Peachy Parallel Assignments (EduHPC 2020)

Henri Casanova*, Rafael Ferreira da Silval, Arturo Gonzalez-Escribano?,
William Koch*, Yuri Torrest, David P. Bunde®

*University of Hawaii
Honolulu, HI, USA
{henric,kochwill } @ hawaii.edu

YUniversidad de Valladolid
Valladolid, Spain
{arturo,yuri.torres } @infor.uva.es

Abstract—Peachy Parallel Assignments are high-quality assign-
ments for teaching parallel and distributed computing. They are
selected competitively for presentation at the Edu* workshops.
All of the assignments have been successfully used in class and
they are selected based on the their ease of adoption by other
instructors and for being cool and inspirational to students. This
paper presents a paper-and-pencil assignment asking students to
analyze the performance of different system configurations and
an assignment in which students parallelize a simulation of the
evolution of simple living organisms.

Index Terms—Peachy Parallel Assignments, Parallel comput-
ing education, High-Performance Computing education, Parallel
programming, Curriculum Development, Performance analysis,
Parallel simulation, OpenMP, MPI, GPGPU

I. INTRODUCTION

Class assignments are an important part of teaching parallel
and distributed computing and high-performance computing.
Students spend a lot of time on the assignments, which provide
the practice students need to master concepts taught in lecture
and reading. Good assignments also provide context for the
material taught, demonstrating its applicability to important
real-world problems and, ideally, promoting student interest
in their field. It is not easy for instructors to create such as-
signments as it requires both creativity and time. There is also
risk involved because not every seemingly-great assignment
idea works well in practice.

To help educators save time and improve the quality of their
assignments, a Peachy Parallel Assignment track was added
to the Edu* series of workshops on Parallel and Distributed
Computing Education. The assignments are presented at the
workshops [1]-[3] and also collected on a webpage (https://
tepp.cs.gsu.edu/curriculum/?g=peachy) to make them easy for
others to find and adopt.

Peachy Parallel Assignments are selected via a competitive
process. All of them must have been successfully used in class.
Then they are selected based on the following criteria:

o Adoptable — A Peachy Parallel Assignment should be
easily adopted by a variety of instructors. The assignment
should be well-described, including a discussion of the
context in which it was used and how it might be adapted

tUniversity of Southern California
Marina Del Rey, CA, USA
rafsilva@isi.edu

§Knox College
Galesburg, IL, USA
dbunde @knox.edu

to other classes, and provide the needed materials (e.g.
assignment handout for students and given code). This
criteria also includes how broadly applicable the assign-
ment is to others; ideally, the assignment should have stu-
dents practice widely-taught concepts using commonly-
used programming languages and hardware, have few
prerequisites, and (with variations) be appropriate for
different levels of students.

e Cool and inspirational — A Peachy Parallel Assignment
should excite students through the problem being solved
and/or the artifact that students create. This will encour-
age students to spend time on the assignment and ideally
tell others about it.

This effort is inspired by the SIGCSE conference’s Nifty
Assignment sessions, which focus on assignments for intro-
ductory computing courses. (See http://nifty.stanford.edu for
more details.)

In this paper, we present the following Peachy Parallel
Assignments:

o A paper-and-pencil assignment asking students to analyze
the performance of different system configurations, and
o The third assignment of a series dedicated to familiarizing
students with OpenMP, MPI, and CUDA/OpenCL, and
the differences between them. This third one proposes the
parallelization of a simulation of the evolution of simple
living organisms.
The Peachy Parallel Assignments webpage (https://tcpp.cs.
gsu.edu/curriculum/?q=peachy) has the materials needed to
adopt each of these assignments. It also lists the Peachy
Parallel Assignments presented at previous workshops. Please
come and browse these great assignment ideas. Then, consider
submitting your own assignments to our next competition.

II. REASONING ABOUT MULTI-CORE APPLICATION
PERFORMANCE (CASANOVA, FERREIRA DA SILVA, KOCH)

In the first assignment, students estimate the performance
of a parallel application on a multi-core machine, and then
evaluate various hardware/software upgrades. This assignment

Task 2
3000 GFlop
12GB

Input File Task 1 Task 3 Task 5
2600 MB 3400 GFlop 3600 GFlop 9000 GFlop
10GB 10GB 15 GB

Task 4
3800 GFlop
8 GB

Fig. 1. A DAG for a program that implements bioinformatics computations
on a large database of DNA sequences. Task 1 applies some simple cleanup
process to the sequences. Then, three tasks (Tasks 2-4) need to be executed to
compute different similarity metrics between the sequences in the database.
Once all these metrics are obtained, a complicated machine learning classifi-
cation process is applied to the metrics (Task 5).

requires no programming, and can thus be used in early
courses. It could also be used in later courses to make sure
that students can reason about parallel performance before
embarking onto more involved homework and/or programming
assignments. The learning objectives for this assignment are
that students will

o Be able to estimate the execution time of a parallel
program on a multi-core machine;

« Be able to reason about task- and data-parallelism;

o Be able to quantify how load-balancing and idle time
impact performance;

« Be able to reason about task dependencies; and

« Be able to reason about how RAM constraints limit
parallelism.

Students are presented with an application structured as a 5-
task Directed Acyclic Graph (Fig. 1). Each task has an amount
of work to perform (in Gflop) and a RAM footprint (in GB).
The first task also reads in an input file. Three of the five
tasks are independent. In a first question, student are asked to
estimate the execution time of the application on a particular
setup: a 2-core virtual machine with given memory capacity
and disk bandwidth. This setup does not make it possible to
execute the three independent tasks in parallel.

In a second question, students are given the choice of
four possible upgrades to the virtual machine configuration:
(i) increasing the disk bandwidth; (ii) adding one more
core and increasing RAM; (iii) increasing core speed; and
(iv) changing the implementation of one of the tasks to expose
data-parallelism (with a remaining sequential component). The
objective is to execute the application in under one minute,
but only one of the above upgrades can be purchased. For
each upgrade, students must determine whether the objective
is achieved or not.

The assignment is available on-line at: https://eduwrench.
org/pedagogic_modules/pdcc/multi_core_computing/. The as-
signment itself is on the last tab (“Capstone”) of that page,

while the preceding tabs target prerequisites, as explained
hereafter.

A. Prerequisites

This assignment requires no programming whatsoever, but
does require that students have learned the concepts behind
parallelism, load balancing, I/O overheads, RAM -capacity,
task dependencies, and data parallelism. This is why the
assignment is part of an on-line pedagogic module on multi-
core computing. Specifically, it is the 6th and last tab in
a Web page where the previous 5 tabs are: Parallelism on
Multicore machines; Load Imbalance; I/O and RAM; Task
Dependencies; and Data Parallelism. Each of these 5 tabs
consists of not only a pedagogic narrative, but also of hands-
on activities including simulation experiments (that students
can run in the browser, i.e. no software/hardware installation
or configuration is required) [4] and sets of practice and open
questions. Therefore, although the assignment has the above
listed concepts as prerequisites, all these concepts are covered
in the same Web page and available to students if needed.

Other prerequisites are that students understand that a
program can consist of a set of “tasks”, where each task needs
to perform I/O and compute operations, and needs to occupy
some space in RAM. Therefore, students should understand
notions of RAM capacity, I/O speed, and CPU compute speed.
These prerequisites are actually targeted by another pedagogic
module (“Single-Core Computing”) on the same Web site (see
https://eduwrench.org/modules/). The only prerequisite for that
module is that students understand the concepts of programs
running on a computer.

Finally, some of the pedagogic narrative in the above makes
reference to Computer Architecture and Operating Systems
concepts, each time explaining these concepts in a simple,
and self-contained manner (only referencing classic textbooks
in case students want to know more details). It should thus be
possible for university freshmen to go through the above two
modules, culminating in the Peachy assignment, within their
first year of Computer Science education.

B. Weaknesses, Strengths, and Previous Uses

Weaknesses — The main weakness of this assignment is that it
is “pencil-and-paper” and thus does not provide students with
hands-on experience or “excitement” about doing something
real. This is a design choice for the pedagogic module that
comprises this assignment, which targets students with no
programming experience so as to allow for easy integration
in early courses. Note that in the prerequisite sections on the
same Web page, students do have opportunities for hands-on
experience by running simulation experiments in the browser.
Strengths — The assignment should be extremely easy to
integrate into existing courses, either as a first introduction to
performance issues for parallel computing, or as a complement
to other assignments that may entail programming. Although
the assignment has prerequisites, these prerequisites are cov-
ered in the same Web page in a compelling manner. It should
be possible for an instructor to simply tell students “go through

the module, make sure you do the practice questions, and turn
in your answers to the assignment (which is the last section of
the module)”. In addition, the prerequisite sections also include
open questions (i.e., whose answers are not provided), which
an instructor may add as a preamble to the assignment.
Previous Uses — This assignment (in fact the entire pedagogic
module that it is a part of) has been used successfully in
two offerings of a 300-level undergraduate Computer Science
course at the University of Hawai‘i at Manoa [5]. It is currently
being used in a 400-level course in the Fall 2020 semester.
The 300-level course is an Operating Systems (OS) Princi-
ples course, in which students learn what OSs do and how
they do it through both non-programming and programming
assignments. This assignment, which is part of a Parallel
Computing module toward the end of the course, then turns
students’ attention to application performance issues given
underlying hardware (and the OS managing it). The 400-level
course is a Concurrent and High Performance Programming
course in which students develop a lot of multi-threaded code
for interactivity and performance goals. While a lot of the
course focuses on programming, it is important that students
also reason about performance at a more general/abstract
level. This is where the module is being used, pointing out
performance goals/issues that students then implement in code
for a subsequent programming assignment. The authors have
not yet been able to use the assignment in lower-division
courses, but other instructors who do teach those courses are
being contacted.

This assignment has also been used to train individual

students before they participate in parallel computing and high
performance computing research projects at the University of
Southern California.
Evaluation Results — Quantitative and qualitative data was
collected about the student experience in the above university
courses. Information collected included: answers to pre- and
post-knowledge tests, questionnaires about overall experience
and perceived self-learning, logs of student use of the Web
page (and in particular of their use of the simulators in
the tabs that precede the assignment), and assessment of
learning via exam questions. Each semester, the assignment
was significantly evolved (in terms of presentation, structure,
and content) based on student feedback. Student feedback was
overall very positive.

In the Fall 19 semester (55 students), the last time the
assignment was used, 89% of the students were engaged in
the material as seen in their active use of the simulation
activities (i.e., the active learning opportunities leading up to
the assignment). Results on the final exam questions for the
assignment’s learning objectives showed that most students
have achieved these objectives.

A key question is whether students enjoyed the overall
experience, which we can determine based on questionnaire
answers. Although 45% of students found the assignment
“somewhat difficult” or “very difficult”, 100% of them found it
“useful” or “somewhat useful”. 87% of the students answered
“yes” to the question “Are you interested in learning more

about Parallel and Distributed Computing?”’. In university
course evaluations, student comments included “I liked the
simulation. It was a nice addition to visually see as well as
check my work™, “Getting exposure to this type of content
as it wasn’t really brought up anywhere else”, and “Love
the visuals”. Note that some of the above questions were
more about the overall pedagogic approach than about the
details of this particular assignment, and that feedback changed
(for the better) with each version of this assignment. In fact,
the assignment as it is available on-line has been modified
significantly since the last time it was used in the classroom.

III. SIMULATION OF LIFE EVOLUTION
(GONZALEZ-ESCRIBANO, TORRES)

The second assignment was used in a Parallel Computing
course to teach the approaches to the same problem in different
parallel programming models. It targets concepts of shared-
memory programming with OpenMP, distributed-memory pro-
gramming with MPI, and/or GPU programming with CUDA
or OpenCL. This assignment is based on a simulation of life
evolution, where protozoa learn to survive getting food in
a competitive environment. The program is designed to be
simple, easy to understand by students, and to include specific
parallelization and optimization opportunities. Although there
is a quite direct parallel solution in the three programming
models, the program has plenty of opportunities for further
improvements. It extends the ideas of two previously presented
assignments, in order to use different synchronization and
communication structures, load balancing strategies, and code
optimizations. This assignment has been successfully used in
parallel programming contests during a real course using the
performance obtained by the students’ code as a measure of
success.

A. Idea and context

Different programming models use different approaches for
the parallelization of application structures. Understanding
these differences is key for students to get into more advanced
techniques, and to face parallel programming in current hetero-
geneous platforms. For several years, we have been teaching
a course of Parallel Programming that introduces the basics of
OpenMP, MPI, and CUDA or OpenCL. Two previous Peachy
Parallel Assignments have been presented in this series [1], [3].
All of them are designed to be parallelized by the students dur-
ing three one-week programming contests, where they work
to obtain the best performance with a mixed competitive and
collaborative strategy [6]. Although this kind of assignment
can be used to teach a single programming model, the series
of them can also show which concepts and ideas can be reused
across different models, and which can not, exposing the ap-
proach differences and the conceptual shift between them. For
example, the students learn the differences between controlling
race-conditions in shared-memory vs. using distributed data
structures with explicit communications, or dealing with tiling
and memory hierarchies in GPU coprocessors.

This new assignment targets different synchronization and
communication structures and different heterogeneous pro-
gramming techniques in GPUs. Some examples include vari-
able size communications, clear opportunities for CPU and
GPU computation overlapping, and the use of fixed-point
arithmetic to solve concurrency problems. It maintains a
clear focus on simple but effective code parallelizations and
optimizations, while introducing more opportunities for the
advanced students, and new and different choices in all the
three programming models considered.

The idea is based on a simulation of the evolution of
bugs feeding on bacteria in the muddy bottom of a stagnant
pool of water [7]. The culture space is described by a 2-
dimensional matrix where food values are stored. Some new
food is randomly spread during each iteration, either evenly or
with a higher concentration is a specific zone. Some protozoa
are randomly located at the beginning. The organisms are
described by genes indicating the probability of advancing
straight-forward or turning during their search for food. The
food found by an organism is accumulated, and spent each
iteration to keep it alive and moving. When an organism
reaches maturity (a given number of simulation steps alive), if
they have accumulated enough food, they may split in two new
organisms. However, random mutations occur, and the genes
of the descendants slightly change, modifying their moving
behaviour.

During the simulation, we observe how the population
grows and decreases, how the organisms survive or starve.
After enough iterations, the genes of the survivors present
different features depending on the scenario parameters. The
simulation results are determined by random seeds provided as
arguments. Thus, they are reproducible. The input parameters
can be chosen to generate specific situations with different
growing and shrinking population sizes, different load dis-
tributions across the culture, different ratios of concurrency
problems when protozoa collide in the same cell to get food,
etc.

B. Using the assignment

As in the previous assignments of this series, the provided
material includes a sequential code in C language, a test-bed
of input parameters, and a handout explaining the assignment.
The students can use common compilers and PC platforms to
develop and test their codes. An automatic judge tool with an
on-line public ranking is used to provide a fair arena, and to
keep the students engaged during the contests with competitive
and collaborative rewards [6], [8]. The judge configuration
is done by simply providing tuples of input arguments and
expected output results, representing the scenarios chosen
by the teacher. The tool executes the programs in a real
parallel system and measures the total performance to rank
the students. The sections of the sequential code that should
be parallelized and optimized by the students are clearly
marked, skipping arguments processing, scenario initialization,
OpenMP/MPI/CUDA setup, time measuring and results out-
put. Thus, the original codes can be directly compiled and run

Iteration: 3000

(2)
(1)) 5 . (1)

(1)
(1) . * 1)

. 1@ .
1 @ - (D) (2)
1) 1)
1) 2) @1 (1) .
g (2) * L (MMM (2)(D) . (1)
(1) (1) (2)(1)(7M(2)(4) (1) (2)(1) (1)
(1) (1) (1) + (@2)2)(2) (3) +
(DA (2)(4) (1)) (1) (1)(1)(1)(1)(1)(1)
2)(4)(1)(3)(4) D)2 (1) (1) (D) 1) .
(1) (1) (1) (1)(5) * (1)(1) o o
- (2) (3)@2AMM2M(2)(2) (2 * 1)
(2)(1)(3)(2) (3)(1)(2)(1) .
3)(1) (1) @11 (D) . = 1)
(1) (1) * (1D * (M@ 1)
1 (1 * * (1)
(1)(2) (1) (1)(1) (1)(1) * .
1) (2) (1) (1) 1)
(1) . (1)

Fig. 2. Graphical representation of the culture space at a given step, provided
as output by the evolution simulation program. The numbers in brackets
represent the number of protozoa at the different points of the 2D surface.
Symbols represent the amount of remaining food in other positions.

by the students, or submitted to the judge tool even before
starting to parallelize them.

The assignment was used in an elective Parallel Program-
ming course in the third year of Computer Engineering degree
at the University of Valladolid (Spain). The students have al-
ready studied concepts of operating systems and concurrency,
and they have used the C programming language in a couple of
previous courses. There were 70 students enrolled. The degree
of participation was high, with more than 12,000 requests for
program execution on our parallel cluster, including both tests
and judgment requests.

A survey conducted at the end of the course shows that
the students have a good degree of satisfaction with the
learning experience. In a Likert scale from 1 to 5, the mode
value is 5, and the average is approximately 4. They think
that this practical work illustrates the main concepts of the
course and provides opportunities to deepen in the subject.
For example, some students optimized their codes to obtain a
CUDA program up to 10 times faster than the best code of
other students that passed the minimum level.

The results also indicate that this third Peachy Parallel
Assignment in the series requires up to 50% more working
time than the previous ones [1], [3], mainly due to the
debugging of dynamic-memory management errors.

C. Concepts covered

The stages of each simulation step of the program are:
(1) Randomly spreading new food on the culture matrix; (2)
Moving the organisms according to their genes; (3) Harvesting
food from the culture; (4) Eliminating dead organisms from
the list; and (5) Using reductions to collect statistical data.
The output of the program is a set of statistical data such as
the maximum number of organisms alive in any iteration, the
age of the oldest organism observed, the maximum level of
food accumulated in a cell of the culture, etc. If desired, the

program can also write a text-mode graphical representation
of the culture space after each simulation step. This can be
used to visualize the evolution of the simulation (see Fig. 2)
and the genetic code of the protozoa at the end.

The basic concepts covered when using the OpenMP version
of the assignment are parallelization of loops, reductions,
atomic operations and scheduling. In the MPI version, the
students work with array partitions, variable size communi-
cations, reductions, asynchronous operations, communicators
and load balance. For GPU programming, the main ideas
are embarrassing parallel kernels, thread-block geometries
and sizes, non-trivial atomic operations, simple reductions,
minimizing communication operations, and overlapping of
kernels and host computing. Taylor approximations are used in
the sequential program to compute trigonometric functions in a
form that is portable to GPUs. The program also shows how to
use fixed-point arithmetic to avoid precision and concurrency
problems in all models.

Several advanced optimizations can also be discovered
and applied. Examples include better dynamic memory man-
agement, code reorderings to allow easier parallelization or
better operation overlapping, clever load-balancing techniques
adapted to the scenario features, the use of proper loop
scheduling clauses in OpenMP, thoughtful decisions about
replicated vs. distributed computing in MPI, fusing kernels,
new uses for the shared memory or non-trivial reductions on
GPUs, etc.

D. Variants

This assignment covers an important class of parallel pro-
grams based on interactions of particles or agents with an
environment represented with a grid. The different parts of
the code inside the simulation iteration present different prob-
lems that can be solved incrementally. The students can use
similar parallelization approaches and optimization techniques
in many other programs and situations.

The assignment can easily be adapted and modified by the
teacher to include new simulation scenarios, different food
spreading policies, or different protozoa features, such as
movement, replication or gene mutation functions. Different
data structures can be used to store the protozoa lists, resulting
in different algorithms and techniques to manage them. More
sophisticated protozoa that can explore neighbor cells and
react to the information obtained can be devised for a more
complex and realistic simulation with a different communica-
tion structure. Finally, better graphical and online interfaces
can be devised to enrich the learning experience.

REFERENCES

[1] M. Agung, M. Amrizal, S. Bogaerts, R. Egawa, D. Ellsworth,
J. Fernandez-Fabeiro, A. Gonzalez-Escribano, S. Kundu, A. Lazar,
A. Malony, H. Takizawa, and D. Bunde, “Peachy parallel assignments
(EduHPC 2019),” in IEEE/ACM Workshop on Education for High-
Performance Computing (EduHPC 2019). Denver (CO), USA: IEEE,
2019.

[2] O. Ozturk, B. Glick, J. Mache, and D. Bunde, “Peachy parallel assign-
ments (EduPar 2019),” in Proc. 9th NSF/TCPP workshop on parallel and
distributed computing education (EduPar), 2019.

[3] E. Ayguadé, L. Alvarez, F. Banchelli, M. Burtscher, A. Gonzalez-
Escribano, J. Gutierrez, D. Joiner, D. Kaeli, F. Previlon, E. Rodriguez-
Gutiez, and D. Bunde, “Peachy parallel assignments (EduHPC 2018),”
in IEEE/ACM Workshop on Education for High-Performance Computing
(EduHPC 2018). Dallas (TX), USA: IEEE, 2018.

[4] H. Casanova, R. Ferreira da Silva, R. Tanaka, S. Pandey, G. Jethwani,
W. Koch, S. Albrecht, J. Oeth, and F. Suter, “Developing accurate and
scalable simulators of production workflow management systems with
wrench,” Future Generation Computer Systems, vol. 112, pp. 162-175,
2020.

[5] R. Tanaka, R. Ferreira da Silva, and H. Casanova, “Teaching Parallel
and Distributed Computing Concepts in Simulation with WRENCH,” in
Workshop on Education for High-Performance Computing (EduHPC),
2019.

[6] A. Gonzalez-Escribano, V. Lara-Mongil, E. Rodriguez-Gutiez, and Y. Tor-
res, “Toward improving collaborative behaviour during competitive pro-
gramming assignments,” in IJEEE/ACM Workshop on Education for High-
Performance Computing (EduHPC 2019). Denver (CO), USA: IEEE,
2019.

[71 A. K. Dewdney, “Simulated evolution: wherein bugs learn to hunt
bacteria,” Scientific American, vol. 260, no. 5, pp. 138-141, May 1989.

[8] J. Fresno, A. Ortega-Arranz, H. Ortega-Arranz, A. Gonzalez-Escribano,
and D. Llanos, Gamification-Based E-Learning Strategies for Computer
Programming Education. 1GI Global, 2017, ch. 6. Applying Gamification
in a Parallel Programming Course.

APPENDIX: REPRODUCIBILITY
A. Reasoning about Multi-core Application Performance

This assignment and the pedagogic module that it is a part
of has been used successfully in two offerings of a 300-
level undergraduate Operating Systems (OS) Principles course
at the University of Hawai‘i at Manoa. It is currently (Fall
2020) being used in a 400-level course on Concurrent and
High Performance Programming. It has also been used to
train individual students before they participate in parallel
computing and high performance computing research projects
at the University of Southern California.

The entire module, including supporting simulations, runs
within a webpage. Thus, instructors adopting this assignment
do not need to worry about provisioning hardware or installing
software.

B. Simulation of Life Evolution

The assignment has been used in the context of a Parallel
Computing course, in the third year of the Computing Engi-
neering grade at the University of Valladolid (Spain).

The material of the assignment, including a handout, the
starting sequential code, and some input data sets to be used
as examples will be made publicly available through the CDER
courseware repository.

The on-line judge program used in the programming con-
tests is named Tablon, and it was developed by the Trasgo
research group at the University of Valladolid (https://trasgo.
infor.uva.es/tablon/). The contest software uses the Slurm
queue management software to interact with the machines in
the cluster of our research group. During the course we used
the Slurm 18.08.3 release.

The machine of the cluster used for the OpenMP contest is
heracles, a server with four AMD Opteron 6376 @ 2.3Ghz
CPUs, having a total of 64 cores and 128 GB of RAM.

The machine used in the CUDA/OpenCL contests is hydra,
a server with two Intel Xeon E5-2609v3 @1.9 GHz CPUs,

with 12 physical cores and 64 GB of RAM. It is equipped
with 4 NVIDIA’s GPUs (CUDA 3.5), GTX Titan Black, 2880
cores @980 MHz, and 6 GB of RAM.

During the MPI contest we use heracles and hydra in
combination with two other servers to create a heterogeneous
cluster. The other two machines are: thunderbird, with an Intel
i5-3330 @2.4 GHz CPU and 8 GB of RAM; and phoenix, with
an Intel QCore @2.4 Ghz CPU with 6 GB of RAM.

All machines are managed by a CentOS 7 operating system.
The compilers and system software used are GCC v7.2, and
CUDA v10.2.

The assignment provides the sequential code and the input
parameters of the test-beds for the students. Other test-beds
used by the on-line judge during the contest are also provided.

The results of the contests are publicly available until the
start of the next semester at http://frontendv.infor.uva.es.

	Introduction
	Reasoning about Multi-core Application Performance (Casanova, Ferreira da Silva, Koch)
	Prerequisites
	Weaknesses, Strengths, and Previous Uses

	Simulation of Life Evolution (Gonzalez-Escribano, Torres)
	Idea and context
	Using the assignment
	Concepts covered
	Variants

	References
	Reasoning about Multi-core Application Performance
	Simulation of Life Evolution

