Lightning Talks of EduHPC 2020

Joel C. Adams* Godmar Back** Piotr Batal Michael K. Bane¥ Kirk Cameron**
Henri Casanoval Margaret Ellis** Rafael Ferreira da Silvat, Gautam Jethwani?,
William Koch', Tabitha Lee¥, Tongyu Zhu?,
*Department of Computer Science, Calvin University, USA
tInformation and Computer Sciences, University of Hawaii, USA
Hnformation Sciences Institute, University of Southern California, USA
§Electrical Engineering and Computer Science Department, Vanderbilt University, USA
1 Department of Computer Science, University of Liverpool, United Kingdom
I Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Poland
** Department of Computer Science, Virginia Tech, USA

Abstract—Lightning talks of EduHPC are a venue where HPC
educators discuss work in progress. This paper summarizes the
EduHPC 2020 lightning talks, which cover four very different
areas: (i) The simulation-based pedagogy of the EQuWRENCH
project, including motivations for using simulation to teach
High Performance Computing, the design principles underlying
EduWRENCH modules, a survey of the available modules, a
look at a particular module, plus a conclusion including lesson
learned thus far and future plans. (ii) The use of the software-
tuning component from Student Cluster Competitions in the HPC
master’s program at the University of Liverpool. (iii) Steps being
taken by the Computer Systems Genome Project at Virginia Tech
to foster a community atmosphere among the diverse students
working to catalog the lineage of computer system performance
over time. (iv) A 3-semester master’s degree program titled
Computational Engineering, focused on HPC training, being
offered at the University of Warsaw.

Index Terms—computer science education, high performance
computing education, education tools, master’s curriculum

I. INTRODUCTION

High Performance Computing (HPC) and more generally
Parallel and Distributed Computing (PDC) have become per-
vasive, from supercomputers and server farms containing
multicore CPUs and GPUs, to individual PCs, laptops, and
mobile devices. Even casual users of computers now depend
on the parallel and distributed capabilities inherent in their
smartphones, tablets, and/or laptops.

With HPC and PDC potentially available throughout the
computational ecosystem, it is important for every computing
student and faculty member understand how parallelism and
distributed computing impact computational problem solving.
It is essential for educators to impart a range of PDC and HPC
knowledge and skills at multiple levels within the computing
curriculum. However, rapid changes in hardware platforms,
programming languages, and software development environ-
ments make it increasingly challenging for educators to decide
what to teach and how to teach it.

In this context, EduHPC, the Workshop on Education for
High-Performance Computing, has positioned itself as the
primary venue for educators to share and discuss innovative
ideas to enhance HPC education. In particular, EAQuHPC’s

Lightning Talks provides a venue where educators can present
short talks on works in progress, methods that have not been
fully tested, or even just ideas for yet-untried innovations,
to garner reactions from the community. This paper provides
overviews of the four Lightning Talks from EduHPC 2020:

1) A look at the EduWRENCH Project, which empha-
sizes simulation-based pedagogy. This talk includes
motivations for using simulation to teach High Per-
formance Computing, the design principles underlying
EduWRENCH modules, a survey of the available mod-
ules, a look at a particular module, plus a conclusion
including lesson learned thus far and future plans.

2) An overview of how the Department of Computer Sci-
ence at the University of Liverpool has incorporated the
aspects of the SC and ISC Student Cluster Competitions
into their HPC master’s program, specifically the project
of making a given software package run as fast as
possible on any of their available hardware platforms.

3) Concrete steps being taken to foster a supportive com-
munity atmosphere among the diverse students work-
ing to catalog the lineage of computer system perfor-
mance over time within the Computer Systems Genome
(CSGenome) Project at Virginia Tech. This talk ad-
dresses specific team culture, management, and com-
munication strategies that have proven successful at
broadening student participation in their project.

4) An overview of the master’s degree program in Compu-
tational Engineering from the Interdisciplinary Centre
for Mathematical and Computational Modeling at the
University of Warsaw. This program’s aim is to train
HPC users and administrators; the talk describes the pro-
gram’s goals, its curriculum for achieving those goals,
and an analysis of the program’s achievements of those
goals after 4 years of experience.

Section II describes the EduWRENCH talk, Section III

describes the X talk, Section IV describes the CSGenome talk,
and Section V describes the Warsaw master’s degree talk.

II. EDUWRENCH: SIMULATION-DRIVEN PEDAGOGIC
MODULES

By: William Koch, Tongyu Zhu, Gautam Jethwani, Tabitha
Lee, Rafael Ferreira da Silva, Henri Casanova

Teaching PDC and HPC concepts is challenging. Teaching
purely “on the blackboard” is often not very compelling and
does not allow students to learn as effectively as they could
if provided with hands-on learning opportunities. In practice,
hands-on teaching means having students develop programs
and run them on hardware/software platforms that are provided
to them. This approach, unfortunately, faces two kinds of
challenges. First, there are participation challenges. It is well
documented that providing students with usable and repre-
sentative hardware/software platforms is not always feasible,
at least not at all institutions. Furthermore, having students
develop actual programs adds several prerequisites to teaching
PDC and HPC concepts (e.g., students need to know how to
write multi-threaded programs, students need to know how
to interact with a cloud infrastructure or a batch scheduler).
As a result, these concepts cannot be taught early on in the
curriculum, or at least not in a hands-on manner. Second,
there are pedagogic challenges. Students are only exposed to
those platform configurations made available to them, which
precludes achieving several learning objectives (e.g., under-
standing how different network configurations impact parallel
program performance). Also, students need to be trained in
platform usage mechanisms and policies, which can take away
too much time away from other learning objectives, especially
early in the curriculum. Finally, making sure that students are
exposed to all relevant concepts via programming assignments
is often not feasible, or would require an enormous amount of
work on behalf of the instructors and of the students.

Addressing both kinds of challenges above would mean
providing students with hands-on learning opportunities for
achieving PDC and HPC learning objectives effectively, with-
out having them develop and run code. One approach is to
rely on simulation, i.e., simulate parallel application executions
using a software artifact that mimics real-world executions.
Using simulation there is no need for actual platforms and
students can run experiments easily on their own computer or
in the browser. In addition, arbitrary platform configurations
can be simulated. Finally, a number of modalities can be used
in terms of the level of details exposed to the students, from
having students simply run “canned” simulated executions
to having students develop programs and then simulate their
execution.

In the next section, we describe the recently developed
EduWRENCH pedagogic modules, which target PDC and
HPC learning objectives. The most important aspect of these
modules is that they include simulation-driven activities that
provide students with hands-on learning opportunities. These
modules have few prerequisites and can be completed in
sequence by independent learners. But they are also designed
to be easy to integrate piecemeal into existing university
courses. In this case, the goal is to target learning objectives

that are not currently targeted, or to complement existing
course content. The modules available to date do do not
require any programming by the students, and thus can be
used early in the Computer Science curriculum. They have
already been used effectively in existing undergraduate courses
courses to complement course content. Most recently, in the
Fall 2020 semester, some of these modules are being used to
enhance the content of a programming-heavy, upper-division
course on concurrent and high performance computing at the
University of Hawai‘i at Manoa. Although many learning
objectives are targeted by the programming assignments in
that course, several relevant learning objectives are not. The
use of the EQuWRENCH modules allow students to achieve
these learning objectives in a hands-on manner, i.e., using
simulation.

A. The EAuWRENCH Modules

At the time of writing, the EQuWRENCH modules are pub-
licly available at https://eduwrench.org and cover the following
broad PDC and HPC topics:

o Single-core computing (work and compute speed, time-

sharing, RAM constraints, I/O operations);

o Multi-core computing (task parallelism, load balancing

and idle time, task dependencies, data parallelism);

« Networking (latency, bandwidth, topology, contention);

o The client-server model (concepts, pipelining of commu-

nication and computation);

e The Coordinator-worker model (concepts, scheduling);

o The Workflow model (concepts, locality, mixed paral-

lelism).

Each module is a single Web page with multiple tabs, where
each tab targets a particular topic relevant to the topic. Each
tab contains:

e A pedagogic narrative;

¢ In-the-browser, interactive, simulation-driven activities;

o Practice questions with revealable solutions;

o Open questions without solutions that can be used by an

instructor as homework assignments.

Several practice and open questions explicitly rely on the
simulation-driven activities. Some modules have a last “cap-
stone” tab in which students go through case-studies in which
they apply all the concepts they have learned in the module.
These case-studies can also be used as self-contained home-
work assignments by an instructor. The simulation activities
rely on simulators implemented in C++ using the WRENCH
simulation framework, which itself builds on the lower-level
SimGrid simulation framework.

Overall, the available modules at the time this is written
comprise 86 practice questions, 92 open questions, and 16
simulation-driven activities.

B. Classroom Use

Preliminary versions of the EQuWRENCH modules were
used in the classroom in Spring’19 and Fall’19 offerings
of a 300-level undergraduate courses at the University of

Hawai‘i (Operating Systems). Some modules were completed
by students independently, some modules were covered in
interactive in-class sessions with students working in teams
and the instructor providing scaffolding, part of a module was
used as a homework assignment, and the final exam included
assessment questions for the learning objectives targeted by
all these modules.

In both semesters quantitative and qualitative data was col-
lected about the student experience: pre- and post-knowledge
tests, student feedback via questionnaires asking about overall
experience and self-perceived learning, logs of student use
of simulation-driven activities, and assessment of learning via
homework assignments and exam questions. This data show
that most students were engaged in the simulation activities,
with most student in the class running a number of simulations
in line with what was expected, or larger. Another finding
is that there is positive correlation between the number of
simulations students run and their grades on relevant exam
questions, even though some students who ran very large
numbers of simulations did poorly on the questions. We
surmise that these students struggled with the material and
ran many simulations haphazardly. Finally, feedback from
students shows that they had a very positive experience. For
instance, in the Fall’19 semester, 71% of students deemed the
material “very useful”, 29% “somewhat useful”, and 0% ‘“not
useful”. 87% of students answered “yes” to the question “Are
you interested in learning more about Parallel and Distributed
Computing?”. Most importantly, when asked how useful was
the use of simulation for learning, 81% deemed it “very
useful” and 19% “somewhat useful”. Written-in comments
by students that semester included: “I liked the simulation.
It was a nice addition to visually see as well as check
my work”, “I like the hands-on experience during class and
having it available at any time”, “Love the visuals”. Overall,
these preliminary evaluation results were conclusive regarding
the effectiveness (actual or self-perceived) of the preliminary
pedagogic modules.

C. Key takeaways

Based on the experience and student feedback in these
two semesters, we made a number of changes/improvements
to the pedagogic content. Namely, we split several mod-
ules into sub-modules, added practice questions, and inte-
grated the simulation-driven activities in the same page as
the pedagogic narrative (as opposed to it being executed
in a different browser tab). These improvements have lead
to the EAQuWRENCH modules currently available at https:
/leduwrench.org. These newly available modules have been
used at the University of Southern California to train individual
students before they participate in parallel computing and high
performance computing research projects. They are also being
used in yet another undergraduate course at Univ. of Hawai ‘i
in the Fall 2020 semester.

Besides disseminating the existing modules to instructors,
future work entails adding new content to existing modules
and developing new sets of modules. For instance, we are

currently creating modules that focus on concepts and practice
of Cyberinfrastructure Computing for scientific applications,
and modules are being developed for teaching students the
concepts behind batch scheduling, and for practicing, using
and optimizing the use of a batch scheduler, all in simulation.

Acknowledgments. This work is funded by NSF contracts #1923539
and #1923621: “CyberTraining: Implementation: Small: Integrating
core CI literacy and skills into university curricula via simulation-
driven activities”; and partly funded by NSF contract #1659886.

III. EVOLVING THE TRADITIONAL STUDENT CLUSTER
COMPETITION AS TOMORROW’S “PEACHY ASSIGNMENTS”

By: Michael K. Bane

Motivating the Assignment

At University of Liverpool, the MSc course on HPC was
revamped during the academic year 2018-2019. Additionally
a 3rd year undergraduate course on HPC was designed and
introduced for the academic year 2019-2020. An underlying
principle of the new teaching approach has been “authen-
ticity”, in line with the University’s guiding principles via
Curriculum 2021 [1]. Assignments had been aligned with
specific learning objectives which had been on specifics such
as OpenMP for shared memory programming and MPI for
distributed memory programming. The new undergraduate
course, running whilst the covid-19 pandemic curtailed normal
teaching activities, allowed us to (re-)design an assignment to
align problem based learning approaches. Specifically, students
were given a serial problem and asked to submit a solution that
ran faster, whether to parallelise using MPI (taught physically
pre-covid-19) or OpenMP (which had been covered via remote
teaching) or indeed to use compiler optimisation techniques
(covered earlier in the course).

We noted there are a number of leading conferences cov-
ering various fields of high performance computing (HPC),
notably SC [2] and ISC [3], that run a “Student Cluster Com-
petition”. At Liverpool, it has been identified that these com-
petitions offer learning opportunities for students. Specifically,
by participating, students would practise their technical skills
but also soft skills such as group work, meeting deadlines and
report writing. However, there are specific barriers to directly
using the competitions for students learning HPC, including:
the fixed time of international conference competitions; rules
limiting the number of teams per institution; potential privacy
issues relating to submissions and marking of assignments;
and potential conflict of IP ownership.

Defining the Assignment

We therefore have designed assignments that take the prin-
ciples of student cluster competitions, but are designed to
fit the constraints of university teaching. In outline, students
are assigned to a given small group, and all groups are
given a specific open source software code with default build

instructions, that they need to improve. They receive two sets
of data, a “debug” dataset and a “production” dataset, and:

o groups have a fixed deadline and it is up to each group
how much effort to expend on the project

e codes can be run on the HPC architectues provided; these
are specifically named (to avoid confusion) and include
the university HPC resources (100 nodes of Intel Skylake,
1 node with 2 Nvidia V100 cards, 4 nodes of Intel
Knights Landing), augmented by the department’s HPC
dev resources (1 node with 2 Nvidia Quadro cards, 1
node with Xilinx U200 FPGA card). Leveraging our col-
labations with MicroSoft, future runs of the assignments
will provide given MS Azure laaS plaforms.

« numerical results for both datasets have to agree within
roundoff error analysis compared to baseline output. This
is defined as the output when the code is compiled
with the stated default build instructions and run on the
Skylake cluster.

« the optimised code has to submitted to the department’s
gitlab site, together with full build instructions (e.g.
Makefile).

Unlike some conference competitions, we do not impose
power caps, primarily due to the challenges in providing
“energy to solution” data to students for every platform. The
key aim for a student group is to obtain (correct) results as
fast as possible. They also have to write a concise two page
formal report outlining their submitted solution.

Assessing the Assignment

The main aim of the assignment is to support learning by
students. The work is assessed which requires a clear marking
scheme, viz:

o speed: 70% based upon raw speed of the modified code
when running the production dataset, defined in terms of
quickest time to solution within roundoff accuracies.

« approach: 10% available for novel approaches.

o report: 20% for clear, concise, explanation of the ap-
proach taken and discussion of the code improvements.

IV. BROADENING PARTICIPATION VIA COMPUTER
SYSTEMS GENOME RESEARCH GROUP

By: Margaret Ellis, Kirk Cameron, Godmar Back

The mission of the Computer Systems Genome Project
(CSGenome) is to conduct the first scientific effort to catalog
the lineage of computer system performance over time to
enable knowledge discovery and further understanding of the
impact of computing innovations on transformative technolo-
gies, the knowledge-based economy, and societal change. This
work is powered by a large group of undergraduate research
students with the specific intention to engage a broader group
of students in computer systems research.

Facilitation of this supportive research team has propagated
the recruitment and retention of a diverse set of students

in an area of computer science that traditionally lacks such
representation of women, black students, and students with
disabilities. This talk will address team culture, management,
and communication strategies that enable an encouraging
learning and research environment for a diverse group of un-
dergraduate students. The supportive community atmosphere
promotes a sense of belonging for students and acquisition
of practical skills develops their self-efficacy. Several such
students have chosen to pursue graduate studies in computer
systems.

A. Significance of the Work

Since the dawn of computing, the world has tracked system
performance. Yet, computer system performance data is still
primarily siloed by benchmark, system, or system component.
The CSGenome project (https://csgenome.org/about/ was born
from lack of a central repository for systems component, con-
figuration, and benchmarking data recognized by the VarSys
Team https://varsys.cs.vt.edu/the-varsys-team/. We began with
work to support that team and a goal to engage a broader group
of students in computer systems research.

In its first few years our research team has consisted of
40% women, 10% black students, and 5% students with
disabilities. This is significantly more diverse than our overall
computer science department which is 19% women and 3%
black students. Notably, this is also extremely more diverse
than the computer systems research community. We began
building the undergraduate team in the Spring of 2018 and four
students are currently in progress towards CS graduate degrees
in the systems area. Three students obtained competitive
undergraduate internships and subsequent full-time positions.
Alumni continue to engage with the group as valuable role
models.

Our success in recruiting and retaining students is multi-
faceted. Students perceive the skills and experience acquired
as very useful to their future careers and also find the long-term
project goals interesting and relevant. The team is explicitly
supportive, and not intimidating, so that even when the content
may seem complicated or overwhelming students are encour-
aged to persevere and are provided with resources, feedback,
and peer role models. Early CS research experience in an
active research group with a focus on community building
and support has been shown to yield positive outcomes on stu-
dents’ perception of and retention in Computer Science [6]. We
provide community building and support specifically within a
systems research group.

Key components of our team culture align with the 2018
report “Women in computer systems research: increasing com-
munity, awareness, and communication” [7]. Students have
regular casual interaction with each other and faculty. Time
and space (whether physical or virtual) are provided so that
the team has open-ended working time together to allow for
unstructured friendly conversations and incidental learning.
Also instrumental is that in addition to larger group meetings
and more formal presentations and code or design reviews, the
students have ready access to faculty.

The team culture is that students are expected to collabo-
rate and help each other, the more advanced students create
tutorials with faculty consultation and new students improve
material as they work through it. In our recent all-online
work environment, we have pre-recorded video tutorials by
graduate students for the team and we record informative
zoom sessions. We consciously strive to maintain a transparent
and open environment to build a sense of community for the
students to learn and thrive. On a larger scale our project
aims to influence the perception of and communication about
computer systems research to a broad audience by making
our repository, analysis, and educational materials available
through the project website.

Some of the efforts that have made this approach a success
include:

o Recruitment of a diverse set of students enrolled in CS2-
level courses with options to volunteer, earn undergradu-
ate research credit, or become a wage employee.

« Practical skills instruction and training to acclimate stu-
dents to version control, Linux, development environ-
ments, python, and project subgroup-specific technolo-
gies.

e Team meeting and working sessions with various sub-
groups (e.g. front-end development, memory component
data pipeline, new-to-CSG, outreach) for brainstorming,
planning, problem solving and reporting.

o Team communication using discord, git issues, emails,
and weekly updates via google docs with faculty feed-
back.

o Research skills training to introduce students to litera-
ture surveys, publication reviews, research methods, and
LaTeX.

o Cultivation of peer-to-peer relationships by assigning
tasks to pairs of students, providing in-group mentors for
students, and communication with recent graduates.

o Faculty roles include project vision, technical expertise,
advising, and facilitation.

V. A MASTER DEGREE COURSE IN COMPUTATIONAL
ENGINEERING AT UNIVERSITY OF WARSAW

By: Piotr Bata

A. Introduction

Computer science studies are very popular in Poland and
other countries. They are conducted at many universities both
in the field of mathematical sciences (mainly universities)
and technical sciences (primarily technical universities)!. In
Poland, computer science students are the most numerous
group divided into a field of study. The number of candidates

'In Poland there an official list of disciplines and research fields. Each
university program has to belong to one or more fields and disciplines. For
computer science, there is a distinction between theoretical and practical one.
Each of them belongs to the different research fields .

has been oscillating at the level of several candidates for one
place for many years, taking into account the relatively rational
assessment of opportunities based on the results of secondary
school leaving examinations by young people.

A large number of computer science students cannot keep
up with the market demand which significantly exceeds the
number of graduates. Besides, the demand for IT specialists is
diverse and changes with the emergence of new technologies.
Unfortunately, education in this area does not keep up with the
demand, which is particularly visible in the field of technolo-
gies related to computer simulations, large-scale calculations
or the processing of large data.

The University of Warsaw, founded in 1816, is the largest
and leading university in Poland, with about 2,900 academic
staff among its 5,300 employees, and over 50,000 students.
Offering courses in 32 fields of arts and sciences, its 18
faculties include natural sciences, social sciences, humanities,
and over 30 extra-departmental and inter-faculty centers and
programs. The University of Warsaw is participating in nu-
merous research projects.

ICM, The Interdisciplinary Centre for Mathematical and
Computational Modelling, a basic unit within the University of
Warsaw, founded in 1993, is a research center in computational
sciences and a center of HPC infrastructure. The research at
ICM, of the strongly interdisciplinary profile, encompasses
computational and information sciences, with special focus on
their mathematical foundations and applications in other areas
of science, technology, and e-economy.

B. Computational Engineering

Computational engineering is a second level (according to
the Bologna Process) master degree program launched in the
winter semester 2016/2017. The profile of the program is
practical, which means that at least 50% of the classes is pro-
vided in the form of laboratories, seminars, and other practical
activities. This includes a 3-month internship performed in the
industrial environment including HPC centers. The studies are
addressed to graduates of engineering studies (first level, 7-
semester studies, completed with an engineering degree) or
master’s degrees. The studies last 3 semesters and end with
obtaining a master’s degree. Initially, the studies were located
in the field of technical sciences, from the 2019/20 academic
year, the studies are conducted as practical studies in the
discipline of computer science in the field of natural sciences.

The study program deals with the use of scientific simu-
lations to solve advanced scientific and technical problems.
It is the answer to the growing demand for the use of
computer simulations in various fields of science, economy,
and business. Computer modeling is necessary to build a
knowledge-based economy. As already mentioned before, the
demand for specialists in this field is reported by all large
enterprises operating in the field of digital technologies.

A significant part of the classes are lectures selected by
students according to their interests. The range of classes
to choose from is diverse, although it largely depends on
the lecturers available. Recently, selected on-line courses on

machine learning and artificial intelligence emerged as part of
the elective courses supported by final projects implemented at
the University of Warsaw. To enrich the offer, elective classes
are common to students from subsequent training cycles. Each
semester, at least one of the lectures is conducted in English.

To date, we have not decided to conduct all classes in
English, as to which there are no obstacles either on the side
of the lecturers or on the side of the students. The studies,
so far are directed primarily at Polish students, hence the use
of Polish is natural. For now, interest in studying by foreign
students is low and concerns people who know Polish. In the
case of increased interest, it is possible to start studies entirely
in English.

The study program has been entirely defined based on
the learning outcomes. It is fully compliant with applicable
regulations and industry trends.

Computational engineering studies are directed primarily at
non-IT specialists, however, the experience of the first years
showed that mathematical and computer science background
is very important. Lack of such preparation constitutes a
significant barrier hindering passing mathematical subjects.
Therefore, during recruitment, priority is given to graduates of
fields of study run by university faculties who have the right
to grant doctoral degrees and provide basic IT knowledge. The
list of faculties includes computer science; applied computer
science; electronics and telecommunication, automation and
robotics; biomedical engineering, mechatronics, electrotech-
nics, physics, applied physics, and others connecting these
areas of knowledge.

Computational engineering studies are full-time studies,
therefore they are free for Polish citizens and EU countries.
The exemption from fees also applies to persons from other
countries mentioned above who have a Polish Card - they are
people of Polish origin, who often speak Polish but live in
Belarus, Ukraine, Kazakhstan or other non EU countries. For
the remaining students, the studies are paid, the tuition fee is
1,500 Euro per semester (4,500 Euro for the entire studies).

The computational engineering curriculum consists of com-
pulsory and optional lectures, including lectures in the hu-
manities or social fields. For example, in the first semester,
students implement two compulsory subjects: modern com-
puting, database and network systems (9 ECTS points?) and
parallel computimg (6 ECTS).

The lectures include an introduction to high power com-
puting systems, presentation of basic computer architectures,
processors, networks, and data storage systems. Students will
learn about queuing systems and their use in practice, learn
about profiling technologies and code optimization both scalar
and vector. They will learn about the principles of compiling
and installing software or numerical libraries. The lecture
includes an introduction to grid and cloud technologies, vir-
tualization, and computing portals. Dedicated classes are on
Hadoop and Spark technology. During one of the first classes,

2ECTS - European Credit Transfer System — (the so-called credit points)
— it is a system of clear and comparable marks and academic degrees which
makes it possible to recognize diplomas in the European job market.

students learn practically how to use HPC systems available at
ICM University of Warsaw. These classes, from the 2019/2020
academic year, are separated in the schedule (10 hours, 1
ECTS point). As part of the lecture, one-day workshop is car-
ried out, dedicated to installing selected applications on ICM
computing systems. These classes are a practical verification
of students’ knowledge and skills. In a result, students prepare
reports from the installation process including its verification
and performance measurements.

In the first semester, there are also classes in parallel pro-
gramming. In the era of multiprocessor computers, this subject
is important in educating users of high-power computers. The
course program includes a theoretical introduction to parallel
programming (8 hours) and practical classes divided into
three blocks: programming in the PGAS model using the PCJ
(Parallel Computing in Java) library (12 hours), programming
in the messaging model (MPI, 20 hours) and programming in
a model with shared memory (OpenMP, 20 hours).

The second semester of study includes two compulsory lec-
tures on computer simulations in natural sciences (26 lecture
hours, 4 hours of classes, 3 ECTS), and the basics of modeling
in social sciences (26 hours of lectures, 4 hours of classes,
3 ECTS). Both lectures were intended as a review of the
applications of computer simulations in the most important
fields of science.

The presented study results show that the computational en-
gineering program equips students with basic domain knowl-
edge plus the necessary skills and in-format competences in
the field of large IT infrastructures. What’s more, the education
obtained in this way allows one to effectively solve complex
problems that require the processing of large data or computer
simulations.

Last but not least, one of the goals of program was to
educate people for employment in supercomputing centers,
including ICM. Despite the small number of graduates. It can
be said that this goal has been achieved.

REFERENCES

[1] liverpool.ac.uk/centre-for-innovation-in-education/curriculum-
resources/overview/ [14/09/20]

[2] sc20.supercomputing.org/program/studentssc/ [14/09/20]

[3] hpcadvisorycouncil.com/events/student-cluster-competition/ [14/09/20]

[4] M. Ignatova, The Top 10 Skills You Will Be Hir-
ing for in 2017. LinkedIn 25.11.2016 https://business.
linkedin.com/talent-solutions/blog/trends-and-research/2016/
the-top- 10-skills-you-will-be-hiring-for-in-2017 Accessed: 20.05.2019.

[5] Hackathon Great Programming Challanges http://wwp.icm.edu.pl
[07/06/20]

[6] M. Barrow and S. Thomas, and C. Alvarado, A Structured CS
Research Program for Early-College Students. in Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE’16). Association for Computing Machinery,
New York, NY, USA, pp 148 — 153.

[71 L. Golubchik and J. Weston, Women in computer systems research:
increasing community, awareness, and communitation, in Technical
Report. National Science Foundation, USA, 2018, pp. 1-21.

	Introduction
	EduWRENCH: Simulation-Driven Pedagogic Modules
	The EduWRENCH Modules
	Classroom Use
	Key takeaways

	Evolving the traditional Student Cluster Competition as tomorrow’s “Peachy Assignments”
	Broadening Participation via Computer Systems Genome Research Group
	Significance of the Work

	A Master Degree Course in Computational Engineering at University of Warsaw
	Introduction
	Computational Engineering

	References

