
Peachy Parallel Assignments (EduHPC 2020)

Henri Casanova∗, Rafael Ferreira da Silva†, Arturo Gonzalez-Escribano‡,

William Koch∗, Yuri Torres‡, David P. Bunde§

∗University of Hawaii †University of Southern California

Honolulu, HI, USA Marina Del Rey, CA, USA

{henric,kochwill}@hawaii.edu rafsilva@isi.edu

‡Universidad de Valladolid §Knox College

Valladolid, Spain Galesburg, IL, USA

{arturo,yuri.torres}@infor.uva.es dbunde@knox.edu

Abstract—Peachy Parallel Assignments are high-quality assign-
ments for teaching parallel and distributed computing. They are
selected competitively for presentation at the Edu* workshops.
All of the assignments have been successfully used in class and
they are selected based on the their ease of adoption by other
instructors and for being cool and inspirational to students. This
paper presents a paper-and-pencil assignment asking students to
analyze the performance of different system configurations and
an assignment in which students parallelize a simulation of the
evolution of simple living organisms.

Index Terms—Peachy Parallel Assignments, Parallel comput-
ing education, High-Performance Computing education, Parallel
programming, Curriculum Development, Performance analysis,
Parallel simulation, OpenMP, MPI, GPGPU

I. INTRODUCTION

Class assignments are an important part of teaching parallel

and distributed computing and high-performance computing.

Students spend a lot of time on the assignments, which provide

the practice students need to master concepts taught in lecture

and reading. Good assignments also provide context for the

material taught, demonstrating its applicability to important

real-world problems and, ideally, promoting student interest

in their field. It is not easy for instructors to create such as-

signments as it requires both creativity and time. There is also

risk involved because not every seemingly-great assignment

idea works well in practice.

To help educators save time and improve the quality of their

assignments, a Peachy Parallel Assignment track was added

to the Edu* series of workshops on Parallel and Distributed

Computing Education. The assignments are presented at the

workshops [1]–[3] and also collected on a webpage (https://

tcpp.cs.gsu.edu/curriculum/?q=peachy) to make them easy for

others to find and adopt.

Peachy Parallel Assignments are selected via a competitive

process. All of them must have been successfully used in class.

Then they are selected based on the following criteria:

• Adoptable — A Peachy Parallel Assignment should be

easily adopted by a variety of instructors. The assignment

should be well-described, including a discussion of the

context in which it was used and how it might be adapted

to other classes, and provide the needed materials (e.g.

assignment handout for students and given code). This

criteria also includes how broadly applicable the assign-

ment is to others; ideally, the assignment should have stu-

dents practice widely-taught concepts using commonly-

used programming languages and hardware, have few

prerequisites, and (with variations) be appropriate for

different levels of students.

• Cool and inspirational — A Peachy Parallel Assignment

should excite students through the problem being solved

and/or the artifact that students create. This will encour-

age students to spend time on the assignment and ideally

tell others about it.

This effort is inspired by the SIGCSE conference’s Nifty

Assignment sessions, which focus on assignments for intro-

ductory computing courses. (See http://nifty.stanford.edu for

more details.)

In this paper, we present the following Peachy Parallel

Assignments:

• A paper-and-pencil assignment asking students to analyze

the performance of different system configurations, and

• The third assignment of a series dedicated to familiarizing

students with OpenMP, MPI, and CUDA/OpenCL, and

the differences between them. This third one proposes the

parallelization of a simulation of the evolution of simple

living organisms.

The Peachy Parallel Assignments webpage (https://tcpp.cs.

gsu.edu/curriculum/?q=peachy) has the materials needed to

adopt each of these assignments. It also lists the Peachy

Parallel Assignments presented at previous workshops. Please

come and browse these great assignment ideas. Then, consider

submitting your own assignments to our next competition.

II. REASONING ABOUT MULTI-CORE APPLICATION

PERFORMANCE (CASANOVA, FERREIRA DA SILVA, KOCH)

In the first assignment, students estimate the performance

of a parallel application on a multi-core machine, and then

evaluate various hardware/software upgrades. This assignment



Task 1
3400 GFlop

10 GB
Input  File
2000 MB

Task 2
3000 GFlop

12 GB

Task 3
3600 GFlop

10 GB

Task 4
3800 GFlop

8 GB

Task 5
9000 GFlop

15 GB

Fig. 1. A DAG for a program that implements bioinformatics computations
on a large database of DNA sequences. Task 1 applies some simple cleanup
process to the sequences. Then, three tasks (Tasks 2-4) need to be executed to
compute different similarity metrics between the sequences in the database.
Once all these metrics are obtained, a complicated machine learning classifi-
cation process is applied to the metrics (Task 5).

requires no programming, and can thus be used in early

courses. It could also be used in later courses to make sure

that students can reason about parallel performance before

embarking onto more involved homework and/or programming

assignments. The learning objectives for this assignment are

that students will

• Be able to estimate the execution time of a parallel

program on a multi-core machine;

• Be able to reason about task- and data-parallelism;

• Be able to quantify how load-balancing and idle time

impact performance;

• Be able to reason about task dependencies; and

• Be able to reason about how RAM constraints limit

parallelism.

Students are presented with an application structured as a 5-

task Directed Acyclic Graph (Fig. 1). Each task has an amount

of work to perform (in Gflop) and a RAM footprint (in GB).

The first task also reads in an input file. Three of the five

tasks are independent. In a first question, student are asked to

estimate the execution time of the application on a particular

setup: a 2-core virtual machine with given memory capacity

and disk bandwidth. This setup does not make it possible to

execute the three independent tasks in parallel.

In a second question, students are given the choice of

four possible upgrades to the virtual machine configuration:

(i) increasing the disk bandwidth; (ii) adding one more

core and increasing RAM; (iii) increasing core speed; and

(iv) changing the implementation of one of the tasks to expose

data-parallelism (with a remaining sequential component). The

objective is to execute the application in under one minute,

but only one of the above upgrades can be purchased. For

each upgrade, students must determine whether the objective

is achieved or not.

The assignment is available on-line at: https://eduwrench.

org/pedagogic modules/pdcc/multi core computing/. The as-

signment itself is on the last tab (“Capstone”) of that page,

while the preceding tabs target prerequisites, as explained

hereafter.

A. Prerequisites

This assignment requires no programming whatsoever, but

does require that students have learned the concepts behind

parallelism, load balancing, I/O overheads, RAM capacity,

task dependencies, and data parallelism. This is why the

assignment is part of an on-line pedagogic module on multi-

core computing. Specifically, it is the 6th and last tab in

a Web page where the previous 5 tabs are: Parallelism on

Multicore machines; Load Imbalance; I/O and RAM; Task

Dependencies; and Data Parallelism. Each of these 5 tabs

consists of not only a pedagogic narrative, but also of hands-

on activities including simulation experiments (that students

can run in the browser, i.e. no software/hardware installation

or configuration is required) [4] and sets of practice and open

questions. Therefore, although the assignment has the above

listed concepts as prerequisites, all these concepts are covered

in the same Web page and available to students if needed.

Other prerequisites are that students understand that a

program can consist of a set of “tasks”, where each task needs

to perform I/O and compute operations, and needs to occupy

some space in RAM. Therefore, students should understand

notions of RAM capacity, I/O speed, and CPU compute speed.

These prerequisites are actually targeted by another pedagogic

module (“Single-Core Computing”) on the same Web site (see

https://eduwrench.org/modules/). The only prerequisite for that

module is that students understand the concepts of programs

running on a computer.

Finally, some of the pedagogic narrative in the above makes

reference to Computer Architecture and Operating Systems

concepts, each time explaining these concepts in a simple,

and self-contained manner (only referencing classic textbooks

in case students want to know more details). It should thus be

possible for university freshmen to go through the above two

modules, culminating in the Peachy assignment, within their

first year of Computer Science education.

B. Weaknesses, Strengths, and Previous Uses

Weaknesses – The main weakness of this assignment is that it

is “pencil-and-paper” and thus does not provide students with

hands-on experience or “excitement” about doing something

real. This is a design choice for the pedagogic module that

comprises this assignment, which targets students with no

programming experience so as to allow for easy integration

in early courses. Note that in the prerequisite sections on the

same Web page, students do have opportunities for hands-on

experience by running simulation experiments in the browser.

Strengths – The assignment should be extremely easy to

integrate into existing courses, either as a first introduction to

performance issues for parallel computing, or as a complement

to other assignments that may entail programming. Although

the assignment has prerequisites, these prerequisites are cov-

ered in the same Web page in a compelling manner. It should

be possible for an instructor to simply tell students “go through



the module, make sure you do the practice questions, and turn

in your answers to the assignment (which is the last section of

the module)”. In addition, the prerequisite sections also include

open questions (i.e., whose answers are not provided), which

an instructor may add as a preamble to the assignment.

Previous Uses – This assignment (in fact the entire pedagogic

module that it is a part of) has been used successfully in

two offerings of a 300-level undergraduate Computer Science

course at the University of Hawai‘i at Mānoa [5]. It is currently

being used in a 400-level course in the Fall 2020 semester.

The 300-level course is an Operating Systems (OS) Princi-

ples course, in which students learn what OSs do and how

they do it through both non-programming and programming

assignments. This assignment, which is part of a Parallel

Computing module toward the end of the course, then turns

students’ attention to application performance issues given

underlying hardware (and the OS managing it). The 400-level

course is a Concurrent and High Performance Programming

course in which students develop a lot of multi-threaded code

for interactivity and performance goals. While a lot of the

course focuses on programming, it is important that students

also reason about performance at a more general/abstract

level. This is where the module is being used, pointing out

performance goals/issues that students then implement in code

for a subsequent programming assignment. The authors have

not yet been able to use the assignment in lower-division

courses, but other instructors who do teach those courses are

being contacted.

This assignment has also been used to train individual

students before they participate in parallel computing and high

performance computing research projects at the University of

Southern California.

Evaluation Results – Quantitative and qualitative data was

collected about the student experience in the above university

courses. Information collected included: answers to pre- and

post-knowledge tests, questionnaires about overall experience

and perceived self-learning, logs of student use of the Web

page (and in particular of their use of the simulators in

the tabs that precede the assignment), and assessment of

learning via exam questions. Each semester, the assignment

was significantly evolved (in terms of presentation, structure,

and content) based on student feedback. Student feedback was

overall very positive.

In the Fall ’19 semester (55 students), the last time the

assignment was used, 89% of the students were engaged in

the material as seen in their active use of the simulation

activities (i.e., the active learning opportunities leading up to

the assignment). Results on the final exam questions for the

assignment’s learning objectives showed that most students

have achieved these objectives.

A key question is whether students enjoyed the overall

experience, which we can determine based on questionnaire

answers. Although 45% of students found the assignment

“somewhat difficult” or “very difficult”, 100% of them found it

“useful” or “somewhat useful”. 87% of the students answered

“yes” to the question “Are you interested in learning more

about Parallel and Distributed Computing?”. In university

course evaluations, student comments included “I liked the

simulation. It was a nice addition to visually see as well as

check my work”, “Getting exposure to this type of content

as it wasn’t really brought up anywhere else”, and “Love

the visuals”. Note that some of the above questions were

more about the overall pedagogic approach than about the

details of this particular assignment, and that feedback changed

(for the better) with each version of this assignment. In fact,

the assignment as it is available on-line has been modified

significantly since the last time it was used in the classroom.

III. SIMULATION OF LIFE EVOLUTION

(GONZALEZ-ESCRIBANO, TORRES)

The second assignment was used in a Parallel Computing

course to teach the approaches to the same problem in different

parallel programming models. It targets concepts of shared-

memory programming with OpenMP, distributed-memory pro-

gramming with MPI, and/or GPU programming with CUDA

or OpenCL. This assignment is based on a simulation of life

evolution, where protozoa learn to survive getting food in

a competitive environment. The program is designed to be

simple, easy to understand by students, and to include specific

parallelization and optimization opportunities. Although there

is a quite direct parallel solution in the three programming

models, the program has plenty of opportunities for further

improvements. It extends the ideas of two previously presented

assignments, in order to use different synchronization and

communication structures, load balancing strategies, and code

optimizations. This assignment has been successfully used in

parallel programming contests during a real course using the

performance obtained by the students’ code as a measure of

success.

A. Idea and context

Different programming models use different approaches for

the parallelization of application structures. Understanding

these differences is key for students to get into more advanced

techniques, and to face parallel programming in current hetero-

geneous platforms. For several years, we have been teaching

a course of Parallel Programming that introduces the basics of

OpenMP, MPI, and CUDA or OpenCL. Two previous Peachy

Parallel Assignments have been presented in this series [1], [3].

All of them are designed to be parallelized by the students dur-

ing three one-week programming contests, where they work

to obtain the best performance with a mixed competitive and

collaborative strategy [6]. Although this kind of assignment

can be used to teach a single programming model, the series

of them can also show which concepts and ideas can be reused

across different models, and which can not, exposing the ap-

proach differences and the conceptual shift between them. For

example, the students learn the differences between controlling

race-conditions in shared-memory vs. using distributed data

structures with explicit communications, or dealing with tiling

and memory hierarchies in GPU coprocessors.





program can also write a text-mode graphical representation

of the culture space after each simulation step. This can be

used to visualize the evolution of the simulation (see Fig. 2)

and the genetic code of the protozoa at the end.

The basic concepts covered when using the OpenMP version

of the assignment are parallelization of loops, reductions,

atomic operations and scheduling. In the MPI version, the

students work with array partitions, variable size communi-

cations, reductions, asynchronous operations, communicators

and load balance. For GPU programming, the main ideas

are embarrassing parallel kernels, thread-block geometries

and sizes, non-trivial atomic operations, simple reductions,

minimizing communication operations, and overlapping of

kernels and host computing. Taylor approximations are used in

the sequential program to compute trigonometric functions in a

form that is portable to GPUs. The program also shows how to

use fixed-point arithmetic to avoid precision and concurrency

problems in all models.

Several advanced optimizations can also be discovered

and applied. Examples include better dynamic memory man-

agement, code reorderings to allow easier parallelization or

better operation overlapping, clever load-balancing techniques

adapted to the scenario features, the use of proper loop

scheduling clauses in OpenMP, thoughtful decisions about

replicated vs. distributed computing in MPI, fusing kernels,

new uses for the shared memory or non-trivial reductions on

GPUs, etc.

D. Variants

This assignment covers an important class of parallel pro-

grams based on interactions of particles or agents with an

environment represented with a grid. The different parts of

the code inside the simulation iteration present different prob-

lems that can be solved incrementally. The students can use

similar parallelization approaches and optimization techniques

in many other programs and situations.

The assignment can easily be adapted and modified by the

teacher to include new simulation scenarios, different food

spreading policies, or different protozoa features, such as

movement, replication or gene mutation functions. Different

data structures can be used to store the protozoa lists, resulting

in different algorithms and techniques to manage them. More

sophisticated protozoa that can explore neighbor cells and

react to the information obtained can be devised for a more

complex and realistic simulation with a different communica-

tion structure. Finally, better graphical and online interfaces

can be devised to enrich the learning experience.

REFERENCES

[1] M. Agung, M. Amrizal, S. Bogaerts, R. Egawa, D. Ellsworth,
J. Fernandez-Fabeiro, A. Gonzalez-Escribano, S. Kundu, A. Lazar,
A. Malony, H. Takizawa, and D. Bunde, “Peachy parallel assignments
(EduHPC 2019),” in IEEE/ACM Workshop on Education for High-

Performance Computing (EduHPC 2019). Denver (CO), USA: IEEE,
2019.

[2] O. Ozturk, B. Glick, J. Mache, and D. Bunde, “Peachy parallel assign-
ments (EduPar 2019),” in Proc. 9th NSF/TCPP workshop on parallel and

distributed computing education (EduPar), 2019.

[3] E. Ayguadé, L. Alvarez, F. Banchelli, M. Burtscher, A. Gonzalez-
Escribano, J. Gutierrez, D. Joiner, D. Kaeli, F. Previlon, E. Rodriguez-
Gutiez, and D. Bunde, “Peachy parallel assignments (EduHPC 2018),”
in IEEE/ACM Workshop on Education for High-Performance Computing

(EduHPC 2018). Dallas (TX), USA: IEEE, 2018.
[4] H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jethwani,

W. Koch, S. Albrecht, J. Oeth, and F. Suter, “Developing accurate and
scalable simulators of production workflow management systems with
wrench,” Future Generation Computer Systems, vol. 112, pp. 162–175,
2020.

[5] R. Tanaka, R. Ferreira da Silva, and H. Casanova, “Teaching Parallel
and Distributed Computing Concepts in Simulation with WRENCH,” in
Workshop on Education for High-Performance Computing (EduHPC),
2019.

[6] A. Gonzalez-Escribano, V. Lara-Mongil, E. Rodriguez-Gutiez, and Y. Tor-
res, “Toward improving collaborative behaviour during competitive pro-
gramming assignments,” in IEEE/ACM Workshop on Education for High-

Performance Computing (EduHPC 2019). Denver (CO), USA: IEEE,
2019.

[7] A. K. Dewdney, “Simulated evolution: wherein bugs learn to hunt
bacteria,” Scientific American, vol. 260, no. 5, pp. 138–141, May 1989.

[8] J. Fresno, A. Ortega-Arranz, H. Ortega-Arranz, A. Gonzalez-Escribano,
and D. Llanos, Gamification-Based E-Learning Strategies for Computer

Programming Education. IGI Global, 2017, ch. 6. Applying Gamification
in a Parallel Programming Course.

APPENDIX: REPRODUCIBILITY

A. Reasoning about Multi-core Application Performance

This assignment and the pedagogic module that it is a part

of has been used successfully in two offerings of a 300-

level undergraduate Operating Systems (OS) Principles course

at the University of Hawai‘i at Mānoa. It is currently (Fall

2020) being used in a 400-level course on Concurrent and

High Performance Programming. It has also been used to

train individual students before they participate in parallel

computing and high performance computing research projects

at the University of Southern California.

The entire module, including supporting simulations, runs

within a webpage. Thus, instructors adopting this assignment

do not need to worry about provisioning hardware or installing

software.

B. Simulation of Life Evolution

The assignment has been used in the context of a Parallel

Computing course, in the third year of the Computing Engi-

neering grade at the University of Valladolid (Spain).

The material of the assignment, including a handout, the

starting sequential code, and some input data sets to be used

as examples will be made publicly available through the CDER

courseware repository.

The on-line judge program used in the programming con-

tests is named Tablon, and it was developed by the Trasgo

research group at the University of Valladolid (https://trasgo.

infor.uva.es/tablon/). The contest software uses the Slurm

queue management software to interact with the machines in

the cluster of our research group. During the course we used

the Slurm 18.08.3 release.

The machine of the cluster used for the OpenMP contest is

heracles, a server with four AMD Opteron 6376 @ 2.3Ghz

CPUs, having a total of 64 cores and 128 GB of RAM.

The machine used in the CUDA/OpenCL contests is hydra,

a server with two Intel Xeon E5-2609v3 @1.9 GHz CPUs,



with 12 physical cores and 64 GB of RAM. It is equipped

with 4 NVIDIA’s GPUs (CUDA 3.5), GTX Titan Black, 2880

cores @980 MHz, and 6 GB of RAM.

During the MPI contest we use heracles and hydra in

combination with two other servers to create a heterogeneous

cluster. The other two machines are: thunderbird, with an Intel

i5-3330 @2.4 GHz CPU and 8 GB of RAM; and phoenix, with

an Intel QCore @2.4 Ghz CPU with 6 GB of RAM.

All machines are managed by a CentOS 7 operating system.

The compilers and system software used are GCC v7.2, and

CUDA v10.2.

The assignment provides the sequential code and the input

parameters of the test-beds for the students. Other test-beds

used by the on-line judge during the contest are also provided.

The results of the contests are publicly available until the

start of the next semester at http://frontendv.infor.uva.es.


	Introduction
	Reasoning about Multi-core Application Performance (Casanova, Ferreira da Silva, Koch)
	Prerequisites
	Weaknesses, Strengths, and Previous Uses

	Simulation of Life Evolution (Gonzalez-Escribano, Torres)
	Idea and context
	Using the assignment
	Concepts covered
	Variants

	References
	Reasoning about Multi-core Application Performance
	Simulation of Life Evolution


