Soil Biology and Biochemistry 148 (2020) 107897

Contents lists available at ScienceDirect

Soil Biology &
Biochemistry

Soil Biology and Biochemistry

o %

ELSEVIER

journal homepage: http://www.elsevier.com/locate/soilbio

Check for

Biogeographic patterns of microbial co-occurrence ecological networks in ~ [&&s"
six American forests

Qichao Tu™“’", Qingyun Yan", Ye Deng “, Sean T. Michaletz®, Vanessa Buzzard °, N
Michael D. Weiser |, Robert Waide ¢, Daliang Ning ¢, Liyou Wu ¢, Zhili He ", Jizhong Zhou “™%""

& Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China

Y Environmental Microbiome Research Center and the School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, China

¢ Institute for Environmental Genomics, Department of Microbiology and Plant Biology, and School of Civil Engineering and Environmental Sciences, University of
Oklahoma, Norman, OK, USA, 73019

d Research Center for Eco-Environmental Science, Chinese Academy of Sciences, Beijing, 100085, China

€ Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA

f EEB Graduate Program, Department of Biology, University of Oklahoma, OK, 73019, USA

8 Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA

" State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China

! Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA, 94270, USA

ARTICLE INFO ABSTRACT

Keywords:

Microbial o-occurrence networks
Network complexity

Random matrix theory
Biogeographic patterns

Latitude

Temperature

Rather than simple accumulation of individual populations, microorganisms in natural ecosystems form complex
ecological networks that are critical to maintain ecosystem functions and services. Although various studies have
examined the patterns of microbial community diversity and composition across spatial gradients, whether
microbial co-occurrence relationships follow similar patterns remains an open question. In this study, we
determined the biogeographic patterns of microbial co-occurrence networks of bacteria, fungi and nitrogen (N)
fixer via analyses of high throughput amplicon sequencing data of 16S rRNA, ITS, and nifH genes from 126 forest
soil samples across six forests in America. Microbial co-occurrence networks were constructed using a Random
Matrix Theory based approach. Network parameters were calculated and correlated with biogeographic pa-
rameters. Gradient patterns along with biogeographic parameters were observed for network topologies.
Significantly different network topologies were observed between microbial co-occurrence networks in tropical
and temperate forest ecosystems. Among various biogeographic parameters potentially related with network
topology indices, temperature seemed to be the strongest one. These results suggest that biogeographic variables
like temperature not only mediate microbial community diversity and composition, but also the co-occurrence
ecological networks among microbial species.

are modulated by different biogeographic parameters (Martiny et al.,
2006). For example, in soils, the diversity of free-living microbial taxa
are strongly correlated with distance between sites (Cho and Tiedje,
2000), latitude (Staddon et al., 1998; Weiser et al., 2018), land use

1. Introduction

Microbial communities play critical roles in various biogeochemical
processes and determine ecosystem functioning (Fuhrman, 2009;

Zavaleta et al., 2010; Miki et al., 2014; Wagg et al., 2014). Under-
standing the structure, composition, and distribution of soil microbial
communities is therefore of critical importance to disentangle the
mechanisms driving microbial community assembly. Various studies
have suggested that microbial communities from different ecosystems

(McArthur et al., 1988; Buckley and Schmidt, 2003), pH (Fierer and
Jackson, 2006; Griffiths et al., 2011), and multiple environmental var-
iables (e.g. temperature, precipitation, pH and plant diversity) (Shay
et al., 2015; Tu et al., 2016a; Zhou et al., 2016).

However, microbial species in natural ecosystems do not exist alone
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as individual populations. Rather, they interact with each other to form
complex microbial communities and serve various ecosystem functions
(Barberan et al., 2012; Montoya et al., 2006; Zhou et al., 2010).
Therefore, our understanding of microbial communities should not only
focus on the individual/species level characteristics such as species
richness and abundance, but also more importantly on the interspecific
characteristics of the complex microbial communities. The recently
developed microbial co-occurrence ecological network analyses utiliz-
ing high throughput metagenomic data (Zhou et al., 2010, 2011; Bar-
beran et al., 2012; Faust et al., 2012; Friedman and Alm, 2012; Xia et al.,
2013) is an effective method that can be used to approximately char-
acterize the interspecific relationships of complex microbial commu-
nities that cannot be observed directly (Fath et al., 2007), though these
approaches may also suffer from a few limitations that both strength and
weaknesses were found for different correlation methods (Weiss et al.,
2016). Over the past years, much has been learned that microbial
community diversity could be driven by multiple environ-
mental/biogeographic factors. However, whether the complex inter-
specific characteristics of microbial communities are also shaped by any
environmental/biogeographic factor is not yet clear.

Integrating network theory to biogeography is one of the most
important and exciting challenges in macro-ecology (Cumming et al.,
2010; Poisot et al., 2012). Over the past decades, ecological network
studies (e.g. food webs, mutualistic and host-parasite networks) for
macro-organisms along environmental gradients have been carried out,
showing high variation in ecological networks in contrasting environ-
ments (Pellissier et al., 2018). For example, the specialization of
plant-hummingbird interaction networks is positively correlated with
warmer temperatures and greater historical temperature stability
(Martin Gonzalez et al., 2015). However, how microbial co-occurrence
network characteristics (e.g. topologies) change across biogeographic
gradients were rarely studied, until recently (Ma et al., 2016).

In this study, we aimed to investigate the potential biogeographic
patterns followed by microbial co-occurrence ecological networks,
thereby gaining further insights into the biogeography of complex mi-
crobial communities. Previous studies in the same experimental sites
have shown clear gradient patterns of microbial diversity along tem-
perature and/or latitude (Tu et al., 2016a; Zhou et al., 2016). In natural
ecosystems, individuals in more complex communities are more likely to
interact with other species. As a result, higher microbial diversity should
be associated with more complex co-occurrence networks. We therefore
hypothesize that: (i) tropical and temperate forest ecosystems have
different microbial co-occurrence network topologies; and (ii) similar to
what have been observed for microbial community diversity, a gradient
pattern along temperature and/or latitude could also be observed for
microbial co-occurrence networks.

2. Materials and methods
2.1. Sites and sampling

Six natural forest sites in America were surveyed in this study,
including Barro Colorado Island, Panama (BCI); Luquillo Long Term
Ecological Research (LTER), Puerto Rico (LUQ); Coweeta LTER, North
Carolina (CWT); Niwot Ridge LTER, Colorado (NWT); Harvard Forest
LTER, Massachusetts (HFR); and H.J. Andrews LTER, Oregon (AND). A
total of 126 soil samples (0-10 cm, 21 samples per site) were collected
from these six forest sites in the summer of 2012 for microbial com-
munity analysis. These selected sites provided variation in ecosystem
types from boreal temperate to tropical forest, across a latitudinal
gradient from 9 to 44°N. These sites were characterized by considerable
soil and climatic variations with average annual temperature from 2.5 to
25.7 °C, plant species richness from 5 to 263 tree species, annual pre-
cipitation from 550 to 3460 mm, pH from 3.41 to 6.63, and soil moisture
from 5.6% to 64.63%. More detailed description of climatic parameters
and soil characteristics including soil type and texture, soil moisture, pH,
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total carbon, total nitrogen, and C/N ratio were also provided (Table 1).
Details for experimental sites and sampling design could be found in
supplementary data (Fig. S1). Soil DNA was extracted and purified as
described previously (Zhou et al., 1996), subjected to PCR amplification
for different regions (V4 region for 16S rRNA, ITS2 region for ITS, and
nifH), and sequenced by Illumina MiSeq Platform. Negative controls
using pure water was used during DNA extraction and PCR. The
following primer pairs were used: 515F (5-GTGCCAGCMG
CCGCGGTAA-3') and 806R (5'- GGACTACHVGGGTWTCTAAT-3) for
16S rRNA gene, Pol115F (5-TGCGAYCCSAARGCBGACTC-3') and
Pol457R  (5'-ATSGCCATCATYTCRCCGGA3') for nifH, and gITS7F
(5'-GTGARTCATCGARTCTTTG-3') and ITS4R (5-TCCTCCGCTTATTG
ATATGC-3') for ITS. The nifH amplicon dataset representing soil diaz-
otrophs was recruited for its strong correlation with biologically avail-
able nitrogen in the soil, indicating their potentially important roles in
ecosystem functioning and stability (Tu et al., 2016a).

2.2. Data processing

Details for meta data collection and sequence processing could be
found in our previous publications (Tu et al., 2016a; Zhou et al., 2016).
Basically, raw data were first quality trimmed. Forward and reverse
reads were then joined into longer sequences. OTUs were generated and
identified using the UPARSE pipeline (Edgar, 2013). Potential chimeric
sequences were checked against reference databases and removed by the
UCHIME function included the UPARSE pipeline. An identity cutoff of
97% was used for 16S and ITS OTU clustering, while the identity cutoff
used for OTU clustering of nifH sequences was 94%, which is the average
nucleotide identity cutoff used for microbial species definition in post-
genomic era (Konstantinidis and Tiedje, 2005). For 16S and ITS OTUs,
taxonomic assignment was performed using the RDP pipeline. Taxo-
nomic assignment of nifH OTU representative sequences was carried out
using the Zehr nifH database (http://pmc.ucsc.edu/~wwwzehr/resear
ch/database/, 4 April 2014). A global identity cutoff of 90% was used
for genus-level assignment.

2.3. Co-occurrence network construction, analysis and visualization

The microbial co-occurrence network was constructed based on 16S
rRNA gene, ITS, and nifH gene amplicon sequencing data, representing
prokaryotic-fungal-diazotrophic co-occurrence relationships in Amer-
ican forests. A random subsampling effort of 12,972, 7,724, and 8,000
sequences per sample was performed for 16S rRNA gene, ITS, and nifH
gene amplicons, respectively. OTU relative abundance was calculated at
each rarefied depth for each amplicon dataset. Microbial co-occurrence
networks were constructed using the MENA pipeline, which implements
Random Matrix Theory (RMT) to identify thresholds for constructing
highly confident microbial ecological networks (Zhou et al., 2010; Deng
et al., 2012). Briefly, Pearson correlation coefficients (r) was calculated
between any two pairs of OTUs based on relative abundance values.
OTUs presenting in 11 or more samples were selected for r calculation.
The obtained similarity matrix was then transformed into an adjacency
matrix. The RMT approach was then applied to determine the transition
point of nearest-neighbor spacing distribution of eigenvalues from
Gaussian (random) to Poisson (non-random) distribution, which are two
universal extreme distributions. The transition point was then used as
the threshold for co-occurrence network construction. Therefore, the
main advantages of RMT approach lies in the power to remove noises
from nonrandom by defining a threshold automatically based on the
data structure itself rather than artificially chosen, and thus, no ambi-
guity occurs in constructing co-occurrence networks. The RMT approach
is one of the most robust methodologies for confident co-occurrence
network inference (Weiss et al., 2016), and has been widely applied to
construct microbial co-occurrence patterns in various ecosystems (Zhou
et al., 2010, 2011; Tu et al., 2015, 2016b; Deng et al., 2016; Ma et al.,
2016).
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Table 1
Summary of soil and climatic characteristics for the six sampling sites.
Sites Latitude  Soil type and Soil moisture® pH Total carbon Total nitrogen C/N Mean temperature  Precipitation Plant
texture (%) (mg/g) (mg/g) ratio (°Q) (mm) richness
AND 44.23 gravelly medial 36.88 + 13.79 5.28 + 19.36 + 13.87 0.40 + 0.18 429 + 8.94 1587.4 17
loam 0.64 19.8
HFR 42.54 fine sandy loam 34.35 £10.45 3.84 + 19.21 + 8.60 0.62 + 0.29 312+ 8.27 1128.7 25
0.29 4.2
NWT 40.04 cobbly silt loam 16.00 + 8,74 4.83 + 11.46 + 7.03 0.33 +0.18 32.7 + 2.5 481.6 5
0.37 6.2
CWT 35.05 gravelly loam 30.28 + 6.05 4.72 + 6.68 + 4.07 0.25 + 0.08 249 + 12.62 1853.8 49
0.37 5.3
LUQ 18.32 clay 40.53 + 4.42 5.06 + 7.54 £ 3.05 0.47 £ 0.17 15.8 £ 23.62 3069.2 93
0.39 2.1
BCI 9.16 brown fine 31.43 £6.77 5.87 £ 3.99 + 2.09 0.31 £0.12 12.3 + 25.71 2383.0 263
loam 0.42 2.0

@ Mean and standard deviation of soil parameters (moisture, pH, total C, total N, and N/C) were calculated based on 21 samples collected in each site.

A global network was first constructed using data from all six forests
sites. A minimum threshold of r = 0.74 was determined for co-
occurrence network construction by the RMT approach. Although po-
tential co-occurrence relationships were excluded for OTUs showing up
in 10 or fewer samples, spurious and/or indirect correlations caused by
insufficient samples were also less likely to occur. Inspection of P values
for the calculated r of the constructed network showed they were all
smaller than 0.002. Sub-networks representing the co-occurrence net-
works for each forest ecosystem were then extracted based on the
criteria that each OTU should show up in 11 or more samples in each
forest and r larger than 0.74.

To statistically evaluate whether the constructed networks are
significantly different from random networks without ecological sig-
nificance, a permutation based null model analysis was developed and
applied (Zhou et al., 2010). Null models of random networks were
constructed by fixing the node members and number of links, while
randomizing the relationships between nodes. A total of 1000 random
networks were constructed. One-sample t-test was used to evaluate
whether network parameters (e.g. geodesic distance, clustering coeffi-
cient, and modularity) differed significantly between observed and
random networks. Network topological parameters such as connectivity,
geodesic distance, modularity, centrality of degree, centrality of
betweenness, Zi and Pi values were all calculated using the igraph (Csardi
and Nepusz, 2006) and sna (Butts, 2008) package in R. Additionally, we
also used H-index of node connectivity as another index to measure the
complexity of a network in this study. The Welch’s t-test (unequal var-
iances t-test) was used to statistically test whether network parameters
were significantly different between tropical and temperate forest net-
works. Network modules were separated by the fast greedy modularity
optimization process (Newman, 2006). Microbial co-occurrence net-
works were visualized by the Circos (Krzywinski et al., 2009) and
Cytoscape (V3.2.1) (Shannon et al., 2003) software. To assess how mi-
crobial co-occurrence network parameters were shaped by different
biogeographic parameters, Pearson correlation coefficient was calcu-
lated to estimate the relationship between network properties and
environmental parameters.

2.4. Network terminologies

The following network parameters were used in this study and were
therefore explained here:

Scale-free: scale-free is a network property that is commonly
observed in social-networks. In a scale-free network, most nodes have
few neighbors while only few nodes have large number of connected
neighbors. As a result, the distribution of nodes connectivity follows a
power law distribution.

Small-world: small-world is another property observed in social
networks. In such a network, the average distance between two nodes is
short, showing that the nodes in a network are always closely related

with each other.

Average connectivity: Connectivity refers to the number of nodes
directly connected by a node. It is the most commonly used concept for
describing the topological property of a node in a network. Higher
average connectivity usually means a more complex network.

Average geodesic distance: Geodesic distance is the shortest path
between two nodes. A smaller average geodesic distance means all the
nodes in the network are closer, therefore the network is more complex.

H index: Similar to the academic H-index definition (Hirsch, 2005),
the H-index of node connectivity here is defined as the maximum value h
such that there exists at least h nodes, each with h or more connections.
Higher H-index suggests more nodes with high connectivity. The
H-index of a network was calculated using an in-house developed PERL
script according to the description in (Hirsch, 2005; Lu et al., 2016).

Modularity: modularity is the degree that a network can be divided
into communities or modules. For ecological networks, microbial spe-
cies in a module could be considered to have a similar ecological niche
(Zhou et al., 2010). The value of modularity varies from O to 1. The
higher modularity is, the more modules a network can be divided into
and therefore the less complex a network is.

Degree centrality: Degree centrality is defined as the number of
links incident upon a node. The value of degree centrality is close to 0 for
a network where each node has the same connectivity. The value is
closer to 1 when more differences were observed among the connectivity
of all nodes. The higher value it is, the more complex a network is.

Betweenness centrality: Betweenness centrality quantifies the
number of times a node acts as a bridge along the shortest path between
two other nodes. The value of betweenness centrality is close to 0 for a
network where each node has the same betweenness. The value is closer
to 1 when more differences were observed among the betweenness
values of all nodes. The higher value it is, the more complex a network is.

ZP-plot: We used ZP-plot to distinct the roles that each node play in
the network by analyzing two parameters including within-module
connectivity (Z;) and among module connectivity (P;). The roles of
nodes can be classified into four different categories, including periph-
erals (Z; < 2.5, P; < 0.62), connectors (Z; < 2.5, P; > 0.62), module hubs
(Z; > 2.5, P; < 0.62) and network hubs (Z; > 2.5, P; < 0.62). The
threshold for Z; and P; can be referred in a previous literature (Guimera
and Nunes Amaral, 2005; Olesen et al., 2007; Oldham et al., 2008; Zhou
et al., 2010).

Data availability: The raw sequence data for 16S rRNA gene, ITS,
and nifH gene amplicons have been deposited under NCBI accession
number PRJINA308872.

3. Results
3.1. An overview of the constructed microbial co-occurrence networks

The constructed consensus network was consisted of 1,251 OTUs,
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including 1,065 16S OTUs, 127 nifH OTUs and 59 ITS OTUs. A total of
4,922 co-occurrence relationships were inferred for the consensus mi-
crobial network (Fig. 1A). Analyses of basic network properties sug-
gested that the constructed network followed basic social network
behaviors such as scale-free, small-world, and modular (Supplementary
results). Null model analysis suggested that the constructed network
properties were significantly different from random networks. These
suggested that the constructed microbial co-occurrence networks were
not random and could be considered being of biological significance as
other biological networks. Analyses of subnetworks for diazotrophic and
fungal communities suggested different co-occurrence patterns estab-
lished by different microbial groups (Fig. 1B and C). Details describing
the constructed co-occurrence networks can be found in the supple-
mentary results.

3.2. Tropical and temperate forests exhibited distinct co-occurrence
network topologies

To examine if co-occurrence network topologies were different in
tropical and temperate forests, analyses were carried out at different
angles, including nodes, links, and co-occurrence patterns. Three types
of nodes were analyzed here for their potentially important roles in the
co-occurrence network topologies, including nodes with high H-index
and betweenness centrality, and keystone nodes. Distinct taxonomic
profiles were observed between tropical and temperate forest microbial
networks for the nodes with high H-index (Fig. 2A). Nodes with high H-
index in tropical microbial networks were mainly OTUs belonging to
Acidobacteria, Proteobacteria, and Verrucomicrobia, while the nodes with
high H-index in temperate forest microbial networks were composed of
OTUs from many different taxonomic groups. Among them, microbial
OTUs belonging to Sphingobacteriales, Actinomycetales, Rhodospirillales,
and Caulobacterales contributed as the major and/or unique nodes with
high H-index in temperate microbial forest networks. Similarly, the
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taxonomic profiles for nodes with high betweenness centrality were also
markedly different between tropical and temperate forest microbial
networks (Fig. 2B). The nodes with high betweenness in tropical mi-
crobial networks were taxonomically more diverse than in temperate
forest microbial networks. Although OTUs belonging to Proteobacteria,
Acidobacteria, and Verrucobacteria dominated the nodes with high
betweenness centrality, the relative numbers of Proteobacteria and
Acidobacteria OTUs were quite different between tropical and temperate
forest microbial networks. Specifically, more Proteobacteria nodes were
found with high betweenness centrality in tropical microbial networks,
while more Acidobacteria nodes with high betweenness centrality were
found in temperate forest microbial communities. Interestingly, a rela-
tively high number of nifH OTUs were found among the nodes with high
betweenness centrality, especially in tropical ecosystems (Fig. 2C),
indicating that soil diazotrophs may play important roles in connecting
different microorganisms and transferring energy and resources.
Keystone nodes (module hubs, network hubs, and connectors) were
identified by analyzing the topological roles that each node played in
different networks (Fig. 3, Fig. S2). No network hubs (Z; > 2.5, P; > 0.62)
were found in the networks for all six sites. We therefore mainly looked
into the module hubs and connectors of different networks. A total of
eight module hubs were found in both tropical networks (Fig. 3, Fig. S2),
including four Proteobacteria OTUs (16S_18, 16S_637_Syntrophobacter-
ales, 16S_1416_Burkhoderiales, and 16S_34706_Rhizobiales), two Acid-
obacteria OTUs (16S_136_Acidobacteria Gp5 and
16S_35039_Acidobacteria Gp6), one Verrucomicrobia OTU (16S_2_Spar-
tobacteria) and one unclassified OTU (16S_15). One Proteobacteria OTU
(16S_21280_Rhodoplanes) played a role of network connector in both
tropical networks (Fig. 3, Fig. S2). For temperate forest networks (Fig. 3,
Fig. S2), a total of nine module hubs were present in three or more
networks, including four Acidobacteria OTUs (16S_10_Gpl,
16S_123_Gpl, 16S_21546_Gp6, and 16S_31892_Gpb), three Proteobac-
teria OTUs (16S_40_Acetobacteraceae, 16S_32512_Gammaproteobacteria,

M Acidobacteria
I Actinobacteria
Bacteroidetes
I Planctomycetes
Cyanobacteria
M Verrucomicrobia
I Proteobacteria
I Ascomycota
Zygomycota
W Basidiomycota
W Others
M Unclassified

Fig. 1. The consensus network representing microbial co-occurrence networks across American forests. (A) An overall Circos illustration of the whole consensus
network; (B) The sub-network centered by soil diazotrophs representing diazotrophic-microbial co-occurrence patterns; (C) The sub-network centered by soil fungi
representing fungal-microbial co-occurrence patterns. The width of links within/between microbial phyla represents the number of connections between OTUs
belonging to the connected phyla. Diamond and hexagon nodes in (B) and (C) are nifH and ITS OTUs, respectively.
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teobacteria was found as a module hub in five networks, showing the
importance of this OTU in American forests. Module hubs rarely over-
lapped between tropical networks and temperate forest networks,

and nifH_1_Alphaproteobacteria), one
(16S_61_Planctomycetaceae), and  one

showing that microbial species responsible for these topological roles
are different between tropical and temperate forests.

Microbial co-occurrence patterns, including microbial-microbial
(here microbial includes bacterial, fungal, and diazotrophic), fungal-
microbial, and diazotrophic-microbial links, were also extracted and
analyzed. The top ten most frequent co-occurrence patterns were
analyzed (Fig. 4). No significant difference was found for the majority of
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BCl LUQ CWT NWT HFR AND

16S_10_Acidobacteria Gp1 .
165_123_Acidobacteria Gp1 ()
165_21546_Acidobacteria Gp6 (@)
16S_40_Acetobacteraceae .
16S_32512_Gammaproteobacteria .
16S_61_Planctomycetaceae .
16S_427_Verrucomicrobia subdivision3 .
165_44_Acidobacteria Gp1 .
16S_92_Mucilaginibacter
16S_134_Mucilaginibacter

16S_125_Chondromyces '

165_21280_Rhodoplanes (@) ..

@ Proteobacteria

@ Acidobacteria

@ Verrucomicrobia
Bacteroidetes

@ Fianctomycetes

Module hubs

Connectors

Fig. 3. Keystone nodes (module hubs, network hubs and connectors) showing up in two or more co-occurrence networks. No network hubs were found in this study.
Black indicates presence, while gray indicates absense. Different colored circles represent different taxonomic groups.

bacterial-bacterial co-occurrence frequencies, except Proteobacteria-
Proteobacteria, Bacteroidetes-Proteobacteria, Verrucomicrobia-
Verrucomicrobia, and Acidobacteria-Actinobacteria (Fig. 4A). Of
these, Proteobacteria-Proteobacteria and Verrucomicrobia-
Verrucomicrobia patterns occurred more frequently in tropical micro-
bial networks, while Bacteroidetes-Proteobacteria and Acidobacteria-
Actinobacteria patterns were more frequently detected in temperate
forest microbial networks. For fungal-microbial and diazotrophic-
microbial patterns, significant differences could be observed between
tropical and temperate forests (Fig. 4BC). Most fungal-microbial and
diazotrophic-microbial patterns occurred more frequently in tropical
microbial networks, except Acidobacteria-Basidiomycetes patterns,
which were uniquely detected in temperate forest microbial networks.
This suggests that fungi and soil diazotrophs could be more important in
microbial co-occurrence networks in tropical forests than that in
temperate forests.

3.3. Microbial co-occurrence networks in tropical forests were less
complex than that in temperate forests

We then investigated the complexity of microbial co-occurrence
networks in tropical and temperate forests (Fig. 5). The tropical and

temperate forests did not differ significantly in network topological
parameters such as average geodesic distance, network modularity and
centrality of degree (Fig. 5SE-G). However, tropical and temperate for-
ests differed significantly or marginally significantly in the number of
nodes, average connectivity, H-index of node connectivity, the number
of links (Fig. 5A-D), and the centrality of betweenness (Fig. 5H). Spe-
cifically, microbial co-occurrence networks from temperate forests were
found with 1264 + 78 normalized number of links and 394 + 9
normalized number of nodes, while the normalized number was 1,005
=+ 36 links and 421 + 5 nodes for tropical networks (Fig. SAD). Conse-
quently, temperate forest networks were found with significantly higher
average connectivity than tropical networks (6.4 + 0.27 vs. 4.77 + 0.11)
(Fig. 5B). The H-index of node connectivity was also significantly higher
in temperate forest networks (H-index = 23.5 + 1.0) than that in tropical
networks (H-index = 18.5 + 0.5) (Fig. 5C). Finally, the centrality of
betweenness was also significantly higher in temperate forest networks
(0.21 + 0.03) than in tropical networks (0.11 + 0.02) (Fig. 5H). Such
results suggested lower complexity of microbial co-occurrence networks
in tropical forests than that in temperate forests.
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Fig. 4. Relative frequencies of the top ten most frequent co-occurrence patterns in tropical and temperate networks. Microbial-microbial (A), fungal-microbial (B),

and diazotrophic-microbial (C) co-occurrence patterns were analyzed. Welch’s t-test (unequal variances t-test) was used here. * indicates p value < 0.1, and **
indicates p value < 0.05.
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Fig. 5. Network parameters for microbial co-occurrence networks inferred in different forests. Major parameters including number of nodes (A), average connec-
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3.4. Linkages between co-occurrence networks and biogeographic
parameters

Finally, we assessed whether microbial co-occurrence networks vary
with the same biogeographic variables that shapes macro- and microbial
communities. We first noticed a clear trend of decreasing network
complexity with increasing temperature (Fig. 5A). Such trend dimin-
ished when viewed by latitude. Interestingly, with the exception of
average geodesic distance and centralization of degree, most network
parameters we analyzed were significantly correlated with several

biogeographic properties (Fig. 6). Specifically, average connectivity and
H-index of node connectivity increased significantly (P < 0.05) with
latitude (R = 0.88 and 0.83, respectively), decreased significantly (P <
0.05) with temperature (R = —0.99 and —0.91, respectively), soil NHZ
(R = —0.88 and —0.84, respectively), plant richness (R = —0.83 and
—0.79, respectively, P < 0.1 for H index), plant diversity (R = —0.96 and
—0.89, respectively), precipitation (R = —0.88 and —0.74, respectively,
P < 0.1 for H index), and marginally (P < 0.1) with soil NO3 (R = —0.81
and —0.74, respectively). The network modularity, however, increased
significantly (P < 0.05) with temperature (R = 0.86), precipitation (R =

© ) Fig. 6. Linkage between microbial co-occurrence
‘\‘ &\3‘ .@’&\ \s\‘) c‘)(\‘\é 6‘9’ network properties and biogeographic parameters.
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Average connectivity | #% ol .. . o |1 rameters related with temperature seemed to the
g . strongest. Red indicates positive correlations, and
Average geodesic distance . green indicates negative correlations. * indicates p
value < 0.1, and ** indicates p value < 0.05. (For
Hindex B - " . . | interpretation of the references to color in this figure
: legend, the reader is referred to the Web version of
o e this article.)
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0.83), soil moisture (R = 0.84), and marginally with plant diversity (R =
0.75). These results suggested that the complexity of microbial co-
occurrence networks was shaped by several biogeographic parameters,
among which temperature was the strongest one.

4. Discussion

Ecological network analysis is an effective method for identifying
potential species interactions and co-occurrence patterns that cannot be
observed directly (Fath et al., 2007). Multiple methods have now been
developed to infer microbial co-occurrence networks using different
types of data (Zhou et al., 2010; Faust et al., 2012; Friedman and Alm,
2012; Xia et al., 2013). Although strict statistical methods and cutoffs
were used to construct highly confident co-occurrence networks across
multiple domains, one potential issue was the possibility of introducing
false positives when integrating nifH and 16S amplicon data. By
checking the connections established between 16S and nifH OTUs, no
OTUs belonging to the same genera was found. In addition, previous
shotgun metagenome sequencing suggested <1% diazotrophic com-
munity abundance in soil ecosystems (Tu et al., 2017). Therefore, the
chance of getting artificial connections between 16S and nifH OTUs
would be very low. Although potential false positives might also be
introduced due to preferential amplification when using relative abun-
dance data, the importance of relative abundance were not ignored
when comparing with occurrence data. Microbial co-occurrence pat-
terns revealed in this study were used to infer potential biogeographic
patterns for the complexity of microbial communities beyond conven-
tional species richness and abundance. The study moves beyond con-
ventional descriptive analysis of microbial community diversity and
structure, and illustrates how new methodologies can help elucidate
potential mechanisms governing microbial community assembly across
time and space.

In this study, microbial co-occurrence networks were constructed
and analyzed by recruiting 126 samples in six American forests collected
in summer, the season that both microorganisms and plants are most
active. As a result, we found that tropical and temperate forests differed
significantly in microbial co-occurrence network properties. Distinct
module hubs were found between tropical and temperate forest net-
works. Microbial co-occurrence networks in tropical forests were less
complex than those in temperate forests in terms of several network
properties, such as normalized number of nodes and links, average
connectivity, H index of nodes connectivity and betweenness of cen-
trality. Because tropical ecosystems generally harbor much higher
biodiversity for both macro-organisms (Gaston, 2000; Willig et al.,
2003; Hillebrand, 2004; Mittelbach et al., 2007) and microorganisms
(Tuet al., 2016a; Zhou et al., 2016), it is expected that microbial species
in tropical rainforests would interact with more species, leading to less
specialized biotic interactions in species-rich trophic forests (Schleuning
et al., 2012). This striking observation suggests that higher microbial
diversity does not necessarily come with more complex co-occurrence
networks. From a theoretical perspective, this observation could be
explained by at least two ecological theories. The first one is the
species-energy relationship (Wright, 1983; Gaston, 2000). Tropical
rainforests harbor higher primary productivity and species diversity
than temperate forests, providing more diverse energy sources for the
microbial communities. As a result, microbial species in tropical eco-
systems tend to be supported by more environmental energy and nu-
trients, instead of by interacting with other species in complex manners.
This is also supported by our observation that network parameters such
as average connectivity and H-index were significantly negatively
correlated with plant richness and diversity. The second one is func-
tional redundancy for microbial communities (Allison and Martiny,
2008; Miki et al., 2014). Higher microbial diversity in tropical ecosys-
tems could lead to higher degree of functional redundancy. Because
microbial species tend to interact with each other by function/meta-
bolites preference (Levy and Borenstein, 2013; Tu et al., 2016b), high
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microbial diversity and functional redundancy in tropical ecosystems
provides more chances for microbial species in establishing relation-
ships within neighborhoods. This, as a result, would lead to weakened
microbial correlations and simplified co-occurrence networks. Notably,
similar trend was also observed for macro-organisms that more
restricted and specified niches were found towards lower latitudes,
which was also explained by the higher diversity of energy resources at
low latitudes (Aratijo and Costa-Pereira, 2013).

Keystone nodes were dramatically different between microbial co-
occurrence networks in tropical and temperate forests. The module
hubs in tropical forest networks were dominated by OTUs belonging to
Proteobacteria, while the module hubs in temperate forest networks were
dominated by Acidobacteria OTUs. Because the taxonomic information
of most of these keystone OTUs were unknown at species or even genus
level, it was almost impossible to confidently infer the potential
ecological function of these OTUs. Limited information suggested that
these keystone OTUs (e.g. Syntrophobacterales, Burkholderiales, Rhizo-
biales, Acidobacteria Gpl) are mainly aerobic and heterotrophic organic
decomposers that can provide nutrients to plants and other organisms in
the environment (Boone and Bryant, 1980; Master and Mohn, 1998;
Delmotte et al., 2009; Erlacher et al., 2015; Kielak et al., 2016). Inter-
estingly, environmental factors seemed to play important roles for the
dominance of different keystone nodes in temperate and tropical net-
works. For example, the dominance of Acidobacteria OTUs as keystone
nodes could be due to the lower pH, higher C/N ratio and lower tem-
perature in temperate forests (Jones et al., 2009; Mannisto et al., 2013).

Higher frequencies of fungal-microbial and diazotrophic-microbial
co-occurrence patterns were observed in tropical rainforest ecosys-
tems. Fungi are ubiquitous in the environment and play important
ecological functions associated with nutrient and carbon cycling pro-
cesses in soil (Christensen, 1989). Soil diazotrophs also play important
ecological roles that convert atmospheric N to biologically available
ammonium, and contribute about 128 Tg N per year to terrestrial eco-
systems (Galloway et al., 2004). Metabolic theory of ecology predicts
that higher temperatures in tropical rainforests will drive accelerated
rates of ecosystem metabolism, energy flow, and nutrition turnover rate
(Brown et al., 2004). These accelerated rates are likely being partly
contributed by the higher frequency of fungal-microbial and
diazotrophic-microbial interactions, reflecting the metabolic theory of
ecology (Brown et al., 2004) at the angle of microbial co-occurrence
networks. This is generally consistent with the diversity gradient pat-
terns for macro- and microbial community structure and diversity
(Brown et al., 2004; Fuhrman et al., 2008; Fuhrman, 2009; Tu et al.,
2016a; Zhou et al., 2016). However, such observation may vary with
different soil types and/or seasons. For example, greater saprotrophic
fungal activity in the autumn than in the summer was found for
temperate forests (Voriskova et al., 2014), which may lead to differed
microbial co-occurrence patterns.

Documenting whether microbial co-occurrence networks exhibit any
biogeographic pattern is a great challenge in microbial ecology.
Unraveling the linkages between microbial co-occurrence networks and
biogeography could provide novel insights into the community assem-
bly process of microorganisms (Barberan et al., 2012), and help move
the field beyond traditional description of community composition and
structure. The current study documents clear biogeographic patterns for
microbial co-occurrence networks that temperate forest ecosystems
exhibited more complex microbial co-occurrence networks than tropical
ecosystems, and microbial co-occurrence networks were mainly modu-
lated by temperature, followed by plant diversity, latitude, soil nitrogen,
and precipitation. Our previous studies on these six forests suggested
clear temperature and latitudinal gradient patterns of diversity for
prokaryotic, fungal and soil diazotrophic communities (Tu et al., 2016a;
Zhou et al., 2016). As we expected a close relationship between micro-
bial co-occurrence networks and community diversity, we also hy-
pothesized that microbial co-occurrence networks may follow
traditional biogeographic patterns (e.g. latitudinal gradient and pH
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gradient), as have been observed for macro- and microbial community
diversity and structure (Fierer and Jackson, 2006; Lomolino et al., 2006;
Martiny et al., 2006; Green et al., 2008). While we expected that high
microbial diversity would lead to high community complexity in trop-
ical forests, the complexity of microbial co-occurrence networks
decreased with increasing temperature and decreasing latitude, which is
opposite to the traditional latitudinal gradient patterns of biodiversity.
The observed biogeographic patterns for microbial co-occurrence
network complexity were also quite different from the well-recognized
pH gradient patterns for microbial diversity in soil ecosystems (Fierer
and Jackson, 2006; Griffiths et al., 2011) that no significant correlation
was found between soil properties (e.g. pH and TC) and network
complexity parameters. Such inconsistent observation could be due to
the relatively narrow range of soil pH, but wide spanning of mean
annual temperature in these six forests. This was generally consistent
with our previous observations that temperature rather than pH was the
strongest factor shaping microbial community diversity and structure in
these six forests (Tu et al., 2016a; Zhou et al., 2016).

Interestingly, parameters related with node connectivity (e.g.
average connectivity and H index) were mainly correlated with lat-
itudinal parameters (e.g. latitude, temperature, precipitation and plants)
and soil ammonia, while the network modularity was mainly correlated
with latitudinal parameters (e.g. temperature and precipitation) and soil
moisture. As node connectivity reflects the degree that each species co-
occurs with other species in the network, the high correlation between
soil ammonia and node connectivity parameters suggested the impor-
tance of ammonia in potential microbial interactions, which has also
been observed for fungal communities (Tu et al., 2015). This suggested
the availability of nutrition ammonia could be an important factor
driving the interactions among microbial species. As microbial species in
the same module could be regarded as sharing similar niches, the high
correlation between network modularity and biogeographic properties
(e.g. temperature, precipitation and soil moisture) also suggested the
importance of these parameters in shaping niche specialization of mi-
crobial communities. The observed gradient pattern of network modu-
larity was also similarly observed for ecological niche specialization of
macro-organisms (Aratijo and Costa-Pereira, 2013). Interestingly, such
observation is quite consistent with MacAuthur’s latitude-niche breadth
hypothesis (MacArthur, 1984).

In summary, this study documented the biogeographic patterns of
microbial co-occurrence networks in American forests at the continental
scale. Our results showed that temperate forest ecosystems exhibited
more complex microbial co-occurrence network patterns than tropical
ecosystems, and microbial co-occurrence networks were mainly modu-
lated by temperature, followed by plant diversity, soil N and precipita-
tion. This study suggests that biogeographic variables like temperature
not only mediate microbial community diversity and composition, but
also the co-occurrence ecological networks among microbial species.
Notably, the study was carried out based on soil samples collected at a
single time point in summer and with relatively low coverage of soil
types, whether the same patterns could be observed in different seasons
and in other forests and soil types remain to be further explored. In
addition, further experimental validations are also required to verify the
potential relationship among different microbial species.
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