for-
malizes different intuition: that recovery does the best
job possible with whatever is presented. For this rea-
son, Errx is achievable for any access structure, while
robustness is achievable for threshold schemes with hon-
est majority, but little more. Errx demands that noth-
ing be recovered when there is no authorized subset of
shares, will robustness requires nothing. All of that said,
Errx security does imply robustness whenever the latter
can be achieved. Auth and Errx have little in common
with repairable threshold schemes [25, 32], which allow
a party to reconstruct a missing share by interacting
with fellow shareholders. In scenarios we care about,
shareholders may not have the ability to interact with
one another prior to recovery. See Section A for fuller
comparisons with VSS, robustness, and repairability.

Enhanced usability. Our ADSS schemes employ
hedging [5], using the anticipated unpredictability of
the secret itself, together with the entropy in the pro-
vided coins, to provide as much privacy as possible. This
means that privacy is maintained, to the extent possible,
in settings where high-quality randomness is unavail-
able or was inadequately harvested. At the same time,
the approach provides for reproducibility, enabling the
dealer, if it so arranges, to re-share a secret M and get

the same shares as before. Other ADSS elements that
enhance usability include: the ability to handle AD, hav-
ing the recover algorithm operate on sets instead of vec-
tors of shares; and the capacity to deal with enormous
secrets, as we now discuss.

Protocols and proofs. We construct simple, effi-
cient, and provably secure ADSS schemes for arbitrary
access structures. Our schemes can be used for splitting
anything from a PIN code to a huge archive of files (the
Panama papers were 2.6 terabytes [26]). In sharing out
a large archive one needn’t encrypt it and then share
out the key; the user can regard the archive itself as the
secret, which is conceptually and operationally simpler.

Our constructions begin with a scheme S1 that
satisfies our ADSS syntax but only achieves Priv-
security with uniformly random coins—what we call
classical privacy, or Priv$. The scheme only works for
threshold access structures. It is basically just Shamir’s
scheme [40], but adapted to our syntax. Scheme S2 still
achieves only Priv$ privacy, but can handle any access
structure, now presented as a circuit of threshold gates.
Despite the classical aim, we could find no full expo-
sition or proof on how to carry out secret sharing for
arbitrary access structures; our paper fills this gap.

Our main construction is the transformation AX
that converts a secret-sharing scheme S that achieves
only classical (Priv$) privacy to a scheme SS = AX[S]
that achieves Priv and Auth security. This can then be
composed with a further transformation, EX, to achieve
Errx security. Rather roughly, AX starts by symmetri-
cally encrypting the secretM to the ciphertext C, which
is put in the public portion of each share. The key K for
this encryption is determined by applying a hash func-
tion to all inputs the sharing algorithm gets. The hash
function is here used as a randomness extractor [33].
The lower-level secret-sharing scheme S shares out K
using randomness that is again extracted from the in-
puts to SS. When speculative values are recovered, a
correctness check is done to see if re-sharing M with
the recovered randomness R gives rise to a superset of
the shares received. Schemes SS1 and SS2 are the result
of applying AX and then EX to S1 and S2. They are
the concrete ADSS schemes that we propose.

Discussion. Kacsmar, Komlo, Kerschbaum, and Gold-
berg [29] also address gaps between the formulation and
use of secret sharing. Their motivations are similar to
ours: closing the theory/practice gulf in this domain.
They employ the idea of ceremonies [20] and design a
proactive VSS scheme [27] to achieve goals that they call

Reimagining Secret Sharing 465

integrity and availability. Our work is more formal, and,
in carrying it out, we have insisted on retaining the fun-
damental elements of the classical model: ADSS abides
no broadcast channels, no interaction among sharehold-
ers, no preprocessing, no PKI (public-key infrastruc-
ture), and no algorithms but Share and Recover.

Secret sharing can be viewed as a flavor of encryp-
tion [15]: sharing corresponds to encryption; recovery
corresponds to decryption. From this vantage, the move
from classical to adept secret-sharing mirrors the move
from semantically secure to authenticated encryption
[11, 13, 30], as well as the move from probabilistic to
deterministic [4, 8] and hedged [5] public-key encryp-
tion. We shift the focus from eavesdropping to inter-
ference, and from perfect to possibly absent or deficient
randomness. We trade internal randomness for an exter-
nally supplied input [38]. We add in AD [37]. Of course
there are spots where the analogy breaks down: secret
sharing involves no keys, while access structures were
outside the ambit of encryption prior to ABE [23]. Still,
the analogy explains many aspects of our work.

Reproducibility comes at the price of diminished
privacy for low-entropy secrets. But we never mandate
reproducibility; we merely enable it. If the dealer uses
random coins shes gets classical privacy; if she wires in
a constant, she gets best possible privacy for a deter-
ministic scheme. Similar tradeoffs are present for deter-
ministic and searchable public-key encryption [4] and
for format-preserving encryption [12]. In addition, the
strengthening of secret sharing that begins by surfacing
the coins includes other benefits, like hedging.

The value of new definitions is always somewhat
speculative. Our definitional choices have been guided
by uses cases, by analogies, and by conversations with
developers, journalists, whistleblowers, and cryptogra-
phers. But only time will tell if we have identified the
secret-sharing aims that can precipitate a flourishing.

2 Preliminaries
Notation. Fig. 3 summarizes the most frequently used
notation in this paper. The table may serve as a refer-
ence or overview of things to come.

Access structures. We need a way to specify which
parties are authorized to reconstruct the secret. Num-
ber parties 1, 2, . . . , n. We then define an access struc-
ture A as a set of sets of positive numbers. It must be fi-
nite, nonempty, and exclude the empty set. Define n(A),

{0, 1}∗ Set of all strings over {0, 1}
{0, 1}∗∗ Set of all vectors (= lists) of strings
〈 · · · 〉 A string encoding of what’s in the brackets
⊥ Indicates invalidity: no secret can be recovered
[1..n] Integers between 1 and n inclusive
a� X Sample, then assign. Uniform dist if X a set
A A string that names an access structure
A An access structure: a set of subsets of [1..n(A)]
A An adversary
Acc Access-structure naming function
Access Set of strings that name access structures
Advauth

S (A) A’s advantage breaking Auth-security of S
Adverrx

S (A) A’s advantage breaking Errx-security of S
Advpriv

S (A) A’s advantage breaking Priv-security of S
AS The set of all possible access structures
Auth Main authenticity property we formalize
AX Transform to get Auth + Priv from Priv$
ε The empty string
Errx The error-correction property we formalize
EX Transform to get Errx security
Known Set of things the recovering party might be sure of
H Hash function, modeled as a random oracle
M A secret shared out in a secret-sharing scheme
|M | Length of the string M (in bits)
Msg The set of possible secrets (messages)
n(A) Number of parties in the access structure A

P(X) Set of all finite subsets of the set X
Priv The new privacy property we formalize
Priv$ Classical privacy property. Weaker than Priv
R Randomness / coins given to Share
Rand All possible coins (randomness)
S A share. String-valued and have several parts
S A vector of shares, S = (S1, . . . , Sn)
S[i] The i-th entry of vector S = (S[1], . . .S[|S|])
S A set of shares, S = {S1, . . . , St}
S Generic ADSS scheme S=(Acc, Share, Recover)
S.as Access structure associated to share S

S.id Identity of party associated to share S

S.pub Non-secret part of share S

S.sec Secret part of share S

S.tag Tag (AD) part of share S

S1 Shamir-like SS scheme. Achieves Priv$
S2 Yao-like SS scheme. Achieves Priv$
Recover Algorithm that recovers a secret
Share Algorithm that shares a secret
Share All possible shares (which are strings)
Share∗ All possible vectors of shares
Shares All possible sets of shares
T Tag (associated data) (a string)
Tag The set of all possible tags (AD values)
V Maximal set of valid shares, V ⊆ S

Fig. 3. Frequently used notation. Note that font styles for a
given letter are routinely differentiated.

the number of parties in A, as the least n such that
U ⊆ [1..n] for all U ∈ A. We say that U ⊆ [1..n(A)] is
authorized if U ∈ A and unauthorized if U 6∈ A. We re-

Reimagining Secret Sharing 466

quire access structures be monotone, which means that
an authorized set stays authorized if you add in parties:
if U ∈ A and U ⊆ V ⊆ [1..n(A)] then V ∈ A.

An example access structures is the 2-out-of-3 one
A2,3 = {{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}. More generally,
for 1 ≤ t ≤ n the threshold access-structure An,t is
{U ⊆ [1..n] : |U | ≥ t}. A secret-sharing scheme for
such access structures is called a threshold scheme.
A simple non-threshold access-structure is A12∨13 =
{{1, 2}, {1, 3}, {1, 2, 3}}: party 1 and either party 2 or 3.

Classical secret-sharing. Let us briefly review the
classical notion of a secret-sharing scheme—what a
scheme like Shamir’s targets [17, 40]. One can formalize
a classical secret-sharing scheme as a pair of algorithms
S = (Share,Recover) along with an associated access
structure A, as follows:

Share The sharing algorithm Share probabilistically
maps a messageM ∈ Msg to a vector (or list) of n =
n(A) shares, each of them a string: S � Share(M).

Recover The recovery algorithm Recover is a determin-
istic algorithm that takes in an n-vector of values,
n = n(A), each being either a string or the special
symbol ♦, which is used to indicate that the share
is missing. It returns a string M ← Recover(S).

If S = (S1, . . . , Sn) is an n-vector of strings and U ⊆
[1..n], let SU be the n-vector with ith component Si if
i ∈ U , and ♦ otherwise. So SU is S with ♦-symbols
shuffled in at positions outside of U . Then we require
the following: if S � Share(M) and U ∈ A then
Recover(SU) = M . In words: you can recover the se-
cret from an authorized subvector of shares.

For any M,M ′ ∈ Msg and any U 6∈ A, we can re-
gard (Share(M))U as a distribution on vectors of shares,
the underlying randomness that of Share. The security
notion for a classical secret-sharing scheme can then
be formalized by asking that distributions (Share(M))U
and (Share(M ′))U be identical. In words: unauthorized
subvectors of shares reveal nothing about the secret. If
desired, this condition can be relaxed to computational
indistinguishability or formalized in other ways [15, 31].

3 Syntax
Changes. We enrich the syntax of a classical secret-
sharing scheme in multiple directions. First, the access
structure A won’t be fixed, but, instead, the party who
shares a secret, the dealer, will be able to specify the

access structure it wants. A string A will denote the
desired access structure, a function Acc specifying its
interpretation. For example, the string “2,3” might de-
note the threshold access-structure A2,3. Second, our
sharing algorithm Share will have still more inputs. Be-
yond the access structure and the secret, the dealer will
provide coins and associated data. With coins now an
explicit input, the algorithm will be deterministic. Fi-
nally, the recovery algorithm Recover will output more:
not only will it return the recovered secret, but also
the shares that were used. Alternatively, it may recover
nothing, outputting a special I-can’t-recover-anything
symbol. We now make all of this precise.

Formal definition. We define a scheme for adept
secret-sharing (ADSS) as a triple of deterministic func-
tions S = (Acc,Share,Recover), as follows.

Acc: The access-structure naming function
Acc: Access→ AS

associates an access structure A = Acc(A) with each
string A ∈ Access. Here Access = {0, 1}∗ (Kleene star) is
the set of all binary strings, while AS is the set of all pos-
sible access structures. Note that there may be multiple
ways to name an access structure under Acc: distinct
strings A and A′ such that Acc(A) = Acc(A′). Also,
some access structures might be impossible to name us-
ing Acc: for some A ∈ AS there might be no A ∈ Access
with Acc(A) = A. For example, a secret-sharing scheme
designed for threshold access structures won’t be able to
request {{1, 2}, {1, 3}, {1, 2, 3}} (i.e., “1 and (2 or 3)”).

Share: The sharing algorithm
Share: Access×Msg × Rand× Tag→ Share∗

takes in a description A ∈ Access of an access struc-
ture, a message (or secret) M ∈ Msg, some coins
R ∈ Rand, and a tag (or associated data) T ∈ Tag.
It outputs a vector of shares. Here Msg, Access, Rand,
Tag, Share ⊆ {0, 1}∗ are binary strings. We require that
M ∈ Msg implies {0, 1}|M | ⊆ Msg and R ∈ Rand implies
{0, 1}|R| ⊆ Rand. The sharing algorithm must generate
the appropriate number of shares for the specified ac-
cess structure: |Share(A,M,R, T)| = n(Acc(A)) for all
A ∈ Access, M ∈ Msg, R ∈ Rand, and T ∈ Tag: By | · |
we denote the length, cardinality, or number of compo-
nents for string, set, or vector.

Recover: The message-recovery algorithm
Recover: Shares→ Msg × Shares ∪ {⊥}

maps a set of shares S ∈ Shares = P(Share) to a message
M ∈ Msg and a set of valid shares V ⊆ S. Alternatively,
the algorithm can decline to produce such a pair and

Reimagining Secret Sharing 467

return ⊥ instead. By P(X) we mean the finite power
set of X, the set of all finite subsets of X. (The tradi-
tional power set of an infinite set such as Share = {0, 1}∗

includes infinite subsets. We don’t want that, as one pro-
vide Recover, like any algorithm, a finite set of strings.)
Note that Share returns a list of shares while Recover
takes in a set of shares.

Parts of a share. We establish the convention that
each share S ∈ Share is actually the encoding of
five strings, S = 〈S.id, S.as, S.sec, S.pub, S.tag〉. We call
the parts of a share its identity, access structure, se-
cret portion, public portion, and AD. We extend the
.sec and .pub operators to vectors, defining S.sec =
(S1.sec, . . . , Sn.sec) and S.pub = (S1.pub, . . . , Sn.pub)
when S = (S1, . . . , Sn). We extend the .id operator to
sets, defining S.id = {S.id : S ∈ S}. We extend the
.as operator to sets, so that S.as = A if S.as = A

for all S ∈ S, and S.as = ⊥ otherwise. We insist
that S = Share(A,M,R, T) = (S1, . . . , Sn) implies that
Si.tag = T and Si.as = A and Si.id = i for all i. When-
ever Recover(S) returns a pair (M,V) we demand that
all shares in S ∈ V share the same .as component A, the
same .tag component T , and that V.id ∈ Acc(A), mean-
ing the set of shareholders underlying V is authorized.

Random oracles. We allow the Share and Recover
algorithms of an ADSS scheme may call an ora-
cle Hash that realizes a function H ∈ Ω, with Ω, the
set of all functions H: N× {0, 1}∗∗ → {0, 1}∗ such that
|H(`,X)| = `. By {0, 1}∗∗ = ({0, 1}∗)∗ we denotes the
space of vectors of strings. We can explicitly indicate
the presence of the oracle or hash function that Share
and Recover may access by writing it as a superscript.

Basic correctness. An ADSS scheme S = (Acc,
Share,Recover) enjoys basic correctness if for all A ∈
Access, M ∈ Msg, R ∈ Rand, T ∈ Tag, H ∈ Ω,
S ← ShareH(A,M,R, T), and U ⊆ [1..n(Acc(A))],

if U ∈ Acc(A) then RecoverH(S[U]) = (M,S[U]) ,
while if U 6∈ Acc(A) then RecoverH(S[U]) = ⊥ .

Here S[U] = {S[i]: i ∈ U} is the set of shares from
parties U . In words: applying Recover to a subset of
shares obtained by sharing out M gives M if the subset
is authorized and ⊥ if it is not. We henceforth require
that all ADSS schemes satisfy basic correctness.

Notation. We write S.Acc, S.Share, and S.Recover for
the components of S. In the same way, we write S.Access,
S.Msg, S.Rand, and S.Tag.

Discussion. Once the decision has been reached to pro-
vide the access structure to Share it is tempting to just
say that it’s encoded as a string 〈A〉 and leave it at that.
But more care needs to be taken because what access
structures can be named, and how compactly, are cen-
tral concerns of secret sharing. This is what motivates
making Acc a first-class component of an ADSS scheme.

Let us give some examples of access-structure nam-
ing functions Acc. For threshold schemes, a string 〈n, t〉
encoding numbers n and t could name An,t. It would be
equally permissible, but less compact and convenient,
to have Acc expect a string listing authorized sets, like
“{{1,2},{1,3},{2,3},{1,2,3}}”. For a representation
that is compact and expressive, the string A could en-
code a Boolean circuit of threshold gates having a sin-
gle output wire and input wires 1, . . . , n. We’d say that
U ∈ Acc(A) if the circuit named by A evaluates to true
when its n inputs indicate if a party is present (that bit
is 1) or absent (it is 0).

Having Recover take in a set instead of a vector re-
lieves shareholders of having to know their “position” in
line. It also opens the door to authenticity notions where
multiple parties can impersonate some shareholder.

While the AD of an ADSS scheme is analogous to
that of an authenticated-encryption (AE) scheme, there
are important differences. Our AD values are not as-
sumed to be known by the party recovering a secret; an
AE scheme’s AD value is. This follows the philosophical
view that for secret sharing one should not require the
receiver to know anything beyond what is in the shares.

The “public” portion of a share need not be public;
we only mean that it is not a secret. The secret/public
distinction matters most when the message being shared
is long. We anticipate that most or all of the public
portion of shares would be the same across all shares.
When this is true, the public potion of shares might
be kept in some highly available repository, rather than
stored with each share.

Extensions to the syntax of Recover are described
in Section 6, where we allow a priori information K ∈
Known to be input to Recover, and allow coins R ∈ Rand
to be output by Recover.

A paper on VSS by Bai, Damgård, Orlandi, and Xia
[2] employed some related syntactic choice. In particu-
lar, their Share algorithm takes in an access structure,
assumed to be described by a circuit. But it is not au-
thenticated, returned during recovery, or guaranteed to
be dropped into shares. The “public share” S0 that their
Share algorithm outputs resembles the public portion of
a share from our own treatment. But the former was ac-

Reimagining Secret Sharing 468

Game Gpriv
S,I (A)

20 procedure Main

21 c� {0, 1}; H � Ω
22 q ← 0; (St,B)� IDeal

23 if (∃ j : B[j] ∈ Acc(A[j])) then return false
24 c′ � AH(St,S1[B[1]], . . . ,Sq [B[q]],P)
25 return (c = c′)

26 procedure Deal(A,M0,M1, R, T)
27 q ← q + 1; A[q]← A

28 Sq←S.ShareH(A,Mc, R, T); P [q]← Sq .pub
29 return

Game Gpred
I (P)

30 procedure Main

31 q ← 0; (St,B)� IDeal

32 (M,R)� P(A,B,T ,L,St)
33 return ((M,R) ∈ D)

34 procedure Deal(A,M0,M1, R, T)
35 D ← D ∪ {(M0, R), (M1, R)}; q ← q + 1
36 A[q]← A; R[q]← R; T [q]← T ; L[q]←|M0|
37 return

Fig. 4. Defining privacy. Top: Game used for measuring Priv
security of an ADSS scheme S relative to an input generator I
and an adversary A. Bottom: Game used for measuring the pre-
dictability of inputs selected by the input generator I.

tually used to formalize a broadcast channel, which is
not present in our model.

4 Privacy
The idea. One way to formalize privacy for a classical
secret-sharing scheme captures this idea: if an adversary
obtains an unauthorized set of shares, this will tell it
nothing about the message beyond that which it already
knows [15]. Achieving this requires fresh, high-entropy
coins with each sharing. In their absence, all bets are off.
Our formulation generalizes this idea, following the idea
of hedging [5], so that the guarantee above continues
to hold, to the maximum extent possible, even when
the coins are not good. We ask that if an adversary
obtains an unauthorized set of shares, this will tell it
nothing about the message M as long as the (M,R)
pair was drawn from a set too large for the adversary
to exhaust. Intuitively, this is the best possible, because

if the adversary could exhaust this set then it could
violate privacy by running the sharing algorithm on each
candidate (M,R) to see which results are consistent with
the shares it has seen.

What is the benefit of all of this? First, it enables re-
producible secret-sharing with meaningful privacy guar-
antees. For example, the random input R might be cho-
sen at software-installation time, then supplemented by
a counter with each sharing. Share regeneration is now
possible, but even if the adversary does get hold of the
device containing R, privacy will be preserved as long
as M itself is unpredictable and the adversary obtains
only an unauthorized set of shares. For a classical secret-
sharing scheme like Shamir’s that wouldn’t be true. A
related benefit is for the sharing algorithm to work as
well as possible in the presence of imperfect random-
ness. A cryptographic technique becomes safer to use
when you can prove that it does not catastrophically
fail when the randomness isn’t perfect.

Definition. Fix an adept secret-sharing scheme S, an
algorithm I called the input-selector, and an adversary A
called the privacy adversary. Consider the Gpriv

S,I (A)
game of Fig. 4. The Priv advantage of A relative to I
is defined by

Advpriv
S,I (A) = 2 Pr[Gpriv

S,I (A)]− 1 .

We first explain the broad elements of the game, and
then its fine points. The game picks a challenge bit c at
random. The input-selector represents the dealer. It has
a Deal oracle via which it provides a pair of message
M0,M1 ∈ S.Msg that are required to be of the same
length. It also provides an access-structure description
A ∈ S.Access and a tag T ∈ S.Tag. More unusually,
it provides a string R ∈ S.Rand that will be the ran-
domness used by S.Share. The randomness is chosen
by the input-selector, not the game. In response to a
query (A,M0,M1, T,R), oracle Deal creates a vector
Si of shares by running S.Share, the message being ei-
ther M0 or M1 depending on the challenge bit c. The
access structure and AD, and also the randomness, are
taken from the query. The oracle may be called as often
as the input-selector likes, but with the following non-
repetition condition: if (A1,M1,0,M1,1, R1, T1), . . . , (Aq,
Mq,0,Mq,1, Rq, Tq) are the queries made, then the tuples
(A1,M1,0, R1, T1), . . . , (Aq,Mq,0, Rq, Tq) are all distinct,
and also the tuples (A1,M1,1, R1, T1), . . . , (Aq,Mq,1, Rq,

Tq) are all distinct. So for both c = 0 and c = 1, the
inputs provided to Share will be distinct. This is neces-
sary because, otherwise, Share being deterministic, an
adversary could trivially discover the challenge bit c.

Reimagining Secret Sharing 469

The number of calls made is recorded in the variable q.
As per line 29, nothing is returned to the adversary in
response to a Deal query. This ensures that the inputs
to Deal are chosen non-adaptively, a choice we will dis-
cuss later. The output of I consists of state information
St, to be passed to its accomplice A, and a q-vector B

whose j-th component B[j] ⊆ [1..n(Acc(A[j]))], for each
j ∈ [1..q], is a set of parties that the input-selector is cor-
rupting, meaning I is requesting the corresponding set of
shares Sj [B[j]] be provided to A. If a set B[j] returned
by I is authorized, the game immediately returns false.
Otherwise, the privacy adversary is executed on input
of the state information St from I and the sets of shares
S1[B[1]], . . . ,Sq[B[q]] of the corrupted parties, as well
as the public parts of all shares dealt. It also gets the
random oracle H, which was denied to I. The privacy
adversary returns its guess c′ for the challenge bit c and
wins (the game returns true) if this guess is correct.

Priv security is achievable only when the (M0, R),
(M1, R) pairs in the Deal queries of I are unpredictable,
as we now formalize, following [4, 5, 8]. Game Gpred

I (P)
of Fig. 4 measures the predictability of an input-selector
I via another adversary P called a predictor. The input-
selector I is executed with its Deal oracle, the latter
now simply recording the adversary queries: no secret
sharing is done, and nothing is returned to the adver-
sary. The predictor wins if it can predict (output) some
secret-randomness pair that was returned by the ad-
versary. Its input is that which we allow secret shar-
ing to leak to the second stage: the access structures,
tags, message lengths, which parties are corrupted, and
the state returned by A in its first stage. The privacy-
adversary A is not relevant here; unpredictability is a
metric on the input-selector alone. We let

Advpred
I (P) = Pr[Gpred

I (P)] and

pred(I) = max
P

{
Advpred

I (P)
}
.

The notation reflects that I is the object whose secu-
rity (in the sense of unpredictability) is being measured
and P is the adversary. The max is over all predictor
adversaries P, regardless of their running time or the
number of H queries they make. Thus pred(I) measures
the information-theoretic guessing probability. The min-
entropy of I could be defined as the negative log of this
probability, but we do not need this.

Recovering classical privacy. Classical privacy cor-
responds to Priv security restricted to a class of input-
selectors denoted IIIpriv$. An input-selector I is in this
class if there is an input-selector I1 and an integer r such

that I is defined as follows: it lets (St,B)� IDeal∗

1 and
returns (St,B). Here Deal∗ is a subroutine defined by
I as follows: On input a query (A,M0,M1, R, T) made
by I1, input-selector I picks R∗ � {0, 1}r, queries its
own Deal oracle with (A,M0,M1, R

∗, T), and returns.
For such an input-selector, we drop the non-repeating
requirement; we expect that r is large, in which case
non-repetition holds with high probability. For empha-
sis, we can in this case write Advpriv$

S,I (A) in place of
Advpriv

S,I (A). Note that pred(I) ≤ q · 2−r where q is the
number of Deal queries of I.

Discussion. In an asymptotic-security setting, where
all advantages are functions of a security parameter, we
would say that I is unpredictable if pred(I) is negligible.
Then we would say that S is Priv-secure if Advpriv

S,I (A)
is negligible for every polynomial-time, unpredictable I
and every polynomial-time A. In our concrete-security
setting, we will informally use the terms in italics above
with the understanding that polynomial-time means
“efficient” and negligible means “small.” Results will
make this precise via concrete bounds on advantage.
For example, Theorem 1 upper-bounds Advpriv

SS,II(AA) as
a function of pred(II), so that if the latter is small (II
is unpredictable) then the former is too (SS is Priv-
secure). Unpredictability is necessary for Priv security
in the same way that it is necessary for the privacy of
deterministic public-key encryption [4].

Denying I access to the hash function H is neces-
sary to achieve Priv for the same reason that messages
in deterministic public-key encryption cannot depend
on the public key [4] and in message-locked encryption
cannot depend on the parameters [10]. From a usage
perspective, this models dealers (users) picking the in-
puts to S.Share independently of H, which is what we
expect real users to do. This is analogous to the argu-
ment that users of deterministic public-key encryption
will not usually encrypt messages that depend on the
public key of the recipient [4]. For both deterministic
public-key encryption and message-locked encryption,
allowing messages to depend on the public key or pa-
rameters (respectively) has been considered [1, 7, 35].
Doing the same here is an open question.

Our formalizations capture non-adaptive privacy,
meaning that secrets (as well as the access structure,
set of corrupted parties and the randomness) are not
chosen as a function of the shares the adversary sees of
previously shared secrets. This is in general necessary
for Priv. In the case that the randomness is true and
independent across sharing, stronger privacy (adaptive
and with I allowed access to Hash) is possible and in fact

Reimagining Secret Sharing 470

achieved by our schemes. But we prefer the simplicity
of a single definition to pursuing this because in usage,
inputs to S.Share are chosen by users who are unlikely
to pick them adaptively or in a way depending on H.

Usage scenarios and their privacy. Different
choices of randomness, made by a combination of user
and scheme choices, are captured by different classes of
input-selectors. We discuss a few.

The S.Share interface of an implementation could
give the caller options with regard to R, effectively ask-
ing: do you want to pick the coins, or do you want the
implementation to? If the user selects the latter, the
implementation could pick R uniformly random from
a large space for each invocation of Share. This would
be captured as the class of input-selectors that pick R
in this way, and, for that class, achieving the definition
confers the standard indistinguishability-style privacy.
However, it precludes reproducibility. A user desiring
the latter could select the option of itself providing R,
and then has various choices of how to do so. It may
omit it altogether, setting R to the empty string, corre-
sponding to an I that does the same, so that privacy is
provided as long as the message alone is unpredictable,
as is possible if it is a good passphrase. To strengthen
privacy in the case the message may lack entropy, the
user could maintain a separate, long-term, high quality
password, always using this in the role of R. Finally, the
input-selector could choose such a long-lived R, but then
append a counter. All of these possibilities are modeled
as different choices of I.

5 Authenticity
Authenticity captures the immutability of what is
shared: if a dealer shares out M , then nothing else can
be recovered, even if some shares are changed. One could
call the desired aim a binding property—one of the goals
of a commitment scheme.

We give two notions of authenticity, Auth0 and
Auth. The former assumes an honest dealer. For the
use cases we have considered, it is sufficient. The Auth
notion is simpler and implies Auth0. It does not assume
an honest dealer. We take Auth as our main definitional
target, but retain Auth0 to clarify the key security aim
that Auth ensures.

The Auth0 goal. Our first notion for authenticity,
Auth0, says that if you receive a share from an honest
dealer, contribute it to Recover, and a secret is recov-

Game Gauth0
S (A)

40 H � Ω
41 (A,M, T,St)� AH ; R � S.Rand
42 S ← S.ShareH(A,M,R, T)
43 S← {S[i] : i ∈ [1..|S|]}
44 S′ � AH(St,S)
45 (M ′,V′)← S.RecoverH(S′)
46 return S ∩ V′ 6= ∅ and M 6= M ′

Game Gauth
S (A)

50 H � Ω
51 (S, S′)� AH

52 (M,V)← S.RecoverH(S)
53 (M ′,V′)← S.RecoverH(S′)
54 return V ∩ V′ 6= ∅ and M 6= M ′

Fig. 5. Defining authenticity. Games Auth0 and Auth capture
security of S against adversary A = AH . If ⊥ is parsed into com-
ponents at lines 52 or 53, the the first is ⊥ and the second is ∅.

ered using your share, then that secret must be what
the dealer originally shared. In brief, a valid share is a
commitment to the secret that was shared at that time.
This holds no matter what other parties do.

The definition of Auth0 employs the game
Gauth0

S (A) defined in Fig. 5. An adversary A attacking
Auth0 security runs a first stage to pick (A,M, T). The
sharing algorithm is then run on these values, along
with uniformly random coins R, to produce a vector of
shares S. The adversary, given S (and whatever state
she wants to retain from her first stage of execution,
St), must now find a set of shares S′ that has some
share S in common with those in S. It wins if recover-
ing a secret from S′ results in some message M ′ distinct
from M and employing the share S. Formally, we define
Advauth0

S (A) = Pr[Gauth0
S (A)] as the probability that

the specified game returns true. Note that the game de-
pends on the selection of a random oracle H, which we
let A query. Note that the common share S of our En-
glish exposition is not explicit in the game, but is an
arbitrary element of V ∩ V′. Recall that the second ar-
gument (M,V) returned by a call to Recover is the set
of shares deemed valid.

The Auth goal. There is a natural way to strengthen
and simplify Auth0. A game that does so is again defined
in Fig. 5. Rather than insisting that shares arise from
honestly sharing out a secret, we let the adversary name
two sets of shares, S and S′, in whatever way it likes.
Recovery is then performed on both sets of shares. The
adversary wins if the two sets of shares have at least

Reimagining Secret Sharing 471

one share S in common, that share is used in recovery
operations, but the messages recovered differ. Note that
strings are recovered if the adversary wins (that is,M 6=
⊥ 6= M ′), because V 6= ⊥ 6= V′. We let Advauth

S (A) =
Pr[Gauth

S (A)] be the probability that the game returns
true.

Auth implies is stronger than Auth0, as the adver-
sary certainly has the option of creating S by sharing
out some (A,M, T) of its choice.

We can summarize the difference between Auth0
and Auth by saying that, in the former, a good share
commits the dealer to at most oneM , while in the latter,
any share, good or bogus, commits to at most one M .
Auth0 speaks to what a party can believe if it gets a
share from an honest dealer; Auth speaks to what can
be believed if the share is of unknown provenance.

We prefer Auth to Auth0 because it is simpler and
stronger. For applications the extra strength would usu-
ally be irrelevant: in our motivating use cases, legitimate
shareholders are assumed to hold valid shares.

We comment that having Recover identify which
shares are good is important to making the authenticity
guarantee meaningful. In particular, a party holding a
share S it believes to be valid and who recovers a mes-
sage M should only accept M as the underlying secret
if her share S was identified as one of the good shares.

6 Error Correction
Informal description. Basic correctness demands
that Recover(S) return (M, S) when S is an authorized
subset of some sharing of M . But what should Recover
do when S is not an authorized subset of any sharing
of M? One possibility is to have it return ⊥, thereby
signaling that something is wrong. One might call such
a scheme error-detecting.

Error-detection comes with a liability: it enables the
adversary to thwart message recovery by changing a sin-
gle share. There is no attempt to fix any problem. Error
correction (Errx) goes to the opposite extreme: we seek
to recover from errors whenever we can.

Error correction can be regarded as an exercise in
explanation seeking. The Recover algorithm is presented
with a set of shares. If there is a unique explanation
for how they arose, we demand that Recover find this
explanation. Given shares S, the explanation will say:
“Here is the message M that was previously shared out
to give a subset V 6= ∅ of the shares S. The remaining
shares from S are all bad.” If there is no unique expla-

nation like this, then an Errx-secure scheme must say
so. Note that we disregard the degenerate explanation
in which all shares are bad. That explanation is always
a possibility, so an uninteresting one.

In this section we formalize Errx security. In
Section 7 we show how to achieve Errx security, while
in Appendix A.2 we compare it to robustness [15, 31].

Enriching the syntax. For ADSS schemes that target
error correction we enrich the syntax for the Recover
algorithm in two directions.

First, we allow known information to be identified
in Recover’s input. This information K ∈ Known =
Access ∪ Shares is either an access structure K = A ∈
Access that the recovering party somehow knows to be
the operative one, or it is the subset K ∈ Shares of the
shares S given to Recover know to be valid.

Second, we demand that the recovery process iden-
tify not only the message M and the valid shares V ⊆ S

but also the randomness R that was used in the sharing.
Formally, we will say that an enriched ADSS scheme

Π = (Acc,Share,Recover) has Acc and Share as before
but the message-recovery algorithm Recover: Known ×
Shares → Msg × Rand × Shares ∪ {⊥} gets the indi-
cated domain and range. We demand that Recover re-
spects the known information: if A ∈ Access ∩ Known
and Recover(A, S) = (M,R,V) then V.as = A; and if
G ∈ Shares ∩ Known and Recover(G, S) = (M,R,V) then
G ⊆ V. If the recovering party has no a priori informa-
tion, select K = G = ∅.

As before, if Recover(K, S) = (M,R,V) then V ⊆ S

and all shares from V have the same .as component and
the same .tag component. As for the return value R, we
now describe our expectations.

Full correctness. For Π = (Acc,Share,Recover) an
enriched ADSS scheme, we adjust basic correctness
to demand that the identified coins are right: for all
A ∈ Access, H ∈ Ω, I ⊆ [1..n(Acc(A))], M ∈ Msg,
R ∈ Rand, T ∈ Tag, S ← ShareH(A,M,R, T), S =
S[I], and K ∈ {A} ∪ P(S) (where P(S) is all sub-
sets of the components of S): (1) if I ∈ Acc(A) then
RecoverH(K, S) = (M,R, S), and (2) if I 6∈ Acc(A) then
RecoverH(K, S) = ⊥. If all you are worried about is
vanishing shares then Recover returns the right thing.

The following validity requirement for an en-
riched ADSS scheme Π = (Acc,Share,Recover)
can be considered a converse to basic correct-
ness: when Recover(K, S) = (M,R,V) and S =
Share(V.as,M,R,V.tag) then V is an authorized subset
of S, meaning that V = S[G] for some G ∈ Acc(A),

Reimagining Secret Sharing 472

Game Gerrx
S (A)

70 H � Ω ; (K, S)� AH

71 return S.RecoverH(K, S) 6= UniqueExplanationH(K, S)

72 procedure UniqueExplanationH(K, S)
73 if ∃(A,M,R,V) ∈ ExplanationsH(K, S) such that
74 (Â, M̂, R̂, V̂) ∈ ExplanationsH(K, S)⇒
75 (A=Â ∧ M=M̂ ∧ R=R̂ ∧ V⊇ V̂)
76 then return this (necessarily unique) (M,R,V)
77 else return ⊥

78 procedure ExplanationsH(K, S)
79 return {(V.as,M,R,V) :
7A Ŝ ⊆ S, (M,R,V) = S.RecoverH(K, Ŝ)}

Fig. 6. Defining error correction. We define an adversary A’s
errx-advantage for S = (Acc, Share,Recover) as the probability it
wins the specified game.

A = V.as. Informally, Recover(S) does not lie by identi-
fying an (M,R,V) that doesn’t work. Such lying would
be pointless, as the party recovering can verify that V

is an authorized subset of Share(V.as,M,R,V.tag). An
enriched ADSS scheme is fully correct if it satisfies ba-
sic correctness and validity. When we speak of an ADSS
scheme achieving Errx security, we always assume it is
fully correct.

Adjusting Auth. Enriching ADSS syntax is irrelevant
for Priv security because that notion does not depend on
the Recover algorithm. On the other hand, the Auth se-
curity notion, previously defined by the game of Fig. 5,
needs a slight adjustment. The code of that game is
replaced with:

50 H � Ω
51′ (K, S,K′, S′)� AH

52′ (M,R,V)← S.RecoverH(K, S)
53′ (M ′, R′,V′)← S.RecoverH(K′, S′)
54 return V ∩ V′ 6= ∅ and M 6= M ′

The above continues to capture that a share commits
to single underlying secret. By changing the “M 6= M ′

(line 54) to “(M,R) 6= (M ′, R′)” we would capture the
idea that a share commits to a secret and coins. Our
main construction achieves this stronger variant as well.

Errx security. We now define the Errx security
of an ADSS scheme Π. See Fig. 6. We then define
Adverrx

S (A) = Pr[Gerrx
S (A)] as the probability that the

adversary wins the error-correction game. An ADSS
scheme S has perfect error correction if it never fails to
correct a correctable error: Adverrx

S (A) = 0 for any A.

The error-correction game is structured in a way
to directly reflect the intended intuition. The adversary
wins if it forces Recover to recover something wrong—
something other than the unique explanation, when
there is one, for the provided shares. We carry out the
thought experiment of looking at all plausible explana-
tions for the shares, and see if one is unique. At the
lowest level, at lines 78–7A, the plausible explanations
are indicated by the Recover procedure itself.

Alternative Errx definition. There is an equivalent
way to define Errx security: one defines the plausible ex-
planations for a set of shares according to the Share pro-
cedure instead of the Recover procedures. Specifically,
lines 78–7A of Fig. 6 can be replaced by the following:

78′ procedure ExplanationsH(K, S)
79′ if K ∈ Access then return {(K,M,R,V) :
7A′ G ∈ Acc(K), R ∈ Rand, T ∈ Tag,
7B′ S =ShareH(K,M,R, T),V=S[G] ⊆ S}
7C′ else return {(A,M,R,V) : A ∈ Access,
7D′ G ∈ Acc(A), R ∈ Rand, T ∈ Tag,
7E′ S =ShareH(A,M,R, T),V=S[G] ⊆ S,K⊆V}

No other changes are made. We justify the equivalence
of the definitions in Appendix C.2.

Discussion. We defined ADSS in such a way that the
reconstructing party is not required to know the oper-
ative access structure; rather, it recovers this from the
valid shares. This choice interacts badly with use of an
expressive access-structure naming function. Suppose,
for example, that Acc supports the 1-out-of-1 threshold
scheme. Then an adversary can replace a single share S
from a deal S with a share S1 for a message M1, the
share asserting the 1-out-of-1 access structure. Message
recovery will either be thwarted by the presence of this
one bogus share (when S\{S} is qualified), or (M1, {S1})
will be recovered (when S\{S} is not qualified). Neither
outcome is good.

The underlying problem is a failure to distinguish
between the access structures that a secret-sharing
scheme can handle and those that a reconstructing
party might regard as reasonable. Once that distinc-
tion is drawn, one can consider it an important but
out-of-model step that the recovering party discards any
share asserting an access structure it deems unreason-
able. A simple special is when the receiver knows what
the right access structure is. It can provide this side
information to Recover.

A well-known variant of secret sharing [41] envis-
ages that a shareholder who trusts her own share S is

Reimagining Secret Sharing 473

performing recovery. In such a case, explanations from
Recover that do not include this share should be re-
garded as implausible. More generally, we have enriched
Recover so that any subset of shares can be designated
as trusted. Only explanations that include all trusted
shares are considered valid. Note that marking any share
as trusted establishes a known access-structure, too.
Both make it harder for an adversary to obstruct mes-
sage recovery.

One way for the receiving party to obtain assur-
ance that a given share is trusted is for the share to be
digitally signed by the dealer and for the reconstruct-
ing party to know the dealer’s public key. Such a model
for secret sharing meaningfully disadvantages the adver-
sary, but takes us outside our basic model.

Coin recovery. Our enriched syntax demands that
Recover, when presented the set of shares S, return not
only M and V but also the coins R that were used in
the sharing of M and gave rise to V ⊆ S. Why?

The returned coins serve as a certificate that the
the valid shares really could arise from a legal sharing
of the message M . Beyond this, a unique explanation
(M,R,V) for the set of shares S becomes a demonstra-
tion that, for an honest dealer, it was a single sharing
of M that gave rise to shares V. In effect, returning R
and absorbing it into the Errx definition makes the def-
inition stronger, ensuring that it was one sharing from
which we are seeing shares. It eliminates degeneracies
about what Recover should do when, for example, two
shares of a 2-out-of-4 secret-sharing are combined with
two shares from a different 2-out-of-4 secret-sharing for
the same message. Such possibilities returning ⊥ (as we
think they should) would thwart claims that Errx secu-
rity imply robustness; they would make it untrue. We
find that to be undesirable: error-correction intuitively
should imply robustness (once side conditions are added
so that robustness becomes achievable), but with other
definitional choices we explored that do not surface R,
such a claim is untrue.

7 Constructions
This section provides schemes and transformations for
achieving ADSS. We start with a version of Shamir’s
secret-sharing scheme, S1. It achieves classical privacy,
Priv$, and works for threshold access structures. We
then provide the main construction of this paper: the
transformation AX. It turns an ADSS scheme S achiev-

procedure S1.Share(A,M,R, T)
100 〈k, n〉 ← A

101 M1‖ · · · ‖Mm ←M where |M1| = · · · = |Mm| = β

102 for (i, j) ∈ [1..(k − 1)]× [1..m] do Rj,i ← fβR(i, j)
103 for i ∈ [1..n] do
104 for j ∈ [1..m] do
105 Bi,j ←Mj +Rj,1 · i+Rj,2 · i2 + · · ·+Rj,k−1 · ik−1

106 Si ← 〈i, 〈k, n〉, Bi,1 · · ·Bi,m, ε, ε〉
107 return (S1, . . . , Sn)

procedure S1.Recover(S)
110 t← |S|; {S1, . . . , St} ← S

111 for i ∈ [1..t] do 〈ιi, 〈ki, ni〉, Bi,1 · · ·Bi,mi , ε, ε〉 ← Si

112 (k, n,m)← (k1, n1,m1)
113 if t < k then return ⊥
114 for j ∈ [1..m] do
115 ϕj(x)← Interpolateβ({(ι1, B1,j), . . . , (ιk, Bk,j)})
116 Mj ← ϕj(0)
117 return (M1 · · ·Mm, S)

Fig. 7. Secret-sharing scheme S1. Scheme S1 = S1[β, f] depends
on the number β and a PRF f : {0, 1}κ × N× {0, 1}∗∗ → {0, 1}∗

satisfying |f`R(·)| = `. The message space is Msg = ({0, 1}β)∗,
the entropy space is Rand = {0, 1}κ, the AD space is Tag = {ε}.
Lines 105, 115, 116 do arithmetic in the filed F with 2β points.
Interpolateβ takes a set of points in F2 and returns the unique
minimal-degree polynomial over F that passes through them. If a
value cannot be parsed as indicated, the routine returns ⊥.

ing only Priv$ security into an ADSS scheme SS =
AX[S] that achieves Priv and Auth security. Finally,
transformation EX adds in Errx security. Proofs for our
constructions are in Appendix C.

Transformations AX and EX leave unchanged the
access structure of the scheme they are applied to, so
SS1 = EX◦AX◦S1 is the the concrete ADSS scheme we
put forward for threshold access structures. To handle
arbitrary access structures all that is needed is to start
with a base-level scheme that works for arbitrary access
structures. We give such a scheme, S2, in Appendix B.
The access structures is presented as a circuit of thresh-
old gates. Scheme SS2 = EX ◦AX ◦ S2 is our suggestion
for an ADSS scheme on arbitrary access structures.

We discuss the efficiency of our schemes at the end
of this section.

Base-level scheme S1. We begin by describing
Shamir secret-sharing [40], but with a few minor twists:
scheme S1 operates over the field F with 2β points and
is extended blockwise; the polynomial coefficients are
determined by a pseudorandom generator (PRG) based
on a pseudorandom function (PRF); and, in keeping

Reimagining Secret Sharing 474

with our syntax, a description of the (threshold) access
structure is an input to Share. Concretely, Fig. 7 defines
secret-sharing scheme S1 = S1[β, f] where
(1) β ≥ 2 is the blocklength. In practice, one would

likely select β = 8, corresponding to the parti-
tioning of a plaintext into bytes; and

(2) f : {0, 1}κ × N× {0, 1}∗∗ → {0, 1}∗ formalizes how
the entropy source R ∈ {0, 1}κ is used to create
the internal randomness. We require |f `R(x)| = `

(the first two arguments of f written as a subscript
then superscript).

The set S1.Access contains all 〈k, n〉 (a string that en-
codes k and n) where 1 ≤ k ≤ n < 2β . The access-
structure naming function S1.Acc maps each 〈k, n〉 ∈
S1.Access to the set Ak,n = {U ∈ [1..n] : |U | ≥ k}. The
message space of S1 is Msg = B∗ where B = {0, 1}β .
The randomness space is Rand = {0, 1}κ. The scheme
uses the finite field F having 2β points, which must
be more than the maximum number of parties. We fix
some canonical representation of field points as β-bit
strings. We interchangeably regard β-bit strings, num-
bers in [0..2β−1], and points in F. For lines 106 and 111
recall that the fourth and fifth components of a share Si
represent the public portion Si.pub and the tag Si.tag.
Both are ε since scheme S1 doesn’t support tags and
doesn’t mark any portion of a share as public.

The security of S1 relies on the PRF security of f ,
which is defined in Appendix C.1. We give the follow-
ing proposition, which states that if f is a secure PRF,
then S1[β, f] is Priv$ secure. Recall the latter is Priv
restricted to input-selectors in the class IIIpriv$, namely
those who pick the coins in their Deal queries uniformly
and independently of anything else.

Proposition 1. Let S1 = S1[β, f] with β ≥ 2 and
f : {0, 1}κ × N × {0, 1}∗∗ → {0, 1}∗. Then S1 satisfies
Priv$. Concretely, given input-selector I ∈ IIIpriv$ and
given Priv-adversary A we build a PRF-adversary B
such that Advpriv$

S1,I (A) ≤ Advprf
f (B). Adversary B is ef-

ficient when I and A are.

Main construction AX. The AX transformation
turns a Priv$-secure secret-sharing scheme S into a
secret-sharing scheme SS that augments this with Priv-
and Auth-security. SS uses the enriched ADSS syntax
but does not yet target error correction; that will come
next. The AX transformation also expands the message
space—scheme SS can share messages of any length,
while S might only be able to share short ones. AX also
handles associated-data, which scheme Shares is not re-

quired to support. The access structures that can be
handled by SS are exactly those that can be handled
by Share. Besides the secret-sharing scheme S the trans-
formation will use PRF and a random-oracle-modeled
hash-function. The former can be built from the latter,
but we leave them separate because we anticipate, for
example, an AES-based construction for the PRF and
a SHA256-based construction for the hash.

The AX transformation is given in Fig. 8. It speci-
fies SS.Share and SS.Recover for SS = AX[S, f]. Access-
structure naming function SS.Acc is S.Acc.

Theorem 1. Let SS = AX[S, f] where S is an ADSS
scheme with message space S.Msg ⊇ {0, 1}κ, tag space
S.Tag = {ε}, and entropy space S.Rand = {0, 1}κ, and
where f : {0, 1}κ × N× {0, 1}∗∗ → {0, 1}∗. Then:
1. If S is Priv$-secure then SS is Priv-secure. Given

an input-selector II making qD calls to Deal

and adversary AA (attacking the Priv security of
SS) making q queries to Hash, we build input-
selector I ∈ IIIpriv$ and adversaries A and B s.t.

Advpriv
SS,II(AA) ≤ 2(qD + q)pred(II)+

4 Advpriv$
S,I (A) + 4 Advprf

f (B) .
(1)

Adversaries A,B are about as efficient as AA.
2. SS is Auth-secure. For any A making qH queries

to Hash, we have Advauth
SS (A) ≤ (qH + 1)(qH + 2) ·

2−(2κ+1) .

A more explicit theorem statement would quantify
the resources of the constructed adversaries. In this case,
adversary A makes qD queries to Deal and q queries
to Hash, while B makes qD queries to New and 2 queries
per instance to Fn. The running times of A and B are
about the same as that of AA. For brevity we omit such
details in this and other result statements. They can be
gleaned from the proofs.

Error correction with EX. Fig. 9 defines a transfor-
mation EX that turns an enriched ADSS scheme S into
an error-correcting scheme SS. EX avoids making any
changes to Share, putting all the work in Recover.

For line 80, a set of shares S′ is said to beK-plausible
if all the shares in S′ name the same access-structure en-
coding A, and A = K if K names an access structure;
the shares name distinct identities in [1..n(Acc(A))];
these parties are authorized according to Acc(A); the
shares all have the same tag T ; and the shares include
all those in K if K is a set of shares. Further scheme-
dependent criteria can be added without harming the

Reimagining Secret Sharing 475

M R TA

C

H

J L K

msg

rnd

C

C

C

T

T

T

∆1

∆2

∆3

.sec .pub .tag

Σ1

Σ2

Σ3

acc D

D

D

D

.id

1

2

3

A

A

A

.as

= S1

= S2

= S3

.sec .pub

(S1, S2, S3) ’ ’ ’

J

J

J

KM KRFM

L

A

K

S.Share

FR

procedure SS.ShareHash(A,M,R, T)

300 J ‖K ‖ L← H4κ(A,M,R, T) where |J | = 2κ and |K| = |L| = κ

301 C ←M ⊕ f |M|K (ε); D ← R⊕ fκK(0); n← n(S.Acc(A))
302 (S′1, . . . , S′n)← S.Shareh(A,K,L, ε)
303 for i ∈ [1..n] do
304 Σi ← S′i.sec; ∆i ← S′i.pub
305 for i ∈ [1..n] do
306 Pi ← 〈∆i, C,D, J〉
307 Si ← 〈i, A,Σi, Pi, T 〉
308 return (S1, . . . , Sn)

procedure h`(x)
320 return Hash(`, 0 ‖ x)
procedure H`(x)
330 return Hash(`, 1 ‖ x)

procedure SS.RecoverHash(K, S)

310 t← |S|; {S1, . . . , St} ← S

311 for i ∈ [1..t] do
312 〈ji, Ai,Σi, Pi, Ti〉 ← Si

313 〈∆i, Ci, Di, Ji〉 ← Pi

314 S′i ← 〈ji, Ai,Σi,∆i, ε〉
315 S′ ← {S′i : i ∈ [1..t]}
316 (K,G)← S.Recoverh(S′)
317 〈·, A, ·, 〈·, C,D, J〉, T 〉 ← S1

318 M←C⊕ f |C|K (ε); R←D⊕ fκK(0)
319 if H4κ(A,M,R,T)[1..3κ] = J‖K
31A and S.id ∈ S.Acc(A)
31B and S ⊆ SS.ShareHash(A,M,R, T)
31C then return (M,R, S) else return ⊥

Fig. 8. The AX transform SS = AX[S, f]. The construction depends on a Priv$-secure S and a PRF f : {0, 1}κ × N → {0, 1}∗∗ →
{0, 1}∗. Top: Illustration of sharing. PRGs FM (K) = f

|M|
K (ε) and FR(K) = fκK(0) are defined from f . The message K is shared by S

using access structure A and coins L. Hash function H is defined from the random oracle Hash. Bottom: Definition of the scheme. It
is Priv and Auth secure, in the random-oracle model, when S is Priv$-secure and f is a PRF.

correctness of EX as long as one omits no element of
P(S) that could arise in a valid sharing that respects
the known information K. As an example, if Share hap-
pens to place the same word J in each share of a deal
then the definition of K-plausible sets can further in-
clude the constraint that all shares have the same J-
value. Lines 82–83 look for a first explanation Si for S

such that the identified set of valid shares V is equal to
Si. If we fail to find one, we fail at line 84. Otherwise

we seek at lines 86–88 a second explanation for S. If we
find one, we again fail, but now because there are two
explanations for S. At line 85 we prune the plausible
second explanations to only include those that are not
a subset of the first.

Theorem 2. Let S be any enriched ADSS scheme with
full correctness, and let SS = EX[S]. Then:

Reimagining Secret Sharing 476

procedure SS.Recover(K, S)
80 let S1, . . . , Sw ∈ P(S) include all K-plausible sets
81 of shares, arranged so that Si ⊇ Sj ⇒ i ≤ j
82 for i← 1 to w do
83 if (M,R,V)← S.Recover(K, Si) and V = Si then goto 85
84 return ⊥
85 {S′1, . . . , S′u} ← {Si+1, . . . , Sw} \ P(V)
86 for i← 1 to u do
87 if (M ′, R′,V′)← S.Recover(K, S′i) and V′ 6⊆ V then
88 return ⊥
89 return (M,R,V)

Fig. 9. The EX construction. The method turns an enriched
ADSS scheme S into an enriched ADSS scheme SS = EX[S] with
Errx security. We let SS.Acc = S.Acc and SS.Share = S.Share.
For a set of shares Si ⊆ S to be “plausibly valid” all the shares of
Si must have the same access structure and tag, and they must
have distinct identities in from that access structures.

1. If S is Auth-secure then so is SS. Concretely, given
adversary AA (for attacking the Auth security of
SS), we construct adversary A with complexity sim-
ilar to AA (for attacking the Auth security of S)
such that Advauth

SS (AA) ≤ Advauth
S (A).

2. SS is perfectly Errx-secure. Concretely, for any ad-
versary A, Adverrx

SS (A) = 0.

Efficiency of the constructions. We apply AX and
then EX to S1 to obtain a threshold scheme SS1, or AX
and then EX to S2 to obtain a scheme SS2 for any ac-
cess structure. These schemes are highly efficient: shar-
ing anm-byte messageM will take O(m) time and, more
concretely, about the amount of time to symmetrically
encrypt and hash M . This assumes a fixed number of
shareholders n, a fixed access-structure encoding A, a
fixed tag T , and fixed scheme parameters. Concretely,
to share M one will need to apply a hash function like
SHA-256 to a string that’s |A| + |T | + κ bits longer
than M (likely κ ∈ {128, 256}); run a blockcipher like
AES in counter mode to generate a pad κ bits longer
than |M |; and run a sharing under S1/S2. That last part
is fast because the message being shared is just the κ-bit
string K. For S2 one needs time linear in the number of
threshold gates in the circuit described by A. Practical
access structures will have no more than a few gates.

Message recovery for AX◦S1 or AX◦S2 takes about
the same time as sharing, but once EX is added the
recovery process can be slow: exponential in the num-
ber of shares n presented to Recover. In the worst case,
the recovery algorithm, given S = {S1, . . . , Sn}, might
inspect as many as 2n subsets of S. Still, in practical

contexts the number n is likely to be so small that 2n

is still small. Beyond this, we have designed EX so that
exponential-time recovery can only arise when there are
adversarial edits to shares, not just omissions. In the
setting where shares are either valid or absent, Recover
will run in essentially the same time as Share.

8 Conclusions & Open Problems
Classical secret-sharing envisages an adversary that
does no more than erase some users’ shares. Its only
aim is to learn what it shouldn’t know. Real adversaries
aren’t so restrained. In response, one can reduce expec-
tations or increase guarantees. We’ve done the latter.

An unresolved technical problem is how to achieve
Errx security with efficient worst-case message-recovery
time. Many constructions are plausible. For example,
one could add n hash values to each of the n shares,
a check-value for each share on each share, using these
to partition shares into plausible subsets. Or one could
add to each share a dealer-generated digital signature.
We suspect that techniques like these can work, and can
also make for a simpler Recover than that of EX.

We have not implemented our ADSS schemes. We
hope to soon see implementations by others, both as
a callable library and as an end-user tool. Ultimately,
ADSS implementations should conform to a standards
document, such as an RFC. In this way, techniques for
adept secret-sharing may become as fixed as those for,
say, authenticated encryption.

Our formulation of ADSS has shares leak metadata
such as the share number and the operative access struc-
ture. Definitions and schemes for metadata-concealing
ADSS should be possible.

Underlying our work has been a belief that secret
sharing has been underutilized. Secret sharing is not just
a tool for doing other things; it is also an aim directly
tied to a human aspiration. Shamir wrote in 1979 [40]
that “Threshold schemes are ideally suited to applica-
tions in which a group of mutually suspicious individuals
with conflicting interests must cooperate.” Such cooper-
ation is needed now more than ever.

Acknowledgments

Ameeting with J. Alex Halderman and Laurent Richard
led to this project. A later meeting with staff at the Free-

Reimagining Secret Sharing 477

dom of the Press Foundation helped clarify our goals,
especially authenticity.

Thanks to John Chan, Jake Craige, Fred Jacobson,
Romain Ruetschi, and Conor Schaefer for useful feed-
back. Thanks to the PoPETs referees for their excellent
comments and suggestions.

Bellare and Dai were supported by NSF CNS
1717640, Rogaway by NSF CNS 1717542.

References
[1] M. Abadi, D. Boneh, I. Mironov, A. Raghunathan, and

G. Segev. Message-locked encryption for lock-dependent
messages. In R. Canetti and J. A. Garay, editors,
CRYPTO 2013, Part I, volume 8042 of LNCS, pages 374–
391. Springer, Heidelberg, Aug. 2013.

[2] G. Bai, I. Damgård, C. Orlandi, and Y. Xia. Non-
interactive verifiable secret sharing for monotone cir-
cuits. In D. Pointcheval, A. Nitaj, and T. Rachidi, editors,
AFRICACRYPT 16, volume 9646 of LNCS, pages 225–244.
Springer, Heidelberg, Apr. 2016.

[3] A. Beimel. Secret-sharing schemes: A survey. In Y. M. Chee,
Z. Guo, S. Ling, F. Shao, Y. Tang, H. Wang, and C. Xing,
editors, Coding and Cryptology, pages 11–46, Berlin, Heidel-
berg, 2011. Springer Berlin Heidelberg.

[4] M. Bellare, A. Boldyreva, and A. O’Neill. Deterministic
and efficiently searchable encryption. In A. Menezes, editor,
CRYPTO 2007, volume 4622 of LNCS, pages 535–552.
Springer, Heidelberg, Aug. 2007.

[5] M. Bellare, Z. Brakerski, M. Naor, T. Ristenpart, G. Segev,
H. Shacham, and S. Yilek. Hedged public-key encryption:
How to protect against bad randomness. In M. Matsui,
editor, ASIACRYPT 2009, volume 5912 of LNCS, pages
232–249. Springer, Heidelberg, Dec. 2009.

[6] M. Bellare, R. Canetti, and H. Krawczyk. Pseudorandom
functions revisited: The cascade construction and its con-
crete security. In 37th FOCS, pages 514–523. IEEE Com-
puter Society Press, Oct. 1996.

[7] M. Bellare, W. Dai, and L. Li. The local forking lemma and
its application to deterministic encryption. In S. D. Galbraith
and S. Moriai, editors, ASIACRYPT 2019, Part III, volume
11923 of LNCS, pages 607–636. Springer, Heidelberg, Dec.
2019.

[8] M. Bellare, M. Fischlin, A. O’Neill, and T. Ristenpart. De-
terministic encryption: Definitional equivalences and con-
structions without random oracles. In D. Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 360–378.
Springer, Heidelberg, Aug. 2008.

[9] M. Bellare, V. T. Hoang, and P. Rogaway. Foundations of
garbled circuits. In T. Yu, G. Danezis, and V. D. Gligor,
editors, ACM CCS 2012, pages 784–796. ACM Press, Oct.
2012.

[10] M. Bellare, S. Keelveedhi, and T. Ristenpart. Message-
locked encryption and secure deduplication. In T. Johansson
and P. Q. Nguyen, editors, EUROCRYPT 2013, volume
7881 of LNCS, pages 296–312. Springer, Heidelberg, May

2013.
[11] M. Bellare and C. Namprempre. Authenticated encryption:

Relations among notions and analysis of the generic compo-
sition paradigm. In T. Okamoto, editor, ASIACRYPT 2000,
volume 1976 of LNCS, pages 531–545. Springer, Heidelberg,
Dec. 2000.

[12] M. Bellare, T. Ristenpart, P. Rogaway, and T. Stegers.
Format-preserving encryption. In M. J. Jacobson Jr., V. Ri-
jmen, and R. Safavi-Naini, editors, SAC 2009, volume 5867
of LNCS, pages 295–312. Springer, Heidelberg, Aug. 2009.

[13] M. Bellare and P. Rogaway. Encode-then-encipher encryp-
tion: How to exploit nonces or redundancy in plaintexts
for efficient cryptography. In T. Okamoto, editor, ASI-
ACRYPT 2000, volume 1976 of LNCS, pages 317–330.
Springer, Heidelberg, Dec. 2000.

[14] M. Bellare and P. Rogaway. The security of triple encryption
and a framework for code-based game-playing proofs. In
S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of
LNCS, pages 409–426. Springer, Heidelberg, May / June
2006.

[15] M. Bellare and P. Rogaway. Robust computational secret
sharing and a unified account of classical secret-sharing
goals. In P. Ning, S. De Capitani di Vimercati, and P. F.
Syverson, editors, ACM CCS 2007, pages 172–184. ACM
Press, Oct. 2007.

[16] J. C. Benaloh and J. Leichter. Generalized secret shar-
ing and monotone functions. In S. Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 27–35. Springer,
Heidelberg, Aug. 1990.

[17] G. R. Blakley. Safeguarding cryptographic keys. Proceedings
of AFIPS 1979 National Computer Conference, 48:313–317,
1979.

[18] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch. Veri-
fiable secret sharing and achieving simultaneity in the pres-
ence of faults (extended abstract). In 26th FOCS, pages
383–395. IEEE Computer Society Press, Oct. 1985.

[19] D. Dolev, C. Dwork, and M. Naor. Nonmalleable cryptogra-
phy. SIAM Journal on Computing, 30(2):391–437, 2000.

[20] C. Ellison. Ceremony design and analysis. Cryptology ePrint
Archive, Report 2007/399, 2007. http://eprint.iacr.org/
2007/399.

[21] P. Feldman. A practical scheme for non-interactive verifi-
able secret sharing. In 28th FOCS, pages 427–437. IEEE
Computer Society Press, Oct. 1987.

[22] Freedom Voices Network. Forbidden stories, webpage, visited
2019.09.19.

[23] V. Goyal, O. Pandey, A. Sahai, and B. Waters. Attribute-
based encryption for fine-grained access control of encrypted
data. In A. Juels, R. N. Wright, and S. De Capitani di
Vimercati, editors, ACM CCS 2006, pages 89–98. ACM
Press, Oct. / Nov. 2006. Available as Cryptology ePrint
Archive Report 2006/309.

[24] G. Greenwald. No Place to Hide. Metropolitan Books, 2014.
[25] X. Guang, J. Lu, and F. Fu. Repairable threshold secret

sharing schemes. CoRR, abs/1410.7190, 2014.
[26] L. Harding. What are the Panama papers? A guide to

history’s biggest data leak. The Guardian, 04 2016.
https://goo.gl/rXUNdj.

[27] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung. Proac-
tive secret sharing or: How to cope with perpetual leakage.

http://eprint.iacr.org/2007/399
http://eprint.iacr.org/2007/399

Reimagining Secret Sharing 478

In D. Coppersmith, editor, CRYPTO’95, volume 963 of
LNCS, pages 339–352. Springer, Heidelberg, Aug. 1995.

[28] Z. Jafargholi, C. Kamath, K. Klein, I. Komargodski,
K. Pietrzak, and D. Wichs. Be adaptive, avoid overcommit-
ting. In J. Katz and H. Shacham, editors, CRYPTO 2017,
Part I, volume 10401 of LNCS, pages 133–163. Springer,
Heidelberg, Aug. 2017.

[29] B. Kacsmar, C. Komlo, F. Kerschbaum, and I. Goldberg.
Mind the gap: Ceremonies for applied secret sharing.
PoPETs, 2020(2):497–415, 2020.

[30] J. Katz and M. Yung. Unforgeable encryption and chosen
ciphertext secure modes of operation. In B. Schneier, editor,
FSE 2000, volume 1978 of LNCS, pages 284–299. Springer,
Heidelberg, Apr. 2001.

[31] H. Krawczyk. Secret sharing made short. In D. R. Stinson,
editor, CRYPTO’93, volume 773 of LNCS, pages 136–146.
Springer, Heidelberg, Aug. 1994.

[32] T. M. Laing and D. R. Stinson. A survey and refinement of
repairable threshold schemes. J. Mathematical Cryptology,
12(1):57–81, 2018.

[33] N. Nisan and D. Zuckerman. Randomness is linear in space.
J. Comput. Syst. Sci., 52(1):43–52, 1996.

[34] C. Rackoff and D. R. Simon. Non-interactive zero-knowledge
proof of knowledge and chosen ciphertext attack. In
J. Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS,
pages 433–444. Springer, Heidelberg, Aug. 1992.

[35] A. Raghunathan, G. Segev, and S. P. Vadhan. Determin-
istic public-key encryption for adaptively chosen plaintext
distributions. In T. Johansson and P. Q. Nguyen, editors,
EUROCRYPT 2013, volume 7881 of LNCS, pages 93–110.
Springer, Heidelberg, May 2013.

[36] L. Richard. A warning to the corrupt: if you kill a journalist,
another will take their place. The Guardian, April 2016.
https://goo.gl/U868Ye.

[37] P. Rogaway. Authenticated-encryption with associated-data.
In V. Atluri, editor, ACM CCS 2002, pages 98–107. ACM
Press, Nov. 2002.

[38] P. Rogaway, M. Bellare, J. Black, and T. Krovetz. OCB: A
block-cipher mode of operation for efficient authenticated
encryption. In M. K. Reiter and P. Samarati, editors, ACM
CCS 2001, pages 196–205. ACM Press, Nov. 2001.

[39] C. Schaefer. Meet Sunder, a new way to share secrets, May
2018. webpage, visited 2019-02-09.

[40] A. Shamir. How to share a secret. Communications of the
Association for Computing Machinery, 22(11):612–613, Nov.
1979.

[41] M. Tompa and H. Woll. How to share a secret with
cheaters. In A. M. Odlyzko, editor, CRYPTO’86, volume
263 of LNCS, pages 261–265. Springer, Heidelberg, Aug.
1987.

[42] V. Vinod, A. Narayanan, K. Srinathan, C. P. Rangan, and
K. Kim. On the power of computational secret sharing. In
T. Johansson and S. Maitra, editors, INDOCRYPT 2003,
volume 2904 of LNCS, pages 162–176. Springer, Heidelberg,
Dec. 2003.

A Relations
Our Auth security goal for ADSS may seem similar to
the verifiable secret-sharing (VSS) goal to the first for-
mulated by Chor, Goldwasser, Micali, and Awerbuch
(CGMA85) [18]. In this section we contrast these goals.
Then we contrast Auth with robustness [15, 31] and,
finally, with repairability [25, 32].

A.1 Comparison with VSS

VSS arose in the context of multiparty computation
(MPC), where each party would, in a first phase, share
out its secret, and later, in a second phase, compute on
these shares. For the second phase to work, it was im-
portant that, at the end of the first phase, honest parties
could be sure that, for each dealer, there existed a single
value such that, if, at some later stage, an authorized
subset of honest parties attempted recovery, they would
recover this unique value.

The original VSS method of CGMA85 [18] involved
interaction among the shareholders. Feldman was the
first to describe a non-interactive scheme for VSS [21].
Each shareholder performs a local verification step, ap-
plying a verification algorithm specified by the scheme
to its own share and some public quantity broadcast
by the dealer. The result informs a party if its share
is valid. This local validity was required to ensure the
global unique recoverability property.

Thus two points of difference with ADSS that
emerge from the above are: (1) the presence, in a VSS
setting, of the verification algorithm; and (2) the pres-
ence, in the model for VSS, of a broadcast channel.
ADSS does not have a verification algorithm and does
not anticipate a broadcast model. Formally, for differ-
ent definitions D of ours like Auth or Errx, questions
like “does VSS imply D, or does D imply VSS” do not
make formal sense, as the goals involve different syntax
and models.

Rather than end the comparison on this unsatisfac-
tory note, we treat VSS in the ADSS context. We ex-
tend the syntax and model to include a verification algo-
rithm and a broadcast channel. With a formal definition
of VSS in place, we show that a VSS-secure scheme is
Auth-secure. That is, VSS is effectively a stronger de-
mand than Auth.

However, achieving VSS instead of Auth seems to
involve more work: known VSS schemes are substan-
tially less efficient than the Auth-secure schemes we

Reimagining Secret Sharing 479

Game Gvss
VS (A)

80 H � Ω; (A,A′, S, S′)� AH

81 if (∃S, S′ ∈ S ∪ S′ : S.pub 6= S′.pub) then return false
82 if (∃S ∈ S ∪ S′ : VS.Verify(S) = 0) then return false
83 if (S.id 6∈ VS.Acc(A) or S′.id 6∈ VS.Acc(A′))
84 then return false
85 Y ← VS.RecoverH(S); Y ′ ← VS.RecoverH(S′)
86 if (Y = ⊥ or Y ′ = ⊥) then return true
87 (M,V)← Y ; (M ′,V′)← Y ′

88 return (M 6= M ′)

Fig. 10. Game defining VSS security of a broadcast-model VSS
scheme VS = (Acc, Share,Recover,Verify)

propose. Worse, VSS needs what is, in our context, the
untenable assumption of a broadcast channel: for our
motivating use cases, this isn’t present.

Formalizing VSS. To enable a formal comparison
of Auth and VSS we formalize VSS using ADSS-
like syntax. We say that a scheme for verifiable-
ADSS is a four-tuple of deterministic algorithms VS =
(Acc,Share,Recover,Verify). We require that S =
(Acc,Share,Recover) is an ADSS scheme, called the
ADSS scheme induced by VS. The new algorithm

Verify: Share→ {0, 1}
will tell a shareholder whether or not its share S is
valid. Basic correctness for VS is that of its induced
ADSS scheme together with the requirement that S =
ShareH(A,M,R, T) implies that VerifyH(S[i]) = 1 for
all i. We may speak of Priv, Auth security of VS,
by which we simply mean those of its induced ADSS
scheme.

The new requirement is VSS-security. Consider the
Gvss

VS (A) game on the left of Fig. 10. The VSS advantage
of A is defined by

Advvss
VS (A) = Pr[Gvss

VS (A)] .

In the game, the adversary at line 81 returns an ac-
cess structure description A and two sets S, S′ of shares.
Line 82 enforces the broadcast constraint that the pub-
lic portions of all shares are the same. Line 83 says that
all shares have passed verification. Line 84 says that the
parties underlying both sets of shares are authorized.
With these constraints, security (the adversary does not
win) requires that the two sets of shares recover to a
common, non-⊥ value.

VSS implies Auth. Let VS = (Acc,Share,Recover,Verify)
be a verifiable-ADSS scheme. Define

procedure Recover′(S)
if (∃S ∈ S : Verify(S) = 0) then return ⊥
Y ← Recover(S); return Y

The following says that ADSS scheme S′ = (Acc,Share,
Recover′) satisfies Auth.

Proposition 2. Let VS = (Acc,Share,Recover,Verify)
be a verifiable-ADSS scheme and let ADSS scheme S′ =
(Acc,Share,Recover′) be defined as above. Given adver-
sary Aauth we build adversary Avss, about as efficient as
Aauth, such that Advauth

S′ (Aauth) ≤ Advvss
VS (Avss).

Proof. We define Avss as follows:

Adversary AHvss

(S, S′)� AHauth
Y ← Recover′(S); Y ′ ← Recover′(S′)
if (Y = ⊥ or Y ′ = ⊥) then return ⊥
A← S.as; A′ ← S′.as; (M,V)← Y ; (M ′,V′)← Y ′

return (A,A′, S, S′)

Our syntax demands Recover(S) return ⊥ unless the
public parts of all S ∈ S are the same and likewise for
S′. If Aauth wins in game Gauth

S′ (Aauth) then Y 6= ⊥ and
Y ′ 6= ⊥. Since additionally S ∩ S′ 6= ∅, we get that all
shares in S ∪ S′ have the same public part, ensuring
that line 82 of game Gvss

VS (Avss) does not return false.
The definition of Recover′ tells us that line 83 also does
not return false. Our syntax demands that if Recover(S)
returns the non-⊥ value (M,V) then access structures
S.as = A of all S ∈ S are the same and additionally
S.id ∈ Acc(A), and likewise for S′. So line 84 also does
not return false. Now if Aauth wins we have Y, Y ′ 6= ⊥
and M 6= M ′, so Avss wins.

A.2 Comparison with robustness

Robustness was introduced in [31] and formalized
in [15]. We start by adapting the notion of the lat-
ter to ADSS. We consider the game of Fig. 11 and let
Advrob

S (A) = Pr[Grob
S (A)] be the advantage of an ad-

versary A in this game. The game picks R at random.
The adversary runs in two phases. In the first, it re-
turns A,M, T and state information St. The game then
creates S ← S.ShareH(A,M,R, T). In its second stage,
given St, the adversary can adaptively corrupt parties,
one by one, obtaining their shares, as long as the set G
of uncorrupted parties remains authorized and the set
B of bad (corrupted) parties remains unauthorized. Fi-
nally the adversary outputs a set B of shares for the cor-

Reimagining Secret Sharing 480

Game Grob
S (A)

90 H � Ω; R � S.Rand; (A,M, T,St)� AH(ε)
91 S←S.ShareH(A,M,R,T); n← |S|; G← [1..n]
92 B← AH,Corrupt(St)
93 if (B.id 6= B or B.as 6= A) then return false
94 S← S[G] ∪ B; Y ′ ← S.RecoverH(S)
95 if Y ′ 6= ⊥ then (M ′,V)← Y ′

96 return (Y ′ = ⊥ or M ′ 6= M)

97 procedure Corrupt(i)
98 if (G \ {i} 6∈ Acc(A)) then return ⊥
99 if (B ∪ {i} ∈ Acc(A)) then return ⊥
9A B ← B ∪ {i}; G← G \ {i} ; return S[i]

Fig. 11. Top: Defining robustness of ADSS scheme S. Adapted
from the secret-sharing definitions of [15, 31].

rupted parties. We require that, for any identity, there
is at most one share in B with that identity. The game
requires that the set of identities across all the shares
in B be precisely the set of corrupted parties, and that
all these shares name access structure A. The adver-
sary wins if the message M ′ returned by SS.Recover, on
S = S[G]∪B, is different from M , meaning either some
other string or ⊥.

The following says that Errx implies this Rob no-
tion, meaning if an enriched ADSS scheme has the for-
mer, then the ADSS scheme it induces (this means the
scheme in which Recover no long returns coins and other
algorithms are unchanged) automatically has the latter.
Errx is thus stronger than Rob. We can also give exam-
ples to show it is strictly stronger.

Proposition 3. Let S′ = (Acc,Share,Recover′) be
an enriched ADSS scheme satisfying full correctness.
Define Recover(S) to let (M,R,V) ← Recover′(∅, S)
and return (M,V), and now let S be the ADSS
scheme (Acc,Recover,Share). Given adversary Arob
we build adversary Aerrx such that Advrob

S (Arob) ≤
Adverrx

S′ (Aerrx). The running time of Aerrx is about that
of Arob.

Proposition 3. We assume line 93 does not return false
and define adversary AHerrx as follows:

Adversary AHerrx
R� S.Rand ; (A,M, T,St)� AHrob(ε)
S←S.ShareH(A,M,R,T); n← |S|; G← [1..n]
B← AH,CorruptSim

rob (St); S← S[G] ∪B

return (∅, S)

procedure CorruptSim(i)

if (G \ {i} 6∈ Acc(A)) then return ⊥
if (B ∪ {i} ∈ Acc(A)) then return ⊥
B ← B ∪ {i} ; G← G \ {i}; return S[i]

This adversary runs Arob, simulating the latter’s
Corrupt oracle. It returns the set of shares that game
Grob

S (Arob) would pass to Recover, with the known
information set to ∅. Let Y ′ ← Recover′(S) and if
Y ′ 6= ⊥ then parse it as (M ′, R′,V′) ← Y ′. Sup-
pose Arob wins in game Grob

S (Arob). This means ei-
ther Y ′ = ⊥ or M ′ 6= M . We want to show Aerrx
wins in game Gerrx

S′ (Aerrx). This means we must show
that Y ′ 6= UniqueExplanation(∅, S). This is true be-
cause all members of ExplanationsH(A, S) have the form
(A,M,R,V) for some V.

Robustness of an ADSS scheme does not imply that it
has our Auth property. For example, in a robust 2-of-
3 threshold scheme, if a share S[1] for M is combined
with shares S[2] and S[3] for another secretM ′, then all
parties, including the first, must recoverM ′, and party 1
is provided no indication that M ′ is not the secret that
was used to create S[1]. In the same situation, an auth
scheme would return ⊥, so that party 1 is not given a
secret inconsistent with her share. In fact, Auth implies
non-robustness, and robustness permits that a party can
recover anything that an adversary chooses if it controls
the remaining shares.

A.3 Comparison with repairability

Repairable threshold schemes [25, 32] allow a party to
reconstruct a missing share by interacting with fellow
shareholders. In our applications, we do not anticipate
that shareholders have any desire or ability to inter-
act with one another prior to recovery. They might not
even know who other shareholders are, or how to reach
them. We anticipate that if a party has lost her share,
or thinks it may no longer be accurate, she can ask the
dealer to regenerate it. If reproducibility was targeted,
the dealer can give the party the same share as before.
Without reproducibility, the dealer would need to re-
share the secret, which means it must contact all other
shareholders and get them to replace their shares.

B Base-Level Scheme S2
We describe an alternative to S1 that supports arbitrary
access structures instead of just threshold ones. The ac-

Reimagining Secret Sharing 481

X2X1 X3

X4

gate 7

1

21 3

4 5

6

2 2

1

L1,4 L2,4 L1,5 L2,5

L1,6 L2,6

X2,4X1,4

X5

X2,5X1,5

X6

X2,6X1,6

1

22

Gate-5 labels

(X1,5 , X2,5) ← share
2,2,5(X5) // 2-of-2 share X5 to get (X1,5 , X2,5)

L1,5 ← X1,5 ⊕ H
λ(1,5, X2) // encrypt X1,5 using token X2 as the key

L2,5 ← X2,5 ⊕ H
λ(2,5, X3) // encrypt X2,5 using token X3 as the key

Gate-6 labels

(X1,6 , X2,6) ← share
1,2,6(X6) // 1-of-2 share X6 to get (X1,6 , X2,6)

L1,6 ← X1,6 ⊕ H
λ(1,6, X4) // encrypt X1,6 using token X4 as the key

L2,6 ← X2,6 ⊕ H
λ(2,6, X5) // encrypt X2,6 using token X5 as the key

Gate-4 labels

(X1,4 , X2,4) ← share
2,2,4(X4) // 2-of-2 share X4 to get (X1,4 , X2,4)

L1,4 ← X1,4 ⊕ H
λ(1,4, X1) // encrypt X1,4 using token X1 as the key

L2,4 ← X2,4 ⊕ H
λ(2,4, X2) // encrypt X2,4 using token X 2 as the key

R

R

R

Encrypting the plaintext

C ← M ⊕ H
| M | (X6)

Tokens

X1 ←f λ (1)

X2 ←f λ (2)

X3 ←f λ (3)

X4 ←f λ (4)

X5 ←f λ (5)

X6 ←f λ (6)

R

R

R

R

R

R

procedure S2.ShareH(C,M,R, T)

200 〈n, q, in, th〉 ← C

201 for i ∈ [1..n+ q] do Xi ← fλR(i)
202 for g ∈ [n+ 1..n+ q] do
203 (ι1, . . . , ιη)← in(g); k ← th(g)
204 (X1,g , · · · , Xη,g)← sharek,η,gR (Xg)
205 for i ∈ [1..η] do Li,g ← Xi,g ⊕Hλ(i, g,Xιi)
206 L← 〈Li,g : g ∈ [n+ 1..n+ q], i ∈ [1..|in(g)]〉
207 C ← H|M|(Xn+q)⊕M ; C̃← 〈C,L〉
208 for i ∈ [1..n] do Si ← 〈i,C, Xi, C̃, ε〉
209 return (S1, . . . , Sn)

procedure sharek,η,gR (M)
210 M1‖ · · · ‖Mm←M where |M1|= · · ·= |Mm|=β

211 for (i, j) ∈ [1..j − 1]× [1..m] do ai,j ← fβR(g, i, j)
212 for j ← 1 to m do ϕj(x) = Mj +

∑k−1
i=1 ai,j · x

i

213 for i← 1 to η do Si ← ϕ1(i) ‖ · · · ‖ ϕm(i)
214 return (S1, . . . , Sη)

procedure S2.RecoverH(S)

220 {S1, . . . , St} ← S; X1, X2, . . .← ⊥
221 for i ∈ [1..t] do 〈ιi,C, Xιi , C̃, ε〉 ← Si

222 〈n, q, in, th〉 ← C; 〈C,L〉 ← C̃

223 〈Li,g : g ∈ [n+ 1..n+ q], i ∈ [1..|in(g)|]〉 ← L

224 for g ← n+ 1 to n+ q do
225 (ι1, . . . , ιη)← in(g); k ← th(g)
226 for i← 1 to η do Xi,g ← Li,g ⊕Hλ(i, g,Xιi)
227 Xg ← recoverk,η,gR (X1,g , . . . , Xη,g)
228 if Xn+q = ⊥ then return ⊥
229 return (H|C|(Xn+q)⊕C, S)

procedure recoverk,η,gR (S1, . . . , Sη)
230 P ← {(i, Si) : i ∈ [1..η], Si 6= ⊥}
231 if |P | < k then return ⊥
232 m← bytelength (relative to β) of all 2nd components of P
233 for j ∈ [1..m] let Pj be P with 2nd components having just byte j
234 for j ← 1 to m do ϕj(x)← Interpolateβ(Pi)
236 return ϕ1(0) · · ·ϕm(0)

Fig. 12. Secret-sharing scheme S2 for achieving classical privacy and accommodating any access structure. On reconstruction,
shares are either unchanged or absent. S2 = S2[β, f, λ] depends on β, λ, µ ∈ N and f : {0, 1}κ × N × {0, 1}∗∗ → {0, 1}∗ satisfying
|f`R(·)| = `. Hash function H`(x) returns ` uniform bits. The access structure is described by a circuit C = 〈n, q, in, th〉 of thresh-
old gates each having fewer than 2β inputs. Sharing depends on random bits R ∈ {0, 1}κ. No tag T is supported. Top: Illustration
of sharing with an access structure having AND gates 4 and 5, and OR gate 6. Each wire i is associated with a λ-bit token Xi. The
boxed text describes how the dealer computes randomizer U , tokens Xi, ciphertext C, and the Li,j labels. The share for party i has
a Xi for its secret part and a public part that includes C, U , and all the Li,j labels. Bottom: Definition of the scheme. Arithmetic at
line 213 is in the finite field with 2β points. Procedure Interpolate is as before. Procedures share and recover use arguments and local
variables M and Si distinct from the caller’s variables by those names.

Reimagining Secret Sharing 482

cess structure is represented by a circuit of threshold
gates, a compact way to describe any access structure.
That threshold gates are rich enough to represent any
access structure follows from the fact that AND and OR
gates are threshold gates, these two gates are already
enough to represent any monotone Boolean function,
and access structures must be monotone.

We name our scheme S2. It combines the folklore
idea of Yao’s secret-sharing scheme [3, 28, 42] with
Benaloh-and-Leichter’s scheme for monotone formulas
[16]. The reason we call Yao’s scheme “folklore” is be-
cause there is no written description of it by him.
Rather, he sketched the idea in one or more talks, in-
cluding one in 1989 [2, p. 228].

The reason for attending to non-threshold access
structures is that natural ones do arise. They tend to be
simple—things like “2 and (1 or 3)”, meaning that one
requires the participation of shareholder-2 and either
the participation of shareholder 1 or 3.

Threshold circuits. The top of Fig. 12 depicts a
threshold circuit C = (n, q, in, th) with n = 3 inputs
and q = 3 gates. The input wires are numbered 1, 2, 3.
The gates, and the wires coming out of them, are num-
bered 4, 5, 6. Wire 6 is the output wire. The draw-
ing shows connectivity that could be described by a
function in from gates to sets of wires where in(4) =
{1, 2}, in(5) = {2, 3}, and in(6) = {4, 5}. The thresh-
old value for gates 4 and 5 (written near its apex) is 2,
th(4) = th(5) = 2, so these are 2-out-of-2 gates, mean-
ing two-input AND gates. The threshold value of gate 6
is 1, th(6) = 1, so this is a two-input OR gate. The
circuit computes the boolean function x1x2 ∨ x2x3 =
x2(x1⊕x3) over bits x1, x2, x3 and thereby encodes the
access structure A = {{1, 2}, {2, 3}, {1, 2, 3}}.

Proceeding more formally, we follow a minimal-
ist formalization for garbled circuits [9], saying that a
threshold circuit (that is, a circuit of threshold gates)
is a 4-tuple C = (n, q, in, th). The values n ≥ 2 and
q ≥ 1 represent the number of input wires and the
number of gates, respectively. We number input wires
Inp = [1..n], gates Gates = [n + 1..n + q], and all wires
Wires = [1..n + q]. We identify a gate with the wire
coming out of it. The output wire for the entire circuit
is wire n + q. Function in: Gates → P(Wires) identi-
fies the inputs to each gate, |in(g)| ≥ 2. We will al-
ternatively regard in(g) as a numerically ordered list
(e.g., in(4) = (1, 2) rather than in(4) = {1, 2}). Function
th: Gates → N is the threshold value of each gate (how
many of the inputs must be 1 for the output to be). We

require that for all g ∈ Gates, ∅ 6= in(g) ⊆ [1..g − 1] (so
no cycles) and 1 ≤ th(g) ≤ |in(g)|.

For k ∈ [1..n] and X ∈ {0, 1}n let THk(X) be 1 if X
has k or more 1-bits, and 0 otherwise. For X ∈ {0, 1}n

and I ⊆ [1..n], let X[I] be the |I|-bit substring of X
that includes only the bits at positions in I (indexing
starting at 1). For a threshold circuit C = (n, q, in, th)
and X ∈ {0, 1}n, define C(X) = Eval(C, X) by

procedure Eval(C, X)
(n, q, in, th)← C

for g ← n+ 1 to n+ q do
X[g]← THth(g) (X[in(g)])

return X[n+ q]

For compactness, the code above extends the n-bit
string X to n + q bits, using the additional q bits to
record the values flowing on non-input wires.

A threshold circuit C = (n, q, in, th) names an n-
party access structure A = Acc(〈C〉) that contains G ⊆
[1..n] exactly when C(G) = 1, where G is the n-bit string
with G[i] = 1 when i ∈ G and G[i] = 0 when i 6∈ G.

Base-level scheme S2. We begin with an informal de-
scription, using the example at the top of Fig. 12. Con-
sider the task you face in reconstructing a secret M .
You obtain from shares the circuit shown in the figure—
everything drawn in black—and the gate labels Li,j writ-
ten in blue. You also extract from each share the strings
we call C and U . All these things are public. The secret
part of the share Si from party i is the λ-bit token we
denote Xi. For input wires, you either have the token
(if party i provided a share) or you do not, whence one
can regard Xi = ⊥. You now propagate tokens up the
circuit, getting tokens or ⊥-values for each gate, in nu-
merical order. For each gate, if you have the threshold
number of tokens for incoming wires then you will be
able to propagate your tokens across the gate, getting a
token for the output wire of the gate. If you don’t have
a threshold number of tokens for the gate, then the out-
going token is ⊥. At line 226, we take the convention
that if Xιi = ⊥ for some i, then Xi,g = ⊥. Continu-
ing in this way, you obtain a token for the output wire
exactly when you held input tokens for an authorized
set of users. If you obtain an output token, you use it
decrypt the ciphertext C that accompanies the circuit.
The result is the recovered secret.

How do you propagate a threshold number of to-
kens from the input wires of a gate to its output wire?
The gate label for each gate functions as a ciphertext
which gets decrypted using a the corresponding token

Reimagining Secret Sharing 483

as the key. The decryption also depends on U and the
gate number. The plaintext that results is a share of the
token for the wire coming out of the gate. The recov-
ered shares are combined using polynomial interpolation
(Shamir’s method) to recover the needed token. That’s
all there is to it. The top-right of Fig. 12 shows the shar-
ing process, while what we just described the recovery
process.

More formally now, scheme S2 = S2[β, f, λ] is pa-
rameterized by a block length β (likely 8), a PRF
f : {0, 1}κ×N×{0, 1}∗∗ → {0, 1}∗ satisfying |f `R(x)| = `

for all x, and integer λ (the length of gate-labels).The
scheme depends on a hash function H: {0, 1}N ×
{0, 1}∗∗ → {0, 1}∗, given as an oracle and satisfying
|H(`,x)| = `. We write H`(x) for H(`,x). The mes-
sage space for S2 is SS.Msg = {0, 1}∗ and the coins are
Rand = {0, 1}κ.

Strings in S2.Access encode threshold circuits
(n, q, in, th) where |in(j)| < 2β for j ∈ [n + 1..n + q].
Each circuit C encoded by a string in S2.Access rep-
resents the access structure S2.Acc(〈C〉) as described
above. The sharing and recovery algorithms of S2 are
given in Fig. 12. It is not hard to check the basic cor-
rectness of S2[β, f, λ], which we do in Appendix C.3.

We move on to show that S2[β, f, λ] satisfies Priv$
security if f is a secure PRF. In particular, we give the
following theorem, which relates the Priv$ advantage
of a given adversary A to the PRF advantage of a re-
lated PRF adversary plus “small terms” given that λ
are sufficiently large. The proof of the following is in
Appendix C.5.

Theorem 3. Let S2 = S2[β, f, λ] for valid parameters
β, f , λ. Then S2 satisfies Priv$. Concretely, given input-
selector I ∈ IIIpriv$ making qD Deal queries, whose access
structures has overall gate count of at most g, and given
Priv-adversary A making qH queries to H, we construct
a PRF adversary B such that

Advpriv$
S2,I (A) ≤ Advprf

f (B) + g(g − 1) + 2qH

2λ+1 . (2)

Adversary B is efficient when I and A are.

Use of a random-oracle-modeled hash function in S2 is
only for convenience: the encryption at lines 205 and 207
could also have been done with a standard-model tool,
like the same PRF f .

Game Gprf
f

(A)

b� {0, 1}; q ← 0; b′ � ANew,Fn; return (b = b′)

procedure New()
q ← q + 1; Kq � K

procedure Fn(i, `,X)
if i 6∈ [1..q] then return ⊥
if b = 1 then return f`Ki

(X)
if T [i, `,X] then return T [i, `,X]
return T [i, `,X]� {0, 1}`

Fig. 13. Security game capturing the PRF security of f : {0, 1}κ×
N×X → {0, 1}∗.

C Proofs

C.1 PRF security definition

Before providing any proofs we define PRF-advantage,
adapting a multiuser variant from Bellare, Canetti, and
Krawczyk [6], which lets the adversary simultaneously
attack any number of independently keyed instances,
the adaption being that their formalization was for
fixed-output-length (FOL) PRFs, while we are using
variable-output-length (VOL) PRFs. When that num-
ber of instances is at most q, the advantage degrades by
a multiplicative factor of q relative to the usual, single
instance case. That result is in the reference above for
the FOL case, but it is easy to check that it also holds
in the VOL case.

Let f : K × N × X → {0, 1}∗ be a function. Con-
sider the game Gprf

f given in Fig. 13. We define the
(multi-user) PRF-advantage of adversary A attacking f
as Advprf

f (A) = 2 Pr[Gprf
f (A)]− 1.

C.2 Equivalence of Errx notions

We claim that the two definitions of Errx given in
Section 6 are equivalent. To see this, we fix a hash
function H ∈ Ω, as well as some K ∈ Known and
S ∈ Shares. Let E1 = ExplanationsH(K, S) be the
set returned by the algorithm given in lines 78–7A.
Let E2 = ExplanationsH(K, S) be the set returned by
the alternate algorithm. First, suppose K ∈ Access.
Let (K,M,R,V) ∈ E2, which means that there ex-
ists some T ∈ Tag, G ∈ Acc(K), such that for S ←
ShareH(K,M,R, T), we have that V = S[G] and S ⊆ S

(viewing S as a set). Consider RecoverH(K,V), by full
correctness, we will get back (M,R,V). Furthermore,

Reimagining Secret Sharing 484

V.as = K since honestly dealt shares should have the
same access structure. This means that (K,M,R,V) ∈
E1. On the other hand, let (V.as,M,R,V) ∈ E1, which
means that (M,R,V) = RecoverH(K, S′) for some S′ ⊆
S. By the validity requirement, V is authorized, meaning
V = S[G] for S = ShareH(V.as,M,R,V.tag), and some
G ∈ Acc(K). This means that (V.as,M,R,V) ∈ E1.
Second, suppose K ∈ Shares. Let (A,M,R,V) ∈ E2,
which means that for some T ∈ Tag and G ∈ Acc(A),
S ⊆ S = ShareH(A,M,R, T) and K ⊆ V = S[G]. By
full correctness, RecoverH(K,V) must return (M,R,V).
Furthermore, V.as = A. Hence (A,M,R,V) ∈ E2. On
the other hand, let (V.as,M,R,V) ∈ E1, which means
that (M,R,V) = RecoverH(K, S′) for some S′ ⊆ S. By
the validity condition, V must be an authorized subset
of S = ShareH(V.as,M,R,V.tag), meaning V = S[G] for
some G ∈ Acc(V.as). By requirements of Recover, we
know that K ⊆ V ⊆ S′. Hence (V.as,M,R,V) ∈ E2. We
conclude that E1 = E2.

C.3 Correctness of the constructions

Basic correctness of S1[β, f]. We show S1 satisfies
basic correctness. Let 〈k, n〉 ∈ S1.Access, M ∈ Msg,
R ∈ {0, 1}κ, and S ← S1.Share(〈k, n〉,M,R, ε). Let G ⊆
P([1..n]). If G ∈ Acc(〈k, n〉) then |G| ≥ k, which means
that line 113 will not return ⊥ in S1.Recover(S[G]) and
the recovery will succeed (since 113 is the only place
in S1.Recover that can fail for a properly formatted set
of shares). On the other hand, if G 6∈ Acc(〈k, n〉) then
|G| < k, which means that line 113 will return ⊥ in
S1.Recover(S[G]).

Basic correctness of S2[β, f, λ]. We check that S1
satisfies basic correctness. Let C = 〈n, q, in, th〉 ∈
S2.Access, M ∈ S2.Messsage, R ∈ {0, 1}κ, H ∈ Ω,
and S ← S2.ShareH(C,M,R, ε). Let G ⊆ P([1..n]).
We claim that if the check of line 21D holds for a
gate g ∈ [n + 1..n + q] then the Xg recovered is the
same as the Xg sampled in the original sharing; fur-
thermore, if the check of line 21D does not hold for
gate g, then Xg = ⊥. This can be checked by induc-
tion on g ∈ [n + 1..n + q] and we omit the details. Let
sG be a string of length n such that sG[i] = 1 if i ∈ G
and 0 otherwise. If G ∈ Acc(C) then C(sG) = 1 by def-
inition. Note that this means line 21D will succeed for
g = n+q when we run S2.RecoverH(S[G]), which means
that Xn+q 6= ⊥ and in turn M will be recovered cor-
rectly. On the other hand, suppose G 6∈ Acc(C), then
C(sG) = 0. Note that this means line 21D will fail for

g = n + q in S2.RecoverHS[G], resulting in Xn+q = ⊥.
Hence S2.RecoverHS[G] will return ⊥ at line 21J.

Full correctness of SS = AX[S, f]. We first check
that SS satisfies basic correctness if S does. Let A ∈
SS.Access, M ∈ SS.Messsage, R ∈ {0, 1}κ, H ∈ Ω, and
S ← S2.ShareH(C,M,R, ε). Let G ⊆ P([1..n(Acc(A))]).
Consider SS.RecoverH(S[G]). If G ∈ Acc(A), we note
that by the basic correctness of S, the correct (K,G)
can be recovered at line 316 and in turn the correct M
and R. This means that the check at 319 will also suc-
ceed and the (A,M) returned by SS.RecoverH(S[G]) is
correct. On the other hand, suppose G 6∈ Acc(A). Then
by the basic correctness of S, SS.RecoverH(S[G]) will
return ⊥ at line 313. We move on to check the validity
condition. Fix some H ∈ Ω,K, and S ∈ Shares. Suppose
(M,R,V) ← SS.RecoverH(K, S). Then by construction
(specifically line 31B), we know that V = S indeed came
from an honest sharing of M and R.

Full correctness of SS = EX[S]. Fix some scheme
S, H ∈ Ω, A ∈ Access, M ∈ SS.Msg, R ∈ Rand, and T ∈
Tag. Let S = S.ShareH(A,M,R, T) and K ∈ {A}∪P(S).
If G ∈ Acc(A) then full correctness of S implies that
S.RecoverH(K, S[G]) = (M,R, S[G]), this also means
that SS.RecoverH(K, S[G]) = (M,R, S[G]) (line 83termi-
nates with i = 1). If G 6∈ Acc(A) then by monotonicity,
we know that for any S′ ⊆ S[G], S.RecoverH(K, S′) = ⊥.
This means that SS.RecoverH(K, S[G]) = ⊥ (⊥ must be
returned at line 84). Validity condition is inherited be-
cause both scheme share the same sharing algorithm and
that SS.RecoverH(K, S) only returns S.Recover(K, S′)
for some S′ ⊆ S.

C.4 Proof of Proposition 1

Besides the use of the PRF f , scheme S1 is essentially
Shamir’s scheme [40]. The shares of Shamir’s scheme can
be perfectly simulated as long as no more shares than
the threshold is given out. Implementing this intuition,
let us consider games G0 and G1 given in Fig. 14. Note
that G0 is the same as Gpriv

S1,I (A). Thus,

Advpriv$
S,I (A) = 2 · Pr[G0]− 1 . (3)

Since S1 does not use on any random-oracle-modeled
hash function, we omit writing H and giving it to the
adversary A. We emphasize that since I ∈ IIIpriv$, R is
sampled uniformly at random for each Deal query re-
gardless of the R value in the input. Coefficients Ri,j
are derived using f (with a uniformly random and inde-
pendent seeds, R) in G0 but are randomly sampled in

Reimagining Secret Sharing 485

Game G0,G1 and G2

c� {0, 1}; α← 0
(St,B)� IDeal

if (∃ j : B[j] ∈ Acc(A[j])) then return false
c′ ← A(St,S1[B[1]], . . .Sα[B[α]],P)
return (c = c′)

procedure Deal(A,M0,M1, R, T)
M ←Mc; α← α+ 1; 〈k, n〉 ← A; R � {0, 1}κ

M1‖ · · · ‖Mm ←M where |M1| = · · · = |Mm| = β

for (i, j) ∈ [1..(k − 1)]× [1..m] do
Rj,i ← fβR(i, j); G1,G2: Rj,i � {0, 1}β

for i ∈ [1..n] do
for j ∈ [1..m] do
Bi,j ←Mj +Rj,1 · i+Rj,2 · i2 + · · ·+Rj,k−1 · ik−1

G2: Bi,j � {0, 1}β

Si ← 〈i, 〈k, n〉, Bi,1 · · ·Bi,m, ε, ε〉
Sα ← (S1, . . . , Sn); P [α]← Sα.pub; return

Fig. 14. Game G0, G1, G2 used in the proof of Proposition 1.

BNew,Fn

c� {0, 1}; α← 0
(St,B)� IDeal

if (∃ j : B[j] ∈ Acc(A[j])) then return false
c′ ← A(St,S1[B[1]], . . .Sα[B[α]],P)
return (c = c′)

procedure Deal(A,M0,M1, R, T)
M ←Mc; α← α+ 1; New(); 〈k, n〉 ← A

M1‖ · · · ‖Mm ←M where |M1| = · · · = |Mm| = β

for (i, j) ∈ [1..(k − 1)]× [1..m] do
Rj,i ← Fn(α, β, (i, j))

for i ∈ [1..n] do
for j ∈ [1..m] do
Bi,j ←Mj +Rj,1 · i+Rj,2 · i2 + · · ·+Rj,k−1 · ik−1

Si ← 〈i, 〈k, n〉, Bi,1 · · ·Bi,m, ε, ε〉
Sα ← (S1, . . . , Sn); P [α]← Sα.pub; return

Fig. 15. PRF-adversary B used in the proof of Proposition 1.

G1. It is standard to check that

Pr[G0] = Pr[G1] + Advprf
f (B) , (4)

where B is the PRF-adversary given in Fig. 15. Consider
the game G2 given in Fig. 14. The values of Bi,j are
randomly sampled in G2. We claim that

Pr[G1] = Pr[G2] . (5)

This is because for any random degree k polynomial over
F, any k − 1 distinct points are uniformly distributed.

Game G0,G1 and G2

c� {0, 1}; α← 0; (St,B)← IDeal

if (∃ j : B[j] ∈ Acc(A[j])) then return false
c′ � AHash(St,S(1)[B[1]], . . . ,S(α)[B[α]],P)
return (c′ = c)

procedure Deal(A,M0,M1, R, T)
α←α+ 1; A[α]←A; M

(α)
0 ←M0; M

(α)
1 ←M1

Rα ← R � {0, 1}κ; (nα, qα, inα, thα)← A

for i ∈ [1..n+ q] do
Xi � {0, 1}λ; G0: Xi ← fλR(i)
If Xi ∈ X then

bad← true; G2: Xi � {0, 1}λ −X
X ← X ∪ {Xi}

for g ∈ [n+ 1..n+ q] do
(ι1, . . . , ιη)← in(g); k ← th(g)
(X1,g , · · · , Xη,g)← sharek,η,gR (Xg)
For i ∈ [1..η] do Li,g ← Xi,g ⊕Hλ(i, g,Xιi)

L← 〈Li,g : g ∈ [n+ 1..n+ q], i ∈ in(g)〉
C ← H|M|(Xn+q)⊕Mc; C̃← 〈L,C〉
for i ∈ [1..n] do Si ← 〈i,A, Xi, C̃, ε〉
S(α) ← (S1, . . . , Sn) ; P [α]← S(α).pub; return

procedure Hash`(x)
if not T [x, `] then T [x, `]� {0, 1}`

return T [x, `]

Fig. 16. Games G0, G1, G2 used in the proof of Theorem 3.
Algorithm share is defined in Fig. 12.

Note the both games return false if the adversary at-
tempts to obtain more shares (points) than the thresh-
old k. Finally, since the information given to A does not
depend on the bit c in game G2, we have that

Pr[G2] = 1
2 . (6)

Putting (3), (4), (5) and (6) together concludes the
proof.

C.5 Proof of Theorem 3

Equation (2) holds trivially if g ≥ 2λ, so we restrict to
the case where g < 2λ. Let A be an adversary and con-
sider the game Gpriv

S2,I (A), where I ∈ IIIpriv$. Recall that
this is the class of input-selectors that select coins R in-
dependently and uniformly at random for each Deal

query. Consider the games G0, G1 and G2 given in
Fig. 16. In contrast to Gpriv

S2[β,f,λ],I(A), we lazily sample
H for each query via the procedure HASH given in game
G0 (which is the same one used for G1 and G2). Game

Reimagining Secret Sharing 486

Game H0, H1 and H2

c� {0, 1}; α← 0; (St,B)← IDeal

for j ← 1, . . . , α do
for ι ∈ [1..nj] do sj [ι]← (ι ∈ B[j])
for g ← nj + 1 to nj + qj do

sj [g]← TH
th(j)(g),|in(j)(g)|(sj [in

(j)[g]])
(ι1, . . . , ιη)← in(j)(g); k ← th(j)(g)
(X(j)

1,g , · · · , X
(j)
η,g)← sharek,η,g

R(j) (X(j)
g)

For i ∈ [1..η] do

H2: if sj [g] = 0 then X(α)
i,g � {0, 1}

λ

Li,g ← Xi,g ⊕Hλ(i, g,Xιi)
if (∃α : sα[n(α) + q(α)] = 1) then return false
c′ � AH(S(1)[B[1]], . . . ,S(α)[B[α]], P (1), . . . , P (α))
return (c′ = c)

procedure Deal(A,M0,M1, R)
α← α+ 1; A[α]← A; R(α) ← R � {0, 1}κ

M
(α)
0 ←M0; M

(α)
1 �M1

(n(α), q(α), in(α), th(α))← A

for i ∈ [1..n(α) + q(α)] do
X

(α)
i ← {0, 1}λ −X ; V [X(α)

i]← α; X ← X ∪ {X}
L(α)←〈Li,g�{0, 1}λ: g∈ [n(α)+ 1..n(α) + q(α)], i ∈ in(α)(g)〉
C(α) ← {0, 1}|M|; C̃← 〈L(α), C(α)〉
for i ∈ [1..n] do Si ← 〈i,A, X(α)

i , C̃, ε〉
S(α) ← (S1, . . . , Sn) ; P (α) ← S(α).pub; return

procedure Hash`(x)
j ← ⊥; if not T [x, `] then T [x, `]� {0, 1}`

if (i, g,X)← x and j ← V [X] then
Z ← X

(j)
i,g ⊕L

(j)
i,g ; (ι1, . . . , ιη)← in(j)(g) ; κ← ιi

if X←x and j←V [X] then κ←n(j)+q(j); Z←M
(j)
c ⊕C(j)

if (` = |Z|) and (X = X
(j)
κ) then

if (sj [κ] = 0) then
bad← true; H0: T [x, `]← Z

else T [x, `]← Z

return T [x, `]

Fig. 17. Games H0, H1, H2 used in the proof of Theorem 3.
Algorithm Share is defined in Fig. 12.

G0 is equivalent to Gpriv
S2[β,f,λ],I(A). Hence

Pr[Gpriv
S2[β,f,λ],I(A)] = Pr[G0] . (7)

We claim that

Pr[G0] = Pr[G1] + Advprf
f (B) , (8)

where B is given on the left column of Fig. 18. This is
because games G0 and G1 differ only in how Xi is de-
fined, this being PRF-derived in G0 and uniformly sam-
pled in G1. (Note that the PRF keys are the R-values
sampled by I, which are independently and uniformly
random.) It is standard to build the PRF adversary

Adversary B

c� {0, 1}; α← 0; (St,B)← ADeal

if (∃ j : B[j] ∈ Acc(A[j])) then return false
c′ � AHash,Deal(St,S(1)[B[1]], . . . ,S(α)[B[α]], P (1), . . . , P (α))
return (c′ = c)

procedure Deal(A,M0,M1, R, T)
New() ; α← α+ 1
A[α]← A; M0

α ←M0; M1
α �M1

(nα, qα, inα, thα)← A

for i ∈ [1..n+ q] do Xi ← Fn(α, λ, i)
for g ∈ [n+ 1..n+ q] do

(ι1, . . . , ιη)← in(g); k′ ← th(g)
(X1,g , · · · , Xη,g)← sharek,η,gR (Xg)
For i ∈ [1..η] do Li,g ← Xi,g ⊕Hλ(i, g,Xιi)

L← 〈Li,g : g ∈ [n+ 1..n+ q], i ∈ in(g)〉
C ← H|M|(Xn+q)⊕Mc; C̃← 〈L,C〉
for i ∈ [1..n] do Si ← 〈i,A, Xi, C̃, ε〉
S(α) ← (S1, . . . , Sn) ; P (α) ← S(α).pub; return

procedure Hash`(x)
if not T [x, `] then T [x, `]� {0, 1}`

return T [x, `]

Fig. 18. PRF-adversary B used in the proof of Theorem 3. Algo-
rithm Share is defined in Fig. 12.

whose PRF advantage bounds the closeness of these two
games. We note that G1 and G2 are identical-until-bad.
By the Fundamental Lemma of Game Playing [14] and
the standard birthday argument,

Pr[G1]− Pr[G2] ≤ Pr[G1 sets bad] = g(g − 1)
2λ+1 . (9)

Next, we shall rewrite the code of Deal so that the
labels L do not contain information about bit c. Con-
cretely, consider H0 given in Fig. 17. The label L(α)

i,j

are randomly sampled in H0. Note that game H0 “pro-
grams” the hash function given to A to behave con-
sistently with the L(α)

i,j . Furthermore, in game H0, we
compute whether each wire is known to the adversary
and store this information inside variable s. Specifically,
sα[g] = 1 if and only if the adversary can compute the la-
bel for wire g in the α-th sharing from the set of corrupt
shares. Game H0 is constructed to behave identically to
G2, and

Pr[G2] = Pr[H0] . (10)
Next, let us consider games H1 given in Fig. 17. Game
H1 no longer programs Hash to return the correct value
when the corresponding gate is not corrupt (unknown
to the adversary via corrupt shares). Since H0 and H1
are identical-until-bad,

Pr[H0]− Pr[H1] ≤ Pr[H1 sets bad] . (11)

Reimagining Secret Sharing 487

We shall bound Pr[H1] and Pr[H1 sets bad]. First, bit c
is only used when computing the value Z for the output
gates in HASH, and in H1, HASH is not programmed to
output Z when the gate is not corrupt (which must be
true for all output gates). Hence H1 does not leak any
information about bit c, and

Pr[H2] = 1
2 . (12)

Next, consider H2, which differ from H1 only in the
value of X(α)

i,g for g ∈ [(n(α) + 1)..(n(α) + q(α))] such that
sι[g] = 0 (gate g is not corrupt). Similar to the proof of
Proposition 1, we can substitute the values of X(α)

i,g to
uniform random ones. So,

Pr[H1 sets bad] = Pr[H2 sets bad] . (13)

Also, no information about X(α)
g is given if sα[g] = 0.

Hence for each Hash query there is at most 2−λ proba-
bility of setting bad. Using a union bound over qH queries
to Hash, we have

Pr[H2 sets bad] ≤ qH

2λ
. (14)

Finally, Equation (2) is derived by combining Equations
(7–14) and the definition of Advpriv$

S2[β,f,λ],I(A):

Advpriv$
S2[β,f,λ],I(A) = 2 Pr[Gpriv

S2[β,f,λ],I(A)]− 1 .

C.6 Proof of Theorem 1

For part 1, consider the games G0 and G1 given in
Fig. 19. For simplicity, we will consider oracles h and H
separately. Our game sequence will modify the code for
H while keeping the code for h unchanged. In addition,
we will give adversary access to both H and h, instead
of Hash. Game G0 is Gpriv

SS,II(AA) with a lazily sampled H
(via procedure Hash) and the sharing algorithm of SS
inlined inside the Deal oracle. Queries to Hash in G0
are programmed to be consistent with queries to Deal

(note that Hash queries happen after all Deal queries
are made). The only difference between game G1 and
game G0 is that Hash is not programmed to be consis-
tent with Deal by omitting the boxed code. By con-
struction, G0 and G1 are identical-until-bad. Hence

1
2 + 1

2Advpriv
SS,II(AA) = Pr[G0]

= Pr[G1] + (Pr[G0]− Pr[G1])

≤ Pr[G1] + Pr[G1 sets bad] , (15)

Game Gx //x ∈ {0, 1, 2, 3}

c� {0, 1}; i← 0; (St,B)← IIDeal

if (∃ j : B[j] ∈ Acc(A[j])) then return false
c′ � AAH,h(St,S′1[B[1]], . . . ,S′i[B[i]], P1, . . . , Pi)
return (c = c′)

procedure Deal(A,M0,M1, R, T)
i← i+ 1; A[i]← A

Ji ← {0, 1}2κ; Ki ← {0, 1}κ; Li � {0, 1}κ

Xi ← 〈A,Mc, R, T 〉
C ←M ⊕ f |M|K (ε); D ← R⊕ fκK(0)

G3: C � {0, 1}|M|; D � {0, 1}κ

Z ← Ki; G2,G3: Z � {0, 1}κ

Si ← Shareh(A,Z,Li, T)
for j ← 1, . . . , |S| do

S′i[j]← 〈Si[j].id, A,Si[j].sec, 〈C,D, Ji,Si[j].pub〉, T 〉
Pi ← S′i.pub
return

procedure H`(X)
if (∃j ≤ i : X = Xj and ` = 4κ) then

bad← true; G0: T [X]← Jj‖Kj‖Lj
if T`[X] = ⊥ then T`[X]� {0, 1}`

return T`[X]

procedure h`(X)
if T ′` [X] = ⊥ then T ′` [X]� {0, 1}`

return T ′` [X]

Fig. 19. Games G0,G1,G2, and G3 for proof of part 1 of
Theorem 1. The boxed code are only executed by the game(s)
indicated.

where the inequality is by the Fundamental Lemma of
Game Playing [14]. We move on to bound Pr[G1] and
Pr[G1 sets bad]. Consider game G2 and game G3 given
in Fig. 19. Game G2 differs from G1 only by the value
of Z given to SS.Share. Game G3 differs from G2 only
in uniform sampling of ciphertext C and D. We build
input selector I (which is in class IIIpriv$) as well as Priv$
adversaries A0 and A1 (all given in Fig. 20) such that

Pr[G1] = Pr[G2] + Advpriv$
S,I (A0) (16)

and

Pr[G1 sets bad] = Pr[G2 sets bad] + Advpriv$
S,I (A1) .

(17)
To check the above, notice that the only difference be-
tween G1 and G2 is the input message to Share. Hence,
we can utilize the Priv$ game for the underlying scheme
S to bridge the different between G1 and G2. Further-
more, adversary A0 is built to simulate and return the

Reimagining Secret Sharing 488

Adversary IDeal

i← 0; b� {0, 1}; (St,B)� IIDealSim

X← (X1, . . . , Xi); C← (C1, . . . , Ci, D1, . . . , Di)
St′ ← (St,X,C,J,T)
return (St′,B)

subroutine DealSim(A,M0,M1, R, T)
i← i+ 1
T [i]← T ; J[i]� {0, 1}

Ki � {0, 1}κ ; Li � {0, 1}κ

Ci ←Mb⊕ f
|M|
Ki

(ε); Di ← R⊕ fκKi
(0)

Z � {0, 1}κ

return Deal(A,Ki, Z, Li, T)

Adversary Ahx(St′,S1, . . . ,Si, . . .)

//x ∈ {0, 1, ε}
d� {0, 1}; (St,X,C,J,T)← St′

for i← 1, . . . , |T | do
for j ← 1, . . . , |Si| do

S′i[j]← 〈Si[j].id,Si[j].sec,
〈Ci, Di, Ji,Si[j].pub〉, T 〉

Pi ← S′i.pub
b′ � AAH,h(St,S′1, . . . ,S′i, P1, . . . , Pi)
A0: return (b = b′)
A1: return bad
A: if d then (b = b′) else return bad

subroutine H`(X)
if (∃j ≤ qd : X = Xj) then bad← true
if T`[X] = ⊥ then T`[X]� {0, 1}`

return T`[X]

Fig. 20. Left: input-selector I. Right: Adversaries A0, A1 and A for proof of part 1 of Theorem 1.

Adversary BNew,Fn
x //x ∈ {0, 1, ε}

d� {0, 1}; c� {0, 1}; (St,B)← IIDeal

If (∃ j : B[j] ∈ Acc(A[j])) then
return false

c′ � AAH,h(St,S′1[B[1]], . . . ,
S′i[B[i]], P1, . . . , Pi)

B0: return (c = c′)
B1: return bad
B: if d then (c = c′) else return bad

subroutine Deal(A,M0,M1, R, T)
New(); i← i+ 1; A[i]← A

Ji ← {0, 1}; Ki ← {0, 1}κ; Li � {0, 1}κ

Xi ← 〈A,Mc, R, T 〉; Ri ← R

Ci ←Mc⊕Fn|Mc|
i (ε)

Di ← R⊕Fnκ(0); Z � {0, 1}κ

Si ← S.Shareh(A,Z,Li, T)
for j ← 1, . . . , |Si| do

S′i[j]← 〈Si[j].id, A,Si[j].sec,
〈Ci, Di, Ji,Si[j].pub〉, T 〉

Pi ← S′i.pub
return

subroutine H`(X)
if (∃j ≤ qd : X = Xj) then bad← true
if T`[X] = ⊥ then T`[X]� {0, 1}`

return T`[X]

procedure h`(X)
if T ′` [X] = ⊥ then T ′` [X]� {0, 1}`

return T ′` [X]

Adversary P(A,B,T ,L,St)

for i← 1, . . . , |A| do
A← A[i]; T ← T [i]; Ji ← {0, 1}κ

C � {0, 1}|M|; D � {0, 1}κ

Z � {0, 1}κ

Si ← Shareh(A,Z,Li, T)
for j ← 1, . . . , |Si| do

S′i[j]← 〈Si[j].id, A,Si[j].sec,
〈C,D, Ji,Si[j].pub〉, T 〉

AAH,h(St,S1[B[1]], . . . ,S|A|[B[|A|]],
P1, . . . , P|A|)

p� [q]
return (Mp, Rp)

subroutine H`(X)
q ← q + 1; 〈A,Mq , Rq , T 〉 ← X

if not T`[X] then T`[X]� {0, 1}`

return T`[X]

procedure h`(X)
if T ′` [X] = ⊥ then T ′` [X]� {0, 1}`

return T ′` [X]

Fig. 21. Adversaries for part 1 of Theorem 1. Left: adversaries B0,B1, and B. Right: Predictor P.

Reimagining Secret Sharing 489

return value of either game G1 or game G2, while A1
is built to simulate and return the flag bad. This jus-
tifies (16) and (17). Since A behaves as Ad based on a
randomly chosen bit d,

2 ·Advpriv$
S,I (A) = Advpriv$

S,I (A0) + Advpriv$
S,I (A1) . (18)

We proceed to bound Pr[G2] and Pr[G2 sets bad]. We
build PRF adversaries B0 and B1 (given in the left panel
of Fig. 21) such that

Pr[G2] = Pr[G3] + Advprf
f (B0) (19)

and

Pr[G2 sets bad] = Pr[G3 sets bad] + Advprf
f (B1) . (20)

The above is true because the only different between
game G2 and game G3 is how values of C and D are
derived (game G2 uses f while game G3 samples them
uniformly at random). Since B behaves as Bd based on
a randomly chosen bit d,

2 ·Advprf
f (B) = Advprf

f (B0) + Advprf
f (B1) . (21)

Finally, we claim that

Pr[G3] = 1
2 (22)

and

Pr[G3 sets bad] ≤ (qD + q) · pred(II) . (23)

Equation (22) is by the fact that no information about
bit c is leaked to either the input selector nor the ad-
versary. Equation (23) is justified as follows. Consider P
given in the right panel of Fig. 21, which makes at most
qD + q queries to Hash. Predictor P randomly selects
and (M,R) from one of the Hash queries to return as
the its guess. If G3 sets bad, then it must be that some
query X to Hash matches some Xj during the execu-
tion of AA. We lastly need to check that the inputs and
oracle for AA is simulated correctly for AA by P—this
is possible because in G3, variables C,D and Z are all
uniformly random and can be simulated by P. This jus-
tifies Equation (23). Finally, Equation (1) is obtained
by combining Equations (15–23).

For part 2, consider the game Gauth
SS (A), modified as

per our Section 6 discussion on adjusting Auth, to al-
low for Recover also returning coins. Let (M,R,V) and
(M ′, R′,V′) be the variables defined on line 52′ and 53′.
If V ∩ V′ 6= ⊥ and (M,R) 6= (M ′, R′) it must be that
there is a collision among the J-values in the two dif-
ferent sharings—that is, a collision on the first 2κ-bits

in the output of H. This is because line 31B ensures
that the Ji values are the same across all shares. Over-
all, there are at most qH + 2 queries to H (since Recover
calls H exactly once). Hence the game outputs true with
probability at most (qH + 1)(qH + 2)2−2κ.

C.7 Proof of Theorem 2

For part 1, consider the adversary A (constructed from
AA) and games G0,G1 given in Fig. 22. Adversary A
runs AA to obtain inputs that it forwards to SS.Recover,
and returns only the valid sets of shares VSS,V

′
SS re-

turned by SS.Recover. By construction G0 = Gauth
SS (AA)

and G1 = Gauth
S (A). By construction of EX (in partic-

ular line 83 in Fig. 9) and the full correctness of SS,
we know that if neither of the two runs of SS.Recover
returns ⊥ then it must be that VSS = VS, V′SS = V′S,
MSS = MS, and M ′SS = M ′S. Hence

Advauth
SS (AA) = Pr[G0] ≤ Pr[G1] = Advauth

S (A) , (24)

which concludes the proof for part 1.
For part 2, fix some H ∈ Ω. We claim that for any

(K, S),

SS.RecoverH(K, S) = UniqueExplanationH(K, S) .
(25)

Before we show this we first point out some
useful facts about SS.Recover and S.Recover.
First, if S.RecoverH(K, S) = (M,R, S) then
SS.RecoverH(K, S) = (M,R, S) (take S1 = S at the
for loop at line 82). Second, if SS.RecoverH(K, S) 6= ⊥
then it must be that S.RecoverH(K, S′) 6= ⊥ for
some S′ ⊆ S. Now to show (25), consider the set
E = ExplanationsH(K, S) and consider the following
cases.

Case 1: E = ∅. First, we necessarily have

UniqueExplanationHash(K, S) = ⊥

by the definition of UniqueExplanation. Second,
SS.RecoverH(K, S) is also ⊥ since there does not exists
Si ⊆ S that makes S.RecoverH(K, Si) return non-⊥.

Case 2a: E 6= ∅, UniqueExplanationH(K, S) =
⊥. We will show that SS.RecoverH(K, S) = ⊥. Let
S1, . . . , Sw be the K-plausible shares defined on line 80
of SS.RecoverH(K, S). Let Si be the first share (small-
est i) for which (M,R,V) ← S.RecoverH(K, Si) and
Si = V is true. Note that SS.Recover(K, Si) must also
return (M,R,V). Hence Si ∈ ExplanationsH(K, S). We
claim that there must exist some j > i such that
Sj ∈ ExplanationsH(K, S) and Sj 6⊆ Si. This is the by

Reimagining Secret Sharing 490

Adversary AH

(K, S,K′, S′)� AAH

(MSS, R,VSS)← SS.RecoverH(K, S)
(M ′SS, R

′,V′SS)← SS.RecoverH(K′, S′)
Return (VSS,V

′
SS)

Game G0 / G1

H � Ω
(K, S,K′, S′)� AAH

(MSS, R,VSS)← SS.RecoverH(K, S)
(M ′SS, R

′,V′SS)← SS.RecoverH(K′, S′)
(MS,VS)← S.RecoverH(VSS)
(M ′S,V

′
S)← S.RecoverH(V′SS)

return VSS ∩ V′SS 6= ∅ and (MSS, R) 6= (M ′SS, R
′) // G0

return VS ∩ V′S 6= ∅ and MS 6= M ′S // G1

Fig. 22. Adversary A (left) and games G0 and G1 (right) used in the proof of Theorem 2.

the fact that UniqueExplanationH(K, S) returns ⊥. To
see this, suppose for contradiction that for all j > i

such that Sj ∈ ExplanationsH(K, S), Sj ⊆ Si. Then
since the list of K-plausible shares were exhaustive,
Si must have made the if statement at line 73–75
true, which contradicts the assumption for case 2a. The
existence of such Sj means that for (Mj , Rj ,Vj) ←
SS.RecoverH(K, Sj), Vj 6⊆ Vi. Lastly, there exists some
k ≥ j such that Sk = Vj . Furthermore, we have that
for (Mk, Rk,Vk) ← S.RecoverH(K, Sk), Vk 6⊆ Vi. This
means that SS.RecoverH(K, S) returns ⊥ at line 88.

Case 2b: E 6= ∅, UniqueExplanationH(K, S) 6=
⊥. We will show that SS.RecoverH(K, S) 6= ⊥. Let
S0 ⊆ S be a set of shares whose recovery (M,R,V) ←
SS.RecoverH(K, S) makes the if-statement true at
line 73 of UniqueExplanationH(K, S). Let S1, . . . , Sw
be the K-plausible shares defined on line 80 of
SS.RecoverH(K, S). Now consider the sequence of K-
plausible shares resulting from S0 ⊆ S (this is a sub-
sequence of S1, . . . , Sw), say S′1, . . . , S

′
v. Suppose S′1 =

Sj for some j ≥ 1 (there is a unique j that sat-
isfy this). We claim that for any 0 < i < j either
S.RecoverH(K, Si) = ⊥ or for (·, ·,Vi) ← Si, Vi 6= Si.
This means that during the run of SS.RecoverH(K, S),
the for-loop at line 83 ends with i = j. Seeking a
contradiction, suppose S.RecoverH(K, Si) 6= ⊥ and for
(·, ·,Vi) ← S.RecoverH(K, Si), Vi = Si. We know that
Si ∈ ExplanationsH(K, S). Hence Si = Vi ⊆ Vj . This
means that j ≤ i, which contradicts the assumption
that i < j. Lastly, note that SS.RecoverH(K, S) only re-
turns ⊥ if there exists S′ ∈ {S1, . . . , Sw} − P(Sj) such
that S.RecoverH(K, S′) = (·, ·, S′) and S′ 6⊆ Sj (note
that SS.RecoverH(K, S′) = S.RecoverH(K, S′) here).
But this cannot be true since this would mean that
S′ ∈ ExplanationsH(K, S) and it would have made
UniqueExplanationH(K, S) return ⊥.

	Reimagining Secret Sharing: Creating a Safer and More Versatile Primitive by Adding Authenticity, Correcting Errors, and Reducing Randomness Requirements
	1 Introduction
	2 Preliminaries
	3 Syntax
	4 Privacy
	5 Authenticity
	6 Error Correction
	7 Constructions
	8 Conclusions & Open Problems
	A Relations
	A.1 Comparison with VSS
	A.2 Comparison with robustness
	A.3 Comparison with repairability

	B Base-Level Scheme S2
	C Proofs
	C.1 PRF security definition
	C.2 Equivalence of Errx notions
	C.3 Correctness of the constructions
	C.4 Proof of Proposition 1
	C.5 Proof of Theorem 3
	C.6 Proof of Theorem 1
	C.7 Proof of Theorem 2

