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Design of Intermittent Control for Cortisol
Secretion under Time-Varying Demand

and Holding Cost Constraints
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and Rose T. Faghih, Member, IEEE

Abstract—Objective: We take the release of stress hormone
cortisol as a part of an intermittent control feedback system
in contrast to the existing continuous models. By modeling
cortisol secretion as an impulsive system, we design an impulsive
controller as opposed to a continuous controller for adjusting
cortisol levels while maintaining the blood cortisol levels within
bounds that satisfy circadian demand and cost constraints.
Methods: We develop an analytical approach along with an
algorithm for identifying both the timing and amplitude of the
control. Results: The model and the algorithm are tested by
two examples to illustrate that the proposed approach achieves
impulsive control and that the obtained blood cortisol levels
render the circadian rhythm and the ultradian rhythm consistent
with the known physiology of cortisol secretion. Conclusions: The
approach successfully achieves the desired circadian impulsive
control which has great potential to be used in personalizing
the medications in order to control the cortisol levels optimally.
Significance: This type of bio-inspired intermittent controllers
can be employed for designing non-continuous controllers in
treating Addisonian disease, which is caused by the adrenal
deficiency.

Index Terms—Mathematical modeling, algorithm, pulsatile
control, endocrine control, circadian rhythm.

I. INTRODUCTION

HORMONES are signaling substances that regulate many
vital bodily functions, such as growth, stress, and

metabolism. In the endocrine system, the hypothalamus and
the pituitary gland communicate with remote target glands
such as testes, thyroid and adrenal glands through a com-
bination of continuous and intermittent (pulsatile) signal ex-
changes [34]. Continuous signaling permits hormone con-
centrations to vary slowly, while pulsatile signaling allows
them to have instantaneous adjustment [34]. In fact, pulsatility
is a physiological mechanism through which hormone con-
centrations can increase rapidly and send distinct signaling
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information to target cells [32]. Compared with continuous
signaling, pulsatile signaling is more energy efficient, allows
more rapid changes in hormone concentrations, and offers the
control flexibility of not only amplitude but also frequency
modulation [38]. It is widely known that several hormones
such as gonadal steroid, growth, insulin and cortisol are re-
leased in a pulsatile manner [3, 15, 22, 27, 28, 30, 32, 33, 37].
However, pulsatile signaling is much less understood since
it is significantly different from continuous signaling [25].
Therefore, there is a great need to understand the physiology
underlying the pulsatile hormone release [9].

The hypothalamic–pituitary–adrenal (HPA) axis is one of
the most important endocrine systems, which controls in-
termittent release of cortisol. Cortisol is a steroid hormone
that is mainly responsible for regulating metabolism and the
body’s reaction to stress and inflammation [1]. It is known
that the mechanisms of the HPA axis are governed not only
by a circadian rhythm, but also by an ultradian pattern of
pulsatile release of cortisol [1, 7, 9, 34, 37, 38]. The pulsatile
release of cortisol from the adrenal glands is triggered and
controlled by a hierarchical system involving corticotropin-
releasing hormone (CRH) from the hypothalamus, adrenocor-
ticotropic hormone (ACTH) from the anterior pituitary, and
cortisol from the adrenal glands [1, 7, 26, 29]. CRH induces
the release of ACTH, followed by the stimulation of ACTH on
the release of cortisol. The hormone cortisol, which is cleared
by the liver, in turn exerts negative feedback effect on the
release of CRH and ACTH [1, 16, 26, 29], see Fig. 1.

Dysregulation of cortisol pulsatility is related to a number
of psychiatric and metabolic diseases [40, 41]. Due to ethical
reasons, direct measurement of endocrine glands (e.g., CRH)
cannot be made for healthy humans [34]. One may have to
rely on reasonable theoretical models to understand the sophis-
ticated control mechanisms, which involves (i) determining
the number, timing and amplitude of cortisol pulses, so-
called “secretory events”, to better understand the physiology,
effects of drugs and other interventions [6, 8]; (ii) designing
intermittent controllers to optimally control cortisol levels
(i.e., minimizing the number of secretory events as well as
maintaining the blood cortisol levels within bounds that satisfy
circadian demand and cost constraints) linked to cortisol
pulsatility [6, 9]. The latter might be useful in treating, e.g.,
Addisonian disease which is caused by the adrenal deficiency.

Since the hypothalamus, the pituitary gland, and the adrenal
glands are interacting in the HPA axis, in order to investigate
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Fig. 1: Compartment representation of plasma cortisol levels
where stimulatory and inhibitory interactions are depicted,
respectively, by → and a. The adrenal compartment includes
all elements of the HPA axis within the dotted box, while the
plasma compartment is where the diurnal cortisol rhythm is
observed.

pathological conditions related to cortisol and design optimal
treatment strategies, one may build a mathematical model
based on the physiology underlying the HPA axis, and then
develop signal processing and control algorithms for diagnos-
tic and treatment purposes. In addition to considering all of
the hormonal stimulations and inhibitions involved in the HPA
axis, a complete mathematical model of the diurnal cortisol
variation should also include the effects of the exogenous fac-
tors such as stress, meals, and sleep state [1, 20, 24]. Note that
simultaneous measurements of all these variables is impossible
for humans [1]. For this reason, in order to understand essential
control mechanisms of the HPA axis, we consider a “minimal”
model based on the known physiology of the HPA axis, which
captures those known essential characteristics of the observed
diurnal patterns [1, 7]. Biochemical and physiological evidence
from human investigations reveals that a minimum of two
compartments must be considered to represent the cortisol
diurnal pattern [1]. Following [1, 7], in this work we consider
two compartments as follows: (i) the adrenal compartment
including all elements of the HPA axis (see the dotted box
in Fig. 1), and (ii) the plasma compartment where the diurnal
cortisol rhythm is observed.

According to [1], the following three factors govern the
diurnal variation in plasma cortisol levels: (i) ultradian timing
of the cortisol secretory events, (ii) circadian control of cortisol
secretory amplitudes, and (iii) the kinetics of the cortisol
synthesis in the adrenal glands and infusion into, and the
clearance from the plasma from the liver.

Mathematically recovering the number, timing and ampli-
tude of hormone pulses can lead to an ill-posed problem
mainly due to existence of multiple solutions [6, 7]. Never-
theless, by using the characteristic of the sparsity of hormone

pulses and taking into account more constraints, several meth-
ods have been presented to estimate such quantities [7, 8, 13,
14, 34, 35, 36]. In some recent work [9, 6], an optimization
approach based on a two dimensional deterministic model
has been proposed to design impulsive inputs (i.e. determine
the timing, amplitude, and number of secretory events) to
achieve pulsatile dynamics in presence of circadian amplitude
constraints on the cortisol levels. As this optimization problem
is solved by the `1-norm minimization algorithm presented in
[2, 10], it can lead to finding suboptimal solutions, i.e., cortisol
levels do not satisfy the conditions that have to be satisfied.

The contribution of this paper is twofold. First, we present
a linear two dimensional impulsive system to describe the
pulsatile cortisol release. In sharp comparison to previous
works [6, 7, 8, 9, 13, 14, 35, 36] which take into account the
characteristic of the sparsity of hormone pulses, in this paper
we postulate that there exists an “impulsive” controller in the
anterior pituitary which allows the state of the system to have
instantaneous changes, and controls the cortisol secretion and
the ultradian rhythm of the pulses. Second, we propose an ana-
lytical approach to the design of an intermittent controller (i.e.
calculating the number, timing, and amplitude of impulsive
control input) in presence of circadian demand and holding
cost constraints on the blood cortisol level, which are assumed
to be two-harmonic time-varying circadian functions with
periods of 12 and 24 h [9] respectively. Different from previous
works [6, 7, 9] which gave an approximation of the secretory
events, our proposed method precisely calculates the secretory
events. The illustrated examples in Section III clearly show the
efficiency and accuracy of our method. One direct application
of our intermittent control design is determining the timing
and dosage of hydrocortisone (i.e. synthetic cortisol) injections
in Addisonian patients given desired circadian demand and
holding cost constraints on the blood cortisol levels and the
patients’ metabolic rate.

II. METHODS

A. Problem formulation

In this subsection, we propose an impulsive differential
equation model of diurnal cortisol patterns using the stochastic
differential equation model presented in [1], which is based
on the first-order kinetics for cortisol synthesis in the adrenal
glands, cortisol infusion to the blood, and cortisol clearance
by the liver [1, 7, 9, 5]. In the stochastic model proposed
in [1], the “pulsatile” input in the adrenal glands is supposed
to be doubly stochastic with amplitudes in Gaussian and inter-
arrival times in gamma distributions respectively. However,
in the model presented here, the input is considered to be
an “abstraction” of hormone pulses which results in cortisol
secretion. We make the following physiologically plausible
assumptions for the proposed model:

Assumption 1. (i) Cortisol levels can be described by the
first-order kinetics for cortisol synthesis in the adrenal glands,
cortisol infusion to the blood, and cortisol clearance by the
liver [1, 9].

(ii) There is a time-varying circadian holding function H(t)
on the cortisol level which is the highest cortisol level that
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u(t) :=
∑∞
k=1 ukδ(t− tk)

λ: infusion rate from the adrenal gland

γ: clearance rate from the plasma by the liver

Fig. 2: Representation of the two dimensional differential
equations (1) and (2). The variable x1(t) denotes the cortisol
concentration in the adrenal glands, and the variable x2(t)
denotes the serum cortisol concentration. The parameter λ is
the infusion rate from the adrenal glands to the plasma, while
γ is the clearance rate form the plasma by the liver. The input
u(t) is an abstraction of hormone pulses where the quantities
uk and tk (k = 1, 2, · · · ) are determined based on the state
variables of the system as well as the lower and upper bounds
D(t) and H(t) on x2(t); see Remark 3.

the body should produce in order to have a normal cortisol
profile [9]

(iii) There is a time-varying cortisol demand D(t) that
should be satisfied throughout the day, which is a function
of the circadian rhythm [9].

(iv) The input u(t) is non-negative since it is a hormone
secretory event (see Fig. 2).

In view of Assumption 1, we propose the following model
to control the secretion of cortisol:

dx1(t)

dt
= −λx1(t) + u(t), (1)

dx2(t)

dt
= λx1(t)− γx2(t), (2)

where the controller u(t) is denoted by

u(t) :=
∞∑
k=1

ukδ(t− tk), (3)

and the quantities uk and tk (k = 1, 2, ...) need to be computed
such that

D(t) ≤ x2(t) ≤ H(t), ∀t ≥ 0. (4)

Equations (1) and (2) describe the adrenal and the plasma
compartments, respectively (see Figs. 1 and 2). The variables
x1(t) and x2(t) respectively describe the concentration of cor-
tisol in the adrenal glands and the serum cortisol concentration
at time t. Following [1, 7], we denote λ > 0 as the infusion
constant governing the rate at which cortisol enters the blood
from the adrenal gland, and γ > 0 as the clearance parameter
describing the rate at which cortisol is cleared from the blood
by the liver. In (3), u(t) is an abstraction of the hormone
pulses leading to cortisol secretion, where δ(t) denotes the
Dirac delta-function, and uk represents the amount of the

Fig. 3: Estimated Deconvolution of the Experimental
Twenty-Four-Hour Cortisol Levels Using Model (1)-(2).
This figure shows the measured 24-hour cortisol time series
(red stars), the estimated cortisol level (black curve), the
estimated pulse timings and amplitudes (blue vertical lines
with dots). This figure is adapted from [7, Fig. 1].

hormone’s input which is implemented into the adrenal glands
at time tk. Once the quantities tk and uk (k = 1, 2, ...) are
known, the input u(t) is determined. Note that uk is zero if a
hormone pulse is not fired at time tk. In view of the known
physiology of de novo cortisol synthesis, which indicates that
no cortisol is stored in the adrenal glands, we assume that
the initial condition of the cortisol level in the adrenal glands,
dented by x01, is zero [1, 13], i.e. x01 = 0.

Remark 1. Since D(t) and H(t) are, respectively, the lower
and upper bounds on the cortisol level, we are only interested
in secretion times tk and inputs uk such that x2(t) remains
within these bounds (see Fig. 4).

Remark 2. In our analysis, we let the initial condition x2(t0),
denoted by x02, be any number within the upper and lower
bounds , i.e., D(t0) < x02 ≤ H(t0).

Remark 3. In equation (3), the quantities uk and tk (k =
1, 2, . . . ) are computed such that x2(t) satisfies the con-
straints (4). In this paper, we develop a method through which
we precisely calculate uk and tk step-wise forward in time.
These quantities are computed based on x2(tk−1), D(t) and
H(t) where t ≥ tk−1. So uk and tk can be viewed as functions
of x2(tk−1), D(t) and H(t); see Algorithm 1 below. Therefore,
one can interpret that we have provided a feedback control
law. Note that for the closed-loop system, its trajectory is
computed for given x1(t0), x2(t0), D(t) and H(t). This is
the reason in Algorithm 1 that the quantities uk and tk are
computed only by using x1(t0), x2(t0), D(t) and H(t).

Remark 4. Assuming that (i) the input u(t) is a sum of
impulses, (ii) the number of pulses is between 15 and 22 over
24 hours, and (iii) the jumps can happen in integer minutes, the
model (1)-(2) has been validated by collecting blood samples
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from 10 healthy women every 10 minutes for 24 hours [17].
Figure 3 shows the measured 24-hour cortisol time series (red
stars), the estimated cortisol level (black curve), the estimated
pulse timings and amplitudes (blue vertical lines with dots) for
participant 1. For the other participants, the interested reader
is refereed to [7, Fig. 1].

In view of equations (1) - (4), our goal hereafter is to
compute
(a) the secretory time tk at which x2(tk) = D(tk), and
(b) the input uk at the secretory time tk such that x2(t)

reaches the upper bound H(t) from D(tk) while not cross
it,

for k > 0 (see Fig. 4). The objective (a) gives time tk at which
x2(t) reaches the lower bound D(t) from the upper bound
H(t). This time needs to be calculated in order to know when
the next secretory event should occur. The objective (b) gives
the amount of the input uk so that after some time, x2(t)
reaches the upper bound H(t) from the lower bound D(t).
More precisely, when the input uk is implemented into system
at time tk, there exists t̃k > tk (k > 0) such that x2(t̃k) =
H(t̃k), see Fig. 4.

Equations (1)-(3) can be represented equivalently as follows:

dx(t)

dt
= Ax(t), t 6= tk,

x(t+k ) = x(t−k ) +Buk, t = tk,
(5)

where tk+1 > tk(∀k ≥ 0), and

x(t) =

[
x1(t)
x2(t)

]
, A =

[
−λ 0
λ −γ

]
, B =

[
1
0

]
.

The notations x(t−k ) and x(t+k ) in (5) denote, respectively, the
left- and right-hand sided limits of x(t) at time tk.

Mathematically, equations (5) are treated as follows. At
time tk, a pulse is fired, corresponding to the concentration of
cortisol in the adrenal gland, which is described by the jump of
its concentration, i.e. x1(t+k ) = x1(t

−
k )+uk, while it does not

affect the serum cortisol concentration, i.e. x2(t+k ) = x2(t
−
k ).

In this paper, x1(t) is considered to be left-continuous, i.e.,
x1(t

−
k ) = x1(tk).

B. The algorithm

In this subsection, we present a method through which we
are able to calculate tk and uk analytically. To this end, let us
use t̃k−1 (k > 1) to denote the time at which x2(t) reaches
the upper bound, see Fig. 4. For the case k = 1, we set t̃0 :=
t0. Note that the inputs in our algorithm, i.e. the initial time
and initial states, are explicitly given (see Algorithm 1). Our
approach for the computation of tk and uk is presented in the
following parts (a) and (b), respectively.

(a) Calculation of tk : At time t̃k−1 we have x2(t̃k−1) =
H(t̃k−1). The goal is to calculate tk such that x2(tk) = D(tk)
where tk > t̃k−1 (k > 0), see Fig. 4. From (5) we know
that between two consecutive pulses, equations (1)-(3) are
described by the linear system

dx(t)

dt
= Ax(t), tk−1 < t < tk,

tk−1 t̃k−1 tk t̃k tk+1

H(t)

D(t)

x2(t)

t

Fig. 4: Schematic representation of the trajectory x2(t) for the
time interval (tk−1, tk+1].

whose solution is given by

x(t) = eA(t−tk−1)x(t+k−1), tk−1 < t < tk. (6)

Due to the fact that t̃k−1 > tk−1 (k > 1), using (6) with
the initial time t̃k−1, the trajectory x2(t) when t ∈ [t̃k−1, tk)
is given by

xL2 (t) :=
λ

λ− γ

(
e−γ(t−t̃k−1) − e−λ(t−t̃k−1)

)
x1(t̃k−1)

+ e−γ(t−t̃k−1)x2(t̃k−1),

(7)

where x1(t̃k−1) and x2(t̃k−1) are computed by (6). Since our
goal is to calculate tk such that xL2 (tk) = D(tk), solving

xL2 (t)−D(t) = 0, (8)

with respect to t gives tk.

Remark 5. Due to the fact that matrix A is Hurwitz, there
exists at least one solution to (8) when t > t̃k−1.

Remark 6. In order to guarantee that xL2 (t) does not cross
the lower bound D(t), we only consider the minimum root of
(8) which is greater than t̃k−1.

In view of Remarks 5 and 6, the secretory time tk exists
and is calculated by

tk = min{t∗ |xL2 (t∗)−D(t∗) = 0, t∗ > t̃k−1}. (9)

Once tk is computed in (9), we can plot the dynamics on
the interval [t̃k−1, tk] by (6).
(b) Calculation of uk : At time tk, the trajectory x2(t) is

at the lower bound, i.e., x2(tk) = D(tk), see Fig. 4. Our goal
is to calculate uk such that x2(t) reaches exactly the upper
bound H(t) at time t̃k > tk (k > 0), while does not crossing
it, see Fig. 4.

From (5), the trajectory x2(t) when t ∈ [tk, t̃k] is given by

xJ2 (t;uk) :=
λ

λ− γ

(
e−γ(t−tk) − e−λ(t−tk)

)
(x1(tk) + uk)

+ e−γ(t−tk)x2(tk).
(10)

By implementing the input uk at time tk, the trajectory
xJ2 (t;uk) has to reach the upper bound H(t) at time t̃k (i.e.,
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xJ2 (t̃k;uk) = H(t̃k)), while not crossing it, which implies
that xJ2 (t;uk) has to be tangent to H(t) at t̃k. So solving the
system of equationsx

J
2 (t;uk)−H(t) = 0,
d

dt

(
xJ2 (t;uk)−H(t)

)
= 0,

t > tk, (11)

with respect to t and uk gives the time t̃k and the input uk.

Remark 7. For both λ > γ and λ < γ, xJ2 (t;uk) is always
strictly increasing with respect to uk. Therefore, the existence
of at least one pair (t̃k, uk) for (11) is ensured.

Remark 8. System of equations (11) may have more than
one pair of solutions. We hypothesize that the controller u(t)
in the anterior pituitary minimizes the number of secretory
events [9]. Moreover, we are interested in inputs uk such that
the trajectory x2(t) does not cross the upper bound H(t) (see
Remark 1). Therefore, in the case when (11) has multiple pairs
of solutions, we select the pair (t̃k, uk) among which t̃k is the
greatest whose corresponding input uk keeps the trajectory
x2(t) within the bounds.

Once (t̃k, uk) are computed by (11), one can obtain the
dynamics on the interval [tk, t̃k] by the following equations:[

x1(t)
x2(t)

]
= eA(t−tk)

[
x1(tk) + uk
x2(tk)

]
, tk ≤ t ≤ t̃k. (12)

Now we are ready to present our algorithm to calculate the
number N , timing tk and amplitude uk (k > 0) on the time
interval [t0, tf ], where tf is our desired final time.

Algorithm 1: Calculating the number, timing and amplitude
of the secretory events.

Input : λ, γ, t0, tf , x02, D(t), H(t)
x1(t0) := 0
x2(t0) := x02
t̃0 := t0
k := 1
N := 0
repeat

Calculate tk from (9)
Calculate x(tk) from (6)
Calculate (t̃k, uk) from (11) in view of Remark 8
Calculate x(t̃k) from (12)
N := k
k := k + 1

until t̃k < tf ;
Output: N , tk, uk, t̃k

Assume that we have run Algorithm 1 for N iterations to
compute tk, uk and t̃k (k = 1, 2, ..., N) on the time interval
[t0, tf ]. By having such information, we can obtain x1(t) and
x2(t) on [t0, tf ] from the following equation

x(t) = eA(t−tk) (x(tk) +Buk) , t ∈ (tk, tk+1], (13)

for k = 1, 2, ..., N .

TABLE I: Model Parameters for Examples 1 and 2 [9]

Example λ (min−1) γ (min−1)

1 0.0585 0.0122
2 0.1248 0.0061

TABLE II: Lower Bounds on the Cortisol Level for Exam-
ples 1 and 2 [9]

Example D(t)
( ug

dl

)
1 3.2478− 0.7813 sin( 2πt

1440
)− 2.8144 cos( 2πt

1440
)

−0.2927 sin( 2πt
720

) + 1.3063 cos( 2πt
720

)

2 5.5065 + 1.5544 sin( 2πt
1440

)− 4.3112 cos( 2πt
1440

)

−1.6355 sin( 2πt
720

)− 0.9565 cos( 2πt
720

)

III. RESULTS

In this section, we apply our modeling framework to two
examples to show that the proposed impulsive controller gen-
erates secretory events, resembling both healthy and diseased
individuals. For the first example, which corresponds to a
healthy subject, the obtained secretory times and the cortisol
level are in agreement with physiologically plausible profiles
in healthy human data. For the second example, although the
number of pulses is not within a physiologically plausible
range reported for healthy subjects [1, 33], the cortisol level
is still within the desired bounds. This example may refer to
a case of cortisol deficiency.

For our examples, we use the parameters λ and γ, given
in Table I, which respectively represent the infusion rate of
cortisol from the adrenal glands, and the clearance rate of
cortisol by the liver. In addition, we use the lower and upper
bounds given, respectively, in Tables II and III. All information
of Tables I-III are obtained from [9].

A. Example 1

Using Algorithm 1 with the parameters given in Table I,
and the lower and upper bounds given respectively in Tables
II and III for Example 1, we have calculated the timing and
the amplitude of secretory events, and hence using (13) we
have plotted the intermittent input/control in panel (a), x1(t)
in panel (b), x2(t) in panel (c), and the noisy observed x2(t)
in panel (d) of Fig. 5. In this example, the initial conditions are
(x1(0), x2(0)) = (0, H(0)), i.e., x2(t) starts from the upper
bound H(t). This figure shows that the state x2(t) starts at
the upper bound and then decreases until it reaches the lower
bound at which point the obtained input implements a jump
into the system and hence x2(t) reaches exactly the upper
bound, and this process is repeated until x2(t) reaches the
desired final time.

As illustrated in panel (a), there are 16 pulses over the
24-hour period which is within the physiologically plausible
range of 15-22 pulses [1, 33]. Furthermore, our observation
from panel (a) is that the amplitudes are lower and less
frequent during the night than the day. Panel (b) clearly shows
pulsatility of the state x1 along with its jumps.
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(a)

(b)

(c)

(d)

Fig. 5: Obtained cortisol level and control inputs for Example 1. We have used the parameters, and the lower and upper
bounds, respectively, given in Tables I-III for Example 1. The initial conditions are (x1(0), x2(0)) = (0, H(0)), and all panels
(a)-(d) are plotted over 48 h. Panel (a) displays 16 impulses over 24 h which control cortisol to remain within upper and lower
bounds. In panel (b), solid curves display the state x1(t), while the dashed lines show the jumps in this state. Panel (c) shows
the optimal cortisol profile (black curve), restricted by the lower bound (red curve) and the upper bound (green curve). Panel
(d) illustrates the optimal cortisol profile obtained by recording the cortisol level every 10 min, and adding a zero Gaussian
measurement error with a standard deviation of σ = 0.45 to each simulated data point.

TABLE III: Upper Bounds on the Cortisol Level for Exam-
ples 1 and 2 [9]

Example H(t)
( ug

dl

)
1 5.3782 + 0.3939 sin( 2πt

1440
)− 3.5550 cos( 2πt

1440
)

−0.5492 sin( 2πt
720

) + 1.0148 cos( 2πt
720

)

2 8.6051 + 3.0306 sin( 2πt
1440

)− 5.0931 cos( 2πt
1440

)

−1.8151 sin( 2πt
720

)− 1.6570 cos( 2πt
720

)

It is widely known that in healthy humans, the cortisol level
has regular periodic time-varying patterns which consists of
pulsatile release of secretory events with different timings and
amplitudes in a regular circadian rhythm. As it is observed
in panel (c), the cortisol level is pretty low during the night,

while it increases around 5 AM and reaches its higher am-
plitude around 12 PM. Afterwards, it decreases slowly until
the midnight. This example indicates that the mathematical
model (1)-(4) can describe the pulsatile cortisol secretion
that have physiologically plausible profiles similar to those
observed in healthy human data.

Similar to measurement noise and sampling interval of
cortisol data in human subjects [7], we have recorded the
cortisol level every 10 minutes, added a zero mean Gaussian
measurement error with a standard deviation of σ = 0.45 to
each simulated data point, and hence plotted panel (d) in Fig. 5
which resembles cortisol human data illustrated in [7].

B. Example 2

For this example, the upper and lower bounds as well
as the system parameters γ and λ are different from the
corresponding ones in example 1 (see Tables I-III). Using
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(a)

(b)

(c)

(d)

Fig. 6: Obtained cortisol level and control inputs for Example 2. We have used the parameters, and the lower and upper
bounds, respectively, given in Tables I-III for Example 2. The initial conditions are (x1(0), x2(0)) = (0, 1.5), and all panels
(a)-(d) are plotted over 48 h. Panel (a) displays 12 impulses over 24 h which control cortisol to remain within upper and lower
bounds. In panel (b), solid curves display the state x1(t), while the dashed lines show the jumps in this state. Panel (c) shows
the optimal cortisol profile (black curve), restricted by the lower bound (red curve) and the upper bound (green curve). Panel
(d) illustrates the optimal cortisol profile obtained by recording the cortisol level every 10 min, and adding a zero Gaussian
measurement error with a standard deviation of σ = 0.45 to each simulated data point.

Algorithm 1 and equation (13) with the initial conditions
(x1(0), x2(0)) = (0, 1.5) we have plotted panels (a), (b), (c),
and (d) in Fig. 6 for 48 h.

Panel (a) shows that 12 pulses are fired over 24 h. Panel
(b) illustrates pulsatility of x1(t) along with its jumps. Panel
(c) shows that the cortisol level is low at midnight. Then it
increases gradually until it reaches its higher value around
9 AM. Afterwards, it decreases slowly such that it obtains
its lowest value at midnight. Observations from panel (c)
demonstrate that the cortisol level and the inputs are optimal
over 48 h. Although in this example the obtained impulse
inputs keep the cortisol levels within the given bounds, the
number of pulses are not within the physiologically range of
15-22 pulses reported for healthy subjects [1, 33]. This may
indicate a case of cortisol deficiency. We have recorded the
cortisol level ever 10 minutes, added a zero mean Gaussian
measurement error with a standard deviation of σ = 0.45 to

each simulated data point, and hence plotted panel (d) which
resembles cortisol human data depicted in [7].

IV. DISCUSSION

Many dynamical processes, such as pharmacokinetics sys-
tems, optimal control problems in economics, biological phe-
nomena involving thresholds, and bursting rhythm models in
medicine and biology, are characterized by the fact that they
experience a rapid change in their states at certain moments
of time. In such processes there exist short-term perturbations
whose duration with respect to the duration of the entire
evolution is negligible [18]. Therefore, one can mathematically
formulate such perturbations in the form of impulses, and
then analyze the corresponding models by the tools and
techniques developed for impulsive dynamical systems (see,
e.g., [11, 12, 18, 39]).
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It is widely known that several hormones such as cortisol,
insulin, growth, and testosterone are released in pulses. More-
over, changes in the pulsatility of such hormones are related
to, e.g., obesity, aging, and metabolic and psychiatric diseases
[31, 40, 41]. Therefore, understanding the pulsatile secretion
mechanisms and the modeling underlying such systems are of
great interest.

Motivated by the applications of analyzing pulsatile re-
lease of hormones, our goal in this work has been to study
the impulsive control mechanisms underlying the HPA axis.
Correspondingly, we have proposed a minimal model which
describes the pulsatile release of cortisol. Our model has been
built on the two-compartmental stochastic differential equation
model of cortisol’s diurnal patterns proposed in [1]. The model
is based on the first-order kinetics for cortisol infusion and
clearance. Owing to the fact that ACTH is released in pulses,
in our model we have postulated that the system is impulsive.
We have assumed that the circadian rhythms on the cortisol
level are two-harmonic time-varying functions with periods
of 12 and 24 h, which are the most important periods in the
cortisol release. In order to describe the pulsatile release of
cortisol, in some previous works (see e.g., [1, 7, 8, 9, 19]) the
process is formulated as a deterministic or stochastic model,
and then the sparsity of hormone pulses are taken into account
to calculate the impulse inputs (i.e., the number, timing, and
amplitude of the secretory events), giving an approximation of
such inputs. In sharp contrast to previous works, in this paper
we have presented an impulsive differential equation model
and proposed an analytical approach to the calculation of the
impulse inputs in presence of circadian demand and holding
cost constraints.

We have hypothesized in Remark 8 that human body
minimizes the number of times when control is used over
24 hours for cortisol secretion. Hence, if the pulsatile control
input is designed such that it takes the cortisol blood levels
to the upper bound and the next pulsatile control input is not
secreted until the circulatory cortisol is at the lower bound, the
number of times when control is used will be minimized. So
we have tried to minimize the number of times control input
is used. Illustrated by two examples, we have shown that our
proposed model and approach yield the optimal solution in
the sense that the cortisol level, started at the upper bound,
decreases until it reaches the lower bound at which point the
obtained inputs exert jumps into the system and as a result,
the cortisol level arrives exactly at the upper bound again; this
process is repeated for the desired time.

For the examples presented in Section III, we have used the
parameters, and the upper and lower bounds provided in [9];
note that such information has been identified based on cortisol
measurements from healthy female subjects in [7]. In the case
when no human data are available, in order to validate the
model by experiments one can first calculate the infusion and
clearance rates from a rat model, and also obtain the upper and
lower bounds on cortisol levels from a healthy rat. Second,
by making the adrenal glands of the rat malfunctional, the
rat can become Addisonian such that it cannot secret cortisol
anymore. Lastly, by designing an intermittent controller using
the algorithm provided in this study, one can obtain a time-

varying cortisol level which remains within the upper and
lower bounds that had been found when the rat was healthy [9].

Now, we compare our model and results with those in [9]:
(i) The main difference between the model presented in this
paper and the one in [9] is that in the latter, the model
is continuous, i.e., without explicitly assuming the system
is impulsive, the goal was to obtain impulse control inputs.
However, based on the physiology underlying the HPA axis,
in our work we have explicitly assumed that the nature of
the system is impulsive, and the goal has been to design
an intermittent controller for calculating the number, timing,
and amplitude of the secretory events. (ii) The optimization
formulation in [9] is mainly an `0-norm problem. Since such
problems are NP-hard, an alternative approach (considering
`1-norm as a relaxation of the `0-norm) was used to solve
the problem. Next, using the iterative algorithm proposed
in [2], the `1-norm optimization problem was solved to find
the impulse inputs. The iterative algorithm in [2, 9] cannot
always find the exact value of the impulse inputs such that
the trajectory x2(t) reaches the upper bound and can lead to
finding suboptimal solutions, while Algorithm 1 can deliver
the precise amount of such inputs. For instance, comparing
Example 2 with the corresponding one in [9], one observes
that the obtained cortisol level and inputs are improved over
the whole 24 h, while the corresponding one in [9] gives
better cortisol level over the first 19 h, and renders suboptimal
outcomes for the last 5 h.

In this work we have presented a simple yet instructive
impulsive model to describe the pulsatile cortisol release.
There are some other scenarios under which the system can
obtain the impulse control. In this work, we have assumed
that the infusion and clearance rates are constant. However,
these parameters can change after every jump, and hence the
problem can be formulated as a switched system, i.e., matrix
A in (5) is not fixed anymore and might vary after every
jumps. Instantaneous changes in one or both of the infusion
and clearance rates may lead to impulse control [9]. First,
assume that the clearance rate is fixed, while the infusion rate
of cortisol starts from a constant level at wake, and decreases
suddenly to a new constant level. In order to compensate such
a degradation, a large level of cortisol should be produced
in a short time such that the desired cortisol level can be
obtained [9]. Second, consider the case when the infusion
rate is fixed, while the clearance rate of cortisol starts from a
constant level at wake and increases instantaneously to another
constant level. Then in a short time a large level of cortisol
should be produced such that the desired cortisol level can
be achieved [9]. Lastly, assume that both the clearance and
infusion rates start from a constant level and change abruptly
to different levels periodically. As a result, the overall effect
on cortisol is that it gets infused to the blood more slowly,
or gets cleared from the blood faster [9]. In such a case,
as long as there is no upper bound on control variable, the
impulse control can be obtained. For an example with a time-
varying rate which obtains the impulse control, the interested
reader is refereed to [23], where the “maximum principle”
is used to find the optimal solution. Another possibility for
obtaining the impulse control for neurohormone systems is to
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explicitly assume that the system is impulsive, and the timing
and amplitude of the secretory events are functions of the
states; such a mathematical model for testosterone regulation
is presented in [3, 4, 21, 28].

In this work, as a prototype, we have mainly focused on
the HPA axis and proposed a physiological plausible model
for cortisol secretion in the pituitary-adrenal system. As the
control mechanism of the pulsatile feedback in cortisol is
similar to the other neuroendocrine hormones such as gonadal
hormone, insulin hormone and thyroid hormone [15, 16, 21,
26, 28, 29], a similar approach can be taken to study the
pulsatile release of some other neuroendocrine hormones.
Since pulsatile secretion is considerably different form basal
(continuous) secretion, and some hormonal disorders are as-
sociated with hormone pulsatility, one can obtain insight into
some hormonal disorders and pathological neuroendocrine
states through mathematical models. For instance, one of
the disorders which is caused by the adrenal deficiency is
Addison’s disease. A patient suffering from this disease takes
cortisone one or twice a day in order to control their cortisol
deficiency which does not seem optimal, because there are 15-
22 secretory events in a healthy subject over 24 h. Using the
methods presented in this study, it is possible to personalize
the medications and use an impulsive controller to control the
the cortisol levels optimally.

V. CONCLUSION

In this work, we have developed a model of cortisol’s
diurnal patterns by taking the release of cortisol as a part of an
impulsive control feedback system as opposed to a continuous
one. Further, by maintaining the blood cortisol levels within
a specific circadian range, we have established an analytical
approach along with an algorithm to identify the number,
timing, and amplitude of secretory events. Employing our
approach to two examples, we have shown that the obtained
cortisol levels are in line with the known physiology of cortisol
secretion.

Inspired by the intermittent controller proposed in this study,
one can design such controllers as opposed to continuous
ones to improve the battery life of the brain implant in brain-
machine interface design, and reduce the number of surgeries
required for changing the battery of the implant controller
[9]. In addition, this type of bio-inspired pulse controller can
potentially be used to control major depression, addiction,
and post-traumatic stress disorder. We emphasize that the
potential applications of the intermittent controllers go beyond
the neuroendocrine and mental disorders presented here, and
potentially can be used for some other disorders which arise
in neuroscience.
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