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Modeling species distributions over space and time is one of the major research topics
in both ecology and conservation biology. Joint Species Distribution models (JSDMs)
have recently been introduced as a tool to better model community data, by inferring a
residual covariance matrix between species, after accounting for species’ response to
the environment. However, these models are computationally demanding, even when
latent factors, a common tool for dimension reduction, are used. To address this
issue, Taylor-Rodriguez et al. (2017) proposed to use a Dirichlet process, a Bayesian
nonparametric prior, to further reduce model dimension by clustering species in the
residual covariance matrix. Here, we built on this approach to include a prior knowledge
on the potential number of clusters, and instead used a Pitman-Yor process to address
some critical limitations of the Dirichlet process. We therefore propose a framework
that includes prior knowledge in the residual covariance matrix, providing a tool to
analyze clusters of species that share the same residual associations with respect to
other species. We applied our methodology to a case study of plant communities in a
protected area of the French Alps (the Bauges Regional Park), and demonstrated that
our extensions improve dimension reduction and reveal additional information from the
residual covariance matrix, notably showing how the estimated clusters are compatible
with plant traits, endorsing their importance in shaping communities.

Keywords: Biodiversity modeling, dimension reduction, joint species distribution model, latent factors, Bayesian
nonparametrics, plant communities

1. INTRODUCTION

Understanding and predicting the distribution of species across space and time is one of the
central questions in ecology (Thuiller et al., 2013). As such, species distribution models (SDMs)
are essential tools to investigate how species respond to environment (Guisan and Thuiller, 2005;
Elith and Leathwick, 2009; Guisan et al., 2017). The main principle is to relate individual species
observations to a set of environmental predictors. The estimated relationship between species and
the environment allows to infer the environmental niche of the species and then to predict its
distribution for new environmental conditions, either in space or time, or in both (Guisan and
Thuiller, 2005; Merow et al., 2014; Guisan et al., 2017). While SDMs could be used to study species
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assemblages (a technique commonly called stacked SDM
(sSDM), see Ferrier and Guisan, 2006; Calabrese et al., 2014), they
were meant to model and predict the distribution of individual
species. To model species assemblages, recent statistical advances
yield to Joint Species Distribution Models (JSDMs) (Pollock
et al., 2014; Warton et al., 2015; Clark et al., 2017; Ovaskainen
et al., 2017b), which are multivariate extensions of generalized
linear regression models (GLM) (other approaches can be
found in Harris, 2015; Vanhatalo et al., 2020). In JSDMs, the
regression coefficients are related to the response of species
to the environment, as in SDMs, while the correlation among
the residuals describe the pairwise-species dependencies not
explained by the environment.

Since JSDMs were created to deal with community
data, they are gaining popularity with the ever-increasing
developments of novel methods for community assessment,
such as environmental DNA (eDNA) metabarcoding (Taberlet
et al., 2012). However, their application to large datasets still
faces strong limitations such as computational costs and the
interpretation of the residual covariance matrix. Indeed, JSDMs
are computationally expensive because the number of estimated
parameters in the residual correlation matrix grows quadratically
with the number of species. There are several approaches
to address this problem. For JSDMs that are based on the
multivariate probit model, computational reduction can be
achieved by efficient parallel sampling (Chen et al., 2018; Pichler
and Hartig, 2020) to fit a full covariance matrix in a frequentist
framework. Another common solution relies on dimension
reduction through latent variable models (LVM) (Warton et al.,
2015), where the effective dimension of the model is reduced
by a low-rank approximation of the residual covariance matrix
(Warton et al., 2015; Hui, 2016; Ovaskainen et al., 2016; Taylor-
Rodriguez et al., 2017). While the approximation with low rank
values could capture the residual associations in the covariance
matrix for a large number of species and significantly improve
convergence and computational time (Warton et al., 2015), their
wide applications to large dataset is still prohibited (Pichler and
Hartig, 2020).

A growing number of species is not only a problem from
a computational viewpoint but it also makes the interpretation
of the residual correlations challenging. For example, for 100
species, 4,950 pairwise residual correlations are estimated, which
represent species associations patterns that are not explained
by the environmental covariates and can depend on many
factors: model misspecification, missing covariates, and less
likely, biotic interactions (Poggiato et al., 2021). Moreover, the
symmetric constraint of any covariance matrix impedes to detect
any asymmetric dependence between species (e.g., hierarchical
competition, predator-prey, Dormann et al., 2018; Poggiato et al.,
2021). Therefore, the complexity of the pattern increases with
the dimension of the problem and blurs the interpretation of the
residual covariance matrix inferred by JSDMs.

To improve such an interpretability of the residual covariance
matrix recent works proposed to reduce the number of non-
zero residual correlations between species. This is usually done
by applying sparsity inducing regularization (e.g., L, elastic net)
to the correlation matrix (e.g., elastic-net, Pichler and Hartig,

2020) or its inverse, the precision matrix (Chiquet et al., 2019).
However, latent factor JSDMs usually fail to produce sparse
matrices (Pichler and Hartig, 2020). We believe that providing
additional assumption on the structure of the residual covariance
matrix could be a promising avenue. For instance, we might
consider block-wise structure of the covariance matrix, such that
residual associations would vary between the blocks, instead of
individual observations (Moscone et al., 2017). In the JSDM case,
it means that we can consider groups of species that share the
same association patterns with respect to the other ones. In this
case, the model would capture the main associations between
(and within) groups of species instead of the species level ones.

Incorporating expert-based knowledge about this block
structure of the covariance matrix would further improve this
model. Interestingly, most JSDMs are implemented within a
Bayesian framework, that naturally allows the incorporation
of a prior knowledge, but few ecological studies have actually
exploited this feature (Banner et al., 2020). Choosing the prior
knowledge that we want to give to the residual covariance matrix
is tricky, but feasible. For instance, in a species-rich foodweb,
there are a fair amount of species that share the same preys
and predators with others, forming what is usually called trophic
groups (O’Connor et al,, 2020). If they are known, or inferred
with a specific approach like a stochastic block model (Lee and
Wilkinson, 2019), the number of trophic groups can be used as a
prior to reduce the residual correlation matrix. In a similar way,
plant functional groups have been designed to group species that
share the same traits, respond the same way to environment, and
interact the same way with species from other groups (Boulangeat
etal, 2012). We believe that the prior knowledge on the number
of groups of interest (e.g., trophic or functional) can be used as
a prior for the block structure of the residual covariance matrix,
which could help to reduce the dimension, and the same time,
might help the interpretability of the residual covariance matrix.

Recently, Taylor-Rodriguez et al. (2017) proposed a dimension
reduction method that combines a latent variable approach with
an additional clustering of the variance-covariance matrix using
a Dirichlet process prior. That allows to further reduce the
effective dimension and improve the computational efficiency of
the model, but in the proposed model, clustering was mainly a
tool for dimension reduction, without focusing on further cluster
interpretation. That paper also did not address prior information
that could be used with the Dirichlet process to inform the
number of desired species groups.

Here, we build on this recent work to propose a novel
framework that allows for a clustering of residual associations
that makes use of prior information. In doing so, we addressed
the following questions: (1) Can prior knowledge, combined
with dimension reduction on the structure of the residual
covariance matrix, improve model inference in JSDM? (2) Can
estimated clusters be interpreted in ways that help us understand
species communities?

In the following, we first describe the model and our
extension that improves clustering properties by incorporating
prior knowledge on the number of species that share residual
associations. We then introduce Pitman-Yor process, a more
flexible Bayesian nonparametric prior, which is less sensitive to
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miscalibration than the Dirichlet process. We hypothesized that
species within the same cluster have similar functional strategies.
As a show case, we investigated this hypothesis within the scope
of the case study of Bauges National Park.

2. THE FRAMEWORK
2.1. Statistical Model

We provide a formal description of our model, which is
an extension of the model in Taylor-Rodriguez et al. (2017)
developed to reduce the dimensionality of the inference in
JSDMs, in the particular framework of Generalized Joint
Attribute Modeling (GJAM) (Clark et al., 2017). GJAM allows
to model many types of species observations (presence-absence,
counts, biomass, and others) altogether. We present the model
and its application for presence-absence data, but since our
approach is an extension of GJAM, it is valid for most responses.
To study species distributions, we model a response variable y;
with respect to a set of p environmental covariates x; = {x;¢ }5:1’
at each site i = 1,...,n, where £ = 1,...,p represents the £-
th environmental covariate. The response variable Y; € {0,1}isa
vector where each element y;; contains the observation for species
j = 1,...,S at site i. JSDMs model the response variable using
what is commonly called the multivariate probit model (Chib
and Greenberg, 1998), where for species j at site i the probability
of presence is modeled through a latent normal variable z;; as
Pr(yj = 1) = Pr(z; > 0). In dimension reduction approach
suggested by Taylor-Rodriguez et al. (2017) z; is modeled as:

»
zi=Bxi+ Awi+¢€;, € ~ Ns(0s5,02I5), (1)

where B is the S x p matrix of regression coefficients and x is

the p x n matrix of measured covariates and w; i N(0,I,) are
the latent factors, A is the § x r matrix of factor loadings. The
number of factors r is supposed to be comparably smaller than
S (r <« S). Here, latent normal variable z; has residual covariance
matrix * = AAT +a€215, which have dimension S x r+1 and is
less than S(S + 1)/2 in general case (see details Taylor-Rodriguez
et al.,, 2017). In this model, the number of latent factors r is
fixed, and can be chosen to maximize the goodness-of-fit or some
informative criteria like DIC, BIC (Gelman et al., 2004) or using
cross-validation. While choosing the number of latent factors r,
it is important to verify that the matrix A has a full column rank
and the model is well-identified (Geweke and Singleton, 1980;
Taylor-Rodriguez et al., 2017).

If the residual covariance matrix X* represents the co-
occurrence pattern not explained by the environment, latent
factor models can provide further insights in this residual
correlation. Indeed, the low-rank matrix A would represent
the main axes of variation of the residual co-occurrence
pattern. Moreover, latent factors w; could represent missing
environmental predictors at site i, and rows of matrix A (&;)
encode the response of species j to these missing predictors.
Therefore, latent factors can highlight both the main axis of co-
variation and a common (or opposite) response to unmeasured
covariates (see Chapter 7 of Ovaskainen and Abrego, 2020).

A further dimension reduction proposed by Taylor-Rodriguez
et al. (2017), that finds common rows in A, is described in the
next section.

2.2. Clustering in the Residual Covariance

Matrix

Latent factors allow to model a “tall and skinny” S x r matrix A
instead of a “tall and wide” § x S matrix X. Further dimension
reduction proposed in Taylor-Rodriguez et al. (2017) is based
on the reduction of this “tall and skinny” A matrix to a “short
and skinny” one. To do so, the authors find common rows in A,
exploiting the clustering properties of the Dirichlet process (DP),
a prior distribution used routinely in Bayesian nonparametric
statistics. By finding common rows in A, the DP creates clusters
(i.e., groups) of species that share the same values of A;.
Therefore, only the N < S unique values of the rows of A*
are estimated, that will then be repeated for species in the same
clusters to obtain A and then £*. As a consequence, the model no
more estimates the “tall and skinny” A, but only the “short and
skinny” A* matrix. Species in the same cluster will have the same
value of the corresponding rows of A, and consequently these
species will also have the same rows and columnsin £* = AAT+
oI5 In other words, species in the same cluster are similar in
their residual covariance matrix. Therefore, we will say hereafter
that we cluster species depending on their associations with respect
to other species. This approach allows to reduce dimension of
the model and infer groups of species with the same residual
correlation structure.

In the model proposed by Taylor-Rodriguez et al. (2017),
clustering was only a tool for dimension reduction, and the
paper did not focus on the further interpretation of the clusters
that we just discussed. However, the clustering resulting from
the Dirichlet process prior depends on the prior specification
(De Blasi et al., 2015) for which we offer two extensions. In the
first extension, we provide a flexible method to incorporate prior
information on the number of clusters that allows clusters to
better represent the underlying data. For the second extension,
we introduce another Bayesian nonparametric prior called the
Pitman-Yor process, which overcomes some limitations of the
Dirichlet process and is more suitable for ecological applications.

2.2.1. Dirichlet Process Formulations: DP and DP¢
We describe here the original Dirichlet process formulation
proposed by Taylor-Rodriguez et al. (2017), as well as an
extension of it which allows the introduction of a prior
knowledge in a flexible way, respectively denoted as DP and DP,
(calibrated Dirichlet process model).

The Dirichlet process is used in Bayesian statistics as a
prior distribution over distributions. In other words, sampling
from the Dirichlet process provides a distribution that has the
important feature of being discrete, thus clustering samples
naturally (Ferguson, 1973). This process is parameterized by
the base distribution H, which is the mean of the Dirichlet
process and the concentration parameter « that regulates how
the distribution drawn from the Dirichlet process is concentrated
around its mean (base distribution) (see the formal definition in
Supplementary Material, section 4).
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We denote by A, j = 1,..., S the rows of the matrix A in (1).
The original DP model uses the Dirichlet process as follows:

MGG j=1,...,8 @)
G ~DP(aH), 3)

where G is the probability distribution drawn from the Dirichlet
process prior. Taylor-Rodriguez et al. (2017) chose the r-
dimensional normal distribution as the base distribution H, and
used a fixed concentration parameter «. By the properties of the
Dirichlet process, the distribution G is almost surely discrete, so
that there will be repeated values in the sampled rows 1; (i.e.,
there is non-zero probability that two rows collide). The unique
values of A; form the N < S matrix A*. We hereafter call a
“cluster” (group) the subset of species whose A; coincide.

The main advantage of the Dirichlet process (and other
more flexible Bayesian nonparametric priors) is that it does
not pre-specify the exact number of clusters. Dirichlet process
prior induce prior distribution on the number of clusters.
We may fix features of the induced prior number of clusters
through the concentration parameter o, that regulates the
clustering properties of the Dirichlet process (see details in
Supplementary Material, section 4).

The Dirichlet process is the most widespread nonparametric
prior due to its computational ease, but it has several limitations.
The main one is precisely that clustering properties are regulated
by only one parameter, «. As pointed out in De Blasi et al.
(2015), this concentration parameter has a strong effect on the
posterior distribution of the number of clusters. Indeed, the prior
distribution on the number of clusters of a Dirichlet process
prior is highly peaked. As a consequence one would require a
high sample size to counterbalance such a strong prior weight,
resulting in a low posterior probability to have a number of
clusters far from the prior mean.

To overcome this limitation, we added a hierarchical layer
for the o parameter to let the model choose values for o,
thus providing flexibility to the posterior number of clusters.
We chose a Gamma distribution as a hyperprior for «, so
that « ~ Ga(vy,v;), where vy, v, are hyperparameters. We
implemented a within-Gibbs Metropolis-Hasting step (see for
details Supplementary Material, section 6), to sample from the
posterior distribution of this parameter (Robert and Casella,
2004). As in Taylor-Rodriguez et al. (2017) we use the Dirichlet
multinomial process for approximating the Dirichlet process
(Muliere and Secchi, 2003). We hereafter refer to this model as
DP. (calibrated Dirichlet Process). By conveniently choosing the
hyperparameters of the Gamma distribution, we can calibrate
the expected value of the prior distribution on the number of
clusters induced by the DP. Indeed, the expected number of
clusters for the Dirichlet multinomial process is (Lijoi et al,
2020a, Example 3):

N Dt 1= )

@+, W

E[Kn,a,N] =N

where (x), = x(x + 1)...(x + n — 1) denotes the increasing
factorial coefficient, for any real number x and integer n.

By further sampling from parameter « and from Ga(vy,v3)
and using (4) we can ultimately determine the values of
the hyperparameters (v;,v;) that guarantee that the prior
expected number of clusters Ks matches our prior knowledge
on the number of clusters K*, ie., E[Ks] = K* (see
details in Supplementary Material, section 5.1). In our case, an
ecologically-driven prior knowledge is used to specify the prior
belief on the number of clusters K*. The ground truth on the
value of K* is hard to be known, but due to the larger prior
variance provided by the hierarchical modeling of & the prior is
not fully informative, and allows the inclusion of an eventually
uncertain prior knowledge too. A sensitivity analysis has to be
carried to confirm such a choice.

As a side note, notice that in the model proposed by
Taylor-Rodriguez et al. (2017) one may suitably select the
parameter N in order to fix the prior mean on the number
of groups, but this could lead to an extremely peaky prior
distribution (Supplementary Figure 4), which may not result
in a flexible model. While providing more flexibility to the
clustering properties of the model, the Dirichlet Process is still
limited by its dependence on a single parameter «. We therefore
propose another extension of the model, by introducing the
Pitman-Yor process.

2.2.2. Pitman-Yor Process Formulation: PY.
The Pitman-Yor (PY) process is a flexible generalization
of the Dirichlet process (see the full description in
Supplementary Material, section 4). Indeed the Pitman-
Yor process is characterized by the base measure H, the
concentration « and, importantly, by a discount parameter
o € [0,1). When o = 0, the Pitman-Yor process is anything but
the Dirichlet Process. The parameter o influences the variance of
the prior number of clusters, and a high value of o leads to high
variance for the distribution of the prior number of groups. As a
consequence, the posterior distribution is less constrained by the
prior, and the resulting clustering is more flexible. Denote by Kg
the prior number of clusters for S samples. Another property of
Pitman-Yor process is that the number Kg grows more rapidly
with the number of species S than for the Dirichlet process
(Pitman, 2006). For the Pitman-Yor process the number Kg
follows a power-law, i.e., E[Ks] grows as S” when § — oo, while
for the Dirichlet process it grows logarithmically as log(S) when
S — oo (Pitman, 2006). Moreover, the cluster size distribution
also shows power-law under Pitman-Yor process (Pitman and
Yor, 1997). For many real applications, this power-law property
is a more natural assumption than in the Dirichlet process,
where we generally have a small number of clusters with a high
number of observations, and a large number of clusters with only
a few observations.

We therefore considered a Pitman-Yor process as a prior for
the rows of A, similarly to the DP and DP. models.

MGG j=1,...5 (5)

G ~PY(«,0,H), (6)

where H is the base measure as in (3), « is the concentration
parameter, and o is the discount parameter. In our model we
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TABLE 1 | Specification of concentration parameter « for the DP, DPg,
PY. models.

Model Concentration parameter o References

DP Fixed (number of species) Taylor-Rodriguez et al. (2017)
DP, Ga(vy, 10) s.t E[Kg] = K* Ours

PY. Fixed, s.t E[Ks] = K* Ours + Lijoi et al. (2020b)

K* is the prior ecological belief on the number of groups of species with the same residual
correlation structure.

used the finite-dimensional Pitman-Yor multinomial process
proposed by Lijoi et al. (2020b), which approximates the Pitman-
Yor process and allows tractable computation (more details in
Supplementary Material, section 4).

We assumed parameters o and o as fixed following (Lijoi
et al., 2020b), and that the Pitman-Yor multinomial process is
flexible enough and does not require a prior distribution on
hyperparameters. We use the prior distribution on the number
of clusters for the Pitman-Yor multinomial process to compute
the prior expected number of clusters E[Kg] and variance V[Kg]
of this prior distribution. We can set E[Kg] = K* and specify
the variance V[Kg] to reflect the desired level of uncertainty and
then solve the system of equations numerically. However, the
solution could be computationally challenging for some values of
parameters. In addition, certain pairs of expectation and standard
deviation are not easily attainable (see Figure 6 in Bystrova et al.,
2021). Here, we firstly fix parameter o, choosing the distribution
variability, and then find the parameter «, such that E[Ks] = K*
(see details in Supplementary Material, section 5.2). We refer to
this model as PYc (calibrated Pitman-Yor process model), see
comparison with DPc model in Table 1.

2.3. Clustering Analysis

We summarize the posterior distribution of the clusters to obtain
a clustering (i.e., partition of species) for each model DP, DP,,
and PY. (the procedure is described in Supplementary Material,
section 7). Notice that there is a difference between the posterior
expected number of clusters and the number of clusters of the
estimated clustering, obtained by the algorithm described in
Supplementary Material (section 7) for posterior inference on
partition space. The former describes the distribution of the
number of clusters in Markov chain Monte Carlo (MCMC)
samples (Robert and Casella, 2004), while the latter represents
the number of clusters in the single partition that best represents
the posterior distribution of the clusters in the MCMC samples.
Generally, even if one has certain prior knowledge on the number
of groups, it is possible that there is no information on the
cluster composition. In our case study, we have a prior expected
number of clusters and we also have a cluster composition. For
this reason, we could also assess the composition of obtained
cluster in-depth. To do so, we measured the distance between
the clusters obtained by the models and the clusters we used as
a prior belief. We used the adjusted Rand index (ARI) (Hubert
and Arabie, 1985), which is the corrected for chance proportion
of the number of agreements (species clustered similarly) in all

possible pairs of species divided by the total number of all possible
pairs. This value is between 0 and 1, where 1 corresponds to
exactly the same cluster composition. Additionally, we checked
how the choice of the prior number of groups affects the posterior
distribution (sensitivity to the prior, Supplementary Material,
section 8.3).

3. CASE STUDY
3.1. Study Site and Species Information

We illustrated our methods with data on plant species in
Bauges Natural Regional Park (France) available from the
Alpine Botanical Conservatory (CBNA) and previously analyzed
by Thuiller et al. (2018). We included as covariates the
first two principal components of the environmental variables
presented by Thuiller et al. (2018), including a quadratic term
(using orthogonal polynomials to reduce correlation among
the covariates). We considered presence-absence for the 111
most abundant species (present at least in 2% of sites) across
the 1-139 plots. For details on the data processing steps (see
Supplementary Material, section 1). We considered the 16 plant
functional groups (PFGs) that were built in Thuiller et al.
(2018). These PFGs have been obtained through hierarchical
clustering, in order to build groups of species that have a
similar functional role: they have a similar tolerance of abiotic
conditions, dispersal abilities, resistance to disturbance (grazing
and mowing), response to competition for light (whether they
germinate and grow under specific light conditions), competitive
effects (estimated by the height of the species) and demographic
characteristics (life-form, longevity, age of maturity). We refer to
Thuiller et al. (2018) for a complete description of PFGs and how
they were classified. The number of these groups were used to
specify the DP. and PY, priors, by fixing E[Ks] = 16. Note that
the number of groups, but not their composition, was used for
prior specification.

3.2. Implementation and Specification of

the Models

We applied our DP. and PY. models together with the original
DP model in dimension reduction with the default settings on
the Bauges plant data. We fitted the models using Bayesian
inference via MCMC using a Gibbs sampling scheme. For the
original DP model, we used the R package GJAM (Taylor-
Rodriguez et al,, 2017). We implemented the DP. and PY.
models in R by extending the original GJAM R package. In
particular, we implemented an additional adaptive Metropolis—
Hasting step (for DP.) and the multi-step algorithm proposed
by Lijoi et al. (2020b) to sample from PY. (see details in
Supplementary Material, section 6). Our code (an extension
of the GJAM package) can be found at the first author’s
Github repository (https://github.com/dbystrova/GJAM_clust).
The prior on the number of clusters was set using the number
of plant functional groups (PFGs) as described above (see
Supplementary Material, section 5 for the calibration method
and for the importance of such step). For the sake of comparison,
we used the same default non informative priors suggested by
Clark et al. (2017) for all other parameters of the three models.
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Convergence was assessed through the calculation of Gelman-
Rubin diagnostics (Gelman and Rubin, 1992) or visual inspection
of the trace plots.

For the dimension reduction regime in GJAM model, the
number of latent factors in the first step of dimension reduction
needed to be specified. The number of latent factors was chosen
using the deviance information criterion (DIC) (Spiegelhalter
et al., 2002) (see details in Supplementary Material, section 2).
Model fit was evaluated at the species level. Prediction
performances were not the main objective of the paper, as
we do not expect the residual covariance matrix to impact
predictive mean values (Norberg et al., 2019; Wilkinson et al,,
2019; Pichler and Hartig, 2020). However, we did check that
the model fitted well the data both on training and test set.
The dataset was randomly partitioned into a training and a
testing dataset, using 70/30% ratio. We fitted models on the
training dataset and then predicted species occurrences on the
testing data, comparing the predicted and the actual occurrences,
similarly to Norberg et al. (2019) and Wilkinson et al. (2019)
(cross-validation is not a doable task due to the computational
costs of the models). For each species, we measured the predictive
performances by calculating the area under the receiver operating
characteristic curve (AUC) on both training (AUC;j,) and testing
datasets (AUCqyt).

3.3. Ecological Representation of the

Clusters

We hypothesized that species within the same clusters might
have similar functional strategies as measured by distance in
trait space. We considered the following traits: Landolt nutrient
indicator, Landolt light indicator, height (in the logarithmic
scale), specific leaf area (SLA), leaf dry matter content (LDMC),
leaf carbon concentration (LCC), and leaf nitrogen concentration
(LNC) (Brun et al., 2019). All traits presented here were available
for atleast 70% of the species. For a more intuitive understanding,
we assigned traits with a similar role in the community assembly
process (Boulangeat et al., 2012) into four categories: competitive
effect (height, SLA, LDMC, LCC, LNC), tolerance to abiotic
and biotic conditions (Landolt nutrient indicator, Landolt light
indicator), interaction via light resources (height, SLA, Landolt
light indicator), and interaction via soil resources (LNC, Landolt
nutrient indicator). Specifically, we calculated the following
species-specific ratio for each species, each category of traits
and each clustering method (including the PFGs) to measure
whether species within the same cluster share a similar range of
functional traits:

Species grouped-trait ratio

mean(distance to other species) ithin cluster

mean(distance to other species),ji species

In accordance with our hypothesis, we expected these
distributions of species grouped-trait ratios to be close to
zero, however not exactly zero, as exact zero would indicate the
singleton clusters. This specifically indicates that the species
were closer to within-cluster species than to species in the other
clusters, thus fitted clusters could represent similar functional
strategies. However, in our interpretation, we also penalized

the clustering method when the number of singleton clusters
increase as they do not serve the aim for clustering functionally
similar species.

3.4. Results

3.4.1. Prediction Evaluation

Supplementary Table 2 provides the predictive performances
(both in-sample and out-of-sample) of the models, that are all
very similar across models. The data are well-explained (mean
value of AUC;, is around 0.755), and the performances do not
drop on the test dataset (AUC,yt around 0.745).

3.4.2. Clustering Properties of the Models

The posterior distribution of the number of clusters of the DP
model with a mean value of 35 was substantially lower than
the prior mean of 56 (Supplementary Table 1, Figure 1). Larger
variances for the DP. and PY. models reduced prior weight and
thus posterior distributions remained closer to their prior mean
of 16, yielding a posterior mean near 20 (Figure 1).

Thus, the posterior cluster estimate from the DP model
estimated more clusters than did the DP. and PY. models (18,
and 20, respectively), which were closer to the number of PFG
groups (16); see point estimates in Figure 1. Figure 2 provides
the ARI as similarity measure between clusters estimated by
each model and the PFGs. The posterior cluster estimates for
all models are distant from the PFGs as the value of the ARI
measure between each of the clusters and PFGs is close to zero.
The DP is however more distant from PFGs than DP. and PY..
The DP. and PY. models yielded cluster estimates similar to one
another (Figure 2). Pairwise similarities with a random partition
in the Supplementary Material (see Supplementary Figure 5)
show that PFGs are closer to the estimated clusters than a
random partition.

We have tested sensitivity to prior specification for the PY,
and DP. models, specifying prior at lower (8) and larger (56)
values (Figure 3). PY. model which has a larger variance for the
prior distribution of the number of clusters, appeared to be less
sensitive to prior specification than DP..

3.4.2.1. Clusters Interpretation

The clusters estimated by DP. and PY. represent functional
strategies (Figure 4), particularly for traits related to tolerance.
The resulting clustering of the DP model contains many
singleton clusters (i.e., clusters with one species), which have zero
grouped-trait ratio, thus imply lower overall grouped-trait ratio
for DP model (Figure 4). Supplementary Figures 7-9 show the
residual covariance matrix inferred by the models.

4. DISCUSSION

Understanding what are the main environmental drivers of
species distributions and biodiversity is one of the main goad of
ecology. This task requires to consider a large number of species
with as a consequent high computational cost of the models
employed, whose feasibility depends on dimension reduction
and the inclusion of an expert-based prior knowledge. Here, we
presented an extension of the dimension reduction approach for
joint species distribution models proposed by Taylor-Rodriguez
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FIGURE 1 | Prior distribution and posterior estimation of the number of clusters corresponding to DP, DP,, PY. models. For DP, and PY, models, prior distribution
is specified such that E[Ks] matches the prior ecological knowledge (in our case it is the number of PFGs). Posterior estimation for all the models is represented by the
posterior distribution of the number of clusters (solid lines) and the number of clusters of the posterior cluster estimate (points on x-axis). Refer to the clustering
estimation procedure described in Supplementary Material, section S.7 for a pointer on why the size of the cluster estimate can be distant from the bulk of the

posterior distribution.
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FIGURE 2 | Pairwise ARI similarities between the PFGs and the clusters
estimated by the models (DP, DP., PY,).

et al. (2017), by incorporating prior knowledge and by providing
a more flexible clustering method. While reducing the dimension
of the model, we provide a tool to create groups of species that
share the same associations with respect to other species. For
studies where a specific residual covariance structure is desirable
our approach brings new flexibility to JSDMs. Our application
shows a case where residual covariance is structured in agreement
with functional traits, suggesting that these traits determine
presence-absence beyond what is explained by the mean structure
of the model.

4.1. Clustering Properties of the Models

The results of our case study confirm the importance of
carefully choosing the prior in the DP model proposed by
Taylor-Rodriguez et al. (2017). The DP specifies greater prior
weight on the number of clusters than can be desirable in
some applications. For this application where we specified a

Mis-callibrated (K=56)

0.104
0.054
Model
— DP
> 0.004 T T 0 1 T T T — DP.
% 0 10 20 30 40 50 60 - PY,
é Mis-callibrated (K=8)
& type
= posterior
024 == prior

0.14

0.0

FIGURE 3 | Prior and posterior distribution of the number of clusters for the
models DP¢, PY, corresponding to the different prior specification of the
number of clusters, where prior expected number of clusters E[Ks] take values
in {8, 56}.

prior mean that was far from the posterior (i.e., using the
default settings of Taylor-Rodriguez et al., 2017), the posterior
distribution of the number of clusters of the DP model moved
far from the prior, but without the full flexibility we offer
here (Figure1). Large prior variances on the DP. and PY,
models make them less informative. In this application where
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we specified a prior mean close to the posterior, we found
prior-posterior agreement.

By tuning the parameter N, the DP model would have also
recovered the desired number of clusters. However, due its very
peaky prior distribution (i.e., strong prior weight), it has less
flexibility to move far from the prior when sample size is limited
(sample size in our case, number of plots is n = 1, 139, number
of species is § = 111). For this reasons we did not test for
the ability of this model in the case study. Finally, the fact that
the posterior distribution of the number of clusters of PY. for
different prior choices stay close, confirms that the prior on the
number of clusters for the models (E[Kg] = 16) is well-chosen.

4.2. The Importance of Prior Elicitation

Including prior knowledge is an appealing feature of Bayesian
statistics, which is however often unused, or worse, misused
(Banner et al., 2020). Expert-based prior knowledge on species
interactions has always been available, and it is now getting
more and more accessible (Maiorano et al., 2020). While co-
occurrence networks should not be interpreted as interaction
networks, we claim that this prior knowledge can help to
separate the effect of the environment from the one of biotic
interactions, to improve inference of interaction networks, but
also to account for biotic interactions in predictive distribution
models. In our case, prior knowledge does not concern particular
species-specific interactions, but informs the model on the
number of groups of species that share the same associations
with other species. Although these associations should not be
confounded with interactions, we suggest that our model DP,
is a first attempt to include prior information when building
co-occurrence networks. Since time-series contain much more
informations on biotic interactions than snapshot data, we could
further extend our model to cluster the autoregressive coefficients
of dynamic JSDMs (Ovaskainen et al., 2017a; Clark et al., 2020),

in order to truly include a prior knowledge on the structure of the
interaction network.

4.3. Clustering Species in JSDMs

Framework

Thanks to new sampling techniques (e.g., eDNA, Taberlet et al.,
2012), community data are becoming more and more available.
Learning the structure of a co-occurrence network from data with
a large number of species is particularly demanding, since for
a given number of nodes S, there exists 25 possible networks.
Moreover, even in case a correct inference is possible, it is not
an easy task to visualize, and then summarize and analyze a large
network. Clustering species allows to zoom out from the species
level, focusing on a broader scale, easier to model, visualize, and
describe (Ohlmann et al., 2019). Indeed, our model both reduce
the dimension of the problem and enable a better understanding
of the ecosystem under study, showing how these clusters are
strongly linked to functional traits. We emphasize that our
method is conceptually different from applying a clustering
method (e.g., hierarchical clustering) on the inferred residual
correlation matrix, because in that case species in the same
cluster do not exactly share the same residual associations and
the dimensions of the model would not be reduced. Finally, we
notice that since we cluster the residual correlation matrix, we do
not filter out indirect associations (Harris, 2016; Popovic et al.,
2019). To do so, our model should be extended to cluster the
residual partial correlation matrix (i.e., the inverse of the residual
correlation matrix) to truly represent a co-occurrence network,
and not a network of marginal correlations (that represent both
direct and indirect associations).

4.4. The Role of Functional Traits to Shape

Community Assemblages
With our case study, we show how the proposed clustering
methodology could facilitate the description and provide better
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insights of the residual covariance matrix. Firstly, while we
acknowledge that such a residual covariance matrix should
not be interpreted as a species interaction network, we believe
that we can still attribute a certain ecological meaning to the
residual associations between species. Indeed, species within the
same inferred clusters share similar competitive abilities, similar
tolerance level to abiotic and biotic conditions and interact in the
same way even when we consider ecological processes at different
levels such as interactions for light and soil resources (Figure 4).
Moreover, species within the same clusters tend to be positively
correlated (Supplementary Figures 8, 9). For example, with both
clustering methods (DP. and PY.), we observed that Sorbus aria
(i.e., mountainous tree) and Hieracium murorum form a cluster.
The latter being a mountainous understory herbaceous species it
needs the shade provided by the former: therefore, the two are
positively correlated in the residual covariance matrix. Another
example is given by five species (Lonicera xylosteum, Corylus
avellana, Mercurialis perennis, Hedera helix, Fraxinus excelsior)
from different life forms that are always grouped together with
both clustering methods (DP. and PY.) for that they are all found
mainly at forest edges and the herbaceous understory species,
Mercurialis perennis, benefiting from the shade of the trees. In
addition, the same cluster is negatively correlated with the big
cluster no. 5 (built with PY. method, Supplementary Figure 9)
that is mainly grouping lowland to subalpine species that are
shade-intolerant but can tolerate nutrient poor soils. In sum,
the groups of species that we build represent those species that
tend to co-occur together more than expected by the lens of
observed environmental variables. Notice that this might also be
an indication that species within the same clusters also happen
to be in similar habitats, suggesting missing environmental
variables. Notably, the fact that species within the same clusters
tent to show similar values of the Landolt nutrient indicator
suggests that soil properties might explain some of the residual
correlations (Supplementary Figure 3).

Moreover, we believe that these results will also have practical
advantages. The PFG building framework (Boulangeat et al,
2012) allows to group species according to their functional
strategies in the aim of reducing the botanical complexity in
dynamic vegetation models. As shown here, our models provide
clusters that could represent similarity in tolerance to abiotic
and biotic conditions and their competitive ability at least as
much as PFGs. Hence, the obtained clusters in our case can
be considered as a valuable alternative to the PFG building
framework, that requires the availability of many functional traits
for most species.

Despite these improvements and advantages, we also
acknowledge some possible pitfalls. Notably, missing covariates
have always the potential to drive the patterns in the residual
covariance matrix. The fact that our clusters performed well in
representing the traits related to tolerance to abiotic conditions
might be an indication of such a problem. Among these
traits, Landolt nutrient indicator represents soil nutritive
requirements of plants and was quite well represented by the
clusters (Supplementary Figure 3). Having in mind that we
were not able to include soil data among the covariates for this

case study due to data availability, it is possible that the residual
co-occurrence patterns are also driven by the soil properties.
Another way forward in the framework would also be including
habitat and soil information as covariates to further investigate
if we can retrieve different patterns in the residual covariance
matrix that are more directly related to biotic interactions.

5. CONCLUSION

We propose a statistical framework that allows an additional
but ecologically meaningful dimension reduction of joint species
distribution models and includes prior knowledge in the residual
covariance matrix, providing a tool to infer clusters of species
that share the same residual associations with respect to other
species. The case study shows that the obtained clusters of species
are ecologically meaningful, and correlated with functional
traits. Therefore, our model can also be seen as an alternative
way to build functional groups without having to measure all
necessary traits.
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