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We examined the effect of social distancing on changes in visits
to urban hotspot points of interest. In a pandemic situation,
urban hotspots could be potential superspreader areas as
visits to urban hotspots can increase the risk of contact and
transmission of a disease among a population. We mapped
census-block-group to point-of-interest (POI) movement
networks in 16 cities in the United States. We adopted a
modified coarse-grain approach to examine patterns of visits
to POIs among hotspots and non-hotspots from January to
May 2020. Also, we conducted chi-square tests to identify
POIs with significant flux-in changes during the analysis
period. The results showed disparate patterns across cities in
terms of reduction in hotspot POI visitors. Sixteen cities were
divided into two categories using a time series clustering
method. In one category, which includes the cities of
San Francisco, Seattle and Chicago, we observed a
considerable decrease in hotspot POI visitors, while in
another category, including the cities of Austin, Houston and
San Diego, the visitors to hotspots did not greatly decrease.
While all the cities exhibited overall decreased visitors to
POIs, one category maintained the proportion of visitors to
hotspot POIs. The proportion of visitors to some POIs (e.g.
restaurants) remained stable during the social distancing
period, while some POIs had an increased proportion of
visitors (e.g. grocery stores). We also identified POIs with
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significant flux-in changes, indicating that related businesses were greatly affected by social
distancing. The study was limited to 16 metropolitan cities in the United States. The proposed
methodology could be applied to digital trace data in other cities and countries to study the
patterns of movements to POIs during the COVID-19 pandemic.

1. Introduction

The objective of this study is to examine movement patterns to urban hotspots in United States cities
during the initial 2020 COVID-19 outbreak. Urban mobility and movement patterns are important
characteristics of urban dynamics, reflecting the collective human behaviour and social interactions
[1,2]. Urban mobility drives the spatial flux of populations, and effective epidemic control measures
greatly rely on the characterization of urban mobility patterns [3-7]. Assessment of urban mobility is
an important element of epidemic control [8]. Most standard epidemic models employ mobility
patterns in prediction of a disease outbreak trajectory. Tizzoni et al. used commuter movement data to
model the spatial spread of epidemics in European countries [9]. The study examined whether the
mobility data matched the empirical mobility patterns and how the observed discrepancies of
mobility patterns would affect the results of influenza-like illnesses spread simulation. Balcan ef al.
[10] developed a worldwide epidemic model to evaluate the force of infection based on the
description of mobility patterns obtained by the gravity model. The results showed that long-range
airline traffic determined the global epidemic dynamic, while the short-range mobility patterns
determined the local epidemic diffusion pattern. Ferguson et al. [11] developed a transmission model
for H5N1 influenza in Southeast Asia taking the community mobility into consideration. The model
tested containment strategies such as prophylaxis and social distancing measures under different
reproduction number of the virus. Meloni et al. [12] found that it was essential to consider how the
epidemic directives enacted by states, for instance, induced changes in mobility patterns and how the
changes in turn affected the propagation of the epidemic. Meloni et al. [12] developed an epidemic
model accounting for changes in mobility patterns due to the response to an epidemic outbreak. The
results showed that self-initiated behavioural changes (e.g. changes in travelling routes) may accelerate
the spread. These studies and models highlight the necessity of characterizing mobility and movement
patterns for better understanding the extent and trajectories of COVID-19 in metropolitan urban areas.

While the reduction in overall movements and mobility could promote containment, it is equally
important to monitor and evaluate movement reduction to urban hotspots. In comparing the
effectiveness of social distancing measures between cities, it has been observed that epidemic spread
trajectories are different, while the overall mobility reduction is similar across cities. These disparate
trajectories could be in part due to differences in movement patterns to urban hotspots. Urban
hotspots and sub-centres usually have higher populations and employment densities and more points
of interest (POIs) compared with other areas of cities [13,14]. Urban hotspots and sub-centres,
therefore, are gravity activity centres affecting population movement, mobility patterns and human
interactions. In a pandemic situation, however, urban hotspots could be potential ‘superspreader’ POIs
[15], because visits to hotspots can greatly increase the risk of contact and transmission of disease.
Understanding mobility patterns of the visiting of urban hotspots is important for developing and
monitoring effective epidemic control measures. Origin—destination (OD) network analysis provides a
powerful tool to study mobility patterns under such a situation and are especially helpful for locating
hotspots and studying the urban mobility patterns of visiting urban hotspots [16,17]. Louail ef al. and
Hamedmoghadam et al. used the OD matrix and a coarse-grain approach to study the mobility
among hotspots and non-hotspots [1,18,19]. The OD matrices aggregate the mobility of individuals
from one point to another [20,21]. Therefore, the OD matrices include insightful information of
population movements and patterns of movements within and across cities [19,22]. In addition to
traditional surveys and counting to develop OD matrices, increasing studies extracted OD matrices
based on the emerging digital footprint data [23,24]. Mazzoli et al. [22] extracted the OD matrices
from Twitter data to map daily commuting flows in London and Paris. Lenormand et al. [25] mapped
the OD matrices from three datasets, including Twitter, mobile phone and census data. This study
showed strong correlations between three datasets regarding individual mobility patterns, lending
support to interchanging the three datasets to study mobility patterns.

In summary, the extant studies demonstrated that the characterization of urban mobility and
movement patterns are important to understand the collective human behaviour and social
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Figure 1. The coarse-grain approach categorizes (BG-POI movements to four types of movements among hotspots and non-
hotspots: (a) hotspots (red nodes) and non-hotspots (blue nodes), (b) individual (BG-POI movements among hotspots and
non-hotspots, four colours represent four types of movements, () clarification of four types of movements among hotspots and
non-hotspots. (Figure 1 was plotted based on the SafeGraph data for Houston.)

interactions, which are critical for the development of effective epidemic control measures. Also, urban
hotspots are gravity activity centres that usually have a higher density of populations and POIs, which
could be potential ‘superspreaders” during the pandemic situation. Therefore, understanding the patterns
of visits to POIs in urban hotspots is important for developing and monitoring epidemic control
measures. Extant studies, however, rarely studied the patterns of visits to POIs in urban hotspots
under pandemic situations. Hence, in this paper, we investigated the patterns of population visits to
urban hotspots using origin—destination networks from census-block-groups (CBGs) to POIs in 16
cities of United States based on the digital trace data from SafeGraph. The POI data enable the
identification of urban hotspots to evaluate changes in visiting urban hotspots due to social distancing
measures during the COVID-19 pandemic. We also identified POIs that had significant flux-in
decreases and what POI-associated business categories were greatly affected during COVID-19. These
POIs and business categories could expect a significant flux-in increase after the shelter-in-place orders
are lifted. The results of this study could help decision-makers better monitor and evaluate epidemic/
pandemic control measures, as well as reopening policies and strategies. In this paper, we adopted a
modified coarse-grain approach for separating the hotspot and non-hotspot nodes in mapped CBG-
POI movement networks [1]. Hotspot and non-hotspot nodes are computationally determined.
Hotspots are nodes with higher weighted degree centrality, and non-hotspots are nodes with lower
weighted degree centrality in the mapped CBG-POI networks. The adopted method determined the
threshold to separate the hotspot and non-hotspot nodes. A detailed explanation of the adopted
approach is presented in the Data and methodology part. Figure 1 illustrates four types of movements
among hotspots and non-hotspots.

2. Data and methodology

We used POI data provided by SafeGraph to map the CBG-POI movement networks. SafeGraph
aggregates POI data from diverse sources (e.g. third-party data partners, such as mobile application
developers) and removes private identity information to anonymize the data. The POI data include
base information of a POI, such as the location name, address, latitude, longitude, brand and business
category. SafeGraph uses the standard North American Industry Classification System (NAICS) to
classify POI business categories. The data reveal the visit pattern of POIs including the aggregated
number of visits to the POI during the data range, the number of visits to the POI each day over the
period and the aggregated number of visitors to the POI from CBGs during the period (e.g. one week
and one month).

In this paper, we used the POI data: Weekly Pattern Version 2, to study movement patterns in 16
cities in the United States. The Safegraph weekly pattern data provide information related to the visits
to POIs and cover the entire United States. The data were aggregated weekly (Monday to Sunday)
[26]. Among these 16 cities are 14 largest cities in the United States by population. We selected the
top 14 largest cities in the United States due to two considerations: (i) Safegraph collected more data
in larger cities. We tested several less-populated cities in the United States such as Randolph, Terrell
and Early in Georgia, as well as Union, Bergen and Hudson in New Jersey. The visitors to POI data
in these cities, however, were sparse, and it was infeasible to build the CBG-POI movement networks,
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Figure 2. Mapped (BG-POI movement network for the week of 27 January 2020, in Jacksonville, Florida. The figure shows a total of
83 661 weighted edges. Red nodes represent hotspots (1314 nodes) and blue nodes represent non-hotspots (10 820 nodes).

and (ii) we were more concerned about the spread of COVID-19 in cities with a larger population. In
addition, Seattle and Detroit were studied. Seattle was the first city in the United States to report a
diagnosed COVID case, and Detroit had a burst in the number of confirmed cases in March 2020.
Also, we considered that Detroit is the largest city in the midwestern state of Michigan, and the
number of confirmed cases in Detroit greatly decreased after April 2020. Therefore, Detroit became a
good example to compare with other cities. The analysis comprises four major steps: (i) map the
CBG-POI movement network, (ii) identify hotspots and non-hotspots based on the mapped network,
(iii) examine movement patterns between hotspots and non-hotspots, and (iv) identify POIs with
significant flux-in changes. We explain each step in the following sections.

2.1. Map the origin—destination network

We mapped the CBG-POI movement networks based on the number of visitors to POIs from CBGs. The
mapped CBG-POI networks are directed and weighted bipartite networks, where pairs of nodes i and j
represent CBGs and POIs with mapped geolocation. Links in the CBG-POI movement networks
represent visits from CBGs to POIs, and non-negative weights of links, w;; > 0, represent one or more
visitors during the covered period. If there was no movement from CBGs to POIs, w; =0. We
mapped the weekly CBG-POI movement network because SafeGraph aggregates the number of
visitors from CBGs to POIs by week. Figure 2 illustrates an example of the mapped CBG-POI
movement network in Jacksonville, Florida.

2.2. |dentify hotspots and non-hotspots

In this study, we focused on the patterns of visits to POIs from CBGs to examine movement patterns
across hotspot and non-hotspot clusters. Therefore, the coarse-grain approach that clusters hotspot
and non-hotspot nodes in CBG-POI movement networks were used [1,18,19]. In the existing literature,
different methods have been proposed to separate hotspots and non-hotspots. Louail et al. [18,19]
developed a method to separate hotspots and non-hotspots based on the Lorenz curve of divided
1km? cells. This method yields lower and upper boundaries of hotspots. Hamedmoghadam et al. [1]
showed that using Lorenz curve to identify hotspots and non-hotspots was biased to the outlier
nodes. Therefore, they proposed a modified coarse-grain approach using a centroid-based clustering
method to separate hotspots and non-hotspots. In this paper, we adopted the modified coarse-grain
approach that separated hotspot and non-hotspot nodes in the mapped CBG-POI movement
networks. The employed method determined hotspot and non-hotspot nodes in CBGs and POlIs
separately. Therefore, different spatial resolutions of CBGs and POIs will not affect the results of
hotspot and non-hotspot nodes in CBGs and POIs. Each mapped weekly CBG-POI network has a
correspondent CBG-POI bi-adjacency matrix. The columns and rows of the CBG-POI matrix represent
origin nodes and destination nodes, and the elements are the weights of links. First, we summed all
the rows and columns to get the total flux-out and flux-in values of CBG and POI nodes, respectively.
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Then, we sorted flux-out and flux-in values of CBG and POI nodes in an ascending order: n
01<0,<---<0, and D; <D; <---<D,. To separate hotspots and non-hotspots in these two
lists, we used equation (2.1) to determine the separation point O. and D.. Nodes with flux-out and
flux-in values greater than O. and D, are hotspots of CBGs and POIs. In equation (2.1), g; could
represent either Oy, Oy, ---, O, or Dy, Dy, - -+, Dy,

C 1 C
arg rncin E lgi — - (Z l]k)
i1 k=1

. (2.1)

+zn: I%'—nl_c<2n:q1)

j=c+1 I=c+1

2.3. Examine movement patterns between hotspots and non-hotspots

We used a coarse-grain approach to examine the mobility pattern [1,18,19]. The approach reduces the
mobility flows to four types: (i) HH: from hotspot CBGs to hotspot POlIs, (ii) NH: from non-hotspot
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CBGs to hotspot POIs, (iii) HN: from hotspot CBGs to non-hotspot POIs, and (iv) NN: from non- 2
hotspot CBGs to non-hotspot POIs. If we use F to represent the original CBG-POI bi-adjacency matrix, @ &
then we could reduce F to the coarse-grained matrix A °
Y
1S
HH NH P v
A= {HN NN}' (2.2) : Q.
: 09
.}
In matrix A, each sub-matrix could be calculated as follows [1,18,19]: g
[ -1
I Lo
HH = ZzEM,/Ep ki , (2.3)
Zi,j Ejj
. . Fi
NH = M, (2_4)
Zi,j Ejj
. F
HN = LicmjeyFi (2.5)
Zi,j Ejj
PR
and NN = Ziemien i 26)
Zi,j Ejj

where Fj; represents each element in the original CBG-POI matrix, M represents the set of hotspot CBGs
and p represents the set of hotspot POIs determined in step 2. Equations (2.3)—(2.6) illustrate how we
calculated the proportion of each type of movements. We normalized each mobility type by the total
mobility flow. Therefore, the proportion of each type of movement, HH, NH, HN and NN € [0,1],
and the sum of them equals 1. HH, NH, HN and NN could represent the proportion of each type of
movement flow in the whole CBG-POI movement network [1]. This characterization is particularly
important to examine and monitor reduction in movements to urban hotspots (reduction in the
proportion on HH and NH movements) during social distancing periods.

2.4. (lustering analysis of movement patterns across cities

We conducted a clustering analysis after we obtained four types of movements in cities. We used the sum
of proportions of two movements, HH + NH, as an indicator to cluster movement patterns within cities.
These two movements would contribute to the spreading of the epidemic because the extent of visits to
the hotspot POIs could increase the transmission rate of COVID-19. We scaled the time series data related
to movement patterns so that each time series had zero mean and unit standard deviation. This step
enabled us to focus on comparing the shapes and trends of time series data. We compared three
algorithms (Euclidean distances, dynamic time warping (DTW), cross-correlation) for time series
clustering [27-29] and used the silhouette coefficient to determine the number of clusters [30]. (Results
of the algorithms are presented in the electronic supplementary material.)

2.5. |dentify points-of-interest with significant flux-in changes

We compared CBG-POI matrices from two milestone dates (e.g. 1 March and 29 March). We summed
columns of the matrices to obtain the weighted node degree centrality of POIs. Then we calculated
differences in the weighted degree centrality of each pair of POI nodes in the two matrices:
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Figure 3. Visitors related to four types of movements in 16 cities. We used the rolling mean (window = 4) to smooth the data. For
the original data, please see the electronic supplementary material.

Ci, Cy, -+, Cy. Accordingly, C2/C2 will approximately follow the chi-square distribution if the weighted
node degree centrality did not have significant changes. (Proof process is presented in the electronic
supplementary material.) Here, C2 is the average of the square of degree centrality difference. We
used the upper tail test (Hi: |C| >0, Ho: |C| =0) of the chi-square distribution to determine the
p-value for each node. Because we conducted each test separately for each node, the degree of
freedom is 1, and we adjusted p-value for multiple tests using the Benjamini-Hochberg false
discovery rate (FDR) correction [31]. We tested the POI node set and identified the POIs with
significant in-degree changes (with FDR equal to 0.1 and adjusted p-value <0.01), which could reflect
significant flux-in changes. Furthermore, because each POI has its NAICS code indicating its business
activity, we can identify the extent to which social distancing measures affected business activities.

3. Results

3.1. Movement patterns of visiting points-of-interest in 16 cities

Figure 3 illustrates that the sum of visitors to POIs showed a decreasing trend for all 16 cities after the
enforcement of shelter-in-place orders. However, four types of movements (HH, HN, HH and NH)
varied across different cities. Because we only compared the increasing or decreasing trends of four
types of movements among cities, the population size differences between the cities would not affect the
results. Figure 3 includes the result of clustering analysis, and the 16 cities were divided into two
categories. The upper eight cities are category 1 and the lower eight cities are category 2. Figure 4 shows
the proportion of each type of movements in 16 cities. Data shown in figure 4 were normalized by the
total number of four types of movements in each city. Figure 5 illustrates the detailed clustering results.

We can observe from figure 3 that the HH movements in category 1 cities (San Diego, Fort Worth,
Dallas, Houston and Austin) did not show a clear declining trend. In category 1 cities, a decline in
HN and NN movements caused a decrease in the total number of visitors. In fact, the NH movements
in cities of category 1 (except for New York) showed an increasing trend after the enforcement of
shelter-in-place order. In category 2 cities, HN and NN movements remained stable, while HH and
NH movements show a clear downward trend.
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Figure 4. Proportions of four types of movements in 16 cities, rolling mean (window = 4).
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Figure 5. Result of clustering analysis using dynamic time warping barycentre averaging. Each grey line represents movement of one
city in categories; the red line represents the barycentre of the category.

We also investigated the proportion of each type of movements in 16 cities. We can observe from
figure 4 that the proportion of HH and NH movements in category 1 cities did not show a declining
trend, even though the absolute value of HH and NH movements in some cities, such as Phoenix,
San Antonio and New York, declined (as shown in figure 3). The proportion of HN and NN
movements in most cities (except for New York) of category 1 did not show a clear upward trend.
This result demonstrates that although category 1 cities had decreased absolute visitors to POlIs, the
proportion of their visitors to the hotspots of POIs were stable.

For category 2 cities, the proportion of HH and NH movements showed a clear downward trend,
while the proportion of HN and NN movements had a clear upward trend. The barycentre of two
city categories illustrated in figure 5 indicates that the proportion of HH and NH movements had an
upward trend in category 1 cities, while the proportion of HH and NH movements showed a
downward trend in cities of category 2. These results imply that cities of category 2 had decreased
proportion of their visitors to urban hotspots of POIs due to the social distancing measure. We can
conclude from the above results that while the overall mobility in all cities declined due to social
distancing orders, the movement patterns related to visits to hotspots followed two different trends in
the two categories of studied cities. The disparate patterns could imply differences in transmission risks.
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Figure 6. Top seven hotspot POls in hotspots during the last week of January, February, March and April.

In addition, we can observe from figure 4 that the proportion of HH and NH movements in some
category 2 cities (Detroit, Jacksonville, Chicago, Los Angeles, San Francisco, Seattle and San Jose)
started to decline much earlier than the enforcement of the shelter-in-place orders. This result may
imply these cities had started to proactively reduce visitors to hotpots. The first cases occurred quite
early in most of these cities, such as Detroit, Chicago, Los Angeles, Seattle and San Jose. As there is a
clear gap between the date of the first case and the enforcement of shelter-in-place orders in these
cities, this result may suggest that the information of the first case may trigger proactive actions.

3.2. Proportion of persons visiting points-of-interest in hotspots

The next set of results indicates one dominant POI in hotspots across all 16 cities: restaurants and other
eating places (NAICS code: 7225). Museums, historical sites and similar institutions (NAICS code: 7121)
was the second dominant POI in many of the studied cities. Based on the description of NAICS,
museums, historical sites and similar institutions encompass several sub-categories, including
museums, historical sites, zoos and botanical gardens, nature parks and other similar institutions.
Surprisingly, the proportion of visitors to these two POIs remained fairly stable during the unfolding
of the COVID-19 pandemic and the enforcement of shelter-in-place orders. Figure 6 illustrates the top
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seven hotspot POIs with the highest proportion of visitors in four cities: Austin, New York, San Francisco [ 9 |
and Seattle (The results for the other cities are provided in the electronic supplementary material.) We
selected two cities from each category and one week at the end of each of January, February, March
and April to illustrate the patterns.

As illustrated in figure 6, the proportion of visitors to POIs in hotspots showed a similar pattern in the
weeks of 27 January 2020, and 24 February 2020, in addition to the two dominant POIs (i.e. restaurants
and museums), other amusement and recreation industries (NAICS code: 7139) ranked third for three
cities (ranked fourth in Austin), while the fourth and fifth place POIs varied across cities: child day-
care services (NAICS code: 6244) and traveller accommodation (NAICS code: 7211) in New York;
sporting goods, hobby and musical instrument stores (NAICS code 4511) and traveller
accommodation (NAICS code: 7211) in San Francisco; as well as sporting goods, hobby and musical
instrument stores (NAICS code: 4511) and grocery stores (NAICS code: 4451) in Seattle. In Austin,
lessors of real estate (NAICS code: 5311), gasoline stations (NAICS code: 4471) and elementary and
secondary schools (NAICS code: 6111) had large proportions of visitors. With the unfolding of
COVID-19 and shelter-in-place orders, although the proportion of visitors to the top two POlIs slightly
decreased, the top two POIs in each city still were the dominant places visited. After the unfolding of
COVID-19 and social distancing orders, the proportion of visitors to grocery stores (the red element in
figure 6) increased. Also, the proportion of visitors to other amusement and recreation industries and
travel accommodation declined. For the week of 30 March, grocery stores started to rank fifth while
another essential POI, gasoline stations, ranked fourth in Austin. Also, grocery stores started to rank
fourth in the weeks of 30 March and 27 April in the other three cities. In Austin, the proportion of
grocery stores visitors decreased in the weeks of 30 March and 27 April, but the rank increased. In
other cities, both the rank and the proportion of grocery stores visitors increased. We also found that
health and personal care stores (NAICS code: 4461) POIs and general merchandise stores, including
warehouse clubs and supercentres (NAICS code: 4523) POI showed an upward trend in most of the
cities after the outbreak started. For example, the healthcare POI ranked among the top seven in the
weeks of 30 March and 27 April in New York and Austin. In Seattle, the proportion of visitors to
health and personal care stores POI rose to fifth place in ranking in the weeks of 30 March and 27 April.
The proportion of visits to the merchandise POI rose to the top seven in the weeks of 30 March and
27 April in Houston, Dallas, Detroit, Phoenix and rose to the top three in Jacksonville and San Antonio.

Because we determined POI hotspots based on the total number of visitors to POls, the evolution of
the proportion of visitors to POIs in hotspots could provide insights about movement patterns of people
across different cities. The results showed that although the absolute number of visitors decreased for all
the POIs during COVID-19, the proportion of visitors to restaurants and museums remained dominant in
most cities. Also, the results showed that the proportion of visitors to grocery stores and healthcare
facilities increased, while the proportion of visitors to amusement and recreation industries decreased.
Furthermore, the patterns of visits to POIs did not show a relationship with city categories based on
movements to hotspots. Instead, the visits to POIs highly depended on the attributes of cities. For
example, gasoline station was the second highest visited POI hotspot in Houston and was third in
Dallas and Detroit, while representing only a small proportion of hotspot POI visitors in New York.
Museums, historical sites and similar institutions was the second highest proportion of hotspot POI
visitors in most studied cities, such as Dallas, Detroit, Philadelphia, Los Angeles and San Jose, while
it formed a small proportion of hotspot POI visitors in Jacksonville, Fort Worth and Houston.
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3.3. Points-of-interest with significant flux-in changes

Based on the number of nodes with significant flux-in changes, we identified several businesses highly
affected by the COVID-19 pandemic, including restaurants and other eating places, museums, historical
sites and similar institutions, lessors of real estate, elementary and secondary schools (NAICS code: 6111),
support activities for air transportation (NAICS code: 4881) and religious organizations (NAICS code:
8131). Also, some of the affected POIs varied across the 16 cities. Figure 7 illustrates the POIs with
significant flux-in changes in four selected cities: New York, Austin, San Francisco and Seattle. (The
results for other cities can be found in the electronic supplementary material.) We selected one week
at the end of each of January, February, March and April to compare the trends with the week of 13
January (with the assumption that most businesses had returned to normal schedules and patterns of
visits after the winter break).

Figure 7 illustrates that visitors to restaurants and other eating places and visitors to museums,
historical sites, and similar institution POIs were greatly affected in all four cities. These two POIs
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Figure 7. POIs with significant flux-in changes in the four one-week periods: (a) New York, (b) Austin, () San Francisco and (d)
Seattle. We included top five businesses related to hotspot POIs with significant flux-in changes in each week. The indicator on the
radar chart refers to the number of weeks the business activity was in the top five affected POIs.

ranked in the top five affected business activities across all four studied weeks. Other amusement and
recreation industries was another highly affected POI, ranking in the top five affected POIs four times
in New York and San Francisco, and in the top five affected POIs list three times in Austin and
Seattle. Also, the extent of affected POIs varied across different cities, such as lessors of real estate and
elementary and secondary schools in Austin, support activities for air transportation in New York and
San Francisco, and college, university and professional schools and other information services in Seattle.

The results indicate that some POIs are universally affected across all cities during the January to May
period examined in this study. The effects of the pandemic on other POIs varied across cities and months.
For example, the effect on support activities for air transportation visits was related to travel restrictions
which had the greatest impact on New York and San Francisco. We can observe from figure 6 that travel
accommodation had a relatively large proportion of POI hotspots in New York and San Francisco
(ranked top four and five, respectively, before March). Also, the shelter-in-place order affected
elementary and secondary schools POIs in Austin and College, University and Professional Schools
POIs in Seattle mainly due to closure of schools and colleges.

4. Discussion

In this paper, we focused on the patterns of visits to POIs from CBGs during the COVID-19 pandemic.
The results of this study provide a deeper insight into the effect of social distancing on changes in
population visits to hotspot POIs during the COVID-19 pandemic. The results showed that the
absolute number of visitors to POIs showed a downward trend in the 16 studied cities. One category
of cities sustained the proportion of movements to hotspot POIs, while another category of cities
reduced the proportion of movements to hotspot POls and increased the proportion of movements to
non-hotspots POIs. Another COVID-19 study in Italy demonstrated that human mobility in Italy was
strongly related to the spread and control of COVID-19 [32]. Movements to hotspot and non-hotspot,
however, may have different transmission risks and cause different epidemic diffusion patterns.
Balcan et al. [10] considered two types of mobility: long-range mobility and short-range mobility
when building an epidemic model. The results showed that two types of mobility determined
different epidemic diffusion patterns at regional and local levels. Meloni et al. [12] showed that
changes of mobility patterns due to an epidemic outbreak may have a negative effect on epidemic
control. Furthermore, Chang et al. [15] identified ‘superspreader’ POls (e.g. fitness centres and
restaurants) that may cause a huge amount of infections. Hence, the proportion of movements to
urban hotspot POIs could be an important indicator of the manner in which cities respond to an
epidemic breakout. This study could contribute to a better theoretical understanding of urban
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movement patterns and the effects of mobility reduction policies. The results of the study also facilitate [ 11 |
better monitoring of the effect of enforced epidemic control measures. Furthermore, we investigated
which POIs maintained their pre-epidemic proportion of visitors, and which POIs experienced
declines and increases in the proportion of visitors during the unfolding of COVID-19 and the
enforcement of shelter-in-place orders. The results facilitate a better understanding of human lifestyles
and their changes during the epidemic, which could help decision-makers to develop effective
epidemic control measures.

Also, we conducted chi-square tests to pinpoint POIs with significant flux-in changes. The process
could be a good complement to the coarse-grain approach that was adopted to analyse the CBG-POI
movement network. The coarse-grain approach clustered nodes to hotspots and non-hotspots and
grouped individual CBG-POI flows into four types of movements. While the approach could provide
a useful picture of human movements among hotspots and non-hotspots, it cannot provide
information about single POIs. The understanding of the flux-in changes for single POIs is important
for the examination of pandemics. Because our study focused on the effects of social distancing
measures and shelter-in-place orders, the POIs with significant flux-in changes showed decreased
visitors during the studied period. This set of results could provide additional insights regarding
community response to COVID-19 and help monitor the control measure effectiveness. On the other
hand, these POIs could expect significant flux-in increases after the shelter-in-place orders are lifted.
Specifying these POIs could provide valuable information to develop reopening policies and strategies
(e.g. multi-steps to reopen POIs with significant flux-in changes).

Other research directions could be explored based on the findings of this study. For example, based
on the results of the proportions of visitors to POIs during the studied period across cities, we could
refine the understanding of essential and non-essential services for humans in urban disruptions, such
as natural hazards and epidemic outbreaks [33-35], and future research could take characteristics of
cities into consideration. Furthermore, the results could facilitate understanding how the urban
disruptions would affect business (e.g. what business industries would be more affected during
disruption compared with other business), helping to develop business disaster planning and recovery
strategies in urban disruptions [36,37].

The research also has some limitations. The results of the study were based on social distancing and
shelter-in-place orders in the United States. In other countries with different policies and cultures, the
results may be different. Also, the data cannot consider the interactions among POIs. Decreased visits
to one POI may affect visits to another POI. Furthermore, we tried to study movement patterns in
some less-populated cities in the United States that were highly affected by COVID-19, such as
Randolph, Terrell and Early in Georgia, as well as Union, Bergen and Hudson in New Jersey. The
movement data in these cities, however, were very sparse and difficult to build the CBG-POI
movement network. The results in this paper, therefore, focused on cities with large populations.
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