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a b s t r a c t 

Load forecasting has long been a key task for reliable power systems planning and operation. Over the 

recent years, advanced metering infrastructure has proliferated in industry. This has given rise to many 

load forecasting methods based on frequent measurements of power states obtained by smart meters. 

Meanwhile, real-world constraints arising in this new setting present both challenges and opportuni- 

ties to achieve high load forecastability. The bandwidth constraints often imposed on the transmission 

between data concentrators and utilities are one of them, which limit the amount of data that can be 

sampled from customers. There lacks a sampling-rate control policy that is self-adaptive to users’ load 

behaviors through online data interaction with the smart grid environment. In this paper, we formulate 

the bandwidth-constrained sampling-rate control problem as a Markov decision process (MDP) and pro- 

vide a reinforcement learning (RL)-based algorithm to solve the MDP for an optimal sampling-rate control 

policy. The resulting policy can be updated in real time to accommodate volatile load behaviors observed 

in the smart grid. Numerical experiments show that the proposed RL-based algorithm outperforms com- 

peting algorithms and delivers superior predictive performance. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Load forecasting is an important task for power system plan- 

ing purposes, as utilities must take actions to keep the supply 

nd demand of electricity in balance based on load forecasts. How- 

ver, accurate residential load forecasting has become increasingly 

hallenging due to the integration of distributed energy resources 

DERs) into smart grids, which has brought much uncertainty into 

he distribution grids. Over the past decades, advanced metering 

nfrastructure (AMI) has been widely deployed in power grids. AMI 

s an integrated system of smart meters, communication networks, 

nd data management systems that enables two-way communica- 

ions between utilities and customers. It permits a number of im- 

ortant functions that were previously impossible or had to be per- 

ormed manually, such as remote measurement and monitoring of 

lectricity usage and tampering detection ( U.S. Department of En- 

rgy, 2016 ). 

A plethora of methods have been proposed for load forecasting 

ver the past decades prior to the wide deployment of AMI. Among 

hem, popular methods include, but are not limited to, traditional 
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ime series approaches such as autoregressive integrated moving 

verage (e.g., Arora & Taylor, 2018; Nystrup, Lindstrom, Pinson, 

 Madsen, 2020; Rendon-Sanchez & de Menezes, 2019 ), machine 

earning approaches such as support vector regression (e.g., Elattar, 

oulermas, & Wu, 2010; Jain, Smith, Culligan, & Taylor, 2014 ), 

eural network (e.g., Amjady, 2006; Ekonomou, Christodoulou, & 

ladenov, 2016; Kermanshahi, 1998 ), and Gaussian process mod- 

ls (e.g., Alamaniotis, Chatzidakis, & Tsoukalas, 2014; Lloyd, 2014 ). 

ost of these methods rely on input features such as loads ob- 

erved in the past, weather conditions, and day types, whose val- 

es are accessible in the absence of advanced metering devices. 

With the rapid growth of AMI, more and more residential cus- 

omers are equipped with smart meters. The past decade has seen 

 growing number of studies dedicated to load forecasting using 

ata collected by smart meters (e.g., Alberg & Last, 2018; Kell, Mc- 

ough, & Forshaw, 2018; Xie, Chen, & Weng, 2018 ). Modern smart 

eters have many desirable features that support real-time data 

nteractions, e.g., allowing utilities to adjust the sampling rates re- 

otely ( U.S. Department of Energy, 2016 ). Meanwhile, real-world 

onstraints arise in this new setting which present both challenges 

nd opportunities to achieve high load forecastability. 

Fig. 1 illustrates one such real-world constraint and its crucial 

mpact on load forecastability. In smart grids, data sampled from 

ustomers in the same neighborhood are often first aggregated at 
orecastability: Optimize data sampling policy by reinforcing user 
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Fig. 1. An illustration of the smart-meter sampling-rate control problem, the commonly adopted even sampling practice and an adaptive sampling practice. 
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 concentrator; data collected by all concentrators are then trans- 

itted to the data center of a utility for load forecasting ( Nimbargi, 

haisne, Nangare, & Sinha, 2016 ). A majority of utilities rely on 

ireless technologies (e.g., general packet radio services) for data 

ommunication between concentrators and their data centers, and 

ireless providers (e.g., Verizon, 2017 ) often impose a daily limit 

n the bandwidth. Therefore, the amount of data that can be sam- 

led from a neighborhood is limited by the daily transmission 

andwidth imposed, which poses a challenge for accurate load 

orecasting. Given the prohibitive cost to increase the bandwidth 

 Balachandran, Olsen, & Pedersen, 2014; Rahman & Mto, 2013 ), it is 

mpractical to relax the bandwidth constraint through investment 

n practice. A question naturally arises in this context: how to al- 

ocate the limited bandwidth to smart meters in a neighborhood to 

btain accurate load forecasts overall? The most commonly adopted 

ndustry practice is to sample evenly from each customer subject 

o the bandwidth constraint ( Balachandran et al., 2014 ). As a sam- 

ling policy, however, it is clearly suboptimal: customers often ex- 

ibit distinct load behaviors; a uniform sampling policy can result 

n redundant data being collected from customers with stable load 

ehaviors, while insufficient data being obtained from customers 

ith highly volatile load behaviors. On the other hand, using a 

arefully designed sampling-rate control policy based on real-time 

oad behaviors can potentially improve data effectiveness and en- 

ance the overall load forecastability. 

Recently, researchers have shown an increased interest in adap- 

ive sampling-rate designs for smart meters, but the literature is 

till relatively scarce. Among the first on this topic, Xie et al. 

2018) proposed a state-of-the-art, user-behavior-based sampling- 

ate control algorithm to facilitate load forecasting under a band- 

idth constraint. Their sampling policy is obtained via solving an 

nteger program established for a fixed decision horizon and is 

hown to outperform the even sampling policy. However, as the 

ampling policy can only be updated periodically with no feedback 

n the predictive performance being incorporated, it may fail to 

ccommodate highly volatile load behaviors responsively and re- 

ult in low load forecastability. 

To overcome the aforementioned limitations, one can resort to 

ethods capable of supporting online decision making based on 

ata received in real time. One viable choice is online machine 

earning techniques (e.g., follow-the-leader algorithm, FTL). These 

ethods excel in predictive tasks by learning from continuous 

treams of data that arrive sequentially. Nevertheless, the goal of 

nline learning methods is to update the corresponding policy pa- 

ameters such that the regret (e.g., the cumulative predictive er- 

or) in hindsight can be minimized; and the objective functions 

ypically must possess certain properties (e.g., convexity) for the 
b

2 
ethods to perform well ( Hoi, Sahoo, Lu, & Zhao, 2018 ). Markov 

ecision process (MDP), on the other hand, is a rigorous approach 

o formulate an online decision-making problem whose solution 

rovides an optimal policy that maximizes the expected cumula- 

ive future reward (or equivalently, minimizes the expected cumu- 

ative future regret), while taking into account the outcomes of all 

ossible future behaviors. Solving an MDP in many cases, however, 

an be challenging (e.g., when the transition probabilities are un- 

nown). Reinforcement learning (RL) provides a state-of-the-art so- 

ution technique to approximate an optimal policy in these cases 

nd has demonstrated robust performance in practice ( Sutton & 

arto, 2018 ). 

In this work, we propose to formulate the bandwidth- 

onstrained sampling-rate control problem as an MDP and propose 

n RL-based algorithm to solve the MDP formulated for an optimal 

ampling-rate control policy. The MDP is set up to directly maxi- 

ize the expected future overall load forecastability. The RL-based 

lgorithm can be implemented online to update the sampling-rate 

ontrol policy adaptively through real-time data interactions. The 

ajor contributions of this work include: (1) a novel MDP formu- 

ation of the sampling-rate control problem with relatively low ac- 

ion and state space dimensionalities; (2) an RL-based algorithm 

ith provable performance guarantees to solve the MDP formu- 

ated for an optimal sampling-rate control policy; and (3) online 

nd offline versions of the RL-based algorithm capable of meeting 

he needs of different types of customers in the power system. 

The rest of the paper is organized as follows. Section 2 re- 

iews a state-of-the-art approach to solving the sampling-rate con- 

rol problem and reveals the necessity of seeking a new solution. 

ection 3 presents the formulation of the sampling-rate control 

roblem as an MDP. Section 4 elaborates on the proposed RL-based 

lgorithm for solving the MDP formulated. Section 5 provides nu- 

erical experiments on testing the performance of the proposed 

L-based sampling algorithm. Finally, Section 6 concludes this 

ork with a summary of its major contributions and a discussion 

f avenues for future research. 

. Review of an integer program-based approach to the 

ampling-rate control problem 

The need of an innovation to effectively control smart-meter 

ampling rates under the bandwidth constraint poses both a chal- 

enge and an opportunity for improving the performance of smart 

rids as mentioned in Section 1 . 

Xie et al. (2018) were among the first works to propose a 

mart-meter sampling-rate control policy based on customers’ load 

ehaviors. Their sampling policy is obtained by solving an inte- 
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er program (IP) formulated via a heuristic approach. Specifically, 

nstead of directly maximizing the overall load forecasting accu- 

acy, the IP intends to maximize the weighted total training sam- 

le size for all customers subject to the bandwidth constraint. Cus- 

omers who exhibit highly variable load behaviors are assigned 

igher weights and those with stable load behaviors are assigned 

ower weights. The intuition behind this objective function is that 

he larger training sample size, the higher resulting predictive ac- 

uracy. The resulting optimal sampling policy hence adjusts sam- 

ling rates for different customers based on their individual load 

ariabilities. 

The IP formulation given by Xie et al. (2018) , however, suffers 

rom two drawbacks. First, the premise that the objective func- 

ion relies on is not always true. It is known that some training 

ata points may negatively impact the training process of a pre- 

iction model, resulting in poor predictive performance ( Fan, Tian, 

in, Bian, & Liu, 2017 ). Hence, it can be more effective if an objec-

ive function can be designed to directly reflect the predictive ac- 

uracy achieved on the most recent forecasting periods, serving as 

he basis for the projection into the next time period. Second, and 

ore importantly, the sampling policy resulting from solving the 

P formulated is not responsive to changing load patterns, poten- 

ially undermining the predictive accuracy achieved. Specifically, to 

ormulate their IP, a specific decision horizon must be determined 

rst; the decision horizon should be no less than one day due to 

he daily bandwidth constraint. The IP is updated and solved once 

or each decision horizon, and the resulting policy is a determin- 

stic one, with the sampling decisions being held fixed throughout 

he decision horizon. We refer the interested reader to Xie et al. 

2018) for details. In Section 5 , we will use the IP-based algorithm 

s one benchmark for evaluating the proposed approach which is 

o be detailed in the next two sections. 

. A Markov decision process-based approach to the 

ampling-rate control problem 

In this section we propose a Markov decision process (MDP)- 

ased approach to the sampling-rate control problem. We first 

resent the prediction model adopted for load forecasting in 

ection 3.1 and then elaborate on the MDP formulation in 

ection 3.2 . Without loss of generality, we consider hourly predic- 

ion for each customer throughout this work. Hence, each stage of 

he MDP corresponds to each hour in the real world and a decision 

n whether to sample from each customer must be made at every 

tage. Other forecast resolutions can be easily adopted without any 

ubstantial modification to the MDP formulation. 

.1. The two-stage prediction approach 

To facilitate comparisons with the benchmarking sampling-rate 

ontrol policy proposed by Xie et al. (2018) , in this paper we adopt

he same input features and prediction model structure as in Xie 

t al. (2018) . This prediction model falls in the category of two- 

tage load forecasting models, which typically give predictive per- 

ormance superior to one-stage models ( Bozic, Stojanovic, Stajic, & 

asic, 2013 ). Specifically, assuming the smart grid comprises N cus- 

omers, the input vector is denoted by 

 t = 

(
θ t 
i, 1 , θ

t 
i, 2 , . . . , θ

t 
i,i −1 , θ

t 
i,i +1 , θ

t 
i,i +2 , . . . , θ

t 
i,N−1 , θ

t 
i,N 

)� 
, (1) 

here θ t 
i, j 

is the difference in phase angles of customers i and j

t hour t . Here, phase angle refers to the lag between the times 

hen a given customer’s voltage reaches the peak level and when 

hat happens to the reference customer in an alternating current 

ystem. Phase angles are typically expressed in degrees and are 

roportional to the time lags which they represent ( Grainger & 
3 
tevenson, 1994 ). Load predictions for the next hour are made via 

he following two-stage approach. The first stage aims at predicting 

he hour-ahead input vector, which contains the values of all pair- 

ise phase angle differences in the next hour. The second stage 

erforms hour-ahead load prediction for a target customer using 

he predicted input vector obtained by the first stage. 

To serve the purpose of first-stage input prediction, we adopt 

 particular type of recurrent neural network, i.e., gated recurrent 

nit (GRU) network, which can achieve a higher predictive accu- 

acy for time series forecasting as compared to many other ma- 

hine learning methods ( Cho et al., 2014 ). GRU has a mechanism 

f memorizing important temporal patterns while ignoring those 

nimportant ones seen in the past and has been successfully ap- 

lied in load forecasting ( Zheng et al., 2018 ). For the second-stage 

oad forecasting, we adopt a Gaussian process (GP) model. GP mod- 

ls have favorable properties such as being highly flexible to cap- 

ure various features exhibited by the data at hand and capable of 

uantifying predictive uncertainty ( Rasmussen & Williams, 2006 ). 

We note that other input variables that may aid in load fore- 

asting (e.g., weather conditions and day types) can be easily incor- 

orated into the input vector x t and used by the aforementioned 

rediction approach. Moreover, the two-stage prediction approach 

an easily incorporate other suitable models as the first-stage input 

rediction model and the second-stage load prediction model. 

.2. The Markov decision process formulation 

In this section, we establish the sampling-rate control problem 

s an MDP, whose solution gives an optimal sampling policy under 

his formulation. 

An MDP is a model for sequential decision making when out- 

omes are uncertain; it typically consists of decision epochs (or 

tages), states, actions, rewards, and transition probabilities. Choos- 

ng an action in a state generates a reward and determines the 

tate at the next stage through a transition probability function 

which may be known or unknown). Policies or strategies are pre- 

criptions of which action to choose under any eventuality at ev- 

ry future stage. Through solving the MDP formulated, one seeks 

n optimal policy for choosing an action at each stage so that the 

otal reward accumulated over all stages is maximized ( Puterman, 

994 ). 

In our problem setting, the objective function of the MDP is 

ax π∈ �
E π

(∑ ∞ 

t=0 γ
t r t (s t , a t ) 

)
, where r t (s t , a t ) denotes the reward that 

eflects the predictive accuracy achieved when taking action a t 
iven state s t at stage t, � denotes the set of policies π ’s that 

overn actions to take, and γ ∈ (0 , 1) denotes the discount factor 

or future rewards. We elaborate on each component of the MDP 

ext. 

.2.1. Action 

At each hour of operation, we must decide which customers 

o sample phase angles from. Since the reference customer always 

as a phase angle of zero, there is no need to sample from her. 

 natural choice to model the action at stage t of the MDP, de- 

oted by a t , as an (N − 1) -dimensional vector of binary digits. Each 

igit corresponds to a distinct customer, with “1” denoting the de- 

ision to sample from the corresponding customer at hour t and 

0” otherwise. In this case the dimensionality of the action space 

s N − 1 and the total number of possible actions at each stage is 

 
N−1 , which is an extremely large action space to explore even for 

 medium-sized distribution grid. 

To avoid a potentially large action space to explore, we adopt 

 novel approach for modeling action at each stage, which is in- 

pired by the mini-batch idea in Fan et al. (2017) . Specifically, we 

reak stage t of the MDP into N − 1 substages. At each substage, 
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e only consider the action to take for customer i, denoted by 

 
i 
t , for i = 1 , 2 , . . . , N − 1 . The dimensionality of the action space at

ach substage hence reduces to one, with only two possible actions 

o consider. 

.2.2. State 

We take into account the following two aspects when defin- 

ng the state of the MDP. First and foremost, as a result of the 

wo-stage prediction approach adopted ( Section 3.1 ), the load fore- 

astability ultimately achieved depends heavily on the first-stage 

our-ahead input predictive accuracy, which should be captured 

n the state. In particular, the state at each stage should be able 

o record the input predictive accuracy achieved for each indi- 

idual customer, in the same vein as actions being defined at 

ubstages corresponding to individual customers ( Section 3.2.1 ). 

econd, the state should keep track of the remaining budget or 

andwidth left for allocation. Therefore, we define the state for 

ustomer i (i = 1 , 2 , . . . , N − 1) at stage t as follows: 

 
i 
t = 

⎛ 

⎝ ̄e i t , ̄e 
i 
t 

( 

N−1 ∑ 

� =1 

ē � t 

) −1 

, c t ( C ) 
−1 

⎞ 

⎠ , (2) 

here c t is the sampling budget remaining at stage t, C is the to- 

al daily sampling budget determined by the daily bandwidth con- 

traint, and ē i t denotes the average absolute percentage error for 

redicting customer i ’s phase angle up to stage t − 1 , which is de-

ned as 

¯ i t = 

1 

t 

t ∑ 

h =1 

∣∣∣∣∣
ˆ θ h −1 
i 

− θ h −1 
i 

θ h −1 
i 

∣∣∣∣∣, i = 1 , 2 , . . . , N − 1 . (3) 

ere, θh 
i 
denotes the phase angle of customer i observed at hour h 

nd ˆ θh 
i 

denotes its estimate given by the first-stage input predic- 

ion model (recall Section 3.1 ). The three components of s i t respec- 

ively account for the input predictive error incurred for customer 

, the ratio of customer i ’s input predictive error to the total input 

redictive errors incurred for all customers and the percentage of 

he remaining sampling budget. 

At stage t, after taking actions a i t ’s, we need to obtain states 

 
i 
t+1 

’s for stage t + 1 . Some difficulty may arise in calculating the

omponent ē i 
t+1 

in s i 
t+1 

via (3) , if some θ t 
i 
is not observed due to 

he action a i t taken. To proceed, we can make up the missing phase 

ngle observation by using the first-stage input prediction. Specifi- 

ally, denote the phase angle vector of the customers at stage t (ex- 

luding the reference customer) by �t = (θ t 
1 
, θ t 

2 
, . . . , θ t 

N−1 
) � and its 

stimate by ˆ �t = ( ̂  θ t 
1 
, ˆ θ t 

2 
, . . . , ˆ θ t 

N−1 
) � . For each element in �t , we

eplace θ t 
i 
with ˆ θ t 

i 
if the former is not observed; denote the result- 

ng vector by �∗
t . Upon updating the first-stage input prediction 

odel with �∗
t , we predict �t again and denote the prediction by 

ˆ ˆ t = ( 
ˆ ˆ θ t 
1 
, 
ˆ ˆ θ t 
2 
, . . . , 

ˆ ˆ θ t 
N−1 

) � . Then ē i 
t+1 

can be obtained by replacing ˆ θ t 
i 

nd θ t 
i 
with 

ˆ ˆ θ t 
i 
and ˆ θ t 

i 
in (3) , respectively. 

.2.3. Reward 

As the goal of the MDP is to maximize the overall load fore- 

astability, we define the reward as the load predictive accuracy 

chieved for all customers. At stage t, we make a prediction for 

t+1 using �
∗
t and denote it by ˆ �t+1 . Then, we obtain the in- 

ut vector x t+1 based on ˆ �t+1 (recall (1) ); x t+1 is subsequently 

sed as the input to the second-stage prediction model for pre- 

icting each customer’s load at stage t + 1 . In particular, a separate

econd-stage load prediction model G i is constructed for perform- 

ng customer i ’s load prediction. The reward at stage t of the MDP 
4 
s defined as 

 t = 1 −

N ∑ 

i =1 

( ̂  P t+1 
i 

− P t+1 
i 

) 2 

N ∑ 

i =1 

(P t+1 
i 

− P̄ t+1 ) 2 
, (4) 

here ˆ P t+1 
i 

and P t+1 
i 

respectively denote the load prediction ob- 

ained and the actual load observed for customer i at hour t + 1 ;

nd P̄ t+1 = N 
−1 

∑ N 
i =1 P 

t+1 
i 

. We see from (4) that the maximum pos- 

ible reward at each stage is one; and there is a possibility of get- 

ing a negative reward. In accordance with the definitions of action 

nd state of the MDP, we assign a unique reward r i t to action a 
i 
t at

ubstage i (i = 1 , 2 , . . . , N − 1) as follows: 

 
i 
t = 

r t 

N − 2 

⎛ 

⎝ 1 − ē i t 

( 

N−1 ∑ 

� =1 

ē � t 

) −1 
⎞ 

⎠ , (5) 

here ē i t is defined in (3) . The definition in (5) ensures that the 

ctions corresponding to those customers with lower phase angle 

stimation errors earn higher rewards and vice versa. Note from 

4) and (5) that the sum of the rewards earned at all substages (i.e., 

orresponding to all customers) equals the total reward earned at 

tage t, i.e., 
∑ N−1 

i =1 r 
i 
t = r t . 

. A reinforcement learning-based solution to the MDP 

ormulated 

One can solve an MDP for an optimal policy via methods 

uch as dynamic programming (DP) and reinforcement learning 

RL). While DP works well for solving MDPs with known transi- 

ion probabilities, RL is more effective when transition probabili- 

ies are unknown, as is the case in our problem setting ( Sutton 

 Barto, 2018 ). In this section, we first briefly introduce a model- 

ree policy-based RL approach, the enhanced REINFORCE method, 

hich serves as the basis of our proposed algorithm to solve the 

DP formulated in Section 3 . Then, we elaborate on the proposed 

lgorithm in Section 4.2 . 

.1. A policy gradient algorithm—REINFORCE 

There has been an increasing interest of the power systems 

ommunity in using RL to solve real-world problems, such as de- 

and response, load control, and electric vehicle fleet charging, to 

ame a few ( Claessens, Vrancx, & Ruelens, 2018; Lu, Hong, & Yu, 

019; Ruelens et al., 2017 ). 

RL algorithms typically fall into two categories: value based and 

olicy gradient algorithms; and the latter type tends to converge 

aster than the former type ( Sutton & Barto, 2018 ). Different from 

he algorithms that seek an optimal policy based on value func- 

ions (e.g., Q-learning, SARSA), policy gradient algorithms gradu- 

lly improve the policy by using the gradient of policy parame- 

ers. Specifically, the policy is described by a parameterized ma- 

hine learning model, such as logistic regression or neural network. 

uch a model takes the state as the input and produces a proba- 

ility of taking each possible action as the output. Let πβ denote 

he parameterized policy model with β being the d-dimensional 

arameter vector, r t as the reward, s t as the state, and a t as the

ction at stage t . A policy gradient algorithm aims at maximizing 

he expected total reward defined as 

( β) = E πβ

( 

∞ ∑ 

t=0 

γ t r t (s t , a t ) 

) 

= 

∑ 

τ

πβ(τ ) ̃ r (τ ) , 

here γ ∈ (0 , 1) denotes the discount factor for future rewards, τ
s a trajectory that contains a sequence of state-action pairs, i.e., 
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s 1 , a 1 , s 2 , a 2 , . . . ) , πβ(τ ) denotes the probability of producing τ
iven the policy parameter vector β, and ˜ r (τ ) denotes the total 

iscounted reward over all decision horizons under trajectory τ . 
eeking an optimal policy is equivalent to finding an optimal pa- 

ameter vector β
∗
that solves max β∈ R d J( β) . 

Policy gradient algorithms, fittingly, use gradient-based meth- 

ds to find β
∗
. Denote ∇J( β) as the gradient of J( β) with respect

o β. Under standard assumptions on the regularity of the MDP 

roblem and the smoothness of the policy model πβ, one can 

rite ∇J( β) in the following form according to the policy gradi- 

nt theorem ( Sutton, McAllester, Singh, & Mansour, 20 0 0 ): 

J( β) = (1 − γ ) −1 
E (s,a ) ∼ρβ(·, ·) 

[∇ log πβ(a | s ) Q πβ
(s, a ) 

]
, 

here ρβ(s, a ) = ρπβ
(s ) πβ(a | s ) denotes the discounted state-

ction occupancy measure, ρπβ
(s ) = (1 − γ ) 

∑ ∞ 

t=0 γ
t p(s t = 

 | s 0 , πβ) is a probability distribution over the state space S, 

nd p(s t = s | s 0 , πβ) denotes the probability that the state at time

equals s given the initial state s 0 and the policy πβ . Given 

n initial state-action pair (s, a ) , the value of the Q -function 

ives the expected accumulation of discounted rewards, i.e., 

 πβ
(s, a ) = E πβ

( 
∑ ∞ 

t=0 γ
t r t (s t , a t ) | s 0 = s, a 0 = a ) . 

REINFORCE is a classical policy gradient algorithm ( Sutton & 

arto, 2018 ), which updates the policy parameter vector β via a 

tochastic gradient ascent approach. The agent learns the policy by 

nteracting with the environment for a large number of episodes, 

ach consisting of many stages. In each episode, the agent starts 

ith some state s 0 , takes actions according to the policy param- 

terized by πβ, and observes the reward earned at each stage. At 

he end of each episode l, β is updated based on the trajectory of 

tates, actions, and rewards earned: 

l+1 = βl + αl 
ˆ ∇ J( βl ) , (6) 

here { αl ∈ (0 , 1) } denotes the sequence of step sizes and ˆ ∇ J( β)

enotes an estimate of ∇J( β) . One common drawback of classi- 

al REINFORCE algorithms ( Williams, 1992 ) is that their resulting 
ˆ 
 J( β) can be biased, rendering a lack of performance guarantees. 

In this work, we adopt an enhanced REINFORCE method which 

s inspired by Zhang, Koppel, Zhu, and Basar (2020) . The method 

pdates the policy parameter vector via (6) using the following 

radient estimate: 

ˆ 
 J( β) = 

1 

1 − γ
ˆ Q πβ

(s T , a T ) ∇ log πβ(a T | s T ) , (7) 

here T is geometrically distributed with parameter 1 − γ , i.e., 

 ∼ Geo(1 − γ ) , and ˆ Q πβ
(s, a ) denotes the estimated Q-function 

alue given a state-action pair (s, a ) , specifically, 

ˆ 
 πβ

(s, a ) = 

T ′ ∑ 

� =0 

γ
� 
2 r t (s � , a � ) 

∣∣s 0 = s, a 0 = a, (8) 

ith T ′ ∼ Geo(1 − γ
1 
2 ) and T ′ being independent of T . 

The enhanced REINFORCE method has desirable theoretical 

roperties such as producing an unbiased estimate of ∇J( β) and 

he resulting βl converging to a stationary point of J( β) almost 

urely. Therefore, convergence to an optimal policy parameter vec- 

or β
∗
can be guaranteed. For the sake of brevity, we refer the in- 

erested reader to Appendix A for more details. 

.2. The proposed RL-based algorithm 

In this section, we provide an RL-based algorithm in light of 

he enhanced REINFORCE method to solve the MDP formulated in 

ection 3 for an optimal sampling-rate control policy. 
5 
With a policy model specified, seeking an optimal policy re- 

uces to seeking an optimal parameter vector β
∗
based on some 

raining dataset. In this work, we model the policy πβ(a | s ) us-
ng a multilayer perceptron (MLP), which is a feedforward shal- 

ow neural network (NN). It is more computationally efficient than 

eep NNs thanks to its small scale and has greater flexibility in 

odeling nonlinearity as compared to non-NN models. Hence, MLP 

trikes a good balance between computational efficiency and pre- 

ictive accuracy for problems with low input and output dimen- 

ionalities ( Hastie, Tibshirani, & Friedman, 2009 ). Since the dimen- 

ionalities of the space and action spaces of the formulated MDP 

re not high, an MLP suffices for modeling the sampling policy. 

t substage i within stage t, the input to the MLP is the state s i t 
nd the output is the probability of taking each possible action 

 
i 
t ∈ { 0 , 1 } , i = 1 , 2 , . . . , N − 1 , t = 1 , 2 , . . . . 

Below we provide two versions of the algorithm, the offline and 

nline versions, respectively suitable when the training dataset is 

tatic (i.e., data stay fixed after being recorded) and dynamic (i.e., 

ata are continually updated). 

.2.1. The offline version 

With a given dataset D that contains observations from N cus- 

omers at T consecutive hours, the offline version of the proposed 

L-based algorithm (i.e., Algorithm 1 provided in Appendix B) can 

e adopted to obtain an optimal sampling-rate control policy. Let 

 denote the total number of training episodes. We focus on ex- 

laining the key steps in Algorithm next. Steps 1 and 2 of Algo- 

ithm 1 respectively initialize the policy model πβ and train sep- 

rate second-stage load prediction GP models for individual cus- 

omers. At the beginning of each training episode, Step 4 calculates 

he initial state for each customer. Step 5 samples T and T ′ inde- 
endently from respective geometric distributions for the current 

raining episode. Steps 6 to 24 generate actions based on observed 

tates and calculate the rewards by taking corresponding actions. 

y the end of the current episode (Steps 25 to 28), the policy pa- 

ameter vector β is updated based on the states, actions, and re- 

ards obtained at all stages within the episode via (6) . At the end

f the L th episode (i.e., the last training episode), the policy pa- 

ameter vector β is expected to converge to an optimal parameter 

ector β
∗
under the MDP formulated in Section 3.2 . The resulting 

olicy model πβ∗ (a | s ) can be used for sampling-rate control in the 

uture. 

.2.2. The online version 

The online version of the algorithm intends to continually up- 

ate the sampling-rate control policy based on streaming data. 

hanks to the sequential nature of the policy gradient updat- 

ng scheme, we can update the policy parameter vector β on an 

ourly basis if implemented online instead of at the end of each 

pisode. Specifically, at each hour t, one can update β via β ← 

+ α(1 − γ ) −1 r i t · ∇ log πβ(a i t | s i t ) for i = 1 , 2 , . . . , N − 1 with a step

ize α ∈ (0 , 1) . Fig. 2 shows a schematic diagram of the online ver-

ion of the proposed algorithm. Specifically, an initial policy is first 

btained upon training offline over a total of L episodes on a given 

ataset D via Algorithm 1. Then using the current policy at hour t, 

ampling decisions and load forecasts can be made for hour t + 1 . 

s time proceeds to hour t + 1 , the rewards at hour t can be cal-

ulated as the data at hour t + 1 stream in. The policy can be sub-

equently updated using the newly obtained rewards, states, and 

ctions at hour t . The updated policy can be further applied to de- 

ermine the actions to take at hour t + 1 . This online version fully

nsures that the sampling-rate control policy can be updated and 

arried out continually, enabling the sampling policy to accommo- 

ate highly dynamic customers’ load behaviors. 
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Fig. 2. A schematic diagram for the online version of the RL-based sampling algorithm. 
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. Numerical results 

In this section, we conduct numerical evaluations of the pro- 

osed RL-based algorithm on various test cases. 

.1. Experiment setup 

Data generation. The proposed algorithm is evaluated on four 

tandard IEEE test cases, i.e., 8-bus, 14-bus, 24-bus, and 123-bus 

est cases, respectively built on real-world data sources. In each 

est case, a bus refers to an individual customer whose load needs 

o be predicted over time. To simulate highly uncertain load be- 

aviors caused by DERs in real-life power systems, historical load 

rofiles from PJM (2014) in year 2014 and New York Independent 

ystem Operator (2015) in year 2015 are used for simulations. Tak- 

ng into account the uncertain renewable generation behaviors of 

ERs, we first pre-process the simulated hourly PV generation data 

ver a year drawn from Renewables.ninja (2017) , and then sub- 

ract the pre-processed data from the load data of each customer. 

o obtain phase angle values, we perform power flow analysis to 

enerate power states hourly over a year using the MATLAB Power 

ystem Simulation Package (MATPOWER, Zimmerman & Murillo- 

anchez, 2010 ) based on the processed load data. 

Bandwidth constraint. We assume that without the daily band- 

idth constraint, originally it was possible to sample the phase an- 

le θ from all customers every hour; that is, the total number of 

’s (excluding a given reference customer) that can be sampled ev- 

ry day was 24(N − 1) , where N denotes the total number of cus- 

omers in a given test case. Due to the bandwidth constraint im- 

osed, however, the daily total bandwidth is reduced by 1/3; that 

s, the total number of θ ’s that can be sampled every day becomes 

6(N − 1) . 

Algorithm configuration. In each test case, upon obtaining one 

ear’s load and phase angle data for each test case, the first 30 

ays’ data are used as the static dataset D to train the sampling- 

ate control policy offline via Algorithm 1. Each training episode 

f the proposed RL-based algorithm has a maximum of T = 720 

tages (or hours). The discount factor γ is set to 0.95. The step size 

s set as αl = 1 /l for l ≥ 1 . The total number of training episodes L

s set to 500, to ensure the convergence of the algorithm. Upon 

ompleting the offline training through L episodes, the resulting 
6 
olicy is applied to a test set that comprises the remaining 335 

ays’ data, for which the online version of the algorithm is imple- 

ented for controlling sampling rates and performing hourly load 

rediction. Regarding the GRU model used for the first-stage input 

rediction, the number of hidden units in the GRU cell is set to 

, and the tanh function is selected as the activation function. Re- 

arding the policy model MLP describing πβ(a | s ) , the number of 

idden layers and the number of hidden units are set to 1 and 10, 

espectively. All the aforementioned parameters are chosen using a 

ime series cross-validation procedure. Specifically, a set of candi- 

ate values for each aforementioned parameter (i.e., the number of 

idden units in the GRU cell, the number of hidden layers and the 

umber of hidden units in the MLP model) is adopted to perform 

redictions on a validation set for each test case via the rolling- 

rigin-update evaluation of Bergmeir and Benítez (2012) . The val- 

dation set for each test case contains the first 30 days’ data. The 

easure of predictive error, MAPE, as defined in (9) , is calculated 

cross all hours in the validation set for each test case using each 

ombination of parameter values. Finally, the combination giving 

he lowest average MAPE across all test cases is adopted. 

Measure of predictive accuracy. To evaluate the overall predic- 

ive accuracy, we consider two performance measures, respectively, 

he mean absolute percentage error (MAPE) and the mean abso- 

ute scaled error (MASE), achieved by hourly predictions for all 

ustomers in each test dataset. The MAPE and MASE at each hour 

 ∈ { 1 , 2 , . . . , N 
∗} in a test dataset are respectively defined as 

APE = 

1 

N 

N ∑ 

i =1 

∣∣∣∣ ˆ P t 
i 

− P t 
i 

P t 
i 

∣∣∣∣, MASE = 

1 
N 

N ∑ 

i =1 

∣∣ ˆ P t 
i 

− P t 
i 

∣∣
1 

(N ∗−24) N 

N ∗∑ 

h =25 

N ∑ 

i =1 

∣∣P h 
i 

− P h −24 
i 

∣∣ , (9) 

here P t 
i 

denotes the load of customer i at hour t actually ob- 

erved and ˆ P t 
i 
is the predicted value, N denotes the total number 

f customers in a given test case, and N 
∗ denotes the total number 

f hours to be predicted in each test dataset. As 335 days’ data are 

sed for testing, N 
∗ equals 8040. 

Benchmarking algorithms. We consider three benchmarking al- 

orithms in comparison with the proposed RL-based algorithm 

abbreviated to “RL”): (1) the commonly adopted even sampling 

ractice as reviewed in Section 1 (abbreviated to “CP”), (2) the 
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Fig. 3. Plots of the total reward earned versus the training episode index (in logarithmic scale) through offline training in each test case. 

Fig. 4. Boxplots of MAPEs obtained by CP, IP, FTL, and RL in the four test cases. 

Table 1 

Summary of the medians of MAPEs. Entries denoted with ∗ indicate that the corresponding values are significantly higher than that of RL in the same column at a confidence 

level of 95% upon applying the Bonferroni correction for multiple comparisons. 

Weekdays Weekends 

8-bus 14-bus 24-bus 123-bus 8-bus 14-bus 24-bus 123-bus 

CP 0.325 ∗ 0.345 ∗ 0.345 ∗ 0.337 ∗ 0.343 ∗ 0.378 ∗ 0.334 ∗ 0.365 ∗

IP 0.251 ∗ 0.301 ∗ 0.306 ∗ 0.293 ∗ 0.298 ∗ 0.301 ∗ 0.307 ∗ 0.326 ∗

FTL 0.268 ∗ 0.287 ∗ 0.297 ∗ 0.280 ∗ 0.278 ∗ 0.286 ∗ 0.294 ∗ 0.314 ∗

RL 0.208 0.230 0.258 0.241 0.235 0.216 0.272 0.280 

7 
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Table 2 

Summary of the medians of MASEs. Entries denoted with ∗ indicate that the corresponding values are significantly higher than that of RL in the same column at a confidence 

level of 95% upon applying the Bonferroni correction for multiple comparisons. 

Weekdays Weekends 

8-bus 14-bus 24-bus 123-bus 8-bus 14-bus 24-bus 123-bus 

CP 0.322 ∗ 0.343 ∗ 0.349 ∗ 0.346 ∗ 0.424 ∗ 0.418 ∗ 0.403 ∗ 0.436 ∗

IP 0.251 ∗ 0.318 ∗ 0.319 ∗ 0.303 ∗ 0.365 ∗ 0.345 ∗ 0.358 ∗ 0.337 ∗

FTL 0.289 ∗ 0.307 ∗ 0.301 ∗ 0.297 ∗ 0.342 ∗ 0.332 ∗ 0.359 ∗ 0.345 ∗

RL 0.213 0.231 0.253 0.241 0.291 0.249 0.311 0.299 

Fig. 5. Predictions for a representative customer with stable load behaviors on two consecutive days in each of the four test cases. 
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P-based algorithm as reviewed in Section 2 (abbreviated to “IP”) 

nd (3) the follow-the-leader algorithm (abbreviated to “FTL”), 

 state-of-the-art online machine learning algorithm. For imple- 

enting IP, a 48-hour decision horizon is adopted following the 

uggestion of Xie et al. (2018) . FTL can update its policy pa- 

ameter vector β on an hourly basis according to an objec- 

ive function of minimizing the prediction error accumulated so 

ar. For the reader’s convenience, we provide schematic diagrams 

hat illustrate the implementations of IP and FTL respectively in 

igs. C.1 and C.2 in Appendix C. To ensure the fairness of compar- 

sons, the same load forecasting model (i.e., GRU combined with 

P) is applied in conjunction with all four sampling-rate control 

lgorithms. 
8 
.2. Summary of results 

On convergence. Fig. 3 shows that the offline training via Algo- 

ithm 1 indeed achieves fast and reliable convergence in all four 

est cases. Recall that the maximum possible reward earned at 

ach stage is 1 and the maximum possible total reward in one 

pisode given the fixed training dataset D is 720. In all test cases, 

e observe from Fig. 3 that the corresponding total reward earned 

ncreases rapidly with the number of training episodes performed, 

nd the reward converges within the first 50 episodes to a value 

ear 700. This indicates that RL can successfully solve the MDP 

ormulated for the sampling-rate control problem and obtain an 

pproximated optimal sampling policy numerically. On predictive 
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Fig. 6. Predictions for a representative customer with volatile load behaviors on two consecutive days in each of the four test cases. 
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erformance. Fig. 4 summarizes the MAPEs corresponding to 8040 

ourly load predictions obtained by implementing CP, IP, FTL, and 

L in each of the four test cases. As customers typically exhibit 

istinct load behaviors on weekdays and weekends, to control for 

he effects of type of day on the performance of all sampling al- 

orithms under comparison, we present the results obtained for 

eekdays and weekends separately. From Fig. 4 , we see that, for 

ach algorithm considered, there tend to be more outliers in the 

APEs for the weekends than for weekdays; indeed, customers’ 

oad behaviors are typically more volatile and hence more chal- 

enging to predict on weekends as compared to weekdays. More 

mportantly, Fig. 4 shows that RL dominates the three benchmark- 

ng algorithms by producing the lowest MAPEs in all four test 

ases. IP and FTL’s performance is comparable while FTL has a 

light edge over IP; and CP ranks last overall. The observation 

bove holds for comparisons with respect to both weekdays and 

eekends. We further note that the benefit of using an adaptive 

ampling algorithm (i.e., IP, FTL, and RL) diminishes slightly as the 

otal number of customers increases; this is because as more and 

ore customers are considered for sharing the given bandwidth, 

he data deficiency issue becomes more challenging to address. 

evertheless, the performance of RL is still robust in this case. Last 

ut not least, similar observations are made from the MASEs ob- 

ained. To economize on space, we refer the reader to Fig. C.3 in 

ppendix C for details. 
9 
Table 1 (respectively Table 2 ) summarizes the medians of the 

040 MAPEs (resp. MASEs) obtained by each algorithm in all test 

ases, which further confirms the superiority of RL as observed in 

ig. 4 (resp. Fig. C.3). The sign test ( Diebold & Mariano, 1995 ) con-

ucted shows that the medians of the MAPEs (resp. MASEs) of CP, 

P, and FTL are significantly higher than that of RL at a confidence 

evel of 95% . 

On responsiveness. Fig. 5 (respectively Fig. 6 ) compares load pre- 

ictions on two consecutive days for a representative customer 

ith stable load behaviors (resp. volatile load behaviors) in each 

f the four test cases. We observe from Fig. 5 for customers with 

table load behaviors that, in the 123-bus test case, on the first 

ay, IP, FTL, and RL can successfully capture the peak level in the 

rue load pattern (between hour 18 and hour 24). On the second 

ay, IP and FTL anticipated a peak level (between hour 42 and 

our 44) close to that observed on the first day (between hour 22 

nd hour 24). However, the true load pattern changed and a peak 

evel similar to the first day was not reached. We note that IP and 

TL missed the true load pattern of the target customer, whereas 

L was able to respond more promptly and captured this change. 

imilar observations regarding the relative performance of IP, FTL, 

nd RL can be made regarding the 8-bus, 14-bus, and 24-bus test 

ases shown in Fig. 5 as well. A comparison of Fig. 6 for customers

ith volatile load behaviors with Fig. 5 manifests that the true load 

atterns shown in Fig. 6 indeed exhibit more rapid changes and 
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igher variability. Nevertheless, earlier observations regarding the 

elative performance of IP, FTL, and RL still hold; and RL dominates 

P and FTL by capturing the true load patterns more promptly and 

ccurately. 

We close this section with some reflections on the dominance 

f the proposed RL-based sampling algorithm. First and foremost, 

n terms of the objective function, IP aims at maximizing the train- 

ng sample size that can be obtained for each target customer un- 

er the daily bandwidth constraint. FTL intends to minimize the 

umulative predictive error in hindsight. In contrast, RL solves an 

DP formulated to directly maximize the expected cumulative fu- 

ure predictive accuracy. Second, IP produces a static sampling pol- 

cy over a prescribed decision horizon, and an update of its sam- 

ling policy must be made at the end of a decision horizon. FTL 

nd RL can continually update their sampling policies through real- 

ime data interactions; however, RL outperforms FTL thanks to its 

apability to optimize with the outcomes of all possible future be- 

aviors taken into account. Therefore, RL is arguably most suitable 

or implementation in real-life smart grids as it can learn to ac- 

ommodate volatile load behaviors adaptively and promptly. 

. Conclusions and future research 

In this paper, we identified opportunities and challenges 

rought by controlling smart meter sampling rates under some 

andwidth constraint for enhancing the overall load forecastability 

n smart grids. We formulated the sampling-rate control problem 

s an MDP and developed a novel RL-based algorithm to solve for 

n optimal sampling-rate control policy. The proposed algorithm 

an be implemented both offline and online, with the latter capa- 

le of performing real-time data interaction with smart grids. Nu- 

erical experiments show that the proposed RL-based algorithm 

an accommodate volatile load behaviors more promptly and de- 

iver superior predictive performance. As one of the first studies 

edicated to the sampling-rate control problem, this work paves 

he way for future research on utilizing machine learning tech- 

iques to achieve more efficient and reliable performance of smart 

rids. 

We end this work with a discussion on future research direc- 

ions that would further improve the applicability and efficiency of 

he proposed sampling-rate control approach in real-world imple- 

entations. First, one of the innovations of this work is that the 

nline and offline versions of the RL-based algorithm can meet the 

eeds of different types of customers in the power system. The of- 

ine version can be utilized for industrial customers whose load 

atterns are stable and infrequent updates of the sampling pol- 

cy are adequate. The sampling policy obtained from the offline 

ersion can remain unchanged for an extended operation period, 

s long as the predictive performance remains satisfactory. In this 

ase, how to intelligently determine the right timing to run the 

ffline version for policy updates deserves a further investigation. 

econd, this work focuses on exploiting differences in customer’s 

oad behaviors while allocating sampling rates under the band- 

idth constraint. For a large-scale distribution grid, it can be more 

omputationally efficient to cluster customers based on similarities 

n their load behaviors first and then consider sampling-rate con- 

rol across distinct clusters. 
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