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In an era of global changes, developing
reliable biodiversity models has become
an important research area.

Species distributionmodels are the com-
mon tools to understand and predict the
distributions of species across space
and time. However, they fail to explicitly
account for species interactions.

To this aim, joint species distribution
models were introduced to tease apart
Explaining and modeling species communities is more than ever a central goal of
ecology. Recently, joint species distributionmodels (JSDMs), which extend species
distribution models (SDMs) by considering correlations among species, have been
proposed to improve species community analyses and rare species predictions
while potentially inferring species interactions. Here, we illustrate the mathematical
links betweenSDMsand JSDMsand their ecological implications and demonstrate
that JSDMs, just like SDMs, cannot separate environmental effects from biotic
interactions. We provide a guide to the conditions under which JSDMs are (or are
not) preferable to SDMs for species community modeling. More generally, we call
for a better uptake and clarification of novel statistical developments in the field
of biodiversity modeling.
the effect of the environment from that
of species interactions, to improve rare
species modeling, to account for func-
tional traits, and to improve the predictive
power of biodiversity models.

Nevertheless, most announced advan-
tages have remained unfulfilled, and
there is still a need to better integrate
the effect of species interactions in the
response of species to environmental
change.
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From Ecological Theory to Biodiversity Modeling
Understanding the ecological processes driving the distribution of life on Earth has always been
a central goal in ecology. This is, more than ever, crucial to project how biodiversity from
various ecosystems will respond to global changes. Researchers have long focused on the
description of how species are spatially distributed and on the main drivers explaining these
distributions (Van Humboldt, early 1800s). It is now clear that three fundamental ecological
processes determine whether a species can occupy a site and maintain viable populations:
limitation by abiotic conditions, biotic interactions, and dispersal limitation (Box 1 and [1–3]).

While we theoretically know the complex processes that shape communities, their relative impor-
tance is generally unknown, making it difficult to predict how these communities will respond to
environmental changes [4]. Statistical ecology has arisen as a discipline that moves away from
describing biodiversity patterns towards modeling the output of the ecological processes that
generate these patterns [5]. Notably, the so-called biodiversity models predict the distribution
and abundance of multiple species based on a set of environmental conditions [6]. To properly
interpret the parameters of these models, and to guarantee the quality and reliability of their pre-
dictions, it is key to understand how they integrate the fundamental ecological processes shaping
species ranges and community structure [6].

Species distribution models (SDMs) [7], the most common statistical tool to model species distri-
butions, from the outset raised debates on how to interpret their parameters in light of ecological
processes. SDMs relate the presence–absence or the abundance of a species to environmental
covariates (see Glossary) and use this relationship to predict its distribution in space and/or time
[8]. Originally, most SDMs relied on generalized linear models (GLMs) [9], with the determin-
istic regression coefficients for the relationship of the species with the environment and a
residual part for the unexplained variation. Usability and increasing data availability have boosted
the use of SDMs [10] in ecology and conservation. However, by modeling the observed species–
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Box 1. The Fundamental Ecological Processes Shaping Species Distribution

Three main conditions need to be met for a species to occupy a site and maintain viable populations (Figure I, [1–3]):

• The species has to physically reach a site (i.e., to access a region [52]).
• The abiotic environmental conditions (e.g., temperature or soil pH) must be physiologically suitable for the species.
• The biotic environment (i.e., interactions with other species) must be suitable for the species.

The first condition is a matter of species’ capacity to disperse to a site from other occupied areas. It is related to the biogeographic history of the species and thus to all
factors, limiting its distribution from the place where it first originated, such as barriers to migration, biotic and abiotic dispersal vectors, or rare long-distance dispersal
events. The second condition depends on abiotic conditions, which means that the combination of abiotic environmental variables at the site are within the range of
environmental conditions that the species requires to grow and maintain viable populations. These suitable environmental conditions represent the species’ fundamen-
tal niche [53]. The third condition concerns biotic interactions (i.e., interactions with other organisms, neutral, positive or negative, symmetric or asymmetric), which
themselves are influenced by the environment through their influence on all organisms in the local community. The environmental conditions where a species can there-
fore survive accounting for other species are called the species’ realized niche [53]. This is what we observe when sampling the distribution of a species in the wild. In a
given site, these processes influence all species from the regional pool to create local communities that represent a relevant scale to investigate biodiversity distribution
(e.g., few square meters for plants, a soil core for microbes) [6,54].
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Figure I. The Three Factors That
Shape the Observed Species
Distribution [3]. The blue circle
describes the fundamental niches,
while the realized niche is represented
by the intersection of the green and
blue circles.
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environment relationship for each species independently, SDMs only capture the combined
effects of both abiotic and biotic environments (i.e., the so-called realized niche). The pure
effects of the abiotic environment are not separated from the effects of species interactions,
and the fundamental niche remains unknown [11], which potentially distorts predictions [12].
Despite these issues, SDMs were also used to predict communities by summing over single
species predictions (e.g., stacked SDMs [13,14]), eventually with some additional constraints
to account for biotic filters [15,16]. However, this two-step procedure allows neither for error
propagation nor for joint parameter estimations and is conceptually flawed as the realized niche
estimated from SDMs inherently accounts for biotic constraints.
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Glossary
Conditional predictions: the
prediction of the distribution of the
value(s) of one or more response
variable(s) given the value(s) of one or
more other response variable(s).
Conditional predictions could be derived
through the use of the residual
correlation matrix.
Covariates: variables used to predict
the response variables (see later). In this
article, covariates represent abiotic
conditions. A missing covariate is a
variable that is not included in the model
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In the past decade, multispecies distribution models (MSDMs) and joint species distribution
models (JSDMs) were introduced to overcome the assumption of SDMs that species' distribu-
tions are independent of each other. MSDMs are extensions of GLMs, where the estimated
species–environment relationships are connected between species [17]. By modeling the regres-
sion coefficients hierarchically, MSDMs consider commonalities between species so that, for
instance, species with similar traits respond similarly to the environment [18–21]. As a result,
rare species could ‘borrow strength’ from common species if they do not behave fundamentally
differently [17]. JSDMs, as a further extension of GLMs (but see [22,23] for other approaches),
infer a correlation matrix from the residuals (hereafter residual correlation matrix) that reflects
species co-occurrence patterns not explained by the environmental predictors [24]. Residual
correlations may arise from model misspecifications, missing covariates, or species interactions
(Box 2 and reviewed in [25–27]). Thus, JSDMs intuitively have been proposed to simultaneously
but has an important effect on the
response variables.
Generalized linear model (GLM): a
flexible generalization of ordinary linear
regression to predict a response variable
from a distribution in the exponential
family (Poisson, binomial, etc.) and
assuming that some known
transformation of themean response is a
linear function of predictor variables.
Hierarchicalmodel: a statistical model
written in multiple levels (hierarchical
form). Hierarchical modeling allows
sharing information between entities
(mostly species herein) to facilitate
parameter estimation, an advantage
commonly referred to as ‘borrowing
strength’.
Joint predictions: the prediction of the
distribution of the joint values of two or
more response variable(s). Joint
predictions could be derived through the
use of the residual correlation matrix.
Latent variable: a variable not directly
observed and usually introduced to
model correlations between response
variables.
Marginal predictions: the prediction
of the distribution of the value(s) of one or
more response variable(s) irrespective of
the value(s) of one or more other
response variable(s). Marginal
predictions are the typical output of
SDMs and JSDMs.
Niche (fundamental, sensu
Hutchinson): the physiological
dependence of the species on the
environment.
Niche (realized, sensu Hutchinson):
the observed relationships between the
species and the environment. This is the
outcome of both the environmental
effect and biotic interactions.
Regression coefficients: the
parameters that describe the
relationships between the response
variables and the covariates. In (joint)

Box 2. Mathematical Notations from SDMs to JSDMs

Focusing on presence–absence data, the response variable yij = 1 if species j = 1,…, S is present at site i = 1,…, n and
is 0 otherwise. All models relate the S-dimensional vector yi to a set of K environmental covariates xi = {xik}k=1

K.

SDMs

GLMs can model presence–absence data using a probit link. Probit regression can be described as a latent variable
model with the probability of presence being modeled as the probability of a latent Gaussian variable to be positive [55].
Each species j is modeled independently, with:

yij ¼ I zij > 0
� �

zij ¼ βT
j xi þ ε ij

ε ij ∼
iid

N 0; 1ð Þ
½I�

where I( ) is the indicator function andN(0,1) is the standard univariate Gaussian distribution. The variance term is restricted
to 1 for identifiability reasons. The regression coefficients β j ∈ℝ

K give the response of species j to the abiotic covariates
[26]. The probability of species j to be present at site i is thus probitðyij ¼ 1Þ ¼ βT

j xi .

MSDMs

MSDMs model the regression coefficients of Equation I hierarchically: β j ∼
iid

NK ðμ;VÞ , where NK is the multivar-
iate K-dimensional Gaussian distribution. As a consequence, species’ responses to the environment are shared across
species, which can be of particular interest for rare species. Coefficients can also be constrained by trait and/or phylogenetic
information (by including them in μ and/or V).

JSDMs

Most JSDMs extend GLMs in what is commonly called the multivariate probit model [56]. This model is based on the same
latent variable idea as described above, but uses an S-dimensional vector:

yij ¼ I zij > 0
� �

zi ¼ βxi þ ε i
ε i ∼

iid
NS 0;Rð Þ

½II�

where R is a correlation matrix and not a covariance matrix for identifiability reasons. R describes the residual correlation
among taxa and reflects species co-occurrence patterns not explained by the selected abiotic covariates. β is a K × S
matrix whose columnsβj are the species-specific response to the environment. Importantly,R does not affect themarginal
probability of presence of each species, probit(yij = 1) = β j

Txi. Thus,marginal predictions only depend on the estimated
regression coefficients for both SDMs and JSDMs [56].

Many JSDMs use latent factors to reduce the dimension of R (see Appendix A in the supplemental information online).
JSDMs can also model the regression coefficients hierarchically, therefore integrating the advantages of MSDMs and
obtaining highly flexible and complex models (e.g., see [26]).

Reconciling SDMs, MSDMs, and JSDMs

The model in Equation I can be written in the same way as Equation II but with a diagonal residual correlation ε i ∼
iid
Nð0; IÞ. In

other words, the only difference is that SDMs andMSDMs assume independent residuals, while JSDMs allow for correlations
between them.
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SDMs, they are interpreted as
descriptions of species’ niches.
Residual correlation matrix: the
correlation matrix between the response
variables after accounting for the effect
of the covariates.
Response variables: the variables of
interest to be modeled and predicted. In
this article, they mostly represent the
presence–absences of species.
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explore, and potentially disentangle, limitations by abiotic conditions and biotic interactions [25].
Although these new statistical models are receiving increasing attention, there is, so far, a lack of
clarification on both the ecological processes they incorporate and on their specific commonali-
ties and advantages with respect to SDMs. Some of the widespread beliefs, such as the idea that
JSDMs can ‘account for biotic interactions in species distribution models’ [28], have never been
proven.

In this article, we first reunify SDMs, MSDMs, and JSDMs under a common notation to better
identify their similarities and differences (Box 2). Like MSDMs, JSDMs can also model the regres-
sion coefficients hierarchically; but since this is not always implemented (see [28,29]), we consider
here JSDMs and MSDMs as two different extensions of SDMs. Second, we tease apart the true
advantages of JSDMs from false beliefs and possible misinterpretations, therefore allowing for the
interpretation of these models in the light of fundamental ecological processes. Specifically, we
address the following questions:

(i) Can JSDMs and MSDMs improve the estimation of species’ fundamental niches?
(ii) What can the residual correlation matrix tell us about biotic interactions?
(iii) When and why do JSDMs outperform SDMs?

This opinion article differs from previous papers on JSDMs in that we neither introduce new
methodological developments nor compare these models with data. Instead, we rigorously
and mathematically demonstrate how to interpret MSDMs and JSDMs, providing a guide on
why and when these models should be preferred to SDMs. Our aim is to enable users to serenely
choose and apply these models to make the best of their potential.

Question 1. Can JSDMs and MSDMs Improve the Estimation of Species’
Fundamental Niches?
Characterizing the fundamental niches with observational data, teasing apart the effects of abiotic
and biotic ecological processes on species distributions and community assembly, is a critical
challenge to predict the future of biodiversity [6,12]. Since they model multiple species together,
we may believe that MSDMs and JSDMs can better fit the response of each species to environ-
mental covariates by using information on the other species and thus, ultimately, may allow for the
retrieval of the fundamental niche of species. JSDMs, in particular, have been repeatedly sug-
gested to separate abiotic and biotic conditions and, if this suggestion was right, then it should
allow to approach species’ fundamental niches [25]. But, can the models hold these promises?
Here, we outline why this is not the case for either JSDMs or MDSMs.

In both SDMs and JSDMs, the species’ niche (approximated by the regression coefficients) is
estimated through minimizing species-specific regression residuals. In other words, should we
infer a residual correlation matrix from the residuals (JSDMs) or not (SDMs), the estimated niches
coincide. In Appendix B (see the supplemental information online), we demonstrate that the esti-
mates of the regression coefficients are identical for JSDMs and SDMs, at least for Gaussian data.
The uncertainty around these estimates might differ, but it is difficult to prove whether one is
always greater or lower than the other. Extending this analytical proof to other data types is
challenging. However, empirical comparisons for presence–absence data also showed no
differences in the regression coefficient estimates between a comparable SDM and a JSDM
approach (same package, same inference, only the estimation of correlation matrix differed;
Box 3). Indeed, since JSDMs model the expected distribution of species as exclusively depen-
dent on the environmental conditions (through the regression term), while all the other factors po-
tentially influencing species’ distributions (e.g., missing predictors, biotic interactions) can only
394 Trends in Ecology & Evolution, May 2021, Vol. 36, No. 5
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impact the (co)variation (given by the residual correlations) around this expected value. In
consequence, JSDMs, just like SDMs, do not control for the effect of other species when infer-
ring species niches and thus only retrieve the realized niches (Appendix B for further discus-
sion). Importantly, it also means that for a set of modeled species, the correlations between
the residuals of independent SDMs closely approximate the residual correlation matrix of a
JSDM (Box 3), with the advantage of the latter to propagate model uncertainties in a more
correct way and the former to be easier to apply (G. Tikhonov, PhD thesis, University of
Helsinki, 2018, page 11).

By contrast, MSDMs (and JSDMs with hierarchical coefficients) estimate different species niches
than SDMs, especially for rare species. This is, however, not linked to species interactions.
Thanks to the hierarchical part of the model, MSDMs share information between species [17]
and can constrain, for example, two phylogenetically or functionally closely related species to
Box 3. An Empirical Example

To elucidate the differences between SDMs and JSDMs in an empirical case study, we focus on the response of alpine plants to snowmelt dates in Aravo (French Alps
[57]), as also done by [25]. We considered 65 species (all with more than four occurrences) at 75 sites with snowmelt dates as the environmental covariate (linear and
quadratic term, using orthogonal polynomials to reduce correlation among the covariates). The data are available from the R package ade4 [58]. To strictly focus on the
effect of the residual correlation matrix on the estimates of the model, we avoid the confounding effects that can affect our results (e.g., choice of priors, different infer-
ence strategy, different implementation) by using the R package BayesCommi that allows us to choose whether residuals are considered as independent (multiple
SDMs) or not (JSDM) and does not model the regression coefficients hierarchically (see Appendix C in the supplemental information online for the code and further
details).

Environmental Niche and Prediction

SDMs and JSDM estimated the same environmental niches. We can see almost no difference between the regression coefficients (Figure IA, R2 = 0.987 between the
posterior means of the two models), and, in this case, the credible intervals are also very similar (see Appendix D in the supplemental information online). As a natural
consequence, the marginal predictions are extremely close too (R2 = 0.996 between the posterior predictive means of the two models; Figure IB).
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Residual Correlation Matrix

We compared the correlation between the residuals of SDMs and the residual correlation matrix inferred by JSDM. Since a JSDM is a probabilistic model that allows
error propagation, it is clearly preferable over multiple SDMs to infer a correlation matrix from the residuals. Here, we carry out this computation only to show the similarity
between the two approaches. The residuals of the SDMs are calculated as the difference between the latent variables and the regression term, to stick to the JSDM
definition of residuals (see Appendix D for other kinds of residuals). The residual correlation matrices estimated by SDMs and JSDM are very similar (R2 = 0.862 between
the estimates of the two models; 95% credible intervals match in 98% of the cases; Figure II).

Figure I. On the left (A) is the
relationship between the posterior
means of the regression coefficients
for all species estimated by species
distribution models (SDMs) on the
x-axis and joint species distribution
models (JSDMs) on the y-axis. Each
point corresponds to a single coefficient
(i.e., intercept, linear, and quadratic term
for snowmelt date) for a single modeled
species. On the right (B) is the relationship
between the posterior means of the
predicted probability of presence. Each
point corresponds to the predicted
probability of presence of a single species
at a single site. The blue broken lines
correspond to the 1:1 line.
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Figure II. Comparison of Residual Correlation Matrices from Multiple Independent SDMs (Post-Hoc Calculated) and a Joint Species Distribution
Model (JSDM). Residual correlations from the species distribution models(SDMs) are represented in the upper triangular matrix and JSDM correlations in the lower
triangular matrix; R2 = 0.862 between the estimates of the two models, 95% credible intervals match in 98% of the cases (both positive, both negative, or both
overlapping zero).
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respond similarly to the environment (i.e., similar niches) [18]. Taking phylogeny and/or functional
traits into account allows for the ability to test their importance in shaping species distribution [26].
MSDMs have been considered as a great improvement for modeling rare species for which niche
estimates are difficult to obtain due to low sample size. Forcing niche estimates to resemble those
of closely related common species circumvents this problem. However, this advantage only holds
if rare and common species respond in the same way to the environment and leads to false
estimates if this assumption is wrong. While the assumption may hold for hardly detectable
species, there are many ecological reasons why truly rare species differ from common species
in their response to the environment. Species can be rare because they are specialized to specific
conditions or because they are relicts [30]. Consistently, studies examining the predictive perfor-
mances of SDMs and MSDMs for rare species suggest that gains in performance are context
dependent [31].

Question 2. What Can the Residual Correlation Matrix Tell Us About Biotic
Interactions?
Inferring biotic interactions from co-occurrence patterns is a particularly hot topic in current eco-
logical research [32–34]. In this context, some seminal articles have emphasized the potential of
JSDMs to capture the signal of biotic interactions in the residual correlation matrix [35]. Although
other authors entirely rejected this proposition [36], many are still left with the idea that the residual
correlationmatrix may ‘hint at a biological interaction between species’ [24] or ‘inform about biotic
constraints’ [28]. Ongoing discussions turn around the scale mismatch between the true interac-
tions and the modeled environment [36], the influence of missing predictors [37], and the sym-
metric constraint of correlation matrices [38] as important limitations of JSDMs, while others
object that the signal that biotic interactions leave on co-occurrence data prevents any inference,
whatever the method used [39,40]. Here, our argument focuses on a more fundamental limitation
of JSDMs. Indeed, if the regression coefficients only estimate species’ realized niches (Question 1),
not much of the signal of biotic interactions can remain in the residuals (even without any of the
earlier-mentioned problems), and what remains strongly depends on the characteristics of these
interactions.

When considering two species A and B with overlapping fundamental niches (Figure 1A, Key Figure)
and assuming that A is the strongest competitor, then B will be excluded from the overlapping
area (Figure 1B). The famous barnacles in the low tide area are a typical example where
Balanus (species A) excludes Chtamalus (species B) from large parts of its fundamental
niche [41]. Applied to these data, SDMs, MSDMs, and JSDMs will (wrongly) attribute the
absence of species B to the abiotic conditions. Since the realized niches entirely explain the
negative correlation between the two species, no information on biotic interactions is left in
the residuals, preventing JSDMs (and SDMs and MSDMs when correlating their residuals) to
suggest a competitive interaction from the residual correlation matrix (the same logic applies
for facilitation).

By contrast, let us assume that species A and B compete symmetrically, excluding each other
about half the time in the overlapping region. An example is the unshaded reaches of Augusta
Creek, MI, USA (see [42] for a terrestrial example), where, at high velocity sites, the likelihood
that a site will be dominated by the macroalga Cladophora glomerata or by an epilithic microalgal
lawn inhabited by several species of sessile grazers (e.g., the caddisflies Leucotrichia pictipes) is
determined by who establishes first [43]. In this case, biotic interactions not only affect the realized
niches (that is decreased in magnitude; Figure 1C) but also affect the species covariation around
the expected distributions. So, the realized niches cannot fully explain the negative correlation
between the species, and this part will appear in the residuals. Under the assumption of a well-
Trends in Ecology & Evolution, May 2021, Vol. 36, No. 5 397



Key Figure

Effects of Biotic Interactions on Species’ Niches
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Figure 1. The top panel (A) shows the fundamental niches of two species (A and B). The bottom panels show two extreme
scenarios of competition and the resulting realized niches (the fundamental niches are represented with the broken line).
Species distribution models (SDMs), multispecies distribution models (MSDMs), and joint species distribution models (JSDMs)
retrieve the realized niches only. On the left (B), wherever the fundamental niches of A and B overlap, A excludes B even under
weak abiotic conditions that are still suitable for both species (e.g., Balanus and Chtamalus in [31]). The observed presences
and absences in the interaction zone (the broken rectangle) reflect this dichotomy due to competition exclusion, with little or no
variation around the expected distribution where A is present and B is absent. Since the realized niches entirely explain the
negative correlation between A and B, JSDMs will not identify a negative residual correlation. On the right (C), species A and B
compete in a symmetric way, by excluding each other about half of the times where their niches overlap (Cladophora
glomerata and Psychomyia flavida in [33]). If the expected distribution is the same for both species (their observed probability of
occurrence in the conflict region is 0.5), their covariation around it is highly significant in terms of interactions, since the two
species never co-occur. Here, JSDMs (but also MSDMs and SDMs when correlating their residuals) will detect a negative
residual correlation since the realized niches do not fully explain the negative correlation between species.

Trends in Ecology & Evolution
specified model, JSDMs will identify the negative residual correlation between the species, which
can truly be attributed to the competitive interaction between A and B. Finally, notice that a
common response to an unmeasured environmental covariate (e.g., both species prefer a
warm climate) might lead to a positive correlation even if the two species do not interact [37,44].

While abundance data may prove more informative than presence–absence to detect variations
around the realized niches, environmental and biotic effects will still be confounded in the
398 Trends in Ecology & Evolution, May 2021, Vol. 36, No. 5
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estimation of species responses to the environment (i.e., in β). Therefore, when partitioning spe-
cies covariance into shared environmental preferences and residual co-occurrence patterns [24],
one has to remember that the former are due to the realized niche and not due to the fundamental
one, with the consequences that the latter only reflect a small part of the signal of biotic interac-
tions. In conclusion, even if biotic interactions are an important process, their signal on co-
distributions will be either fully or partly hidden in β.
As a statistical side note, we need to keep in mind that even in the specific case that the residual
correlation matrix R really captures an imprint of species interactions (which is unlikely for real
data [39]), it represents the marginal correlations among the residuals and thus mixes the direct
(e.g., competition) and indirect (e.g., a shared predator) associations between species. To
conclude on direct associations between two species, we need to calculate the precision matrix
insteadΩ =R−1 that represents the (residual) partial correlation between species while controlling
for the effects of the other species [45,46].

Question 3. When and Why Do JSDMs Outperform SDMs?
One of the major objectives of species distribution modeling is to predict community composi-
tions under new, eventually future, abiotic conditions. For SDMs, MSDMs, and JSDMs, the mar-
ginal prediction of each species (i.e., unconditionally on the others) is only driven by whether the
new environmental conditions are suitable for the species, even if the marginal predictions of
MSDMs (and JSDMs with hierarchical coefficients) can differ for the reasons highlighted in Ques-
tion 1. However, and importantly, this implies that all methods will project future species distribu-
tions without accounting for biotic interactions, although they are likely to play a critical role in the
reorganization of communities as a result of global changes [4]. Since the estimated regression
coefficients do not change whether species are modeled jointly or not, the marginal predictions
do not change either but have different uncertainties. In other words, fitting and predicting each
species independently (SDMs) or with a JSDM will lead to the same marginal predictions (as
shown in Box 2; see also Figure 2 of [47]). This explains why [29,48,49] did not find clear differ-
ences in the predictive performance between JSDMs and SDMs neither at the species nor at
the community level.

As a consequence, species richness predictions that sum the mean marginal probabilities of
SDMs versus JSDMs will inevitably coincide [50]. However, since the variance of a sum of corre-
lated variables is not merely the sum of the variances, the residual correlation matrix does affect
the uncertainty around the predicted richness. This is highlighted in the third box of [25], where
the authors show that if the residual correlation across species was ignored (SDMs), the credible
intervals were too narrow to capture the observed value of species richness.

The inferred residual correlation matrix still provides information on co-occurrence patterns that
can be used to improve predictions. Indeed, JSDMs can leverage on the shared residual struc-
ture (that does not need be related to biotic interactions) to better estimate the probability of spe-
cies co-occurrences and to provide joint and conditional predictions [51]. In other words, we
should not interpret the residual correlation matrix but rather exploit it.

When we commonly observe two co-occurring species, our expectation to see one when we see
the other increases. This is what is called conditional prediction, the probability of presence of one
(or more) species given the presence or absence of one (or more) other species. JSDMs can ex-
ploit the residual correlation matrix to provide such predictions, where the observed species are
basically used as predictors of the unobserved species. Conditional predictions can be a great
asset in several ecological applications. For instance, in invasion ecology, we could use JSDMs
Trends in Ecology & Evolution, May 2021, Vol. 36, No. 5 399



Outstanding Questions
To what extent do biotic interactions
leave an imprint in co-occurrence pat-
terns to enable them to be distin-
guished from environmental effects?
Under what conditions or types of
interactions are these imprints detect-
able and what prior information would
be needed to help the inference?

How can we better harness temporal
data from multiple sources to exploit
theory-based temporally dynamic joint
species distributions? Can dynamic
JSDMs model species-rich communi-
ties or would they be restricted to spe-
cific cases?

How can conditional dependencies in
JSDMs or related graphical models be
better used to provide conditional
predictions for invasion risk assessment,
reintroduction analyses, or rare species
modeling?

How can we account for biotic
interactions when predicting species
distribution and community compositions?
How can we make the best use of
prior information on forbidden or
known interactions?
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to determine the probability of invasive species to be present given the distribution of native spe-
cies. Conditioning on other species can not only improve predictions, but also provide a better
understanding of the studied system [48]. Studying how co-occurrence probabilities vary along
environmental gradients can also provide important knowledge on communities. Under the inde-
pendence assumption of SDMs, the probability of co-occurrence is simply the product of mar-
ginal occurrence probabilities, but this estimate fails to integrate interspecific correlations.
JSDMs are instead a potentially suitable tool for this task, since the probability of co-
occurrence also depends on the residual correlations; positively correlated residuals lead to
higher probability of co-occurrence than SDMs and vice versa. Importantly, accounting for resid-
ual correlations to predict species co-occurrences inherently requires meaningful residuals that
reflect underlying mechanisms (e.g., dispersal limitations, biotic interactions). In the extreme
case of residual correlations completed driven by model error and/or misspecification, joint and
conditional predictions might not improve or even worsen co-occurrence probabilities, especially
when extrapolating in space and time.

Concluding Remarks
The recent emergence of MSDMs and JSDMs has raised expectations to integrate some funda-
mental ecological processes in species distribution modeling, in particular to disentangle biotic
interaction effects from environmental effects on species co-distributions. However, we show
that these models do not account for biotic interactions when predicting distribution patterns,
instead they infer correlations among taxa after accounting for environmental covariates. Therefore,
they can only infer species’ realized niches, andmarginal predictions are not improved.We empha-
size that we should not interpret the residual correlation matrix from a pure interaction perspective
(whose ability to infer biotic interactions is strongly context dependent) but should leverage on it,
using conditional predictions, the underexploited advantage of JSDMs. Hierarchical models,
such as MSDMs (or JSDMs with hierarchical effects) allow us to test for the importance of traits
and/or phylogeny and might bring interesting information for species that are difficult to detect,
but the assumption behind these hierarchical effects needs to be clearly understood by users.
While these new generation of models might prove useful in some specific cases, there are still
critical questions and issues that need to be addressed in order to provide relevant and reliable
biodiversity predictions and scenarios (see Outstanding Questions).
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