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Abstract— Tracking the emotional valence state of an indi-
vidual can serve as an important marker of personal health and
well-being. Through automatic detection of emotional valence,
timely intervention can be provided in the events of long periods
of negative valence, such as anxiety, particularly for people
prone to cardiovascular diseases. Our goal here is to use facial
electromyogram (EMG) signal to estimate one’s hidden self-
labelled emotional valence (EV) state during presentation of
emotion eliciting music videos via a state-space approach. We
present a novel technique to extract binary and continuous
features from EMG signals. We then present a state-space
model of valence in which the observation process includes
both the continuous and binary extracted features. We use
these features simultaneously to estimate the model parameters
and unobserved EV state via an expectation maximization
algorithm. Using experimental data, we illustrate that the
estimated EV State of the subject matches the music video
stimuli through different trials. Using three different classifiers:
support vector machine, linear discriminant analysis, and k-
nearest neighbors, a maximum classification accuracy of 89%
was achieved for valence prediction based on the estimated
emotional valance state. The results illustrate our system’s
ability to track valence for personal well-being monitoring.

I. INTRODUCTION

Emotion recognition is one of the important areas of
research aimed at recognizing and interpreting different
human emotions from facial and/or verbal expressions [1].
In this direction, computer vision has been widely used
to recognize patterns in facial expressions using machine
learning methods such as support vector machine (SVM) [2],
[3] and deep learning based convolutional neural networks
[4], [5], [6], [7], [8]. While video based emotion recognition
techniques have been shown to perform well, they require
powerful video analysis as well as huge training data to train
the network. Alternately, facial Electromyography (EMG),
electroencephalography, electrocardiography, hear rate [9],
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respiration [10], and skin conductance [11], [12], [13], [14],
[15], [16] have been shown to reflect one’s underlying
emotion such as happiness, stress and anger [17]. Previous
researches have classified facial EMG activity into differ-
ent emotions using artificial neural networks, naive bayes
classifier [18], linear discriminant analysis (LDA), linear
and structural modeling, and state-space models with 89%
classification accuracy [19].

Most of the above studies have used multiple channels
of facial EMG to predict facial expression [20]. In addition,
these studies aimed to classify expression but not emotional
state as the subjects were told to imitate smile or other ex-
pressions on their faces which were not involuntary responses
corresponding to their actual feelings of valence [21]. Since
one’s facial expression is a natural response to the external
emotional stimuli, it could be beneficial to have real-time
emotion detection based on facial EMG. In this research,
we present a state-space approach to estimate the emotional
valance state from recorded EMG signal. We first present
a novel technique to extract binary and continuous features
from EMG signal. Then, we present a state-space approach
to model emotional valence in which the observation process
includes both the continuous and binary features. Employ-
ing these features simultaneously, we estimated the model
parameters and unobserved emotional valence state via an
expectation maximization (EM) algorithm. Next, the esti-
mated emotional valence (EV) state was used to predict one’s
valence state via three different classification methods: SVM,
LDA, and k-nearest neighbors (KNN) in conjunction with
cross-validation. Further direction of this research could be
employing the results in controlling the external environment
depending on the subject’s emotional state [11].

II. METHODS

A. Experimental Data

We analyzed facial EMG activity from Database for Emo-
tion Analysis using Physiological Signals (DEAP). It is a
publicly available multimodal dataset for emotion analysis
[22]. We analyzed the facial EMG signal recorded at a
sampling rate of 512 Hz from the Zygomaticus major muscle.
We used data from 23 participants (11- females and 12-
males, mean age 26.5 years). Each participant completed
40, 1-minute trials during which an emotional stimuli, music
video (varying on dimensions of arousal and valence) was
presented. At the end of each trial, the participants performed
self assessment during which they reported their emotional
arousal and valence on a scale of 1 to 9. The value on



this scale served as the ground truth in our analysis. All
participants were presented the same set of music videos but
in a randomized order.

B. Feature Extraction

We used simultaneously extracted binary and continuous
features from the EMG signal to predict the emotional state
of the subject. We began our analysis by pre-processing the
raw EMG signal (Zygomaticus major). First, the signal was
band-pass filtered from 10Hz - 250Hz to remove motion
artifacts in the lower frequency bands. To remove the alter-
nating current coupling noise, we also applied notch filters
at 50Hz and its harmonic frequencies. Next, the signal was
segmented into 1-minute trials which were further binned
at 0.5 seconds (no overlap between consecutive bins, to
avoid information leaking between trials) as described in the
following subsections.

a) Binary feature: The following process was followed
to extract the binary observations. We first computed the
absolute value of the filtered EMG and then binned it at
0.5 second bin. Next, the binned EMG is convoluted with a
Gaussian kernel to smooth it [23]. The smoothed signal is
then min-max normalized; this signal is defined as xsd. Using
a Bernoulli distribution, an amplitude dependent frequency
modulated binary feature was generated from the smoothed
EMG. The probability of having a one in the binary feature
was dependent on the exponential of the smoothed normal-
ized EMG. The distribution we used was as follows,

Pr(nj |xsd(j)) = p
nj

j (1− pj)1−nj (1)

where pj is the probability of a binary event and xsd(j) is
the smoothed normalized absolute EMG after binning for
jth time bin. The probability was calculated as the following
equation,

pj =
aexsd(j)

exsd
max

(2)

where exsd
max is the maximum value of exsd and a is the

intensity coefficient of the binary sequence. This coefficient
was selected heuristically based on the observations. Binary
feature extraction for a subject is shown in Figure 1.

b) Continuous feature: The following steps were fol-
lowed to get the continuous feature. We first estimated the
power spectral density (PSD) of the filtered signal in each
time bin (0.5 seconds) using Welch periodogram estimation
method with 75% overlapping windows (to get a smoother
estimate of PSD). Next, we computed the band power in the
frequency band 10Hz - 250 Hz and used it as a continuous
feature in the model. We later normalized the continuous
feature across all trials for each subject to get a relative
measure of band power between trials of varying valence.
This extracted feature was then input to the model.

c) Observation models: To estimate the hidden emo-
tional state of the subject, we used the state-space model
proposed in [24] defined by (3) while using simultaneously
extracted continuous and binary features of the EMG signal.

xk = ρxk−1 + µk (3)

where µk is an independent, zero mean Gaussian random
variable N (0 , σ2

µ), and ρ is the correlation coefficient
relating subject’s emotional state in the current and previous
time bins. We assume that the subject’s facial EMG response
(observed in each time bin k, 1 to K, where K= 120 for a
trial and K= 4800 bins for 40 trials) is governed by a hidden
emotional valence state xk and is defined by first order auto-
regressive model in (3).

Let nk denote the binary observations in time bin k. For
each k, we assume that nk can be 0 or 1. the observation
model for this feature is as follows:

Pr(nk|xk) = Pnk

k (1− Pk)1−nk (4)

where pkis the probability of binary event in bin k and is
defined by:

Pk =
e(ε+xk)

1 + e(ε+xk)
(5)

where ε is estimated from the probability of a binary event
by chance as described in [24].

Fig. 1: Binary feature extraction from EMG: (a) represents
the filtered EMG signal for all the trials for a subject, (b)
shows the smoothed value of the absolute EMG after binning
and (c) shows the generated binary sequence using (b). Red
traces represent high valence trials and blue traces represent
low valence trials.

Let zk represent the continuous observations such that zk
∈(∞, ∞). The observational model for this feature is as
follows,

zk = α+ βxk + ωk (6)

where ωk is an independent zero mean Gaussian random
variable N (0 , σ2

ω). Here, zk = log(powk) represents the
total power in a frequency band of interest in log scale
(db); α represents baseline power and β represents the rate
at which power content in a subjects EMG changes as a
function of his/her emotional state.



C. State Estimation
Model parameters Θ = [α, β, ρ, σ2

µ, σ2
ω] and state are

estimated using the EM algorithm presented in [24]. In what
follows, detailed description of this algorithm is presented.

1) Expectation Step: In this step, the filter algorithm
computes the state estimate of the subject xk|k at each bin
k. The smoothing algorithm (backward filter) calculates the
estimate of the ideal observer.

a) Forward filter: At iteration (i+1), state variable xk|k
and variance σ2

k|k are estimated using a recursive non-linear
filter algorithm (Equations (7) - (11)) given the parameter
estimates from iteration i (σ2(i)

µ and x(i)0 ):

xk|k−1 = ρ(i)xk−1|k−1 (7)

σ2
k|k−1 = ρ(i)2σ2

k−1|k−1 + σ2(i)
µ (8)

Ck = (β(i)2σ2
k|k−1 + σ2(i)

ω )−1σ2
k|k−1 (9)

xk|k = xk|k−1 + Ck

[
β(i)(zk − α(i)

− β(i)xk|k−1) + σ2(i)
ω (nk − pk|k)

]
(10)

σ2
k|k =

[
(σ2
k|k−1)

−1 + pk|k(1− pk|k) + (σ2(i)
ω )−1β(i)2

]−1
(11)

for k = 1, · · · ,K.

b) Backward filter: Using the posterior mode estimates
xk|k and its variance σ2

k|k, fixed-interval smoothing algorithm
was used to compute xk|K and σ2

k|K . This algorithm is given
as follows:

xk|K = xk|k +Ak(xk+1|K − xk+1|k) (12)

Ak = σ2
k|k(σ

2
k+1|k)

−1 (13)

σ2
k|K = σ2

k|k +A2
k(σ

2
k+1|k − σ

2
k+1|K) (14)

for k = K−1, · · · , 1 and initial conditions xK|K and σ2
K|K .

c) State-Space Covariance Algorithm: This algorithm
is used to estimate the covariance σk,u|k is given by equa-
tion (15). The variance and covariance terms, Wk|K and
Wk−1,k|K are computed using equations (16) and (17) as
follows:

σk,u|k = Akσk+1,u|k (15)

Wk|K = σ2
k|K + x2k|K (16)

Wk−1,k|K = σk−1,k|K + xk−1|Kxk|K (17)

for 1 ≤ k ≤ u ≤ K.

2) Maximization Step: The expected value of data log
likelihood is maximized with respect to θ(i+1) as follows:

ρ(i+1) =
K∑
k=1

Wk−1,k|K

[ K∑
k=1

Wk−1|K

]−1
(18)

x
(i+1)
0 = ρx1|k (19)

σ2(i+1)
ε = K−1

K∑
k=1

z2k +Kα2(i+1)

+ β2(i+1)
K∑
k=1

Wk|K − 2α(i+1)
K∑
k=1

zk

− 2β(i+1)
K∑
k=1

xk|Kzk + 2α(i+1)β(i+1)
K∑
k=1

xk|K (20)

α(i+1)

β(i+1)

 =

 K
∑K
k=1 xk|K∑K

k=1 xk|K
∑K
k=1Wk|K

−1  ∑K
k=1 zk∑K

k=1 xk|Kzk

 (21)

σ2(l+1)
µ = K−1

K∑
k=1

[
Wk|K − 2ρ(l+1)Wk−1,k|K + ρ2(l+1)Wk−1|K

]
(22)

The algorithm is iterated between the E-step and M-step
using the filter algorithm until convergence.

D. Classification
Based on the obtained state estimates, we tested our

model’s performance to predict low valence (LV) vs. high
valence (HV). Following the paper [22], the trials for which
the self-reported valence rating was less than 5 were consid-
ered LV while the trials with valence rating greater than 5
were considered as HV trials. Then, we used cross-validation
method to classify high vs low valence using three different
classifiers namely SVM, LDA and KNN.

III. RESULTS

A. State Estimation
For estimation of state-space model parameters described

above, we used all 40 trials for each subject. In order to
track the subject’s emotional state from the beginning of the
experiment to the end, we the order of the trials input to
the model was the same as the order of presentation in the
experiment.

Figures 2 and 3 show the binary and continuous (power
spectral density) features and EV state for subjects 10 and 18,
respectively. As seen from the figures, the emotional state’s
amplitude closely captures the valence of the trial such that
it takes lower values for low valence trials and higher values
for higher valence trials.
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Fig. 2: Emotional Valence State Estimation for Subject
10: (a) and (b) show the extracted binary and continuous fea-
tures from the EMG signal and (c) represents the estimated
state for low valence (blue trace) and high valence (red trace)
trials. A black vertical line in (c) marks the end of a trial.
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Fig. 3: Emotional Valence State Estimation for Subject
18: (a) and (b) show the extracted binary and continuous fea-
tures from the EMG signal and (c) represents the estimated
state for low valence (blue trace) and high valence (red trace)
trials. A black vertical line in (c) marks the end of a trial.

B. Valence Classification

Using estimated state from the model, we performed a
binary classification between high vs low valence emotion.
The state variable for classification was estimated using all
40 trials in the order of their presentation. The EM algorithm
converged for 22 of the 23 subjects. For these 22 subjects,
the state variable was binned at 5 seconds and replaced by
its mean value leading to 12 bins per trial. Binning here was
necessary since using all 120 values (per trial) as predictors
would create a predictor size larger than the training sample
size. We used cross-validation method to classify high vs low
valence using three different classifiers namely SVM, LDA
and KNN. We used 75% of the trials (30) for training the
classifier and rest 25% (10) for testing. We ran 30 iterations
such that training and testing sets were randomly chosen
from available 40 trials. The mean accuracy of 30 iterations
was calculated for all 22 subjects where Figure 4 shows the
mean accuracy for valence classification and chance level for
all subjects.

Fig. 4: Classification Accuracy for Valence Prediction:
Dotted line represents the chance level for all the subjects
and other three traces represent the accuracy achieved by the
three classifiers.

We found that the mean accuracy (Figure 4) for 16 out of
22 subjects is above the chance level. A maximum mean
accuracy of 89% was achieved in valence classification
(chance level - 60%) (for subject 5). Among 30 iterations,
the highest accuracy achieved in a single iteration was 100%
for 12 of the 22 subjects. As seen from the figure, the
mean accuracy is not reported for subject 12 since the EM
algorithm didn’t converge for this subject.

IV. DISCUSSION

In this research, we showed how continuous and binary
features extracted from the facial EMG signal can be used
to estimate one’s hidden emotional state. We used a dataset
where the emotion level of subject was responsible for their
facial expression compared to other studies where the subject
was instructed to perform various expressions. Emotions
are best described through the dimensions of valence and
arousal. In the present research, we approached the state
estimation problem as a way to distinguish between high and
low levels of valence. Availability of EMG signal from one
facial muscle (zygomaticus major) alone wasn’t sufficient for
tracking a variety of emotions; although, binary classification
of valence was possible. In order to perform classification,
extracting binary and continuous features from one signal
was critical. In present work, we processed EMG signal
to extract maximum information without redundancy. It is
well known that EMG signal carries information in both
its amplitude and frequency. Therefore, using the EMG’s
amplitude, we generated the binary features. Total power in
different frequency bands was used as a continuous feature.
To our knowledge, our method of generating a binary feature
from the amplitude of EMG is novel and hasn’t been applied
to EMG signal processing for emotion analysis before. Using
the EM algorithm with extracted features, we presented
the plots for two example subjects, both of which showed
visually distinguishable estimated state between low and high
valence trials.



To extend our work and test our model’s performance,
we used the estimated state variable as a predictor of high
vs low valence emotion for each subject. High classification
accuracy in valence prediction shows considerable usefulness
of the extracted features in reliably estimating the hidden
state variable with 72.7% of the subjects showing above
chance accuracy.

One of the limitations of our proposed approach is that
we rely on the self assessment ratings of the participant as a
way to know their true feelings due to unavailability of any
expert ratings. Therefore, we expect that possible inaccuracy
in reporting one’s true emotions could be a reason for low
classification accuracy for some subjects. Since the signal
being analyzed here primarily depends on the muscle activity,
there is a possibility that our method may not accurately
estimate the true emotional state for those subjects who
generally don’t express their emotions strongly. In order to
estimate both valence and arousal states of a person, EMG
signals from more than one facial muscles may be needed.
Nonetheless, based on the present results of classification
accuracy, our approach is useful in extracting good features
from limited number of recording channels and can be
applied to analyze multi-channel EMG signals as well.

V. CONCLUSION

We developed a state-space model from EMG signal
capable of distinguishing between low and high valence
emotions. By adding data from multiple EMG channels, we
can eventually build a complete emotion detection system
which detects an individual’s emotion on the dimensions of
both valence and arousal. Further, this system can be used
to control external environment depending on the subject’s
emotional state e.g. a room’s light or music system can be
controlled by an individual’s emotions such that after the
changes in lights or in the type of music being played, the
subject feels more relaxed. We can also use this system
as an intervention indicator which can send an alert to an
individual’s family when long periods of certain emotions
(i.e. anger) are detected. This can potentially be helpful in
monitoring a person’s health especially when they are prone
to cardiovascular diseases.
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