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Abstract—Thermal management is an integral part of battery
management systems due to the effect of temperature on safety,
life-time and efficiency of batteries. Therefore, a reliable real-
time estimation algorithm is required to estimate the temperature
distribution in battery cells based on available measurements.
Temperature estimation in pouch type cells is especially challeng-
ing due to the non-uniform distribution along length and breadth.
Motivated by this issue, we study effective sensor placement
and estimation algorithm design for pouch cells in this paper.
Specifically, we explore two scenarios: Scenario 1 where multiple
temperature sensors are available, and Scenario 2 where only
one temperature sensor is available. For Scenario 1, we find the
minimum number of sensors required and their effective loca-
tions whereas for Scenario 2 we find the effective location of the
single sensor which maximize the state observability. We employ
the Gramian observability analysis for this study. Subsequently,
we design sliding mode observer based real-time algorithms for
distributed temperature estimation in both scenarios. Finally, we
illustrate the performance of the proposed estimation algorithms
through extensive experimental and simulation studies.

Index Terms—Pouch cell, Observability, Sensor placement,
Distributed thermal-model, Estimation.

I. INTRODUCTION

Ouch-type Lithium-ion battery cells have shown signif-
icant promise for electric vehicle applications [1]. From
thermal behavior viewpoint, pouch cells exhibit additional
complexities compared to cylindrical battery cells. For ex-
ample, temperature distribution in cylindrical cells can be
reduced to one dimension (in radial direction) assuming uni-
form distribution along the length [2]. On the other hand,
pouch cells manifest significant temperature variation in at
least two dimensions (along length and breadth) making such
aforementioned assumption impractical. As temperature plays
significant role in safety, capacity fade, and impedance rise, it
is critical to monitor cell temperature distribution in real-time
operation [3], [4].
Thermal models of pouch cells can be categorized into
lumped, two dimensional (2D), and three dimensional (3D)
models. Lumped models reduce the temperature dynamics into
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one or two states [5], [6]. However, such models are not
capable of capturing the non-uniform temperature distribution
which can significantly vary along length and breadth [7]-[9].
The other types of distributed thermal models are 2D models
which capture the temperature distribution along length and
breadth [8]-[13]; and 3D thermal models that consider the
temperature distribution along length, breadth, and thickness
[14]-[16]. In this work, we choose a 2D thermal model for
our study which provides enough temperature distribution
information while being computationally simpler than 3D
models.

Temperature observers/estimators for single cylindrical cells
and cylindrical cell-based packs have been widely explored
[2], [17]-[27]. Although some of these works take temperature
distribution into account, they may not be readily applicable
to pouch cell estimation due to the following challenges:
(i) Typically, distributed temperature estimation algorithms
for cylindrical cells consider 1D models whereas pouch cell
estimation should consider at least 2D models for reasonable
accuracy; (ii) Sensor placement in cylindrical cells is trivial as
sensor placed anywhere on the surface would generally enable
full state observability. However, pouch cell sensor location
is non-trivial due to the 2D nature of distribution. Hence,
additional investigation is required for pouch cell temperature
distribution estimation.

A few works exist that explore temperature estimation
or sensor placement in pouch cells or geometrically similar
packs. In [28], a lumped thermal model based linear Kalman
filter is utilized for temperature estimation. However, it does
not estimate the temperature distribution. In [29], a lumped
thermal model based polytopic observer is used to estimate
the temperature of sensor, cell and case in a battery pack,
however, assuming uniform temperature for cell. The approach
in [30] estimated the temperature of battery pack with Kalman
filter. However, this approach assumes uniform heat generation
which may not be satisfied in real applications. Furthermore,
optimal sensor placement is not considered in this work. In
[31], heat generation rate in pouch cells is investigated. The
work in [32] employs the equivalent electrical representation
of the thermal model for virtual temperature sensor placement
and subsequently used linear Kalman filter for estimation.
However, such modeling approach resulted in the requirement
of twelve sensors which may not be cost effective in practical
applications. In [33], the authors considered the observability
of encased battery pack and investigates the optimal sensor



placement utilizing trace and eigen projection methods. In
[34], a sensor placement strategy for 2D thermal model is
used based on eigen-modes for the battery pack. However,
temperature estimation problem is not considered in [33]
and [34]. In summary, one or more the following research
gaps exist with respect to pouch cell temperature distribution
estimation. First, the minimal sensor set for single pouch cell
is not explored from real-time application viewpoint. Second,
sensor placement strategies are explored mostly for battery
packs whereas similar investigation is lacking for single pouch
cells. Finally, the estimation algorithms did not consider the
case when there is just one sensor available, rendering the
system unobservable.

In order to extend the aforementioned research, the main
contribution of this work is an unified framework that com-
bines the following aspects: (i) optimal sensor placement
framework for pouch cells considering a 2D thermal model
with non-uniform heat generation, and (ii) observer design for
distributed temperature estimation in pouch cells under two
scenarios: Scenario I where multiple temperature sensors are
available, Scenario 2 where only one temperature sensor is
available, and the proposed framework is aided by theoreti-
cal analysis along with simulation and experimental studies
demonstrating its efficacy.

Scenario 2, i.e. single sensor case, is relevant to common
applications with hardware cost limitations such as passenger
automotive. Scenario I with multiple sensors, although less
common, is applicable to highly safety critical applications
and and high risk environments where hardware cost is not
an issue. Two motivating examples of such safety critical
applications are: (i) battery-powered oil-tank inspection drones
[35] where safety objective is likely to dominate the sensor
cost given the risk of tank explosion in case of battery failures;
(i) battery-powered mine robots [36] where thermal safety is
extremely critical given the risk of explosion within the mines.
The rest of paper is organized as follows: section II represents
the battery thermal model, section III and section IV describes
the sensor placement strategy and observer design and esti-
mation algorithm for two different case studies, respectively.
Section V represents the experimental model identification,
section VI presents the simulation studies and section VII
represents the experimental results and discussions. The paper
is concluded in section VIII.

II. POUCH CELL THERMAL MODEL

In this work, we consider a rectangular pouch cell of
dimension a X b x d. We assume a reference system of length
a along z-axis, b along y-axis and the width d along the z-
axis. Since the length of d is negligible compared to a and b,
the temperature distribution along the z-axis is assumed to be
instantaneous and uniform [9]. Hence, we are only interested
in the distributed parameter model of heat transfer in two-
dimension for this cell. Accordingly, a 2D thermal model for
a rectangular pouch cell is adopted based on volumetric energy
balance [9]. The temperature distribution T'(x, y,t) in the two

dimensions x and y of the cell is given by the following two-
dimensional parabolic Partial Differential Equation (PDE) [9]:
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where k is the average thermal conductivity of the cell assem-
bly in the direction of the electrode surface in Wm 1K1,
p represents the average density of the cell components
in kg/m?® with C, as its average specific heat capacity
in Jkg 'K~! and t is the time evolved in s. The term
Qhreat(z,y,t) is the aggregated rate of volumetric heat gener-
ation in cell due to the applied current and term Q45 is the
heat dissipates from battery, which are defined as follows:
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where Ey = E(SOC) in Volt (V) represents the open
circuit voltage as a function of SOC € [0, 1] (State-of-Charge
computed via Coulomb-counting); and V¢ is the terminal
voltage of the battery pouch cell in Volt (V). Moreover, I in
Ampere (A) represents the battery cell current (I < O being
charge), v is cell volume in m? and @, is the capacity of
battery in Ampere-seconds (A-s). The term % is entropic heat
generation coefficient (which is generally SOC-dependent),
and Aj is cell area (a x b) in m?. The hss is the effective
heat transfer coefficient in (Wm~2K~!), and the function
a(z,y) captures the non-uniform heat generation along x
and y axes, in the pouch cell. The PDE model (1) captures
the temperature distribution given some heat input. However,
the heat distribution itself is non-uniform in pouch cells due
to non-uniform current distribution, as studied in existing
literature [1], [37]. This non-uniform current is due to the
positive and negative electrodes configurations, their active
materials and electrochemical reactions inside the battery [37],
[38]. To capture such non-uniform spatial heat distribution, we
have used the function «(x,y) which is multiplied with the
current in (2).

The four convective boundary conditions for this thermal
model are given as follows:
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where T, represents the ambient temperature, x1 = 0,22 =
a,ys =0,y4 =b, v1 > 0,72 < 0,73 > 0,74 < 0 and defined
as follows:
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where .q5c 1S thickness of the battery case in m, kegse
in (Wm™'K~!) is the thermal conductivity of the battery



casing, and h; and ho are convective heat transfer coefficients
in (Wm~2K~!) along the boundaries.
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Fig. 1: Schematic of the pouch cell.

Next, we approximate (1)-(5) by a set of ODEs using the
method of lines where the spatial derivatives are approximated
using finite difference resulting a set of ODEs in time ¢. We
first discretize the 2D spatial domain on this pouch cell into
(M +1) x (N +1) grid points. The temperature at any node
(m,n) in this grid is then denoted by T}, ,,V0 < m <
M,0 < n < N. Accordingly, the size of each cell in this
grid is Ay x Ay, where A, = a/M and A, = b/N. An
example arrangement of the nodes is shown in Fig. 1 for
M = 3, N = 5. In method of lines, we expressed the first and
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followed the same approximation for y-dimension. Applying
these approximations to (1), for 0 < m < M,0 < n < N,
we get
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where Qm,n = Qheat (mAa:; nAy) and dm,n
Qtrans(mAg,nA,) denotes the heat generation and

dissipated heat at grid point (m,n), respectively. We follow
a similar approach for the boundary grid points and corner
points. In summary, we end up with (M + 1) x (A + 1)
ODEs which are to be expressed as a linear state-space
model. Accordingly, we define (M + 1) x (N + 1) states
[T0,0,T1,0,T2,0,- -, Tamn]. Denoting (M + 1) as M and
(N +1) as N, this produces a state-space model given by:

& = Ax + Bu, y = Cz + Du, )

where z = [z1, 72, ...,xpn]T € RMN | with 2; = T,,,, and

u = [ug,us]’ € RMNFL with uy = Qpyn and ug = Toos y =
[Y1, Y2y ey yp]T € RP is the measured output vector assuming

p temperature sensors are used. The state-space matrices are

given for M = 3 and N =4 by:
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where H = —Aghesy and the last column in B matrix

corresponds to the second input which is T, and is obtained
based on the boundary conditions in (4)-(5). The D matrix
is zero and the C matrix can be obtained based on sensor
placement strategy.

Note that we formulated the state-space model to achieve
a Linear Time-Invariant (LTI) form. Such linear form will
essentially enable the utilization of standard LTI techniques
for analysis and design. We have treated the heat generation
(@m,») as a known input to the system to ensure such LTI
form. This is enabled by the assumption that the entropic heat
is negligible. In practical implementation, such heat generation
can be computed online via (2) utilizing the following informa-
tion: (i) measured terminal voltage and current, (ii) estimated
SOC' via Coulomb counting or closed-loop SOC' estimator,
and (iii) experimentally identified «(z,y). This assumption
enabled us to bypass the input nonlinearity associated with
Qm,n term.

Several factors should be considered while determining the
number of grid points in discretization. A major factor is
the condition number of A matrix. The condition number



is defined by the ratio of maximum singular value to the
minimum singular value of the matrix. As discussed in [39],
larger condition number may lead to the following issues: (i)
small perturbations in system parameters may move the system
towards numerical instability, and (ii) the observability of a
system with few sensors becomes challenging. Furthermore,
large number of states may also add to computational com-
plexity of the model and the algorithm. Having excessively
finer discretization may lead to the following issues: (i) it
may not provide additional useful information as temperature
variation along some adjacent points would be negligible in
such scenario, and (ii) owing to the physical space taken by the
sensor, it may not be feasible to place sensor on a node as that
particular node may not be practically distinguishable from its
adjacent nodes. Hence, all these factors limits the maximum
number of grid points. On the other hand, choosing too small
number of grid points leads to the sparse model which may
not represent the PDE properly and some information of the
system may be lost. In summary, choice of number of grid
points is (i) motivated by the trade-off between accuracy,
numerical stability, and computational complexity, and (ii)
dictated by sensor installation limits, dimension of battery, and
the temperature variation along the cell [32].

IIT. OPTIMAL SENSOR LOCATIONS

In this section, we discuss optimal sensor placement for two
scenarios: (i) when it is feasible to embed multiple sensors, and
(i) when only one sensor is feasible. Multiple sensors can be
feasible for applications that are highly safety critical whereas
single sensor case are for more common applications where
cost effectiveness play a significant role. To begin with, we
define the observability Gramian as state observability metric
[40]:

o0
W, = / eATtOT CeA tdt, (12)
0
where W, is obtained by solving the continuous-time Lya-
punov equation:

ATw, +w,A=-cTcC. (13)

If the A matrix has all the eigen values with negative real part,
the Lyapunov solution is a positive definite matrix and system
is observable. In other words, the system is observable if the
W, matrix is non-singular. Furthermore, the trace of W, given
by twr(W,) = Zi\ijlv 0;(W,) where o; indicates the i-th eigen
value, provides a measure for degree of observability. That is,
larger trace of W, implies the greater observability [40], [41].
Next, we discuss the sensor placement for two aforementioned
scenarios.

A. Multiple sensor case

In this case, our goal is to find minimum number of sensors
and their locations that would result in full state observability.
We achieve this in two steps. First, following the approach
presented in [42], we find the minimum number of sensors
by evaluating the singular values of the Gramian matrix W,
in (12). Essentially, we find the minimum number of singular

values that contain majority amount of information which in
turn give us the minimum number of sensors required for
system observability. We first order the singular values in a
descending manner. Then we compute the following metric
d; for i-th singular value, starting from the second highest
singular value and moving in a descending order.

dizlgoxm.

0;

(14)

Here d; indicates the percentage change in adjacent singular
values. Subsequently, we choose minimum number of sensors
Kopt = n based on the condition d,, < [ where 3 is a
predetermined threshold. In this work, we have used 8 = 50%.

In order to verify the outcome of the SVD approach, we
have utilized an alternate method to compute the minimum
number of sensors. We solve the following optimization prob-
lem:

MN
i i, subject to: rank(W,) = M N, 15
Cirer?orh};c subject to: rank(W,) (15)

where C' = [¢;] € RMNXMN and, O is constrained to have
only one entry of 1 in each row. In our case studies, the SVD
approach and this alternate method resulted in same outcome.

Next, we find the locations of the sensors which provide
full observability. To achieve this, we formulate the optimal
sensor placement problem as follows [43]:

max  tr(W,),
cie{O,l}
MN
subject to: Z ci = Kopt, rank(W,) = MN (16)
i=1

where K,,; is the number of sensors found in previous step,
¢; = 1 indicates presence of sensor whereas c¢; = 0 indicates
no sensor, and W, is the solution of (13) with C' = [¢;] €
REept xMN Fyrthermore, C' is constrained to have only one
entry of 1 in each row. Essentially, the objective is to maximize
the trace of W, by varying the locations of the sensors.

B. Single sensor case

In this case, we consider the scenario where it is not feasible
to install multiple sensors due to cost or other constraints.
Under this scenario, we will not be able to achieve full state
observability if we have a large number of states. Accordingly,
our goal is here is to find that particular sensor location which
provides maximum possible degree of observability. In order to
achieve this, we formulate the following optimization problem:

MN
max tr(W,), subject to: ci =1, 17
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where W, is the solution of (13) with C = [¢;] € RM*MN|
and ¢; = 1 indicates presence of sensor whereas ¢; = 0
indicates no sensor. Furthermore, C' is constrained to have
only one entry of 1.



IV. OBSERVERS FOR DISTRIBUTED TEMPERATURE
ESTIMATION

In this section, we design robust estimation algorithms to
estimate the 2D distributed temperature of pouch cells.

A. Observer design with multiple sensors

In this case, the system is fully observable and we construct
a sliding mode based [44], [45] robust observer given by:
F = Ad o+ But Loy — §) + LU=
ly =9l
where ||.|| represents Lo vector norm, L; € RMN*P and L, €
RMNXP are constant observer gains. We can write the error
dynamic by subtracting (18) from (8):

y=Cr, (18)
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where e = z — 2. Next, the following proposition explains the
convergence of error dynamics.

19)

Proposition 1. Consider the error dynamics (19) If Ly is
chosen such that (A — LiC)TP + P(A — L1C) < 0 where
P is a symmetric positive definite matrix, and Ly = yP~1CT
with ~v > 0, then the estimation error will converge to zero as
t — oo

Proof. The proposition can be proved following the ap-
proaches outlined in [45], [46]. A choice of Lyapunov function
candidate V = e Pe and Ly = yP~1C7 leads to

V=eT[(A—L,C)'P+ P(A—LiC)e—2v|Ce.

Choosing Ly such that (A — LiC)"P 4+ P(A — L,C) < 0,
and choosing v > 0 such that —2+ ||Ce|| < 0, we have V' < 0
which leads to convergence of e to zero as t — oc. O

B. Observer design with single sensor

As we have only one sensor, the system states are not fully
observable in this case. To deal with such observability issue,
we first decompose the original unobservable system (8) into
observable and unobservable subsystems utilizing the Kalman
decomposition [47] with the state transformation & = T'x
where 7T is the transformation matrix. The transformed system
is given by:

Z = AZ + Bu 20)
y =Cz, 21
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- fl 7 Aun AIZ oD _ Bun
o)Al 4[]
T=[0 Cy

Here, 7; € RMN=7) js unobservable state vector and Ty € R”
observable state vector. If the pair(A,p, Cop) is observable and
A, is asymptotically stable then it is possible to design an
observer for the entire system. If these two conditions hold, the
system is detectable [48]. Subsequently, we utilize a cascade
scheme where a first sub-estimator estimates the observable

states and these estimated observable states are fed into a
second sub-estimator. The second sub-estimator estimates the
full system states using the information from the first sub-
estimator as output feedback.

We choose the structure of the first sub-estimator as:

%1 _ Aun A12 %l + Bun U
%2 0 Aob T2 Bob
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], Cop=1[0 0 0 ... 1], (23
where L3 and L4 are estimator gains. The second sub-
estimator structure is given by

Ty = ATy + But Ls(ym — ) + Lop oo
Hym -y
Y=1[0 Coew|Tn, Crew=1[1 1 1 1, @4
where y,, = Ty from the first sub-estimator, T, is the

estimated full state vector, and L5 and Lg are estimator gains.
Finally, the state estimates in original domain are computed
as & = T'Z,,. The convergence of the first and second sub-
estimators can be proved following a similar approach as in
Proposition 1.

V. EXPERIMENTAL IDENTIFICATION AND OPTIMAL
SENSOR PLACEMENT

In this section, we present the experimental identification
of 2D thermal model and optimal sensor placement for a
commercial pouch type cell. The commercial pouch type cell
has rated capacity of 10 Ah, maximum charge cut-off voltage
4.2+ 0.05 V, and discharge cut-off voltage 2.75 V. An Arbin
battery tester (model BT-2000) is used to perform the battery
experiments. The experimental setup is illustrated in Fig. 2
where five K-type thermocouples are installed on the pouch
cell to collect distributed temperature data. As shown in Fig. 1,
we chose M = 4 and N = 6 to capture the temperature
distribution on pouch cell. Accordingly, we have 24 nodes
or states in the state-space model (8). It should be noted
that by choosing M = 4 and N = 6, the grid step size
becomes A, = 20 mm and A, = 32.4 mm, which provides
a reasonable number of grid points with respect to the battery
size, sensor installation limits and temperature variation along
the cell. Comparing Fig. 1 and Fig. 2, we denote S; =
T11,82 =T571,83 =T 4,51 = T5.4,55 = T1 5, respectively.

We utilized the experimental measurements including ter-
minal voltage, current and temperatures to identify the un-
known parameters of the model discussed in Section II. The
OCV-SOC map was identified based on a constant current
rate of C'/30 by cycling the battery from SOC = 1 to
SOC = 0 and shown in Fig. 5a. Subsequently, we solved
the following optimization problem: minﬁe[ﬁﬁ] RMS(T.qp —
Tinodel(¥)) with respect to dynamic constraints (8). Here,
Y = {Qp, h1, ho, kcase, Cp, k} is the unknown parameters vec-
tor, the RMS(.) is the root mean square operator, and Te.p
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Fig. 2: The experimental setup with the five surface thermo-
couples. The blue circles on battery demonstrate the sensor
locations.

and T,0q4e; are the experimental temperature and the model
temperature, respectively. Furthermore, ¥ and ©J are parameter
bounds. Such optimization is performed with experimental
data under 5C and modified US06 type current profiles (shown
in Fig. 3) utilizing Genetic optimization Algorithm (GA). The
identification results are given in Table I. Subsequently, we
have identified the function a(z,y) utilizing a discretized
form to further minimize the error between model output and
experimental data. The discretized function is parameterized
by @mn = a(mA,,nA,) which are subsequently treated
as design variables to minimize RMS(Tezp — Tinodel (Qmn))-
The identified function is shown in Fig. 5b. Other parameters
are taken directly from the cell datasheet and literature [9]:
m = 0.2 kg, 0ease = 162 x 1077 m, p = 1.87 x 1073
kgm™3 and natural convection hesr = 5 Wm 2K~ As
per our model formulation, we have considered % ~ 0.
After identification, we evaluate the performance of identified
model using a modified UDDS type current profile (shown
in Fig. 3). The RMS errors for identification and validation
current profiles are given in Table II. The model accuracy for
S5 is illustrated in Fig. 4 as a sample to demonstrate the model
performance.

TABLE I: Identified parameters

Parameters Values Parameters Values
Qp 10.1 Ah kcase 0.16 Wm~—TK—T
h1 48 Wm— 2K 1T ha 14 Wm— 2K~ T
Cp 1019.99 Jkg 1K~ T k 5.99 Wm—IK-1

Next, we present the results of optimal sensor placement
approaches discussed in Section III. First, we discuss the
multiple sensor case. The singular values of the experimentally
identified model are shown in Fig. 6. Based on the discretiza-
tion discussed in previous section, we have 24 states and hence
24 singular values. As we can see from Fig. 6, by choosing
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Fig. 3: Modified UDDS and US06 current profiles.
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TABLE II: RMS errors of model identification and validation

RMS errors in °C' under different current profiles

Location | US06 current | 5C current | UDDS current
S1 0.1866 0.4448 0.6615
So 0.3354 0.3607 0.7130
S3 0.3426 0.4284 0.7866
Sa 0.3396 0.3660 0.7196
Ss 0.1975 0.3714 0.5545

the threshold as 3 = 50%, the first three singular values
contain majority of the information about the system. On the
other hand, by solving the optimization problem in (15) for
MN = 24, we obtain three sensors as a solution of optimiza-
tion algorithm. Accordingly, we need at least three sensors
that can provide full state observability, that is K,,; = 3. Next
step is to find the optimal locations of these three sensors. For
this purpose, we use Genetic Algorithm to solve the sensor
placement optimization problem (16) discussed in Section
III. Subsequently, we found that having sensors on locations
S1="T11, 83 =T14, and Sy = T5 4 (see Fig. 2) maximizes
tr(W,). Next, we consider the single sensor case. We solved
the optimization problem (17) and found that Sy, = T34 is
the sensor location that maximizes tr(W,). With such choice
of sensor, we have 13 observable states and 11 unobservable
states.

VI. SIMULATION STUDIES

In this section, we present simulation studies to evaluate the
performance of the proposed observers. The 2D thermal model
and the observers are implemented in MATLAB/Simulink
platform. We explore two scenarios under the aforementioned
modified UDDS profile: (i) multiple sensor case where the
output feedback is from the nodes S; = 111, S3 = 1} 4,
and S4 = T 4, and (ii) single sensor case where the output
feedback is from the node S; = T54. For both cases, the
output feedback is generated from the MATLAB simulation
model. The observers are initialized with incorrect temperature
values to verify convergence. The temperature distribution
of 2D model along length and breadth is shown in Figs.
7a, 7b, and 7c, at different time instants. As we can see,
the temperature distribution is asymmetric due to the non-
uniform and asymmetric current and heat distribution which
is captured by function «(z,y). Furthermore, the areas closer
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to the positive tab have higher temperatures. The temperature
estimation errors at 24 nodes for multiple and single sensor
cases are shown in Fig. 7d. For both cases, the estimation
errors converged to zero. However, it seems that multiple
sensor observer is slightly more robust to sudden changes in
input current. This is evident from the fact that the estimation
errors in single sensor case are perturbed after 200 s whereas
estimation errors in multiple sensor case show no such per-
turbation. We have also tested the robustness of the proposed
observers under sensor noise. To illustrate the robustness, the
estimation error for node S5 is shown in Fig. 8 for multiple
sensor case under different levels of measurement noise. The
measurement noise injected is of white Gaussian in nature,
denoted by A(0,0?) where o is the standard deviation. The
results show that the proposed observer was able to handle
reasonable amount of measurement noise.
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VII. EXPERIMENTAL STUDIES

In this section, we illustrate the performance of the proposed
observers based on experimental data. The experimental data
is fed to the observers as output feedback. We present the
following cases.

A. Multiple sensors case

In the first study, we evaluate the performance of the
observer for multiple sensors case under modified US06
and UDDS current (shown in Fig. 3). Recall that we have
S1 =T1,1, 83 =114, and Sy = T5 4 as measured outputs for
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multiple sensors case. The estimation performance is evaluated
in terms of the estimation errors at the nodes S; through
Sy (refer to Fig. 2). The experimental temperature and their
corresponding estimates are shown in Fig. 9 and Fig. 10. In
both cases, the estimates are initialized with incorrect values
and eventually they converged to the true values. For US06
profile, the convergence time for these estimates is within
10 seconds and the steady-state estimation errors are within
0.45°C'. For UDDS profile, the convergence time for these
estimates is within 10 seconds and the steady-state estimation
errors are within 0.87°C.
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Fig. 9: Estimation result with multiple sensors under US06
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B. Single sensor case

In this case study, we evaluate the performance of the
single sensor based observer under modified US06 and 5C
constant current profile. Note that we have Sy = T5 4 as the
measured output for single sensor case. Similar to the previous
case, the estimation performance is evaluated in terms of the
estimation errors at the nodes S through S5. The experimental
temperature and their corresponding estimates are shown in
Fig. 11 and Fig. 12. In both cases, the estimates are initialized
with incorrect values and eventually they converged to the
true values. For US06 profile, the convergence time for these
estimates is within 4 seconds and the steady-state estimation
errors are within 1.18°C'. For 5C current, the convergence time
for these estimates is within 5 seconds and the steady-state
estimation errors are within 1.3°C.

C. Robustness under uncertainties in model parameters

In this subsection, we investigate the performance of ob-
servers under parametric uncertainties. Our goal is to un-
derstand how the estimator errors are affected when certain
parameters of the model are not exactly known. This is
important since in practical applications such uncertainty in
parameters knowledge are common due to several reasons
such as manufacturing variability and packaging. To illus-
trate the robustness, we consider multiple sensors scenario
and inject uncertainties in the parameters ho and C, under
modified US06 profile. The steady-state estimation errors in
Sy for different levels of uncertainties are shown in Fig. 13.
We observe the following: (i) the convergence performance
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starting from non-zero error was not affected, and (ii) the
steady-state estimation errors degraded with higher level of
uncertainties. Specifically, the observer performs reasonably
up to 30% uncertainty in C}, and 57% uncertainty in ho,
assuming 0.5° C is acceptable upper bound of estimation error.

D. Comparison: multiple and single sensor cases

Here, we compare the performance of the observers in
multiple sensors and single sensor cases. As a representative
example, the estimation errors at node S5 for both cases are
shown in Fig. 14. The accuracy is better for the multiple
sensors case, which is expected as more feedback typically
leads to better estimation. However, there are some trade-
offs in terms of computational complexity and hardware cost.
Single sensor observer requires only one sensor leading to less
hardware cost as compared to multiple sensors case. On the
other hand, the computational complexity for single sensor
observer is higher due to the presence of cascade estimator
scheme. Essentially, two sets of ODE observer equations need
to be solved in real-time whereas in multiple sensor case we
need to solve only one ODE observer equation. Furthermore,
single sensor scheme is more sensitive to model uncertainties
and input perturbations compared to multiple sensor case.
This is due to the fact that more feedback information helps
suppress disturbances better.
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Fig. 12: Estimation result with single sensor under 5C current
profile. Est indicates estimated temperature and Exp indicates
experimental data.
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E. Discussion

In this subsection, we discuss some general observations
on the temperature distribution estimation of pouch cells.
Figure 15 shows the temperature distribution for all 24 nodes
under modified UDDS current profile. It is clear that the
non-uniformity of temperature distribution is considerable and
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hence, confirms the importance of distributed temperature esti-
mation. According to the modeling and estimation results, we
see that the nodes closer to the tabs have higher temperatures,
and we have more heat generation on the positive tab side
than the negative tab side. Comparing the temperatures of
nodes S5 and S5, we can see the considerable difference
in temperatures which indicates the importance of sensor
placement for this type of cells. These studies help us to
explore the temperature distribution along the pouch cell and
subsequently enhances our knowledge of the critical hot-
spots. The estimated distributed temperature information can
be useful in the following ways: (i) it can inform the thermal
management strategies to achieve better thermal balancing,
and (ii) it can inform the temperature dependent electrical and
electrochemical parameter estimation techniques.
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Fig. 15: Temperature distribution along the pouch cell under
modified UDDS current profile.

VIII. CONCLUSION

In this paper, we discuss sensor placement strategies and
estimation schemes for pouch cells. The sensor placement
strategies maximize the state observability and the estimation
schemes estimate distribution of temperature. We considered
a 2D thermal model to capture the non-uniform temperature
and heat distribution along the battery pouch cell. We explored
multiple sensors and single sensor scenarios. These studies can
help find the critical hot-spots on the battery and monitor them
to avoid thermal runaway and faults in batteries.
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