
Lightning Talks of EduHPC 2020

Joel C. Adams∗ Godmar Back∗∗ Piotr Bała‖ Michael K. Bane¶ Kirk Cameron∗∗

Henri Casanova† Margaret Ellis∗∗ Rafael Ferreira da Silva‡, Gautam Jethwani‡,

William Koch†, Tabitha Lee§, Tongyu Zhu‡,
∗Department of Computer Science, Calvin University, USA

†Information and Computer Sciences, University of Hawaii, USA
‡Information Sciences Institute, University of Southern California, USA

§Electrical Engineering and Computer Science Department, Vanderbilt University, USA
¶ Department of Computer Science, University of Liverpool, United Kingdom

‖ Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Poland
∗∗ Department of Computer Science, Virginia Tech, USA

Abstract—Lightning talks of EduHPC are a venue where HPC
educators discuss work in progress. This paper summarizes the
EduHPC 2020 lightning talks, which cover four very different
areas: (i) The simulation-based pedagogy of the EduWRENCH
project, including motivations for using simulation to teach
High Performance Computing, the design principles underlying
EduWRENCH modules, a survey of the available modules, a
look at a particular module, plus a conclusion including lesson
learned thus far and future plans. (ii) The use of the software-
tuning component from Student Cluster Competitions in the HPC
master’s program at the University of Liverpool. (iii) Steps being
taken by the Computer Systems Genome Project at Virginia Tech
to foster a community atmosphere among the diverse students
working to catalog the lineage of computer system performance
over time. (iv) A 3-semester master’s degree program titled
Computational Engineering, focused on HPC training, being
offered at the University of Warsaw.

Index Terms—computer science education, high performance
computing education, education tools, master’s curriculum

I. INTRODUCTION

High Performance Computing (HPC) and more generally

Parallel and Distributed Computing (PDC) have become per-

vasive, from supercomputers and server farms containing

multicore CPUs and GPUs, to individual PCs, laptops, and

mobile devices. Even casual users of computers now depend

on the parallel and distributed capabilities inherent in their

smartphones, tablets, and/or laptops.

With HPC and PDC potentially available throughout the

computational ecosystem, it is important for every computing

student and faculty member understand how parallelism and

distributed computing impact computational problem solving.

It is essential for educators to impart a range of PDC and HPC

knowledge and skills at multiple levels within the computing

curriculum. However, rapid changes in hardware platforms,

programming languages, and software development environ-

ments make it increasingly challenging for educators to decide

what to teach and how to teach it.

In this context, EduHPC, the Workshop on Education for

High-Performance Computing, has positioned itself as the

primary venue for educators to share and discuss innovative

ideas to enhance HPC education. In particular, EduHPC’s

Lightning Talks provides a venue where educators can present

short talks on works in progress, methods that have not been

fully tested, or even just ideas for yet-untried innovations,

to garner reactions from the community. This paper provides

overviews of the four Lightning Talks from EduHPC 2020:

1) A look at the EduWRENCH Project, which empha-

sizes simulation-based pedagogy. This talk includes

motivations for using simulation to teach High Per-

formance Computing, the design principles underlying

EduWRENCH modules, a survey of the available mod-

ules, a look at a particular module, plus a conclusion

including lesson learned thus far and future plans.

2) An overview of how the Department of Computer Sci-

ence at the University of Liverpool has incorporated the

aspects of the SC and ISC Student Cluster Competitions

into their HPC master’s program, specifically the project

of making a given software package run as fast as

possible on any of their available hardware platforms.

3) Concrete steps being taken to foster a supportive com-

munity atmosphere among the diverse students work-

ing to catalog the lineage of computer system perfor-

mance over time within the Computer Systems Genome

(CSGenome) Project at Virginia Tech. This talk ad-

dresses specific team culture, management, and com-

munication strategies that have proven successful at

broadening student participation in their project.

4) An overview of the master’s degree program in Compu-

tational Engineering from the Interdisciplinary Centre

for Mathematical and Computational Modeling at the

University of Warsaw. This program’s aim is to train

HPC users and administrators; the talk describes the pro-

gram’s goals, its curriculum for achieving those goals,

and an analysis of the program’s achievements of those

goals after 4 years of experience.

Section II describes the EduWRENCH talk, Section III

describes the X talk, Section IV describes the CSGenome talk,

and Section V describes the Warsaw master’s degree talk.



II. EDUWRENCH: SIMULATION-DRIVEN PEDAGOGIC

MODULES

By: William Koch, Tongyu Zhu, Gautam Jethwani, Tabitha

Lee, Rafael Ferreira da Silva, Henri Casanova

Teaching PDC and HPC concepts is challenging. Teaching

purely “on the blackboard” is often not very compelling and

does not allow students to learn as effectively as they could

if provided with hands-on learning opportunities. In practice,

hands-on teaching means having students develop programs

and run them on hardware/software platforms that are provided

to them. This approach, unfortunately, faces two kinds of

challenges. First, there are participation challenges. It is well

documented that providing students with usable and repre-

sentative hardware/software platforms is not always feasible,

at least not at all institutions. Furthermore, having students

develop actual programs adds several prerequisites to teaching

PDC and HPC concepts (e.g., students need to know how to

write multi-threaded programs, students need to know how

to interact with a cloud infrastructure or a batch scheduler).

As a result, these concepts cannot be taught early on in the

curriculum, or at least not in a hands-on manner. Second,

there are pedagogic challenges. Students are only exposed to

those platform configurations made available to them, which

precludes achieving several learning objectives (e.g., under-

standing how different network configurations impact parallel

program performance). Also, students need to be trained in

platform usage mechanisms and policies, which can take away

too much time away from other learning objectives, especially

early in the curriculum. Finally, making sure that students are

exposed to all relevant concepts via programming assignments

is often not feasible, or would require an enormous amount of

work on behalf of the instructors and of the students.

Addressing both kinds of challenges above would mean

providing students with hands-on learning opportunities for

achieving PDC and HPC learning objectives effectively, with-

out having them develop and run code. One approach is to

rely on simulation, i.e., simulate parallel application executions

using a software artifact that mimics real-world executions.

Using simulation there is no need for actual platforms and

students can run experiments easily on their own computer or

in the browser. In addition, arbitrary platform configurations

can be simulated. Finally, a number of modalities can be used

in terms of the level of details exposed to the students, from

having students simply run “canned” simulated executions

to having students develop programs and then simulate their

execution.

In the next section, we describe the recently developed

EduWRENCH pedagogic modules, which target PDC and

HPC learning objectives. The most important aspect of these

modules is that they include simulation-driven activities that

provide students with hands-on learning opportunities. These

modules have few prerequisites and can be completed in

sequence by independent learners. But they are also designed

to be easy to integrate piecemeal into existing university

courses. In this case, the goal is to target learning objectives

that are not currently targeted, or to complement existing

course content. The modules available to date do do not

require any programming by the students, and thus can be

used early in the Computer Science curriculum. They have

already been used effectively in existing undergraduate courses

courses to complement course content. Most recently, in the

Fall 2020 semester, some of these modules are being used to

enhance the content of a programming-heavy, upper-division

course on concurrent and high performance computing at the

University of Hawai‘i at Mānoa. Although many learning

objectives are targeted by the programming assignments in

that course, several relevant learning objectives are not. The

use of the EduWRENCH modules allow students to achieve

these learning objectives in a hands-on manner, i.e., using

simulation.

A. The EduWRENCH Modules

At the time of writing, the EduWRENCH modules are pub-

licly available at https://eduwrench.org and cover the following

broad PDC and HPC topics:

• Single-core computing (work and compute speed, time-

sharing, RAM constraints, I/O operations);

• Multi-core computing (task parallelism, load balancing

and idle time, task dependencies, data parallelism);

• Networking (latency, bandwidth, topology, contention);

• The client-server model (concepts, pipelining of commu-

nication and computation);

• The Coordinator-worker model (concepts, scheduling);

• The Workflow model (concepts, locality, mixed paral-

lelism).

Each module is a single Web page with multiple tabs, where

each tab targets a particular topic relevant to the topic. Each

tab contains:

• A pedagogic narrative;

• In-the-browser, interactive, simulation-driven activities;

• Practice questions with revealable solutions;

• Open questions without solutions that can be used by an

instructor as homework assignments.

Several practice and open questions explicitly rely on the

simulation-driven activities. Some modules have a last “cap-

stone” tab in which students go through case-studies in which

they apply all the concepts they have learned in the module.

These case-studies can also be used as self-contained home-

work assignments by an instructor. The simulation activities

rely on simulators implemented in C++ using the WRENCH

simulation framework, which itself builds on the lower-level

SimGrid simulation framework.

Overall, the available modules at the time this is written

comprise 86 practice questions, 92 open questions, and 16

simulation-driven activities.

B. Classroom Use

Preliminary versions of the EduWRENCH modules were

used in the classroom in Spring’19 and Fall’19 offerings

of a 300-level undergraduate courses at the University of



Hawai‘i (Operating Systems). Some modules were completed

by students independently, some modules were covered in

interactive in-class sessions with students working in teams

and the instructor providing scaffolding, part of a module was

used as a homework assignment, and the final exam included

assessment questions for the learning objectives targeted by

all these modules.

In both semesters quantitative and qualitative data was col-

lected about the student experience: pre- and post-knowledge

tests, student feedback via questionnaires asking about overall

experience and self-perceived learning, logs of student use

of simulation-driven activities, and assessment of learning via

homework assignments and exam questions. This data show

that most students were engaged in the simulation activities,

with most student in the class running a number of simulations

in line with what was expected, or larger. Another finding

is that there is positive correlation between the number of

simulations students run and their grades on relevant exam

questions, even though some students who ran very large

numbers of simulations did poorly on the questions. We

surmise that these students struggled with the material and

ran many simulations haphazardly. Finally, feedback from

students shows that they had a very positive experience. For

instance, in the Fall’19 semester, 71% of students deemed the

material “very useful”, 29% “somewhat useful”, and 0% “not

useful”. 87% of students answered “yes” to the question “Are

you interested in learning more about Parallel and Distributed

Computing?”. Most importantly, when asked how useful was

the use of simulation for learning, 81% deemed it “very

useful” and 19% “somewhat useful”. Written-in comments

by students that semester included: “I liked the simulation.

It was a nice addition to visually see as well as check

my work”, “I like the hands-on experience during class and

having it available at any time”, “Love the visuals”. Overall,

these preliminary evaluation results were conclusive regarding

the effectiveness (actual or self-perceived) of the preliminary

pedagogic modules.

C. Key takeaways

Based on the experience and student feedback in these

two semesters, we made a number of changes/improvements

to the pedagogic content. Namely, we split several mod-

ules into sub-modules, added practice questions, and inte-

grated the simulation-driven activities in the same page as

the pedagogic narrative (as opposed to it being executed

in a different browser tab). These improvements have lead

to the EduWRENCH modules currently available at https:

//eduwrench.org. These newly available modules have been

used at the University of Southern California to train individual

students before they participate in parallel computing and high

performance computing research projects. They are also being

used in yet another undergraduate course at Univ. of Hawai‘i

in the Fall 2020 semester.

Besides disseminating the existing modules to instructors,

future work entails adding new content to existing modules

and developing new sets of modules. For instance, we are

currently creating modules that focus on concepts and practice

of Cyberinfrastructure Computing for scientific applications,

and modules are being developed for teaching students the

concepts behind batch scheduling, and for practicing, using

and optimizing the use of a batch scheduler, all in simulation.

Acknowledgments. This work is funded by NSF contracts #1923539

and #1923621: “CyberTraining: Implementation: Small: Integrating

core CI literacy and skills into university curricula via simulation-

driven activities”; and partly funded by NSF contract #1659886.

III. EVOLVING THE TRADITIONAL STUDENT CLUSTER

COMPETITION AS TOMORROW’S “PEACHY ASSIGNMENTS”

By: Michael K. Bane

Motivating the Assignment

At University of Liverpool, the MSc course on HPC was

revamped during the academic year 2018-2019. Additionally

a 3rd year undergraduate course on HPC was designed and

introduced for the academic year 2019-2020. An underlying

principle of the new teaching approach has been “authen-

ticity”, in line with the University’s guiding principles via

Curriculum 2021 [1]. Assignments had been aligned with

specific learning objectives which had been on specifics such

as OpenMP for shared memory programming and MPI for

distributed memory programming. The new undergraduate

course, running whilst the covid-19 pandemic curtailed normal

teaching activities, allowed us to (re-)design an assignment to

align problem based learning approaches. Specifically, students

were given a serial problem and asked to submit a solution that

ran faster, whether to parallelise using MPI (taught physically

pre-covid-19) or OpenMP (which had been covered via remote

teaching) or indeed to use compiler optimisation techniques

(covered earlier in the course).

We noted there are a number of leading conferences cov-

ering various fields of high performance computing (HPC),

notably SC [2] and ISC [3], that run a “Student Cluster Com-

petition”. At Liverpool, it has been identified that these com-

petitions offer learning opportunities for students. Specifically,

by participating, students would practise their technical skills

but also soft skills such as group work, meeting deadlines and

report writing. However, there are specific barriers to directly

using the competitions for students learning HPC, including:

the fixed time of international conference competitions; rules

limiting the number of teams per institution; potential privacy

issues relating to submissions and marking of assignments;

and potential conflict of IP ownership.

Defining the Assignment

We therefore have designed assignments that take the prin-

ciples of student cluster competitions, but are designed to

fit the constraints of university teaching. In outline, students

are assigned to a given small group, and all groups are

given a specific open source software code with default build



instructions, that they need to improve. They receive two sets

of data, a “debug” dataset and a “production” dataset, and:

• groups have a fixed deadline and it is up to each group

how much effort to expend on the project

• codes can be run on the HPC architectues provided; these

are specifically named (to avoid confusion) and include

the university HPC resources (100 nodes of Intel Skylake,

1 node with 2 Nvidia V100 cards, 4 nodes of Intel

Knights Landing), augmented by the department’s HPC

dev resources (1 node with 2 Nvidia Quadro cards, 1

node with Xilinx U200 FPGA card). Leveraging our col-

labations with MicroSoft, future runs of the assignments

will provide given MS Azure IaaS plaforms.

• numerical results for both datasets have to agree within

roundoff error analysis compared to baseline output. This

is defined as the output when the code is compiled

with the stated default build instructions and run on the

Skylake cluster.

• the optimised code has to submitted to the department’s

gitlab site, together with full build instructions (e.g.

Makefile).

Unlike some conference competitions, we do not impose

power caps, primarily due to the challenges in providing

“energy to solution” data to students for every platform. The

key aim for a student group is to obtain (correct) results as

fast as possible. They also have to write a concise two page

formal report outlining their submitted solution.

Assessing the Assignment

The main aim of the assignment is to support learning by

students. The work is assessed which requires a clear marking

scheme, viz:

• speed: 70% based upon raw speed of the modified code

when running the production dataset, defined in terms of

quickest time to solution within roundoff accuracies.

• approach: 10% available for novel approaches.

• report: 20% for clear, concise, explanation of the ap-

proach taken and discussion of the code improvements.

IV. BROADENING PARTICIPATION VIA COMPUTER

SYSTEMS GENOME RESEARCH GROUP

By: Margaret Ellis, Kirk Cameron, Godmar Back

The mission of the Computer Systems Genome Project

(CSGenome) is to conduct the first scientific effort to catalog

the lineage of computer system performance over time to

enable knowledge discovery and further understanding of the

impact of computing innovations on transformative technolo-

gies, the knowledge-based economy, and societal change. This

work is powered by a large group of undergraduate research

students with the specific intention to engage a broader group

of students in computer systems research.

Facilitation of this supportive research team has propagated

the recruitment and retention of a diverse set of students

in an area of computer science that traditionally lacks such

representation of women, black students, and students with

disabilities. This talk will address team culture, management,

and communication strategies that enable an encouraging

learning and research environment for a diverse group of un-

dergraduate students. The supportive community atmosphere

promotes a sense of belonging for students and acquisition

of practical skills develops their self-efficacy. Several such

students have chosen to pursue graduate studies in computer

systems.

A. Significance of the Work

Since the dawn of computing, the world has tracked system

performance. Yet, computer system performance data is still

primarily siloed by benchmark, system, or system component.

The CSGenome project (https://csgenome.org/about/ was born

from lack of a central repository for systems component, con-

figuration, and benchmarking data recognized by the VarSys

Team https://varsys.cs.vt.edu/the-varsys-team/. We began with

work to support that team and a goal to engage a broader group

of students in computer systems research.

In its first few years our research team has consisted of

40% women, 10% black students, and 5% students with

disabilities. This is significantly more diverse than our overall

computer science department which is 19% women and 3%

black students. Notably, this is also extremely more diverse

than the computer systems research community. We began

building the undergraduate team in the Spring of 2018 and four

students are currently in progress towards CS graduate degrees

in the systems area. Three students obtained competitive

undergraduate internships and subsequent full-time positions.

Alumni continue to engage with the group as valuable role

models.

Our success in recruiting and retaining students is multi-

faceted. Students perceive the skills and experience acquired

as very useful to their future careers and also find the long-term

project goals interesting and relevant. The team is explicitly

supportive, and not intimidating, so that even when the content

may seem complicated or overwhelming students are encour-

aged to persevere and are provided with resources, feedback,

and peer role models. Early CS research experience in an

active research group with a focus on community building

and support has been shown to yield positive outcomes on stu-

dents’ perception of and retention in Computer Science [6]. We

provide community building and support specifically within a

systems research group.

Key components of our team culture align with the 2018

report “Women in computer systems research: increasing com-

munity, awareness, and communication” [7]. Students have

regular casual interaction with each other and faculty. Time

and space (whether physical or virtual) are provided so that

the team has open-ended working time together to allow for

unstructured friendly conversations and incidental learning.

Also instrumental is that in addition to larger group meetings

and more formal presentations and code or design reviews, the

students have ready access to faculty.



The team culture is that students are expected to collabo-

rate and help each other, the more advanced students create

tutorials with faculty consultation and new students improve

material as they work through it. In our recent all-online

work environment, we have pre-recorded video tutorials by

graduate students for the team and we record informative

zoom sessions. We consciously strive to maintain a transparent

and open environment to build a sense of community for the

students to learn and thrive. On a larger scale our project

aims to influence the perception of and communication about

computer systems research to a broad audience by making

our repository, analysis, and educational materials available

through the project website.

Some of the efforts that have made this approach a success

include:

• Recruitment of a diverse set of students enrolled in CS2-

level courses with options to volunteer, earn undergradu-

ate research credit, or become a wage employee.

• Practical skills instruction and training to acclimate stu-

dents to version control, Linux, development environ-

ments, python, and project subgroup-specific technolo-

gies.

• Team meeting and working sessions with various sub-

groups (e.g. front-end development, memory component

data pipeline, new-to-CSG, outreach) for brainstorming,

planning, problem solving and reporting.

• Team communication using discord, git issues, emails,

and weekly updates via google docs with faculty feed-

back.

• Research skills training to introduce students to litera-

ture surveys, publication reviews, research methods, and

LaTeX.

• Cultivation of peer-to-peer relationships by assigning

tasks to pairs of students, providing in-group mentors for

students, and communication with recent graduates.

• Faculty roles include project vision, technical expertise,

advising, and facilitation.

V. A MASTER DEGREE COURSE IN COMPUTATIONAL

ENGINEERING AT UNIVERSITY OF WARSAW

By: Piotr Bała

A. Introduction

Computer science studies are very popular in Poland and

other countries. They are conducted at many universities both

in the field of mathematical sciences (mainly universities)

and technical sciences (primarily technical universities)1. In

Poland, computer science students are the most numerous

group divided into a field of study. The number of candidates

1In Poland there an official list of disciplines and research fields. Each
university program has to belong to one or more fields and disciplines. For
computer science, there is a distinction between theoretical and practical one.
Each of them belongs to the different research fields .

has been oscillating at the level of several candidates for one

place for many years, taking into account the relatively rational

assessment of opportunities based on the results of secondary

school leaving examinations by young people.

A large number of computer science students cannot keep

up with the market demand which significantly exceeds the

number of graduates. Besides, the demand for IT specialists is

diverse and changes with the emergence of new technologies.

Unfortunately, education in this area does not keep up with the

demand, which is particularly visible in the field of technolo-

gies related to computer simulations, large-scale calculations

or the processing of large data.

The University of Warsaw, founded in 1816, is the largest

and leading university in Poland, with about 2,900 academic

staff among its 5,300 employees, and over 50,000 students.

Offering courses in 32 fields of arts and sciences, its 18

faculties include natural sciences, social sciences, humanities,

and over 30 extra-departmental and inter-faculty centers and

programs. The University of Warsaw is participating in nu-

merous research projects.

ICM, The Interdisciplinary Centre for Mathematical and

Computational Modelling, a basic unit within the University of

Warsaw, founded in 1993, is a research center in computational

sciences and a center of HPC infrastructure. The research at

ICM, of the strongly interdisciplinary profile, encompasses

computational and information sciences, with special focus on

their mathematical foundations and applications in other areas

of science, technology, and e-economy.

B. Computational Engineering

Computational engineering is a second level (according to

the Bologna Process) master degree program launched in the

winter semester 2016/2017. The profile of the program is

practical, which means that at least 50% of the classes is pro-

vided in the form of laboratories, seminars, and other practical

activities. This includes a 3-month internship performed in the

industrial environment including HPC centers. The studies are

addressed to graduates of engineering studies (first level, 7-

semester studies, completed with an engineering degree) or

master’s degrees. The studies last 3 semesters and end with

obtaining a master’s degree. Initially, the studies were located

in the field of technical sciences, from the 2019/20 academic

year, the studies are conducted as practical studies in the

discipline of computer science in the field of natural sciences.

The study program deals with the use of scientific simu-

lations to solve advanced scientific and technical problems.

It is the answer to the growing demand for the use of

computer simulations in various fields of science, economy,

and business. Computer modeling is necessary to build a

knowledge-based economy. As already mentioned before, the

demand for specialists in this field is reported by all large

enterprises operating in the field of digital technologies.

A significant part of the classes are lectures selected by

students according to their interests. The range of classes

to choose from is diverse, although it largely depends on

the lecturers available. Recently, selected on-line courses on



machine learning and artificial intelligence emerged as part of

the elective courses supported by final projects implemented at

the University of Warsaw. To enrich the offer, elective classes

are common to students from subsequent training cycles. Each

semester, at least one of the lectures is conducted in English.

To date, we have not decided to conduct all classes in

English, as to which there are no obstacles either on the side

of the lecturers or on the side of the students. The studies,

so far are directed primarily at Polish students, hence the use

of Polish is natural. For now, interest in studying by foreign

students is low and concerns people who know Polish. In the

case of increased interest, it is possible to start studies entirely

in English.

The study program has been entirely defined based on

the learning outcomes. It is fully compliant with applicable

regulations and industry trends.

Computational engineering studies are directed primarily at

non-IT specialists, however, the experience of the first years

showed that mathematical and computer science background

is very important. Lack of such preparation constitutes a

significant barrier hindering passing mathematical subjects.

Therefore, during recruitment, priority is given to graduates of

fields of study run by university faculties who have the right

to grant doctoral degrees and provide basic IT knowledge. The

list of faculties includes computer science; applied computer

science; electronics and telecommunication, automation and

robotics; biomedical engineering, mechatronics, electrotech-

nics, physics, applied physics, and others connecting these

areas of knowledge.

Computational engineering studies are full-time studies,

therefore they are free for Polish citizens and EU countries.

The exemption from fees also applies to persons from other

countries mentioned above who have a Polish Card - they are

people of Polish origin, who often speak Polish but live in

Belarus, Ukraine, Kazakhstan or other non EU countries. For

the remaining students, the studies are paid, the tuition fee is

1,500 Euro per semester (4,500 Euro for the entire studies).

The computational engineering curriculum consists of com-

pulsory and optional lectures, including lectures in the hu-

manities or social fields. For example, in the first semester,

students implement two compulsory subjects: modern com-

puting, database and network systems (9 ECTS points2) and

parallel computimg (6 ECTS).

The lectures include an introduction to high power com-

puting systems, presentation of basic computer architectures,

processors, networks, and data storage systems. Students will

learn about queuing systems and their use in practice, learn

about profiling technologies and code optimization both scalar

and vector. They will learn about the principles of compiling

and installing software or numerical libraries. The lecture

includes an introduction to grid and cloud technologies, vir-

tualization, and computing portals. Dedicated classes are on

Hadoop and Spark technology. During one of the first classes,

2ECTS - European Credit Transfer System – (the so-called credit points)
– it is a system of clear and comparable marks and academic degrees which
makes it possible to recognize diplomas in the European job market.

students learn practically how to use HPC systems available at

ICM University of Warsaw. These classes, from the 2019/2020

academic year, are separated in the schedule (10 hours, 1

ECTS point). As part of the lecture, one-day workshop is car-

ried out, dedicated to installing selected applications on ICM

computing systems. These classes are a practical verification

of students’ knowledge and skills. In a result, students prepare

reports from the installation process including its verification

and performance measurements.

In the first semester, there are also classes in parallel pro-

gramming. In the era of multiprocessor computers, this subject

is important in educating users of high-power computers. The

course program includes a theoretical introduction to parallel

programming (8 hours) and practical classes divided into

three blocks: programming in the PGAS model using the PCJ

(Parallel Computing in Java) library (12 hours), programming

in the messaging model (MPI, 20 hours) and programming in

a model with shared memory (OpenMP, 20 hours).

The second semester of study includes two compulsory lec-

tures on computer simulations in natural sciences (26 lecture

hours, 4 hours of classes, 3 ECTS), and the basics of modeling

in social sciences (26 hours of lectures, 4 hours of classes,

3 ECTS). Both lectures were intended as a review of the

applications of computer simulations in the most important

fields of science.

The presented study results show that the computational en-

gineering program equips students with basic domain knowl-

edge plus the necessary skills and in-format competences in

the field of large IT infrastructures. What’s more, the education

obtained in this way allows one to effectively solve complex

problems that require the processing of large data or computer

simulations.

Last but not least, one of the goals of program was to

educate people for employment in supercomputing centers,

including ICM. Despite the small number of graduates. It can

be said that this goal has been achieved.

REFERENCES

[1] liverpool.ac.uk/centre-for-innovation-in-education/curriculum-
resources/overview/ [14/09/20]

[2] sc20.supercomputing.org/program/studentssc/ [14/09/20]
[3] hpcadvisorycouncil.com/events/student-cluster-competition/ [14/09/20]
[4] M. Ignatova, The Top 10 Skills You Will Be Hir-

ing for in 2017. LinkedIn 25.11.2016 https://business.
linkedin.com/talent-solutions/blog/trends-and-research/2016/
the-top-10-skills-you-will-be-hiring-for-in-2017 Accessed: 20.05.2019.

[5] Hackathon Great Programming Challanges http://wwp.icm.edu.pl
[07/06/20]

[6] M. Barrow and S. Thomas, and C. Alvarado, A Structured CS
Research Program for Early-College Students. in Proceedings of the
2016 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE’16). Association for Computing Machinery,
New York, NY, USA, pp 148 – 153.

[7] L. Golubchik and J. Weston, Women in computer systems research:
increasing community, awareness, and communitation, in Technical
Report. National Science Foundation, USA, 2018, pp. 1-21.


	Introduction
	EduWRENCH: Simulation-Driven Pedagogic Modules
	The EduWRENCH Modules
	Classroom Use
	Key takeaways

	Evolving the traditional Student Cluster Competition as tomorrow’s “Peachy Assignments” 
	Broadening Participation via Computer Systems Genome Research Group
	Significance of the Work

	A Master Degree Course in Computational Engineering at University of Warsaw
	Introduction
	Computational Engineering

	References

