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ABSTRACT

Load forecasting has long been a key task for reliable power systems planning and operation. Over the
recent years, advanced metering infrastructure has proliferated in industry. This has given rise to many
load forecasting methods based on frequent measurements of power states obtained by smart meters.
Meanwhile, real-world constraints arising in this new setting present both challenges and opportuni-
ties to achieve high load forecastability. The bandwidth constraints often imposed on the transmission
between data concentrators and utilities are one of them, which limit the amount of data that can be
sampled from customers. There lacks a sampling-rate control policy that is self-adaptive to users’ load
behaviors through online data interaction with the smart grid environment. In this paper, we formulate
the bandwidth-constrained sampling-rate control problem as a Markov decision process (MDP) and pro-
vide a reinforcement learning (RL)-based algorithm to solve the MDP for an optimal sampling-rate control
policy. The resulting policy can be updated in real time to accommodate volatile load behaviors observed
in the smart grid. Numerical experiments show that the proposed RL-based algorithm outperforms com-

peting algorithms and delivers superior predictive performance.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Load forecasting is an important task for power system plan-
ning purposes, as utilities must take actions to keep the supply
and demand of electricity in balance based on load forecasts. How-
ever, accurate residential load forecasting has become increasingly
challenging due to the integration of distributed energy resources
(DERs) into smart grids, which has brought much uncertainty into
the distribution grids. Over the past decades, advanced metering
infrastructure (AMI) has been widely deployed in power grids. AMI
is an integrated system of smart meters, communication networks,
and data management systems that enables two-way communica-
tions between utilities and customers. It permits a number of im-
portant functions that were previously impossible or had to be per-
formed manually, such as remote measurement and monitoring of
electricity usage and tampering detection (U.S. Department of En-
ergy, 2016).

A plethora of methods have been proposed for load forecasting
over the past decades prior to the wide deployment of AMI. Among
them, popular methods include, but are not limited to, traditional
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time series approaches such as autoregressive integrated moving
average (e.g., Arora & Taylor, 2018; Nystrup, Lindstrom, Pinson,
& Madsen, 2020; Rendon-Sanchez & de Menezes, 2019), machine
learning approaches such as support vector regression (e.g., Elattar,
Goulermas, & Wu, 2010; Jain, Smith, Culligan, & Taylor, 2014),
neural network (e.g., Amjady, 2006; Ekonomou, Christodoulou, &
Mladenov, 2016; Kermanshahi, 1998), and Gaussian process mod-
els (e.g., Alamaniotis, Chatzidakis, & Tsoukalas, 2014; Lloyd, 2014).
Most of these methods rely on input features such as loads ob-
served in the past, weather conditions, and day types, whose val-
ues are accessible in the absence of advanced metering devices.

With the rapid growth of AMI, more and more residential cus-
tomers are equipped with smart meters. The past decade has seen
a growing number of studies dedicated to load forecasting using
data collected by smart meters (e.g., Alberg & Last, 2018; Kell, Mc-
Gough, & Forshaw, 2018; Xie, Chen, & Weng, 2018). Modern smart
meters have many desirable features that support real-time data
interactions, e.g., allowing utilities to adjust the sampling rates re-
motely (U.S. Department of Energy, 2016). Meanwhile, real-world
constraints arise in this new setting which present both challenges
and opportunities to achieve high load forecastability.

Fig. 1 illustrates one such real-world constraint and its crucial
impact on load forecastability. In smart grids, data sampled from
customers in the same neighborhood are often first aggregated at
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Fig. 1. An illustration of the smart-meter sampling-rate control problem, the commonly adopted even sampling practice and an adaptive sampling practice.

a concentrator; data collected by all concentrators are then trans-
mitted to the data center of a utility for load forecasting (Nimbargi,
Mhaisne, Nangare, & Sinha, 2016). A majority of utilities rely on
wireless technologies (e.g., general packet radio services) for data
communication between concentrators and their data centers, and
wireless providers (e.g., Verizon, 2017) often impose a daily limit
on the bandwidth. Therefore, the amount of data that can be sam-
pled from a neighborhood is limited by the daily transmission
bandwidth imposed, which poses a challenge for accurate load
forecasting. Given the prohibitive cost to increase the bandwidth
(Balachandran, Olsen, & Pedersen, 2014; Rahman & Mto, 2013), it is
impractical to relax the bandwidth constraint through investment
in practice. A question naturally arises in this context: how to al-
locate the limited bandwidth to smart meters in a neighborhood to
obtain accurate load forecasts overall? The most commonly adopted
industry practice is to sample evenly from each customer subject
to the bandwidth constraint (Balachandran et al., 2014). As a sam-
pling policy, however, it is clearly suboptimal: customers often ex-
hibit distinct load behaviors; a uniform sampling policy can result
in redundant data being collected from customers with stable load
behaviors, while insufficient data being obtained from customers
with highly volatile load behaviors. On the other hand, using a
carefully designed sampling-rate control policy based on real-time
load behaviors can potentially improve data effectiveness and en-
hance the overall load forecastability.

Recently, researchers have shown an increased interest in adap-
tive sampling-rate designs for smart meters, but the literature is
still relatively scarce. Among the first on this topic, Xie et al.
(2018) proposed a state-of-the-art, user-behavior-based sampling-
rate control algorithm to facilitate load forecasting under a band-
width constraint. Their sampling policy is obtained via solving an
integer program established for a fixed decision horizon and is
shown to outperform the even sampling policy. However, as the
sampling policy can only be updated periodically with no feedback
on the predictive performance being incorporated, it may fail to
accommodate highly volatile load behaviors responsively and re-
sult in low load forecastability.

To overcome the aforementioned limitations, one can resort to
methods capable of supporting online decision making based on
data received in real time. One viable choice is online machine
learning techniques (e.g., follow-the-leader algorithm, FTL). These
methods excel in predictive tasks by learning from continuous
streams of data that arrive sequentially. Nevertheless, the goal of
online learning methods is to update the corresponding policy pa-
rameters such that the regret (e.g., the cumulative predictive er-
ror) in hindsight can be minimized; and the objective functions
typically must possess certain properties (e.g., convexity) for the

methods to perform well (Hoi, Sahoo, Lu, & Zhao, 2018). Markov
decision process (MDP), on the other hand, is a rigorous approach
to formulate an online decision-making problem whose solution
provides an optimal policy that maximizes the expected cumula-
tive future reward (or equivalently, minimizes the expected cumu-
lative future regret), while taking into account the outcomes of all
possible future behaviors. Solving an MDP in many cases, however,
can be challenging (e.g., when the transition probabilities are un-
known). Reinforcement learning (RL) provides a state-of-the-art so-
lution technique to approximate an optimal policy in these cases
and has demonstrated robust performance in practice (Sutton &
Barto, 2018).

In this work, we propose to formulate the bandwidth-
constrained sampling-rate control problem as an MDP and propose
an RL-based algorithm to solve the MDP formulated for an optimal
sampling-rate control policy. The MDP is set up to directly maxi-
mize the expected future overall load forecastability. The RL-based
algorithm can be implemented online to update the sampling-rate
control policy adaptively through real-time data interactions. The
major contributions of this work include: (1) a novel MDP formu-
lation of the sampling-rate control problem with relatively low ac-
tion and state space dimensionalities; (2) an RL-based algorithm
with provable performance guarantees to solve the MDP formu-
lated for an optimal sampling-rate control policy; and (3) online
and offline versions of the RL-based algorithm capable of meeting
the needs of different types of customers in the power system.

The rest of the paper is organized as follows. Section 2 re-
views a state-of-the-art approach to solving the sampling-rate con-
trol problem and reveals the necessity of seeking a new solution.
Section 3 presents the formulation of the sampling-rate control
problem as an MDP. Section 4 elaborates on the proposed RL-based
algorithm for solving the MDP formulated. Section 5 provides nu-
merical experiments on testing the performance of the proposed
RL-based sampling algorithm. Finally, Section 6 concludes this
work with a summary of its major contributions and a discussion
of avenues for future research.

2. Review of an integer program-based approach to the
sampling-rate control problem

The need of an innovation to effectively control smart-meter
sampling rates under the bandwidth constraint poses both a chal-
lenge and an opportunity for improving the performance of smart
grids as mentioned in Section 1.

Xie et al. (2018) were among the first works to propose a
smart-meter sampling-rate control policy based on customers’ load
behaviors. Their sampling policy is obtained by solving an inte-
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ger program (IP) formulated via a heuristic approach. Specifically,
instead of directly maximizing the overall load forecasting accu-
racy, the IP intends to maximize the weighted total training sam-
ple size for all customers subject to the bandwidth constraint. Cus-
tomers who exhibit highly variable load behaviors are assigned
higher weights and those with stable load behaviors are assigned
lower weights. The intuition behind this objective function is that
the larger training sample size, the higher resulting predictive ac-
curacy. The resulting optimal sampling policy hence adjusts sam-
pling rates for different customers based on their individual load
variabilities.

The IP formulation given by Xie et al. (2018), however, suffers
from two drawbacks. First, the premise that the objective func-
tion relies on is not always true. It is known that some training
data points may negatively impact the training process of a pre-
diction model, resulting in poor predictive performance (Fan, Tian,
Qin, Bian, & Liu, 2017). Hence, it can be more effective if an objec-
tive function can be designed to directly reflect the predictive ac-
curacy achieved on the most recent forecasting periods, serving as
the basis for the projection into the next time period. Second, and
more importantly, the sampling policy resulting from solving the
IP formulated is not responsive to changing load patterns, poten-
tially undermining the predictive accuracy achieved. Specifically, to
formulate their IP, a specific decision horizon must be determined
first; the decision horizon should be no less than one day due to
the daily bandwidth constraint. The IP is updated and solved once
for each decision horizon, and the resulting policy is a determin-
istic one, with the sampling decisions being held fixed throughout
the decision horizon. We refer the interested reader to Xie et al.
(2018) for details. In Section 5, we will use the IP-based algorithm
as one benchmark for evaluating the proposed approach which is
to be detailed in the next two sections.

3. A Markov decision process-based approach to the
sampling-rate control problem

In this section we propose a Markov decision process (MDP)-
based approach to the sampling-rate control problem. We first
present the prediction model adopted for load forecasting in
Section 3.1 and then elaborate on the MDP formulation in
Section 3.2. Without loss of generality, we consider hourly predic-
tion for each customer throughout this work. Hence, each stage of
the MDP corresponds to each hour in the real world and a decision
on whether to sample from each customer must be made at every
stage. Other forecast resolutions can be easily adopted without any
substantial modification to the MDP formulation.

3.1. The two-stage prediction approach

To facilitate comparisons with the benchmarking sampling-rate
control policy proposed by Xie et al. (2018), in this paper we adopt
the same input features and prediction model structure as in Xie
et al. (2018). This prediction model falls in the category of two-
stage load forecasting models, which typically give predictive per-
formance superior to one-stage models (Bozic, Stojanovic, Stajic, &
Tasic, 2013). Specifically, assuming the smart grid comprises N cus-
tomers, the input vector is denoted by
Xe = (01000 0511 0fir Ol Oy Ofy) (1)
where 91?_ i is the difference in phase angles of customers i and j
at hour t. Here, phase angle refers to the lag between the times
when a given customer’s voltage reaches the peak level and when
that happens to the reference customer in an alternating current
system. Phase angles are typically expressed in degrees and are
proportional to the time lags which they represent (Grainger &
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Stevenson, 1994). Load predictions for the next hour are made via
the following two-stage approach. The first stage aims at predicting
the hour-ahead input vector, which contains the values of all pair-
wise phase angle differences in the next hour. The second stage
performs hour-ahead load prediction for a target customer using
the predicted input vector obtained by the first stage.

To serve the purpose of first-stage input prediction, we adopt
a particular type of recurrent neural network, i.e., gated recurrent
unit (GRU) network, which can achieve a higher predictive accu-
racy for time series forecasting as compared to many other ma-
chine learning methods (Cho et al.,, 2014). GRU has a mechanism
of memorizing important temporal patterns while ignoring those
unimportant ones seen in the past and has been successfully ap-
plied in load forecasting (Zheng et al., 2018). For the second-stage
load forecasting, we adopt a Gaussian process (GP) model. GP mod-
els have favorable properties such as being highly flexible to cap-
ture various features exhibited by the data at hand and capable of
quantifying predictive uncertainty (Rasmussen & Williams, 2006).

We note that other input variables that may aid in load fore-
casting (e.g., weather conditions and day types) can be easily incor-
porated into the input vector X; and used by the aforementioned
prediction approach. Moreover, the two-stage prediction approach
can easily incorporate other suitable models as the first-stage input
prediction model and the second-stage load prediction model.

3.2. The Markov decision process formulation

In this section, we establish the sampling-rate control problem
as an MDP, whose solution gives an optimal sampling policy under
this formulation.

An MDP is a model for sequential decision making when out-
comes are uncertain; it typically consists of decision epochs (or
stages), states, actions, rewards, and transition probabilities. Choos-
ing an action in a state generates a reward and determines the
state at the next stage through a transition probability function
(which may be known or unknown). Policies or strategies are pre-
scriptions of which action to choose under any eventuality at ev-
ery future stage. Through solving the MDP formulated, one seeks
an optimal policy for choosing an action at each stage so that the
total reward accumulated over all stages is maximized (Puterman,
1994).

In our problem setting, the objective function of the MDP is
MmaXy [

Ex (zg‘io yrre(se, a[)), where 1 (s¢, a;) denotes the reward that
reflects the predictive accuracy achieved when taking action a;
given state s; at stage t, IT denotes the set of policies m’s that
govern actions to take, and y € (0, 1) denotes the discount factor
for future rewards. We elaborate on each component of the MDP
next.

3.2.1. Action

At each hour of operation, we must decide which customers
to sample phase angles from. Since the reference customer always
has a phase angle of zero, there is no need to sample from her.
A natural choice to model the action at stage t of the MDP, de-
noted by a;, as an (N — 1)-dimensional vector of binary digits. Each
digit corresponds to a distinct customer, with “1” denoting the de-
cision to sample from the corresponding customer at hour t and
“0” otherwise. In this case the dimensionality of the action space
is N—1 and the total number of possible actions at each stage is
2N-1 which is an extremely large action space to explore even for
a medium-sized distribution grid.

To avoid a potentially large action space to explore, we adopt
a novel approach for modeling action at each stage, which is in-
spired by the mini-batch idea in Fan et al. (2017). Specifically, we
break stage t of the MDP into N — 1 substages. At each substage,
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we only consider the action to take for customer i, denoted by
a{, fori=1,2,..., N — 1. The dimensionality of the action space at
each substage hence reduces to one, with only two possible actions
to consider.

3.2.2. State

We take into account the following two aspects when defin-
ing the state of the MDP. First and foremost, as a result of the
two-stage prediction approach adopted (Section 3.1), the load fore-
castability ultimately achieved depends heavily on the first-stage
hour-ahead input predictive accuracy, which should be captured
in the state. In particular, the state at each stage should be able
to record the input predictive accuracy achieved for each indi-
vidual customer, in the same vein as actions being defined at
substages corresponding to individual customers (Section 3.2.1).
Second, the state should keep track of the remaining budget or
bandwidth left for allocation. Therefore, we define the state for
customer i(i=1,2,...,N—1) at stage t as follows:

-1

N-1

, o ) »

st=leelde)] .ao]. (2)
=1

where ¢; is the sampling budget remaining at stage t, C is the to-
tal daily sampling budget determined by the daily bandwidth con-
straint, and é; denotes the average absolute percentage error for
predicting customer i's phase angle up to stage t — 1, which is de-
fined as

~ 1 t é‘h—l _ gh-1
i L i i
e = t Z gh-1
i

h=1

,i=1,2,...,N-1. (3)

Here, 0,.“ denotes the phase angle of customer i observed at hour h
and 67!.’1 denotes its estimate given by the first-stage input predic-
tion model (recall Section 3.1). The three components of si respec-
tively account for the input predictive error incurred for customer
i, the ratio of customer i’s input predictive error to the total input
predictive errors incurred for all customers and the percentage of
the remaining sampling budget.

At stage t, after taking actions ai’s, we need to obtain states
siH's for stage t + 1. Some difficulty may arise in calculating the
component éiﬂ in er] via (3), if some 9{ is not observed due to
the action ai taken. To proceed, we can make up the missing phase
angle observation by using the first-stage input prediction. Specifi-
cally, denote the phase angle vector of the customers at stage t (ex-
cluding the reference customer) by ©; = (65,65, ..., 057 and its
estimate by ©; = (é{,éﬁ,...,é,{,fl)T. For each element in ©;, we
replace 0 with é{ if the former is not observed; denote the result-
ing vector by ©j. Upon updating the first-stage input prediction
model with ®}, we predict ©; again and denote the prediction by

& =@t
and 6f with é{ and é{ in (3), respectively.

é,{,_l)T. Then éiH can be obtained by replacing él.t

3.2.3. Reward

As the goal of the MDP is to maximize the overall load fore-
castability, we define the reward as the load predictive accuracy
achieved for all customers. At stage t, we make a prediction for
©;;+1 using Of and denote it by ©;.1. Then, we obtain the in-
put vector X;,1 based on ®t+1 (recall (1)); Xr4q is subsequently
used as the input to the second-stage prediction model for pre-
dicting each customer’s load at stage t + 1. In particular, a separate
second-stage load prediction model G; is constructed for perform-
ing customer i’s load prediction. The reward at stage t of the MDP
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is defined as

N .

z;(PiHl _ Pit+1)2
re=1- = R (4)
(pit+1 _ 13r+1)2

=

Il
—_

where I3f+l and Pi[“ respectively denote the load prediction ob-
tained and the actual load observed for customer i at hour ¢+ 1;
and P = N-TYN, P+1. We see from (4) that the maximum pos-
sible reward at each stage is one; and there is a possibility of get-
ting a negative reward. In accordance with the definitions of action
and state of the MDP, we assign a unique reward ri to action ai at
substage i(i=1,2,...,N—1) as follows:

‘ r N1 -1
n=——=l1-é(> e , (5)
=1

N-2

where éﬁ is defined in (3). The definition in (5) ensures that the
actions corresponding to those customers with lower phase angle
estimation errors earn higher rewards and vice versa. Note from
(4) and (5) that the sum of the rewards earned at all substages (i.e.,
corresponding to all customers) equals the total reward earned at
stage ¢, ie, YN ' =1

4. A reinforcement learning-based solution to the MDP
formulated

One can solve an MDP for an optimal policy via methods
such as dynamic programming (DP) and reinforcement learning
(RL). While DP works well for solving MDPs with known transi-
tion probabilities, RL is more effective when transition probabili-
ties are unknown, as is the case in our problem setting (Sutton
& Barto, 2018). In this section, we first briefly introduce a model-
free policy-based RL approach, the enhanced REINFORCE method,
which serves as the basis of our proposed algorithm to solve the
MDP formulated in Section 3. Then, we elaborate on the proposed
algorithm in Section 4.2.

4.1. A policy gradient algorithm—REINFORCE

There has been an increasing interest of the power systems
community in using RL to solve real-world problems, such as de-
mand response, load control, and electric vehicle fleet charging, to
name a few (Claessens, Vrancx, & Ruelens, 2018; Lu, Hong, & Yu,
2019; Ruelens et al., 2017).

RL algorithms typically fall into two categories: value based and
policy gradient algorithms; and the latter type tends to converge
faster than the former type (Sutton & Barto, 2018). Different from
the algorithms that seek an optimal policy based on value func-
tions (e.g., Q-learning, SARSA), policy gradient algorithms gradu-
ally improve the policy by using the gradient of policy parame-
ters. Specifically, the policy is described by a parameterized ma-
chine learning model, such as logistic regression or neural network.
Such a model takes the state as the input and produces a proba-
bility of taking each possible action as the output. Let g denote
the parameterized policy model with B being the d-dimensional
parameter vector, r; as the reward, s; as the state, and a; as the
action at stage t. A policy gradient algorithm aims at maximizing
the expected total reward defined as

JB) =Eay| D v'relse. ar) | =D mp(0)F(T),
t=0 T

where y € (0, 1) denotes the discount factor for future rewards, ©
is a trajectory that contains a sequence of state-action pairs, i.e.,
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(51,071,582, Gz, ...), 7g(T) denotes the probability of producing t
given the policy parameter vector B, and 7(t) denotes the total
discounted reward over all decision horizons under trajectory t.
Seeking an optimal policy is equivalent to finding an optimal pa-
rameter vector B* that solves Maxg, zaJ B).

Policy gradient algorithms, fittingly, use gradient-based meth-
ods to find B*. Denote VJ(B) as the gradient of J(B8) with respect
to B. Under standard assumptions on the regularity of the MDP
problem and the smoothness of the policy model mg, one can
write VJ(B) in the following form according to the policy gradi-
ent theorem (Sutton, McAllester, Singh, & Mansour, 2000):

Vi(B)=(@1- )/)71E(s,a)~pﬂ(.,-)[v log g (als)Qx, (s, a)],

where  pg(s. a) = pr, (s)mg(als) denotes the discounted state-
action  occupancy measure, Prg ®)=AQ-pY)XXovip(st =
s|so, wg) is a probability distribution over the state space S,
and p(s; = s|sg, mg) denotes the probability that the state at time
t equals s given the initial state so and the policy 7g. Given
an initial state-action pair (s,a), the value of the Q-function
gives the expected accumulation of discounted rewards, i.e.,
Qg (5.0) =Eng (320 ¥'1e(St. at)|so = 5. Gp = a).

REINFORCE is a classical policy gradient algorithm (Sutton &
Barto, 2018), which updates the policy parameter vector 8 via a
stochastic gradient ascent approach. The agent learns the policy by
interacting with the environment for a large number of episodes,
each consisting of many stages. In each episode, the agent starts
with some state sp, takes actions according to the policy param-
eterized by mg, and observes the reward earned at each stage. At
the end of each episode I, B is updated based on the trajectory of
states, actions, and rewards earned:

B =B+ VB, (6)

where {&; € (0,1)} denotes the sequence of step sizes and @](,B)
denotes an estimate of VJ(B). One common drawback of classi-
cal REINFORCE algorithms (Williams, 1992) is that their resulting
@j(ﬂ) can be biased, rendering a lack of performance guarantees.

In this work, we adopt an enhanced REINFORCE method which
is inspired by Zhang, Koppel, Zhu, and Basar (2020). The method
updates the policy parameter vector via (6) using the following
gradient estimate:

VIB) = 12 G, (51.00)V logmg(ar i), 7

where T is geometrically distributed with parameter 1-y, i.e,
T ~Geo(1—y), and Qnﬂ (s,a) denotes the estimated Q-function
value given a state-action pair (s, a), specifically,

.
Quy(s,a) =Yy o7e(se, ) [so =5, ao = @, (8)
=0

with T ~ Geo(1 — y%) and T’ being independent of T.

The enhanced REINFORCE method has desirable theoretical
properties such as producing an unbiased estimate of VJ(B) and
the resulting f; converging to a stationary point of J(8) almost
surely. Therefore, convergence to an optimal policy parameter vec-
tor B can be guaranteed. For the sake of brevity, we refer the in-
terested reader to Appendix A for more details.

4.2. The proposed RL-based algorithm

In this section, we provide an RL-based algorithm in light of
the enhanced REINFORCE method to solve the MDP formulated in
Section 3 for an optimal sampling-rate control policy.
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With a policy model specified, seeking an optimal policy re-
duces to seeking an optimal parameter vector 8* based on some
training dataset. In this work, we model the policy mg(als) us-
ing a multilayer perceptron (MLP), which is a feedforward shal-
low neural network (NN). It is more computationally efficient than
deep NNs thanks to its small scale and has greater flexibility in
modeling nonlinearity as compared to non-NN models. Hence, MLP
strikes a good balance between computational efficiency and pre-
dictive accuracy for problems with low input and output dimen-
sionalities (Hastie, Tibshirani, & Friedman, 2009). Since the dimen-
sionalities of the space and action spaces of the formulated MDP
are not high, an MLP suffices for modeling the sampling policy.
At substage i within stage t, the input to the MLP is the state si
and the output is the probability of taking each possible action
ae{0,1},i=1,2,... ,N-1,¢t=12,...

Below we provide two versions of the algorithm, the offline and
online versions, respectively suitable when the training dataset is
static (i.e., data stay fixed after being recorded) and dynamic (i.e.,
data are continually updated).

4.2.1. The offline version

With a given dataset D that contains observations from N cus-
tomers at 7 consecutive hours, the offline version of the proposed
RL-based algorithm (i.e., Algorithm 1 provided in Appendix B) can
be adopted to obtain an optimal sampling-rate control policy. Let
L denote the total number of training episodes. We focus on ex-
plaining the key steps in Algorithm next. Steps 1 and 2 of Algo-
rithm 1 respectively initialize the policy model g and train sep-
arate second-stage load prediction GP models for individual cus-
tomers. At the beginning of each training episode, Step 4 calculates
the initial state for each customer. Step 5 samples T and T’ inde-
pendently from respective geometric distributions for the current
training episode. Steps 6 to 24 generate actions based on observed
states and calculate the rewards by taking corresponding actions.
By the end of the current episode (Steps 25 to 28), the policy pa-
rameter vector B is updated based on the states, actions, and re-
wards obtained at all stages within the episode via (6). At the end
of the Lth episode (i.e., the last training episode), the policy pa-
rameter vector B is expected to converge to an optimal parameter
vector B* under the MDP formulated in Section 3.2. The resulting
policy model T g (a|s) can be used for sampling-rate control in the
future.

4.2.2. The online version

The online version of the algorithm intends to continually up-
date the sampling-rate control policy based on streaming data.
Thanks to the sequential nature of the policy gradient updat-
ing scheme, we can update the policy parameter vector 8 on an
hourly basis if implemented online instead of at the end of each
episode. Specifically, at each hour t, one can update f via f <
B+a(—y)~lrl-Viegmg(ajls)) fori=1,2,..., N —1 with a step
size a € (0, 1). Fig. 2 shows a schematic diagram of the online ver-
sion of the proposed algorithm. Specifically, an initial policy is first
obtained upon training offline over a total of L episodes on a given
dataset D via Algorithm 1. Then using the current policy at hour ¢,
sampling decisions and load forecasts can be made for hour t + 1.
As time proceeds to hour t + 1, the rewards at hour ¢ can be cal-
culated as the data at hour ¢ + 1 stream in. The policy can be sub-
sequently updated using the newly obtained rewards, states, and
actions at hour t. The updated policy can be further applied to de-
termine the actions to take at hour t + 1. This online version fully
ensures that the sampling-rate control policy can be updated and
carried out continually, enabling the sampling policy to accommo-
date highly dynamic customers’ load behaviors.
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Fig. 2. A schematic diagram for the online version of the RL-based sampling algorithm.

5. Numerical results

In this section, we conduct numerical evaluations of the pro-
posed RL-based algorithm on various test cases.

5.1. Experiment setup

Data generation. The proposed algorithm is evaluated on four
standard IEEE test cases, i.e., 8-bus, 14-bus, 24-bus, and 123-bus
test cases, respectively built on real-world data sources. In each
test case, a bus refers to an individual customer whose load needs
to be predicted over time. To simulate highly uncertain load be-
haviors caused by DERs in real-life power systems, historical load
profiles from PJM (2014) in year 2014 and New York Independent
System Operator (2015) in year 2015 are used for simulations. Tak-
ing into account the uncertain renewable generation behaviors of
DERs, we first pre-process the simulated hourly PV generation data
over a year drawn from Renewables.ninja (2017), and then sub-
tract the pre-processed data from the load data of each customer.
To obtain phase angle values, we perform power flow analysis to
generate power states hourly over a year using the MATLAB Power
System Simulation Package (MATPOWER, Zimmerman & Murillo-
Sanchez, 2010) based on the processed load data.

Bandwidth constraint. We assume that without the daily band-
width constraint, originally it was possible to sample the phase an-
gle 0 from all customers every hour; that is, the total number of
0's (excluding a given reference customer) that can be sampled ev-
ery day was 24(N — 1), where N denotes the total number of cus-
tomers in a given test case. Due to the bandwidth constraint im-
posed, however, the daily total bandwidth is reduced by 1/3; that
is, the total number of 0’s that can be sampled every day becomes
16(N —1).

Algorithm configuration. In each test case, upon obtaining one
year’s load and phase angle data for each test case, the first 30
days’ data are used as the static dataset D to train the sampling-
rate control policy offline via Algorithm 1. Each training episode
of the proposed RL-based algorithm has a maximum of 7 =720
stages (or hours). The discount factor y is set to 0.95. The step size
is set as ; = 1/ for | > 1. The total number of training episodes L
is set to 500, to ensure the convergence of the algorithm. Upon
completing the offline training through L episodes, the resulting

policy is applied to a test set that comprises the remaining 335
days’ data, for which the online version of the algorithm is imple-
mented for controlling sampling rates and performing hourly load
prediction. Regarding the GRU model used for the first-stage input
prediction, the number of hidden units in the GRU cell is set to
5, and the tanh function is selected as the activation function. Re-
garding the policy model MLP describing 7g(als), the number of
hidden layers and the number of hidden units are set to 1 and 10,
respectively. All the aforementioned parameters are chosen using a
time series cross-validation procedure. Specifically, a set of candi-
date values for each aforementioned parameter (i.e., the number of
hidden units in the GRU cell, the number of hidden layers and the
number of hidden units in the MLP model) is adopted to perform
predictions on a validation set for each test case via the rolling-
origin-update evaluation of Bergmeir and Benitez (2012). The val-
idation set for each test case contains the first 30 days’ data. The
measure of predictive error, MAPE, as defined in (9), is calculated
across all hours in the validation set for each test case using each
combination of parameter values. Finally, the combination giving
the lowest average MAPE across all test cases is adopted.

Measure of predictive accuracy. To evaluate the overall predic-
tive accuracy, we consider two performance measures, respectively,
the mean absolute percentage error (MAPE) and the mean abso-
lute scaled error (MASE), achieved by hourly predictions for all
customers in each test dataset. The MAPE and MASE at each hour

t €{1,2,...,N*} in a test dataset are respectively defined as
1 ul pt t
1N p_p Lpy |Pf —P|
_ 1 1 — =
MAPE = ; el MASE = T R — 9)
= (N"—24)N 2 ‘ ‘P: -B |
h=25i=1

where PIF denotes the load of customer i at hour t actually ob-

served and Isf is the predicted value, N denotes the total number
of customers in a given test case, and N* denotes the total number
of hours to be predicted in each test dataset. As 335 days’ data are
used for testing, N* equals 8040.

Benchmarking algorithms. We consider three benchmarking al-
gorithms in comparison with the proposed RL-based algorithm
(abbreviated to “RL”): (1) the commonly adopted even sampling
practice as reviewed in Section 1 (abbreviated to “CP”), (2) the
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Fig. 3. Plots of the total reward earned versus the training episode index (in logarithmic scale) through offline training in each test case.
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Fig. 4. Boxplots of MAPEs obtained by CP, IP, FTL, and RL in the four test cases.

Summary of the medians of MAPEs. Entries denoted with * indicate that the corresponding values are significantly higher than that of RL in the same column at a confidence
level of 95% upon applying the Bonferroni correction for multiple comparisons.

Weekdays Weekends

8-bus 14-bus 24-bus 123-bus 8-bus 14-bus 24-bus 123-bus
CcP 0.325* 0.345* 0.345* 0.337* 0.343* 0.378* 0.334* 0.365*
IP 0.251* 0.301* 0.306* 0.293* 0.298* 0.301* 0.307* 0.326*
FTL 0.268* 0.287* 0.297* 0.280* 0.278* 0.286* 0.294* 0.314*
RL 0.208 0.230 0.258 0.241 0.235 0.216 0.272 0.280
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Summary of the medians of MASEs. Entries denoted with * indicate that the corresponding values are significantly higher than that of RL in the same column at a confidence

level of 95% upon applying the Bonferroni correction for multiple comparisons.

Weekdays Weekends
8-bus 14-bus 24-bus 123-bus 8-bus 14-bus 24-bus 123-bus
CcP 0.322* 0.343* 0.349* 0.346* 0.424* 0.418* 0.403* 0.436*
P 0.251* 0.318* 0.319* 0.303* 0.365* 0.345* 0.358* 0.337*
FTL 0.289* 0.307* 0.301* 0.297* 0.342* 0.332* 0.359* 0.345*
RL 0.213 0.231 0.253 0.241 0.291 0.249 0311 0.299
8 bus
0.4 : : : :
—6— True load
035 |—=—1IP |
—*%—FTL
0.3 |—%—RL 1
0.25
gl gl
S 02 3
| |
0.15¢
0.1
0.05
0
Hour
123 bus
0.4 0.4 T
0.35 0.35 1
0.3 0.3 1
0.25 0.25
® ®
o 0.2 o 0.2 3
| 4 ¥
0.15 0.15
0.1
0.05m 0.05

Hour

Hour

Fig. 5. Predictions for a representative customer with stable load behaviors on two consecutive days in each of the four test cases.

IP-based algorithm as reviewed in Section 2 (abbreviated to “IP”)
and (3) the follow-the-leader algorithm (abbreviated to “FTL"),
a state-of-the-art online machine learning algorithm. For imple-
menting IP, a 48-hour decision horizon is adopted following the
suggestion of Xie et al. (2018). FTL can update its policy pa-
rameter vector B on an hourly basis according to an objec-
tive function of minimizing the prediction error accumulated so
far. For the reader’s convenience, we provide schematic diagrams
that illustrate the implementations of IP and FTL respectively in
Figs. C.1 and C.2 in Appendix C. To ensure the fairness of compar-
isons, the same load forecasting model (i.e., GRU combined with
GP) is applied in conjunction with all four sampling-rate control
algorithms.

5.2. Summary of results

On convergence. Fig. 3 shows that the offline training via Algo-
rithm 1 indeed achieves fast and reliable convergence in all four
test cases. Recall that the maximum possible reward earned at
each stage is 1 and the maximum possible total reward in one
episode given the fixed training dataset D is 720. In all test cases,
we observe from Fig. 3 that the corresponding total reward earned
increases rapidly with the number of training episodes performed,
and the reward converges within the first 50 episodes to a value
near 700. This indicates that RL can successfully solve the MDP
formulated for the sampling-rate control problem and obtain an
approximated optimal sampling policy numerically. On predictive
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Fig. 6. Predictions for a representative customer with volatile load behaviors on two consecutive days in each of the four test cases.

performance. Fig. 4 summarizes the MAPEs corresponding to 8040
hourly load predictions obtained by implementing CP, IP, FTL, and
RL in each of the four test cases. As customers typically exhibit
distinct load behaviors on weekdays and weekends, to control for
the effects of type of day on the performance of all sampling al-
gorithms under comparison, we present the results obtained for
weekdays and weekends separately. From Fig. 4, we see that, for
each algorithm considered, there tend to be more outliers in the
MAPEs for the weekends than for weekdays; indeed, customers’
load behaviors are typically more volatile and hence more chal-
lenging to predict on weekends as compared to weekdays. More
importantly, Fig. 4 shows that RL dominates the three benchmark-
ing algorithms by producing the lowest MAPEs in all four test
cases. IP and FTL's performance is comparable while FTL has a
slight edge over IP; and CP ranks last overall. The observation
above holds for comparisons with respect to both weekdays and
weekends. We further note that the benefit of using an adaptive
sampling algorithm (i.e., IP, FTL, and RL) diminishes slightly as the
total number of customers increases; this is because as more and
more customers are considered for sharing the given bandwidth,
the data deficiency issue becomes more challenging to address.
Nevertheless, the performance of RL is still robust in this case. Last
but not least, similar observations are made from the MASEs ob-
tained. To economize on space, we refer the reader to Fig. C.3 in
Appendix C for details.

Table 1 (respectively Table 2) summarizes the medians of the
8040 MAPEs (resp. MASEs) obtained by each algorithm in all test
cases, which further confirms the superiority of RL as observed in
Fig. 4 (resp. Fig. C.3). The sign test (Diebold & Mariano, 1995) con-
ducted shows that the medians of the MAPEs (resp. MASEs) of CP,
IP, and FTL are significantly higher than that of RL at a confidence
level of 95%.

On responsiveness. Fig. 5 (respectively Fig. 6) compares load pre-
dictions on two consecutive days for a representative customer
with stable load behaviors (resp. volatile load behaviors) in each
of the four test cases. We observe from Fig. 5 for customers with
stable load behaviors that, in the 123-bus test case, on the first
day, IP, FTL, and RL can successfully capture the peak level in the
true load pattern (between hour 18 and hour 24). On the second
day, IP and FTL anticipated a peak level (between hour 42 and
hour 44) close to that observed on the first day (between hour 22
and hour 24). However, the true load pattern changed and a peak
level similar to the first day was not reached. We note that IP and
FTL missed the true load pattern of the target customer, whereas
RL was able to respond more promptly and captured this change.
Similar observations regarding the relative performance of IP, FTL,
and RL can be made regarding the 8-bus, 14-bus, and 24-bus test
cases shown in Fig. 5 as well. A comparison of Fig. 6 for customers
with volatile load behaviors with Fig. 5 manifests that the true load
patterns shown in Fig. 6 indeed exhibit more rapid changes and
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higher variability. Nevertheless, earlier observations regarding the
relative performance of IP, FTL, and RL still hold; and RL dominates
IP and FTL by capturing the true load patterns more promptly and
accurately.

We close this section with some reflections on the dominance
of the proposed RL-based sampling algorithm. First and foremost,
in terms of the objective function, IP aims at maximizing the train-
ing sample size that can be obtained for each target customer un-
der the daily bandwidth constraint. FTL intends to minimize the
cumulative predictive error in hindsight. In contrast, RL solves an
MDP formulated to directly maximize the expected cumulative fu-
ture predictive accuracy. Second, IP produces a static sampling pol-
icy over a prescribed decision horizon, and an update of its sam-
pling policy must be made at the end of a decision horizon. FTL
and RL can continually update their sampling policies through real-
time data interactions; however, RL outperforms FTL thanks to its
capability to optimize with the outcomes of all possible future be-
haviors taken into account. Therefore, RL is arguably most suitable
for implementation in real-life smart grids as it can learn to ac-
commodate volatile load behaviors adaptively and promptly.

6. Conclusions and future research

In this paper, we identified opportunities and challenges
brought by controlling smart meter sampling rates under some
bandwidth constraint for enhancing the overall load forecastability
in smart grids. We formulated the sampling-rate control problem
as an MDP and developed a novel RL-based algorithm to solve for
an optimal sampling-rate control policy. The proposed algorithm
can be implemented both offline and online, with the latter capa-
ble of performing real-time data interaction with smart grids. Nu-
merical experiments show that the proposed RL-based algorithm
can accommodate volatile load behaviors more promptly and de-
liver superior predictive performance. As one of the first studies
dedicated to the sampling-rate control problem, this work paves
the way for future research on utilizing machine learning tech-
niques to achieve more efficient and reliable performance of smart
grids.

We end this work with a discussion on future research direc-
tions that would further improve the applicability and efficiency of
the proposed sampling-rate control approach in real-world imple-
mentations. First, one of the innovations of this work is that the
online and offline versions of the RL-based algorithm can meet the
needs of different types of customers in the power system. The of-
fline version can be utilized for industrial customers whose load
patterns are stable and infrequent updates of the sampling pol-
icy are adequate. The sampling policy obtained from the offline
version can remain unchanged for an extended operation period,
as long as the predictive performance remains satisfactory. In this
case, how to intelligently determine the right timing to run the
offline version for policy updates deserves a further investigation.
Second, this work focuses on exploiting differences in customer’s
load behaviors while allocating sampling rates under the band-
width constraint. For a large-scale distribution grid, it can be more
computationally efficient to cluster customers based on similarities
in their load behaviors first and then consider sampling-rate con-
trol across distinct clusters.
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