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Summary

Revealing the spatial scaling patterns of microbial
diversity is of special interest in microbial ecology.
One critical question is whether the observed spatial
turnover rate truly reflect the actual spatial patterns
of extremely diverse microbial communities. Using
simulated mock communities, this study suggested
that the currently observed microbial spatial turnover
rates were overestimated by random sampling pro-
cesses associated with high-throughput meta-
genomic sequencing. The observed z values were
largely contributed by accumulated microbial taxa
due to cumulative number of samples. This is a cru-
cial issue because microbial communities already
have very low spatial turnover rate due to the small
size and potential cosmopolitism nature of microor-
ganisms. Further investigations suggested a linear
relationship between the observed and expected z
values, which can be applied to remove random sam-
pling noises from the observed z values. Adjustment
of z values for data sets from six American forests
showed much lower spatial turnover rate than that
before adjustment. However, the patterns of z values
among these six forests remained unchanged. This
study suggested that our current understanding of
microbial taxa—area relationships could be inaccu-
rate. Therefore, cautions and efforts should be made
for more accurate estimation and interpretation of
microbial spatial patterns.

Introduction

Examining whether microbial communities follow similar
ecological laws as macro-communities is challenging but
of critical importance in microbial ecology (Prosser et al.,
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2007). One such example is taxa—area relationship
(TAR), for which a positive power law relationship is
expected between the number of species and the size of
sampling area. Relating TARs with the complex microbial
communities will not only provide insights into the funda-
mental processes that determine biodiversity (Meyer
et al., 2018), but also help extend the generality of empiri-
cal patterns and support mechanistic hypotheses that liv-
ing entities follow universal laws (Martiny et al., 2006;
Storch et al., 2012). Although the relationship for macro-
communities was noticed as early as in 1920s
(Arrhenius, 1921), it was only about 15 years ago when
recognition of TAR for microbial communities was
achieved owing to the advances in molecular techniques
(Green et al., 2004; Horner-Devine et al., 2004; Bell
et al., 2005; Smith et al., 2005). Recent in-laboratory
experiments also demonstrated evidences that microbial
communities did follow this classic ecological theorem
(Delgado-Baquerizo et al., 2018).

In contrast to TAR analyses for macro-communities,
one critical issue in exploring the spatial patterns of
microbial diversity is the inability to completely capture all
microbial taxa in the sampling area due to the high diver-
sity and small size of microorganisms. As a result, the
observed microbial spatial turnover rate (z value) is often
based on severely underestimated microbial taxa rich-
ness in the sampling area, especially when techniques
like clone library sequencing and denaturing gradient gel
electrophoresis were used. Over the past decade, high-
throughput metagenomic technologies have revolution-
ized microbial community studies (Poisot et al., 2013;
Zhou et al., 2015). Recent studies using high-throughput
technologies have demonstrated the success of applying
such technologies in analyzing the spatial patterns of
microbial diversity by obtaining far more microbial taxa
than previously (Zhou et al., 2008; Tripathi et al., 2014;
Zinger et al., 2014; Tu et al., 2016; Zhou et al., 2016;
Deng et al., 2018). The problem caused by rare species
not detectable by traditional molecular techniques
seemed to be more or less overcome. Comparison of
DNA fingerprinting and meta-barcoding approaches sug-
gests that the latter provides significantly higher and
more accurate estimates of soil bacterial TAR (Terrat
et al., 2015).
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However, recent studies also suggest low reproducibil-
ity due to random sampling artefacts in metagenomic
sequencing, even among technical replicates, leading to
overestimated microbial B-diversity (Zhou et al., 2011;
Zhou et al., 2013; Zhan et al., 2014). As microbial TARs
can be considered as a different form of p-diversity, the
spatial turnover rate of microbial communities may also
be affected by random sampling processes. Specifically,
each gram of soil contains as many as 102 prokaryotic
cells and 10* species (Whitman et al., 1998; Torsvik and
Ovreds, 2002; Daniel, 2005). Random sampling pro-
cesses associated with metagenomic sequencing
(e.g. sample collection, DNA extraction, polymerase
chain reaction [PCR] amplification, library construction
and sequencing) hamper complete capturing such highly
diverse microbial communities. Every time a sample is
sequenced at a specific depth (e.g. 30 000 reads), a
number of new microbial species/operational taxonomic
units (OTUs) are obtained even though these samples
harbor homogeneous microbial communities in reality. As
a result, noises are added to microbial spatial scaling
analysis, leading to inaccurate spatial turnover rate
estimation.

In this study, we aimed to investigate how microbial spa-
tial scaling patterns were affected by random sampling
issues associated with high-throughput metagenomic
sequencing. We constructed simulated microbial commu-
nity pools following log-normal distribution and evaluated
the effects of random sampling issues on microbial TAR
analyses. We hypothesized that similar to microbial
pB-diversity estimation, microbial spatial turnover rates are
also routinely overestimated due to random sampling
issues. The relationship between observed and expected
z values were then analyzed using simulated mock com-
munities with presetting microbial spatial scaling patterns.
Effort was made to remove random sampling noises from
observed microbial spatial turnover rates. The results
suggested that the currently observed microbial spatial
scaling patterns could be overestimated by as high as
50%. This study challenges the conventional idea that
microbial spatial turnover rates are underestimated due to
undetected rare species in the environment.

Results

Assessment of random sampling artefacts associated
with microbial spatial scaling analyses

For macroorganisms with large body size, species—area
relationship mainly refers to the relationship between the
number of species found in an area and the size of the
area. The number of species increases with the area with a
power law relationship. In contrast, for microbial communi-
ties, it is impossible to fully capture all microorganisms in
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the sampling area with current technologies. Therefore, the
observed microbial TAR is in fact a result of the new micro-
bial taxa found in new sampling area (expected TAR), as
well as those detected by cumulative number of samples
(i.e. the Collector curve), the latter of which is basically a
result of random sampling processes associated with meta-
genomic sequencing. Here, the Collector curve describes
the number of accumulated microbial taxa with cumulative
number of samples. This in general equals to sample-
based species accumulative curves (Gotelli and Colwell,
2001). Due to the small size, high diversity and potential
cosmopolitanism nature of microorganisms, such random
sampling processes in metagenomic sequencing could
have non-negligible effects on microbial TAR analyses and
may even serve as the major contributor to the observed
microbial TARs.

To assess the effects of random sampling processes
on microbial TARs, a simulated experiment was carried
out. In this simulated experiment, a typical sampling
scheme with six-circled sampling regions ranging from
1 to 100 m in radius was established (Fig. 1A). Micro-
bial communities in these sampling regions were set
homogeneous so that a spatial turnover rate of zero
was expected, though this can hardly be achieved in
reality. However, the extremely high diversity of micro-
bial communities hampered complete capturing of
microbial taxa in the ecosystem via any high-
throughput technologies, including metagenomic
sequencing. Random sampling issues were associated
with every procedure in surveying microbial communi-
ties, such as sampling, DNA extraction, PCR amplifica-
tion, library construction and sequencing. For instance,
a typical microbial community in a gram of soil contains
as high as 10* species and 108 organisms (Whitman
et al., 1998; Torsvik and Qvreds, 2002; Daniel, 2005)
and usually follows log-normal species abundance dis-
tribution (Shoemaker et al., 2017; Wu et al., 2019).
When 30 000 high-quality sequences per sample were
obtained, simulated data sets suggested that the num-
ber of captured microbial taxa per sample was about
4500. The more samples that were sequenced, the
more microbial taxa were captured. Therefore, the
observed microbial TAR (Fig. 1B and C) could be in
fact an analogue of “the Collector curve” (i.e. sample-
based taxa accumulation curve) (Fig. 1D and E). That
being said, the observed microbial TARs were more
likely describing the relationship between the number
of accumulated microbial taxa with cumulative number
of samples rather than sampling area. It is therefore of
critical importance to figure out to what level microbial
spatial scaling patterns are affected by random sam-
pling processes. And what is more important is how to
minimize such random sampling effects on microbial
spatial turnover rates.
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Fig. 1. Comparative illustration of microbial TAR and the Collector curve.

A. A typical microbial TAR sampling design.
B. Relationship between species richness and sampling area.

log(number of samples)

C. Relationship between log transformed species richness and sampling area.

D. Relationship between species richness and the number of samples.

E. Relationship between log transformed species richness and the number of samples.

Random sampling processes led to dramatically
overestimated microbial spatial turnover rates

To evaluate to what degree random sampling processes
affected microbial spatial turnover rates, a simulated
microbial TAR experiment was designed and performed
that each new sampling area had 500 new taxa compar-
ing to the inner sampling region. Mock community pools
in each new sampling area were composed of 10* taxa
and 10® organisms in each gram of soil. For each new
sampling area, four samples were collected. For each
sample, a sequencing depth of 30 000 high-quality reads
was mimicked via random sampling from the
corresponding community pools. Under such circum-
stances, a theoretical microbial spatial turnover rate of
0.025 was expected (Fig. 2A). However, the observed
microbial spatial turnover rate turned out to be 0.052
(Fig. 2B). This was more than doubled comparing to the
theoretical value. Notably, it was also found that the
expected z value (0.025, Fig. 2A) cannot be obtained by
simply subtracting the “noised” slope value (0.031,
Fig. 1E) from the observed z value (0.052, Fig. 2B).

Evaluation of experimental approaches to reduce
random sampling issues in microbial spatial scaling
analyses

Random sampling issues occur when insufficient sampling
effort is made towards the studying object. Therefore, two

approaches are expected to reduce random sampling
noises in microbial spatial scaling analyses, including
increasing the sequencing depth and increasing the num-
ber of samples. Simulated microbial TAR experiments with
homogeneous communicates were set up to evaluate the
effects of sequencing depth and number of samples in
reducing random sampling issues. Under such circum-
stances, z value of zero was expected for microbial TAR.
Therefore, the observed microbial TAR slope coefficient
values solely represented noises introduced by random
sampling processes (z.s). We first evaluated how increas-
ing number of samples reduced random sampling noises
in microbial spatial scaling analyses. A typical sequencing
depth of 30 000 high-quality sequences was generated for
each sample. The relationship between z,; and number of
samples was investigated. As expected, the z value
decreased with increasing number of samples (Fig. 3A).
When 10 samples were collected for each sampling area,
a z,s value of 0.0144 could be observed. Secondly, the
relationship between z,s and sequencing depth was
investigated. For each sampling area, a typical sampling
size of four samples was made. Again, the value of z.
decreased with increasing sequencing depth (Fig. 3B).
When a sequencing depth of 100 000 was reached, the
value of z,s decreased to 0.0154. Combined approach with
10 samples per sampling area and sequencing depth of
100 000 sequences per sample was also evaluated. As a
result, the value of z decreased to 0.0085. Although
much lower, this was still a high noise in microbial TAR
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Fig. 2. Expected (A) and observed microbial TARs (B) when (i) each new sampling area was associated with 500 new species; (ii) sequencing
depth of 30 000 sequences/sample was mimicked for each mock community; and (iii) each mock community pool was composed of 10* species

and 108 organisms.
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Fig. 3. Relationship between z, (slope of microbial TARs contributed

by random sampling processes) and number of samples (A) and

sequencing depth (B).

As expected, decreased z,s values with increasing number of sam-

ples and sequencing depth could be observed.

analyses because microbial communities usually had flat
slopes.

Computational adjustment of overestimated microbial
spatial turnover rates

Effort was then made to more effectively reduce random
sampling noises from microbial spatial scaling analyses

mathematically and computationally. Theoretically, the
observed microbial spatial turnover rate sources from two
parts including the actual z value and the noises intro-
duced by random sampling processes (z,s). However,
due to current technical limitations that the complex
microbial communities cannot be fully captured, the
actual spatial turnover rate is only partially reflected in
the observed z value. Therefore, the relationship between
the observed z value (zqps), the expected z value (Zexp)
and the random sampling noises (z,s) can be described
as the following function:

Zobs =kzexp +Zys, (1)

where zqps and zep, respectively, represent the observed
and expected microbial spatial turnover rates, z,5 is the
noises introduced by random sampling processes and k
is the factor referring to the degree that the actual micro-
bial spatial turnover rate that can be captured under cur-
rent sequencing depth.

Simulated microbial TAR experiments were designed
to verify the relationship between the observed and
expected z values, with the purpose to gain clues for cor-
rect estimation of the actual microbial spatial turnover
rates in the ecosystem. Because sequencing depth is a
major factor related with random sampling processes,
experiments analyzing the relationship between microbial
spatial scaling patterns and sequencing depth were then
designed. Five sequencing depths varying from 10 000 to
50 000 sequences per sample were simulated. For each
increased sampling area, an addition of 500 to 3000 new
microbial taxa was set. The relationship between the
observed and expected z values was then inspected
(Equation [1]). As a result, clear linear relationship could
be observed between the observed and expected
z values (Fig. 4A-E). Such relationship was consistent
with the linear function inferred theoretically for the
observed microbial spatial scaling patterns. This
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Fig. 4. A-E. The relationship between observed and expected z values under different sequencing depth.

F,G. k and z,s values under different sequencing depth.

For each sequencing depth, microbial TARs were preset at six degrees, including 500, 1000, 1500, 2000, 2500 and 3000 new species per new

sampling area; sd denotes sequencing depth.

demonstrated that the observed microbial spatial turnover
rate was determined by two factors, including the
“noised” z value due to random sampling and the “cap-
tured” z value under current sequencing depth. Notably,
increased k (Fig. 4F) and decreased zs (Fig. 4G) values
with increasing sequencing depth could be respectively
observed. Such trends of k and z, values were within
expectation because increased sequencing depth could
result in more captured microbial taxa in the environment,
thus reducing random sampling effects in microbial TAR
analyses.

Adjusting z values for real studies

The above z adjustment equation was then applied to
adjust the observed z values in six forests in North and
Central America. For each forest, four samples were,
respectively, collected at radii of 1, 10, 50, 100 and
200 m, resulting in 20 samples per forest. For each sam-
ple, a random subsampling of 20 000 sequences per
sample was performed. Microbial TARs were analyzed at
an identity cut-off of 97% for OTU clustering. Estimated
k and z, values under this sampling design and
sequencing depth were, respectively, 0.77 and 0.031.
The observed z values without adjustment were 0.068 for
Barro Colorado Island, Panama (BCl), 0.050 for Luquillo
Long-Term Ecological Research (LTER), Puerto Rico
(LUQ), 0.056 for Coweeta LTER, North Carolina (CWT),
0.053 for H.J. Andrews LTER, Oregon (AND), 0.054 for
Harvard Forest LTER, Massachusetts (HFR) and 0.053
for Niwot Ridge LTER, Colorado (NWT) respectively.
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Fig. 5. Observed and adjusted microbial TAR z values in six Ameri-
can forests based on 16S amplicon sequencing data sets.

Error bars represent standard deviations.

AND, H.J. Andrews LTER, Oregon; BCI, Barro Colorado Island, Pan-
ama; CWT, Coweeta LTER, North Carolina; HFR, Harvard Forest LTER,
Massachusetts; LUQ, Luquillo LTER, Puerto Rico; NWT: Niwot Ridge
LTER, Colorado.

After adjustment, the adjusted z values were 0.048 for
BCI, 0.025 for LUQ, 0.032 for CWT, 0.028 for AND,
0.030 for HFR and 0.029 for NWT respectively. These
adjusted values were approximately 50% to 70% of the
observed values (Fig. 5). Notably, it was noticed that the
patterns of variations of observed and adjusted z values
among different forests remained unchanged. This
suggested that z adjustment resulted in more accurate
microbial spatial turnover rates but did not change the
patterns of z value variations among different sampling
sites.
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Discussion

Random sampling issues are critical for microbial spatial
scaling analyses

Determining whether microbial communities follow gen-
eral ecological laws (e.g. TAR) is of critical importance in
microbial ecology. This not only provides insights into the
fundamental processes that determine biodiversity
(Meyer et al., 2018), but also helps extend the generality
of empirical patterns and support mechanistic hypothe-
ses that living entities follow universal laws (Martiny
et al., 2006; Storch et al., 2012). As one of the potential
ecological laws also followed by microorganisms, spatial
patterns of microbial diversity have gained extensive foci
in microbial ecology. However, owing to the huge diver-
sity of microbial communities in natural ecosystems
(Whitman et al., 1998; Torsvik and @vreas, 2002; Daniel,
2005), it is almost impossible to thoroughly investigate
microbial spatial scaling patterns as what have been
done for plants and animals (Connor and McCoy, 1979).

Random sampling is an unneglectable issue when sur-
veying the immense microbial world, no matter which
technology is used. In the old time using traditional
molecular techniques, microbial spatial turnover rates
might be underestimated because the effects of rare taxa
could be much greater than that of random sampling pro-
cesses, especially when only a few dozens or hundreds
of microbial taxa were captured. However, in the high-
throughput metagenomic sequencing era when rare
microbial taxa become detectable, random sampling
could be a major issue affecting microbial diversity analy-
sis, such as overestimating microbial p-diversity (Zhou
et al., 2011; Zhou et al., 2013; Zhan et al., 2014). This is
an especially critical issue for microbial communities hav-
ing relatively flat spatial scaling slopes if random sam-
pling noises exceed the actual microbial spatial turnover
rates. It is therefore of necessity to investigate the effects
of random sampling noises on microbial spatial scaling
analyses and to remove such noises from the observed
microbial spatial turnover rates.

Methods to reduce random sampling noises and our
recommendations

Interestingly, this study found that the effects of random
sampling noises on microbial spatial scaling patterns
were mainly determined by sequencing depth, which was
also the factor affecting the degree to which the actual
microbial spatial turnover rate could be captured. A linear
relationship was observed between the observed and
expected microbial spatial turnover rates. A mathematical
approach was developed to adjust microbial z values by
removing random sampling noises. Based on the linear
function, random sampling affected microbial z values in
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two parts, including z,s (noises introduced by random
sampling) and k (the degree of actual z values captured
by current sequencing depth). Importantly, both z,; and
k were mainly determined by sequencing depth. That
being said, in a community with known microbial diversity
(e.g. the number of microbial species and organisms in
each gram of soil) and fixed experimental design
(e.g. number and size of sampling areas and the number
of samples per sampling area), removing random sam-
pling noises from microbial spatial scaling patterns could
be approached mathematically (i.e. by estimating z,s and
k values). Re-estimation of microbial spatial turnover
rates suggested that z values for soil microbial communi-
ties ranged from 0.025 to 0.048 in six American forests.
Importantly, the patterns of adjusted z values among dif-
ferent forests remained unchanged, suggesting that com-
parative results of microbial spatial scaling patterns
among different ecosystems were still valid.

Random sampling noises could also be reduced exper-
imentally, such as by increasing the number of samples
and sequencing depth, which are also evaluated in this
study. Previous studies also suggested that the slope
coefficients of microbial TARs were influenced by several
different factors including removing rare taxa or not, the
number of sampling sites (Zinger et al., 2014) and the
cut-off used for OTU clustering (Horner-Devine et al.,
2004). Among these factors, increasing the number of
samples could reduce random sampling effects without
artificially changing microbial community structure and/or
microbial taxa definition. Besides that, increasing
sequencing depth and sampling area are also expected
to experimentally reduce random sampling noises. How-
ever, these approaches seem neither economical nor
practical. For instance, using homogeneous mock com-
munities, z,s values of 0.024 and 0.019 were still, respec-
tively, observed when increasing sequencing depth to
50 000 and number of samples to 10. Based on the find-
ings in this study, we therefore recommend to perform
microbial spatial scaling studies with reasonable
sequencing depth (e.g. =50 000 sequences per sample)
and number of samples (e.g. =4 samples per increasing
sampling area), then to remove random sampling noises
computationally as described in this study.

In addition to using nested sampling design (Green
et al., 2004; Horner-Devine et al., 2004; Zhou et al.,
2008; Tu et al., 2016; Deng et al., 2018), microbial spatial
patterns can also be analyzed using non-nested sam-
pling designs (Bell et al., 2005; Zinger et al., 2014). Theo-
retically, there is no difference between these two
sampling designs in investigating microbial spatial scaling
patterns. However, it should be noted that the number of
samples per increasing sampling area are usually the
same for nested sampling designs, while it may not be
the case for non-nested sampling designs. This could be

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 2140-2149
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a potential issue in estimating and removing random
sampling noises from microbial spatial scaling patterns
because uneven number of samples could lead to
uneven random sampling noises. Similarly, the sequenc-
ing depth, another factor related with random sampling
noises, should also be the same among different
samples.

The actual situation of microbial TAR may still remain
unknown

We also would like to point out that the proposed
z adjustment method only aimed to remove noises cau-
sed by random sampling issues associated with meta-
genomic sequencing, but not to uncover the genuine
microbial TARs in the ecosystems. In fact, uncovering
the genuine microbial TARs is almost impossible based
on our current knowledge and technologies. Assuming a
typical microbial TAR experiment was carried out in a
small region (e.g. 100 m in radius) and the top 20 cm soil
was collected, and assuming each gram of soil contained
108 cells, the total microbial cells in this small region
should be ~ 6.28 x 10"”. This makes both experimental
surveying and computational simulation of such highly
diverse microbial communities almost impossible. There-
fore, the genuine situation of microbial TARs in natural
ecosystems still remains as an enigma.

Although many studies have been carried out showing
different microbial TARs for different taxonomic groups in
different ecosystems (Green et al., 2004; Horner-Devine
et al., 2004; Bell et al., 2005; Green and Bohannan,
2006; Zhou et al., 2008; Zinger et al., 2014; Tu et al.,
2016; Deng et al., 2018), there are also arguments
questioning the existence of microbial TARs (Finlay,
2002; Fenchel and Finlay, 2005; Green and Bohannan,
2006). Due to their small size and high abundance,
microorganisms may disperse further and faster, resulting
in almost nonexistent dispersal limitation and cosmopoli-
tan distributions. Intriguingly, recent studies by deep
sequencing suggested a persistent microbial seed bank
in the global ocean and the Western English Channel
(Caporaso et al., 2012; Gibbons et al., 2013), supporting
the arguments that microbial TARs may not exist. That
being said, the currently observed microbial TARs could
be solely due to random sampling issues. In this study,
we are not joining the debate whether microbial TARs
exist or not. Rather, we show evidences that the currently
observed microbial spatial turnover rates via high-
throughput metagenomic sequencing technologies are
overestimated by random sampling processes. This par-
tially complies with these recent discoveries (Caporaso
et al., 2012; Gibbons et al., 2013), but seems to be incon-
sistent with Woodcock et al.’s (2006) viewpoint that
undetected rare species underestimated microbial TARs.

Further implications

In addition to the spatial scaling patterns that we ana-
lyzed in this study, random sampling issues associated
with high-throughput metagenomic sequencing are also
expected to affect other microbial diversity studies, such
as taxa—time relationship, beta diversity, distancedecay
relationships (DDRs) and taxa—abundance distributions
(TADs). Among these, the effects of random sampling
issues on taxa—time relationship for microbial communi-
ties are similar to what have been investigated for micro-
bial spatial scaling patterns in this study. Beta diversity of
microbial communities are also expected to be over-
estimated by random sampling processes, as previously
reported (Zhou et al., 2011; 2013; Zhan et al., 2014).
Although random sampling issues may lead to over-
estimated beta diversity, the effects of random sampling
on DDRs and TADs of microbial communities are still not
clear. For instance, when pairwise community similarities
were calculated for microbial DDRs, the slopes of micro-
bial DDRs may not be strongly affected by random sam-
plings issues. Therefore, further investigations are
needed to figure out how random sampling issues affect
microbial DDRs and TADs.

In conclusion, determining the patterns of microbial
diversity across space and time is a central issue in
microbial ecology. However, revealing such patterns is
difficult due to the immense diversity of microbial commu-
nities. This study showed evidences that the currently
observed microbial spatial turnover rates via high-
throughput metagenomic sequencing were overestimated
due to random sampling processes. This is such a critical
issue that conventional experimental procedures such as
standardized sampling and increased number of samples
and sequencing depth cannot solve. As random sampling
issues are common in microbial ecology studies, the
methodological framework presented in this study may
also provide valuable clues to other microbial diversity
studies, such as microbial DDRs and TADs.

Methods
Methodological framework

This study aimed to investigate how random sampling
issues affected microbial spatial scaling analyses and
seek potential solutions to remove random sampling
noises from microbial spatial turnover rates. Using mock
communities and virtual microbial TAR sampling design,
the relationship between random sampling noises,
observed microbial z values and expected microbial
z values was investigated (Fig. 6). We also evaluated
different experimental methods (e.g. increasing number
of samples and sequencing depth) to see to what
degree random sampling noises could be removed

© 2020 Society for Applied Microbiology and John Wiley & Sons Ltd., Environmental Microbiology, 22, 2140-2149
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Fig. 6. Schematic illustration of simulated microbial TAR analyses in this study.
A. Microbial TAR analysis with Z.., = 0 (homogeneous community). A seed mock community pool following lognormal species abundance distri-

bution was first constructed with 10* species and 10® organisms.
B. Microbial TAR analysis with Ze,, > 0.

Mock community pools with N new species were constructed from the seed mock community pool. For both microbial TAR analyses, mock com-
munities at specific sequencing depth (e.g. 30000 sequences) were constructed from the seed mock community.

Microbial TAR analyses were carried out with the virtual sampling design. The relationship between zqps, Zexp and z,s were analyzed. Different
colours represent different microbial species. Star symbols represent new species. [Color figure can be viewed at wileyonlinelibrary.com]

experimentally. Effort was also made to develop compu-
tational approaches to remove random sampling noises.
The computational approach was then applied to a pre-
vious microbial TAR study in six American forests. The
patterns of microbial TARs among different forests were
analyzed.

Seed community construction

Because metagenomic amplicon sequencing of soil
microbial communities usually starts from 1 g of soil, a
seed mock community pool composed of 10* species
and 10® organisms (i.e. sequences) was generated
(Fig. 6A). The seed mock community pool followed log-
normal species abundance distribution, a pattern followed
by most microbial communities in both natural and artifi-
cial ecosystems (Shoemaker et al., 2017; Wu et al.,
2019). This seed mock community was later used as a
reference to generate other mock community pools
(Fig. 6B). The R package mobsim (Felix et al., 2018) was
used to generate the seed mock community and other
mock community pools in this study.

Evaluating random sampling effects on microbial spatial
turnover rates

To evaluate how random sampling issues affected micro-
bial spatial turnover rates, a typical virtual microbial TAR
sampling scheme was designed (Fig. 6A). In this sam-
pling scheme, multiple sampling areas were set with dif-
ferent radii. For each increased sampling area, four
samples were collected. For each sample, a random
subsampling of 30 000 sequences from the seed mock
community was performed, simulating a typical meta-
genomic sequencing process. The R command “sample.
int” was used to randomly select a subset of organisms
from the seed mock community pool. An OTU abundance
table was then generated for all samples in the microbial
TAR experimental design. Microbial spatial scaling pat-
terns were then analyzed using the generalization of
Arrhenius’ (1921) equation, by a double logarithmic
transformation:

log(Sobs) =€ +z xlog(A),
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where Sps is the number of observed species, ¢ is the
intercept parameter, A is the area and z is the slope coef-
ficient of TAR. Inspired by microbial TARs, the relation-
ship between S,,s and sample numbers was also
analyzed similarly. As a homogeneous composition of
microbial communities was expected in this experimental
design, the observed microbial spatial turnover rates
should be solely a result of random sampling processes.

Testing different methods to reduce random sampling
effects

The number of samples and sequencing depth were two
major factors related with random sampling effects, and
therefore were evaluated here. The evaluation was car-
ried out under the assumption that microbial communities
in the same sampling area were homogeneous, thus
microbial z values of zero were expected (Fig. 6A),
though this can be hardly achieved in reality. For each
sampling area, 4-20 mock communities at subsampling
depth of 30 000 per new sampling area were generated
and subjected to microbial spatial scaling analyses. For
sequencing depth, random subsampling of 10* to 10°
sequences per sample was performed, while the number
of samples per increased sampling area remained at
four. Random subsampling effects (z,s values) under dif-
ferent conditions were analyzed. The relationship
between z,¢ values, the number of samples and sequenc-
ing depth was investigated.

Computational adjustment of microbial z values

In order to figure out whether random sampling noises
could be removed from microbial spatial scaling patterns
computationally, mock communities with a series of pre-
setting microbial spatial turnover rates were constructed
to analyze the relationship between observed and
expected microbial z values (Fig. 6B). The seed mock
community constructed in the first step was used to rep-
resent microbial communities in the central sampling
area. For each increased sampling area, mock commu-
nity pools were generated based on the seed mock com-
munity. These community pools in each new sampling
area were designed to have n new species than their
inner sampling area so that a presetting microbial spatial
turnover rate was followed. Six degrees of microbial spa-
tial scaling patterns were designed that the numbers of
new species in each larger sampling area were respec-
tively 500, 1000, 1500, 2000, 2500 and 3000. To analyze
the relationship between random sampling effects and
sequencing depth, random subsampling of
10 000-50 000 organisms from the mock community
pools were performed. OTU abundance tables were gen-
erated for all 20 samples in the TAR experimental design.

The relationship between observed and expected micro-
bial z values was then analyzed.

Case study

The above-developed z adjustment method was applied
to analyze microbial TARs in six American forests. The
16S amplicon sequencing data set was downloaded
according to the previous study (Zhou et al., 2016).
These six forests included AND, CWT, HFR, LUQ, NWT
and BCI. A total of 126 soil samples (0-10 cm, 21 sam-
ples per site) were collected from the six forest sites in
the summer of 2012 for microbial community analysis.
Soil DNA was extracted, subjected to PCR amplification
and sequenced by lllumina MiSeq Platform. The sample
located in the central point was discarded from analysis
due to its zero area size. Microbial spatial scaling pat-
terns were analyzed for these six soil microbial communi-
ties. A comparison of the observed and adjusted
microbial z values was carried out. Details for experimen-
tal designing, sampling and sequence processing could
be found in Zhou et al. (2016).
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