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Abstract

Microbes exchange electrons with their extracellular environment via direct or indirect means. This exchange is bidirectional
and supports essential microbial oxidation—reduction processes, such as respiration and photosynthesis. The microbial capac-
ity to use electrons from insoluble electron donors, such as redox-active minerals, poised electrodes, or even other microbial
cells is called extracellular electron uptake (EEU). Autotrophs with this capability can thrive in nutrient and soluble electron
donor-deficient environments. As primary producers, autotrophic microbes capable of EEU greatly impact microbial ecol-
ogy and play important roles in matter and energy flow in the biosphere. In this review, we discuss EEU-driven autotrophic
metabolisms, their mechanism and physiology, and highlight their ecological, evolutionary, and biotechnological implications.
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Introduction

The microbial envelope is an electrically nonconductive,
physically impermeable barrier to insoluble materials
(e.g., minerals and electrodes) that partitions the interior
metabolic activities of cells from the outer environment [2,
131]. Microbial cells have evolved elaborate mechanisms to
extract electrons from insoluble electron donors using a pro-
cess called extracellular electron uptake (EEU). To accom-
plish this, microbes use both direct and indirect electron
transfer pathways, which typically involve electron transfer
proteins, such as multiheme c-type cytochromes. These pro-
teins enable microbes to oxidize solid electron donors and to
drive essential metabolic processes [52, 131]. This process
permits microbial survival in environments where soluble
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electron donors are limiting. Microbial electron exchange
with redox-active minerals, or other microbial cells also
supports vital ecological processes. Collectively, these pro-
cesses shape microbial community interactions and influ-
ence the geochemistry of the Earth’s surface. Microbes can
also use poised electrodes mimicking redox active minerals
to drive microbial metabolisms with electricity. A summary
of the known diversity of EEU-driven autotrophy in nature
is depicted in Fig. 1.

EEU mechanisms move electrons from the extracellu-
lar space to intracellular electron transport chains. This is
generally achieved by direct physical contact (via an outer
membrane electron conduit) or indirectly via electron shut-
tles (redox-active small molecules that can diffuse through
the outer cellular envelope). The capability of microorgan-
isms to carry out EEU is typically assessed using bioelec-
trochemical systems, where an electrode poised at or near
the midpoint potential of natural minerals serves as the sole
electron donor or acceptor for microbial metabolism [13,
88, 115]. These bioelectrochemical systems are similar to
those used to study organisms capable of extracellular elec-
tron transfer, such as iron reducers [50, 121], methanogens
[27, 146], acetogens [106, 107], sulfate reducers [1, 34, 35],
sulfur oxidizers [25], neutrophilic iron oxidizers [68, 140],
acidophilic iron oxidizers [68], and anoxygenic phototrophs
[13, 22, 54].
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Fig. 1 Diversity of EEU capable autotrophs in natural environment.
Extracellular insoluble electron donors (redox-active minerals/cells/
natural electrode) support microbial autotrophy in different environ-

EEU is a physiologically diverse process that is present
in multiple bacterial lineages. However, the molecular and
bioenergetic underpinnings of this process remain poorly
understood. This is especially true for autotrophic bacteria,
which catalyze the conversion of carbon dioxide (CO,) into
biomass using electron transport chains powered by light
(photoautotroph) and/or chemical (chemoautotroph) energy
[53, 68]. Thus, these organisms may play a fundamental role
in carbon cycling in terrestrial and aquatic ecosystems.

Improving our understanding of EEU mechanisms is
critical from both an evolutionary and a biotechnological
standpoint [53, 75, 132]. The availability on an early Earth
of insoluble inorganic electron donors from volcanic and
hydrothermal sources could have supported autotrophic EEU
metabolisms on a global scale [20]. Consistent with this,
recent studies link autotrophic pathways of extant microbes
to extracellular electron uptake [52]. In addition, there is
substantial interest in exploiting EEU for microbial electro-
chemical technologies, including microbial electrosynthe-
sis, bioelectronics, and bioremediation [27, 90, 115, 116].
Owing to the ecological relevance and prevalence of EEU
capable autotrophs in nature, and their emerging biotechno-
logical interest, here we will focus on the utilization of EEU
by autotrophs to derive CO, assimilation into chemicals. We
discuss the ecological and evolutionary implications of EEU,
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mental niches, such as anoxic and aphotic zone likes subsurface sedi-
ments and deep-sea vent; anoxic and photic zone; oxic and photic or
aphotic zone

its molecular underpinnings and physiology, as well as the
biotechnological applications.

Ecological and evolutionary implications
of extracellular electron uptake

Autotrophs are important primary producers that drive fun-
damental ecological processes, either using light energy
(photoautotrophs) or using energy derived from chemos-
ynthetic reactions (chemoautotrophs). Emerging evidence
suggests that, unlike eukaryotes, autotrophic microbes can
extract electrons from insoluble materials (e.g., minerals and
electrodes or other cells) for energy generation and CO, fixa-
tion. Insoluble electron donors are abundant in nature and
may enable autotrophic microbes to thrive in niches with a
scarcity of soluble electron donors. Indeed, bioelectrochemi-
cal studies using carbon/graphite electrodes show that a wide
range of geochemically relevant redox potentials can support
EEU-driven metabolisms [53, 68, 82, 123]. Furthermore,
electroactive microbes often utilize conserved mechanisms
to take up electrons from electrodes and from natural insolu-
ble electron donors [52, 53, 68]. These findings provide new
insights into the diversity of insoluble electron donors that
could support microbial primary productivity.
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Understanding microbe—-mineral interactions at the com-
munity level is an important challenge in geomicrobiology.
Bioelectrochemical systems have been applied to under-
stand microbial community interactions among autotrophs,
namely ANME-SRB [100, 126, 135, 150] and syntrophic
anoxygenic phototrophs [54], as well as in situ lithoauto-
trophic microbial communities [123]. Furthermore, studies
of electrochemical microbial communities have revealed a
diversity of metabolic interactions, such as direct interspe-
cies electron transfer (DIET) and long-range extracellular
electron transfer [88]. These electron-transfer reactions may
greatly impact microbial energy flow and biogeochemical
carbon cycling on Earth. Understanding these interactions
at the molecular level is also of upmost importance for engi-
neering applications, such as bioremediation and microbial
electrosynthesis.

Two groups of microbial autotrophs hypothesized to have
ancient origins include anoxygenic photoferrotrophs and
anaerobic chemolithotrophs. Photoferrotrophy represents a
modern analog of a microbial metabolism that may have
prevailed on early Earth’s soluble iron-rich and oxygen-
limited conditions [20]. Photoferrotrophy is thought to be
one of the most ancient forms of photosynthesis [153] and
evidence suggests it could be responsible for the deposition
of the Archean banded iron formations (BIFs) [39, 73, 79,
112, 152]. Recently, it has been shown that EEU processes
are the cornerstone for photoferrotrophy [52]. In addition,
chemolithotrophs, such as acetogens and methanogens,
assimilate CO, via the Wood-Ljungdahl pathway and can
survive under metabolically stringent conditions [9, 94]. The
Wood-Ljungdahl pathway is energetically economical, and
it is considered amongst the most primitive carbon fixation
pathways [84]. Studies have shown that chemoautotrophs
that encode the Wood-Ljungdahl pathway have the capabil-
ity to drive CO, fixation using insoluble electron donors via
extracellular electron uptake [27, 38, 106, 107]. Together,
this could point to an ancient origin for EEU-driven carbon
assimilation for both photoautotrophs and chemoautotrophs.
It is thought that the reducing conditions of early Earth may
have favored the incorporation of soluble and freely avail-
able Fe(Il) into biomolecules [28], thereby making Fe(II)
an essential component of biological systems. Accordingly,
the ubiquity of iron-containing electron transfer proteins,
such as multiheme cytochrome ¢ and iron—sulfur proteins,
in EEU processes [10, 71, 129, 130] further support the idea
that these EEU-driven autotrophic metabolisms may have
evolved on early Earth and may have been crucial in shaping
these ecosystems.

Microbe-mineral interactions play an important role in
biogeochemical processes on Earth. Microbes that can utilize
insoluble electron donors for cellular metabolism via extra-
cellular electron uptake are important for nutrient cycling
in soils, aquatic sediments, and subsurface environments.

Physiological studies of autotrophic microbes have recently
shown that EEU-driven carbon assimilation may be an
important ecological sink for inorganic carbon. Ecological,
genetic, and biogeochemical studies of microbes capable
of EEU, however, have lagged in comparison to studies of
the microbes capable of extracellular electron transfer to
insoluble electron acceptors. Emerging electrochemical and
systems biology approaches are enabling microbiologists to
probe the contribution of EEU-driven microbial processes
at both the single cell and ecosystem scale.

Our current understanding of EEU processes is limited to
a few naturally occurring electron donors. Recently, it has
been shown that other materials, such as carbon/graphite
electrodes poised at naturally relevant mid-point potentials
could serve as electron donors for autotrophic microbes.
EEU is also important for the evolution of key ecological
interactions between microbes. Besides the ecological and
evolutionary importance, EEU processes are also important
for the biotechnological applications. Currently, these appli-
cations are limited due to the recalcitrant nature of these
microbes, inadequate knowledge of EEU mechanisms, and
lack of genetic engineering tools [113]. Future studies focus-
ing on determining the molecular underpinnings of EEU,
and developing engineering toolkits, will help advance this
emerging biotechnological endeavor and improve our under-
standing of the broader environmental implications of these
processes.

Extracellular electron uptake-driven
autotrophic metabolisms and their
mechanisms

Iron-oxidizing chemoautotrophs

Much of what we know about EEU comes from studies of
microorganisms that oxidize iron minerals, such as ferrous
sulfide (FeS), siderite (FeCO;), pyrite (FeS,), magnetite
(Fe;0,), and green rust [18, 56, 72, 73]. Fe(Il)-oxidizing
chemoautotrophs use iron minerals as electron donors for
growth [10, 80]. For example, in acidic environments, such
as acid mine drainage ecosystems oxygen is typically the
only bioenergetically favorable terminal electron accep-
tor for microbial iron oxidation [10, 65]. The redox poten-
tial of the O,/H,O couple is+ 1200 mV vs SHE at pH 2,
which is more electropositive than at neutral pH (+ 820 mV
vs SHE). This favors the use of Fe(II) oxidation (Fe(Il)/
Fe(III), + 770 mV) by chemolithoautotrophic acidophiles.
In addition, even though the energy gain is low and Fe(Il) is
prone to spontaneous abiotic oxidation by oxygen at circum-
neutral pH, neutrophilic iron-oxidizing bacteria have also
evolved the capability to thrive in iron-rich microaerophilic
environments.
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Together both acidophilic and neutrophilic chemolitho-
autotrophs have evolved to grow by linking Fe(II) oxidation
to oxygen (O,) reduction at the microoxic interface using
specialized electron transport chains [60]. This process
generates sufficient cellular energy (ATP) and reducing
equivalents (NAD(H)) for carbon assimilation and biosyn-
thesis [53, 68]. Bacteria capable of chemoautotrophic Fe(Il)
oxidation include acidophilic bacteria, such as Acidithio-
bacillus ferrooxidans and Leptospirillum ferrooxidans [45,
103]; neutrophilic marine bacteria Gallionella ferruginea,
Mariprofundus ferrooxydans PV-1; and neutrophilic fresh-
water bacteria, such as Gallionella capsiferriformans ES-2
and Sideroxydans lithotrophicus ES-1 [41, 42, 55].

Genetic studies of Fe(Il)-oxidizing chemoautotrophs
have revealed two divergent cytochrome c-based extracel-
lular uptake pathways: a Cyc2-based pathway and a MtoAB/
PioAB mediated pathway (Fig. 2). Gene clusters encoding
these pathways have been identified in the genomes and
metagenome-assembled genomes (MAGs) from diverse
bacterial genera [47, 97, 98]. Phylogenomic investigations
of both the Cyc2 and MtoAB/PioAB pathways have revealed
their broad distribution among chemoautotrophic Fe(II)-oxi-
dizing bacteria, including freshwater Gallionellaceae spp.
and marine Zetaproteobacteria [58].

The Cyc2-based pathway (Cyc2/Rus/Cycl) was first
identified in A. ferrooxidans [4, 68]. In this bacterium, elec-
trons from Fe(II) are transported along its electron transport
chain to reduce O, [4]. The process was first proposed by
Ingledew [65] and its molecular [3, 155], genomic [114,
144], and biochemical [23, 156] aspects are well studied.
The Fe(II) oxidation module in acidophilic chemoautotrophs
(Fig. 2a) is composed of an outer membrane monoheme
c-type cytochrome-porin fusion protein (Cyc2) [24], the
periplasmic blue copper protein rusticyanin (Rus), an inner
membrane-bound cytochrome ¢4 (Cycl), and an aa3-type
cytochrome oxidase (CoxBACD) in the inner membrane
where O, is reduced (reviewed in [10]). Cyc2 has been pro-
posed to oxidize Fe(II) extracellularly and transfer electrons
to the periplasmic rusticyanin, where it feeds electrons to
either a down-hill (exergonic) pathway to generate a pro-
ton gradient from the reduction of O,, and also to an uphill
(endergonic) pathway to generate NAD(H) [26] through
reverse electron flow (reviewed in [10]). Rusticyanin repre-
sents a “branch point” that balances ATP and NAD(H) gen-
eration (Fig. 2a), which are both required for carbon fixation
via the Calvin—Benson—Bassham (CBB) cycle [44, 68]. The
role of the Cyc2/Rus/Cycl system in electron uptake from
electrodes has been investigated using site-specific chemi-
cal marking experiments [68]. Inhibition of cytochrome ¢
oxidases with carbon monoxide leads to a disruption in elec-
tron uptake suggesting the down-hill pathway is active dur-
ing EEU. Also, inhibition of cytochrome bc,; with chemical
probes leads to a decrease in current uptake. However, this
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decrease is observed to be subtle and transient therefore it is
unclear how active the “up-hill”/reverse electron flow path-
way is under these conditions. Detailed genetic studies are
required to resolve the role of the Cyc2/Rus/Cycl system in
this process. Lastly, comparative genetic and genomic stud-
ies suggest that the physiology of EEU is conserved among
chemoautotrophic iron-oxidizing bacteria. Like acidophilic,
neutrophilic iron-oxidizing chemoautotrophs, such as S.
lithotrophicus ES-1 and M. ferrooxydans PV-1 use CBB
cycle for CO, fixation [5, 40].

Cyc2 homologs have also been characterized in the aci-
dophilic Fe-oxidizing bacterium Leptospirillum sp. (Cycsy,)
[70] and in the marine neutrophilic iron-oxidizing bacte-
rium, M. ferrooxydans PV-1 (Cyc2py ;) [S]. Proteomic
profiling of M. ferrooxydans PV-1 was used to predict the
iron-oxidation pathway in this neutrophilic chemoautotroph
(Fig. 2b), where Fe(Il) is oxidized by the outer membrane
Cyc2py. . Electrons are then transferred to the periplasmic
cytochrome c4 (Cyclpy ), and finally, to O, via the intra-
cytoplasmic membrane cbb3-type cytochrome oxidase [5].
Cyc2 homologs have also been identified in the genomes
of several neutrophilic Fe-oxidizing isolates in the Zetapro-
teobacteria and Gallionellaceae genera [58, 75, 97]. Fur-
thermore, environmental studies have shown that Cyc2
homologs are prevalent in hydrothermal vent microbial com-
munities, suggesting that the Cyc2 iron oxidation pathway
might be relevant in iron cycling in these ecosystems [98].
However, genetic and biochemical studies are needed to
confirm the gene-to-function relationship. For example, the
biophysical details of how electrons are transported across
the outer membrane via the monoheme cytochrome c-porin
Cyc2, awaits elucidation.

The porin—cytochrome system MtoAB has been impli-
cated in extracellular iron oxidation in the neutrophilic
iron-oxidizing chemoautotroph, S. lithotrophicus ES-1
[85]. This system (Fig. 2c) comprises MtoA (a decaheme
cytochrome c), MtoB (an outer membrane porin), MtoD (a
soluble periplasmic monoheme cytochrome c¢) and CymA
(an inner membrane tetraheme c-type cytochrome) [7, 40,
85]. The MtoA and MtoB proteins are homologs of PioA/
MtrA and PioB/MtrB proteins, respectively. This suggests
that MtoAB transfers electrons across the outer membrane
from the extracellular insoluble iron minerals (Fig. 2¢) [7,
85, 130]. The electrons are then likely shuttled by MtoD to
CymaA, a quinone oxidoreductase in the inner membrane,
where electrons can be transferred to the quinone/quinol
pool [7, 85]. This porin—cytochrome system is present in
several other chemoautotrophic iron-oxidizing bacteria
with some variation of the periplasmic cytochrome c elec-
tron shuttle (Fig. 2d) [58, 59]. Under anaerobic condition,
these chemoautotrophs can divert the electrons to nitrate
using a membrane-bound, cytoplasmic nitrate reductase to
reduce nitrate to ammonium (Fig. 2d) [59]. Unlike Cyc2,
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Fig.2 Models of extracellular electron uptake (EEU)-driven micro-
bial autotrophy. Cyc2-based models of EEU for acidophilic (a) and
neutrophilic chemoautotrophs (b); MtoAB-based models of EEU for
microaerophilic (¢) and anaerobic chemoautotrophs (d); MHC-based
models of EEU for sulfate reducing (e) and methanogenic (f) che-
moautotrophs; PioAB-based model of EEU (g) and FoxEYZ-based
model of EEU (h) in anoxygenic photoautotrophs. Autotrophs access
extracellular insoluble electron donors (redox-active minerals/cells/
electrode) via outer membrane electron transfer protein or proteins
complex; the electron is then shuttle to inner membrane respiratory/
photosynthetic electron transport system by periplasmic electron-
shuttle proteins; the electron is then finally used to reduce O, (aero-
bic/microaerobic chemoautotrophs) or NO?~ (anaerobic chemoau-

MtoAB-containing chemoautotrophs have not been tested
for their ability to perform EEU from electrodes.

ATP synthase

S-layer

Outer membrane/
Inner membrane

totrophs) or NAD" (anoxygenic photoautotrophs). These processes
generate proton motive force which is used to produce ATP via ATP
synthetase. The proton motive force is also used to produce NADH
by reverse electron flow and generated NADH is used to fix CO,
via CBB cycle. Microbes are also known to use EEU to fix CO, via
Wood-Ljungdahl pathway. O ubiquinone, MQ menaquinone, MP
methanophenazine, bc, bc; complex, aa3/cbb3 aa3-type/cbb3-type
cytochrome oxidase, Tplc; periplasmic tetraheme type 1 cytochrome
¢3, Orc/Tme inner membrane redox complexes, QmoABC (Qmo) and
DsrMKJOP (Dsr), membrane-associated quinone-interacting oxi-
doreductase complexes, Rnf Rnf complex (energy-converting ferre-
doxin: NAD" reductase complex)

Sulfate-reducing chemoautotrophs
Sulfate-reducing bacteria (SRB) couple the anaerobic oxida-

tion of sulfate to the oxidation of organic compounds. Che-
moautotrophic growth by SRB can also be accomplished
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using H, as an electron donor for carbon fixation via the
reductive tricarboxylic acid (TCA) cycle or the reductive
acetyl-CoA pathway (Wood-Ljungdahl pathway) [69, 125].
The earliest discovery of EEU by SRB came from studies
of microbially-induced iron corrosion [37]. These studies
use elemental iron granules as the sole electron donor to
enrich SRB. Bioelectrochemical investigations demonstrated
the ability of several SRB to take up electron from elec-
trodes with CO, as the sole source of carbon. These EEU
SRB include Desulfosporosinus orientis and Desulfovibrio
piger (Eypplieq: —310 mV vs. SHE) [33], Desulfopila cor-
rodens strain IS4 (E,i.q: —400 mV vs. SHE) [8], Desul-
Jobacterium autotrophicum HRM2 (E,,jieq: =500 mV vs.
SHE) [159]. In the lithotrophic marine SRB Desulfovibrio
ferrophilus IS5, an outer membrane cytochrome could pro-
vide an electron conduit for EEU from electrodes (E,jieq:
—400 mV vs. SHE) for sulfate reduction [34]. Several outer
membrane multiheme cytochromes in D. ferrophilus 1S5
are overexpressed under nutrient limitation. Furthermore,
transmission electron microscopy of starved D. ferrophilus
IS5 cells revealed heme-containing extracellular appendages
reminiscent of the protein nanowires of iron reducers [120]),
suggesting it may utilize direct uptake mechanisms [34].

SRB have been identified that form syntrophic consor-
tia with anaerobic methanotrophic (ANME) archaea. These
microbial consortia catalyze sulfate reduction, coupled
to anaerobic methane oxidation, and are thought to be an
important methane sink in marine sediments [78, 119]. In
this association, ANME oxidize methane (CH,) to CO, via
reverse methanogenesis, and transfer the electrons to SRB
via direct interspecies electron transfer (DIET) for sulfate
reduction [100, 126, 135, 150]. The molecular mechanism
of the cooperative electron exchange in the ANME-SRB
consortia has been hypothesized to follow DIET, [100, 150]
a process previously reported for methanogenic consortia
[122, 139]. Electron exchange may involve outer membrane
multiheme cytochrome ¢ proteins of encoded by the syn-
trophic partners [100, 126, 150]. Both ANME and SRB
have outer membrane multiheme cytochrome c proteins that
could participate in the electron transfer [100, 135]. This
hypothesis is further supported by metatranscriptomic [102,
148] and in situ metaproteomic [135] studies from marine
methane seep sediments. Comparative genomic evidence
suggests that the outer membrane multiheme cytochrome
¢ of these syntrophic microbes are similar in organization
to cytochromes mediating extracellular electron transfer in
metal-reducing bacteria, such as Geobacter and Shewanella
[77, 100, 135].

The mechanistic underpinnings of EEU are poorly under-
stood in SRB. Both direct and indirect mechanisms have
been proposed. Indirect mechanisms, such as abiotic H, evo-
lution, could be prevalent because a majority of SRB pos-
sess periplasmic hydrogenases [1]. Certain SRB, however,
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have been shown to generate cathodic current under electro-
chemical conditions more positive than the thermodynamic
potential for cathodic H, production, suggesting direct elec-
tron uptake mechanisms could exist [8, 33, 34]. In addition,
the SEEP-SRBI1 clade of ANME partners lack periplasmic
hydrogenases [135] and are incapable of growth with H, as
an electron donor [105, 151]. One model (Fig. 2e) (either for
free living or syntrophic SRB) proposes the involvement of
an outer membrane multiheme cytochrome ¢ for direct EEU
from insoluble electron donors (elemental iron or electrode,
or ANME partner in consortia) [1, 34, 135]. The electrons
are then thought to be shuttled by a conserved periplasmic
tetraheme type 1 cytochrome c; (Tplc;) to the inner mem-
brane complexes Qrc or Tmc. The Qrc complex reduces
the menaquinone pool, which then transfers the electrons
to the inner membrane quinone-interacting oxidoreductase
complexes, QmoABC (Qmo) and DsrtMKJOP (Dsr). These
complexes are hypothesized to transfer electrons to cyto-
plasmic sulfate reduction pathway, which contributes to the
transmembrane proton gradient. The Tmc complex can also
transfer electrons from Tplc; to menaquinone pool or to a
cytoplasmic sulfate reduction pathway (for details of this
proposed model refer to refs [1, 135]).

Acetogens

Acetogens are strictly anaerobic bacteria that grow by the
conversion of C1 compounds (e.g. formate, CO, or CO,)
to acetate via the acetyl-CoA pathway (Wood-Ljungdahl
pathway) [38]. Acetogens can also use molecular hydrogen
(H,), electrodes [106, 107] or metallic iron (Fe) [76, 111] as
electron donors to reduce CO,. A variety of acetogens have
been isolated using electrodes and metallic iron as electron
donors [76, 92, 111]. Several acetogenic microbes, includ-
ing Sporomusa and Clostridium species, produce organic
compounds from CO, using electrodes [106]. Their high
carbon conversion efficiency shows promise for microbial
electrosynthesis applications [90, 116]. This very same effi-
ciency also makes Fe'-oxidizing acetogens major drivers of
iron biocorrosion [43].

Studies suggest that acetogens use both direct and indirect
mechanisms for extracellular electron transfer. Outer mem-
brane cytochromes have been proposed to provide a direct
pathway for electron transport in Sporomusa spp.[75, 76,
106, 107, 122]. Acetogens can also reportedly take up elec-
trons from cathodes [106] or Fe’ [76, 111] under conditions
unfavorable for electrochemical H, production. However,
the underlying molecular mechanisms are not known. Ace-
togens may also use indirect extracellular electron transfer
mechanisms via soluble electron shuttles and H, genera-
tion [64]. Many microbes are known to secrete redox-active
small molecules, such as flavins and phenazines, to shuttle
electrons to extracellular electron acceptors [14, 48, 81, 93,
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149]. Supplementation of bioelectrochemical systems with
artificial mediators stimulates EEU rates by certain aceto-
gens [136]. However, the natural production of soluble elec-
tron shuttles by acetogens is not known [111] and thus, its
environmental relevance is unclear. Indirect electron uptake
by acetogens through H, production at the solid interface
has been experimentally corroborated. An anoxic corrosion
reaction at the surface of Fe’ generates H, for acetogenesis
[110]. Recent studies also show that cell-free spent media
from electroactive acetogens can increase H, production at
electrodes compared to abiotic conditions. For example, cell-
free spent media of Sporomusa sphaeroides [36] and Spo-
romusa ovata [141] can enhance H, generation at cathodes
poised at —500 mV and —300 mV vs. SHE, respectively.
These studies suggest that microbial cells secrete enzymes,
such as hydrogenases, that can absorb onto the solid sur-
face to generate H,. Although methanogens are known to
excrete hydrogenases for Fe’-driven H, generation [143],
such enzymes have not been detected in the spent medium
of acetogens [110].

Methanogens

Methanogenesis is a widespread biogeochemical process on
Earth that primarily occurs in anoxic, organic-rich terres-
trial, and marine subsurface environments [6, 96]. Methane
is typically produced in heterotrophic microbial communi-
ties of methanogens and syntrophic bacteria that collectively
convert organic acid into methane as an end-product of cel-
lular respiration. Hydrogenotrophic methanogens produce
methane by utilizing the end-products of syntrophic bacteria
(i.e. H,) as electron donors to reduce CO,. The interspecies
transfer of electron equivalents, such as H, and formate, is
generally achieved by a close physical association between
syntrophic consortia and methanogens [32, 66, 67].

DIET is also thought to be an important driver of energy
and electron transfer in methanogenic microbial communi-
ties [89, 99]. This mechanism has been studied in bioelectro-
chemical systems where electrons produced by electrogenic
microbes during the oxidation of organic acids at the anode
drive methane production from CO, at the cathode [87, 116].
Methanogenic electron uptake from cathodes has been pro-
posed to occur via direct extracellular electron transfer pro-
cess [27]. Methanogens, such as Methanosarcina barkeri
can utilize electrons directly from syntrophic bacteria, such
as Geobacter metallireducens via DIET, or electrodes [158].

Whether from syntrophic bacteria or from electrodes,
methanogens use a multiheme cytochrome ¢ (MHC) for bidi-
rectional electron exchange [62, 122, 133, 139]. The elec-
tron transfer pathways that use MHC for methane oxidation
or CO, reduction have been described in several methano-
gens [61, 62]. The model is similar to the one proposed for
methanotrophic ANME partner in ANME-SRB consortia

[100]. In this model (Fig. 2f), reducing equivalents gener-
ated during the oxidation of methane reduce the membrane-
bound methanophenazine pool via reactions at Fpo and Rnf
complexes that generate a proton and sodium ion gradient,
respectively. The reduced methanophenazine pool is then
oxidized by an integral membrane protein (cytochrome b/
cytochrome c). Electrons can then be transferred to larger
MHC:s for extracellular electron transfer across the S-layer
[100]. The electron transfer in the reverse direction could
lead to CO, reduction to methane [61].

It is also plausible that methanogens use a cytochrome
c-independent mechanism that is based on the production
of extracellular hydrogenase enzymes [36, 124]. A recent
study of multiheme cytochrome ¢ in DIET by methanogens
demonstrated that (i) multiheme cytochromes ¢ are not
required for EEU in M. mazei, and (ii) these proteins are not
widely conserved [157]. In the DIET-dependent methano-
gen, M. mazei, deletion of the predicted MHC encoding gene
(MM_0633), has no effect on EEU either from its syntrophic
partner, G. metallireducens, or from electrodes [157].

Chemoautotrophic microbes, such as acetogens, metha-
nogens, and SRB are known to use a reductive acetyl-CoA
pathway or Wood-Ljungdahl pathway to derive their cel-
lular energy and carbon [16, 38, 117]. Because this path-
way is thermodynamically limiting, early studies focused on
understanding how these organisms derive sufficient energy
for growth under such stringent metabolic conditions. The
mechanism was ultimately uncovered with the discovery of
energy conserving membrane-complex enzymes and the
understanding of flavin-based electron bifurcation mecha-
nisms in these microbes (reviewed in [17, 109, 128]). Using
electron bifurcation, these microbes split a two-electron-
transfer from an electron donor (such as H,) into two (low
and high) potentially different electrons. This allows these
microbes to carry out both endergonic and exergonic reac-
tions using the low- and high-potential electrons, respec-
tively, as one-electron transfers without investing cellular
energy. The low-potential electron is generally used to
reduce ferredoxin. This reduced ferredoxin can be utilized
by the energy conserving respiratory enzymes Rnf (energy-
converting ferredoxin: NAD™ reductase complex) and Ech
(energy-converting ferredoxin-dependent hydrogenase com-
plex) to reduce NAD* and protons, respectively. These pro-
cesses also generate a transmembrane ion gradient which
is utilized for ATP generation (reviewed in [84]). Whether
EEU processes are linked to energy conservation via these
mechanisms requires further investigation.

Iron-oxidizing phototrophs
Unlike oxygenic phototrophs (e.g., cyanobacteria, algae, and

plants), which solely depend upon water splitting for pho-
tosynthesis, anoxygenic phototrophs use both soluble and
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insoluble electron donors. This includes Fe(II) and insoluble
mixed-valence iron minerals, using a process called pho-
toferrotrophy [152]. Photoferrotrophy was first reported in
purple bacteria [152]. This process has since been described
in purple sulfur, purple nonsulfur, and green sulfur bacteria
(reviewed in [19]). Several anoxygenic phototrophs studied
in bioelectrochemical systems include the purple nonsulfur
bacteria Rhodopseudomonas palustris TIE-1, Rhodomicro-
bium vannielii, and Rhodomicrobium udaipurense [13, 52]
and the green sulfur bacterium Prosthecochloris aestuarii
[54, 63].

Anoxygenic phototrophs have evolved divergent mecha-
nisms to facilitate microbe electrode and microbe—mineral
interactions. One of the best studied systems is PioAB,
which is encoded in the genomes of several phototrophs (R.
palustris TIE-1, R. vannielii, and R. udaipurense). A puta-
tive outer membrane cytochrome homologous to Cyc2 has
also been identified in the draft genomes of iron-oxidizing
phototrophs, Chlorobium phaeoferrooxidans and Chloro-
bium sp. Strain N1 [15, 30]. However, only the PioAB sys-
tem of R. palustris TIE-1 is known to facilitate EEU from
solid substrates (e.g., minerals or electrodes) and to link the
process to photosynthesis [13, 52, 53]. Therefore, much of
the discussion in this section will focus on the molecular
details of EEU by R. palustris TIE-1, followed by a compari-
son to the iron-oxidation systems of Rhodobacter sp. strain
SW2 and related phototrophic bacteria.

Rhodopseudomonas palustris TIE-1 oxidizes soluble
Fe(II), insoluble mixed-valence iron minerals, and electrodes
using light energy [13, 18, 53, 71]. These processes are
catalyzed by proteins encoded in a three-gene operon (Pio-
ABC). PioA is a periplasmic decaheme cytochrome ¢ pro-
tein, PioB, an outer membrane beta-barrel porin, and PioC,
a periplasmic high potential iron—sulfur protein (HiPIP) [13,
71]. The molecular mechanisms of phototrophic Fe(II) and
electrode EEU have been studied at the molecular and bio-
chemical level (Fig. 2g) [52]. PioA forms a complex with
PioB (PioAB) in the outer membrane after periplasmic
secretion and processing [52]. The PioAB complex serves
as an extracellular electron conduit that transfers electrons
from Fe(II) or poised electrodes across the outer membrane
[52]. PioA in the complex spans across the outer membrane
through PioB and transfers electrons to periplasmic PioC,
which then likely transfers electrons to the photosynthetic
reaction center in the inner membrane (Fig. 2g) [10, 11, 52,
129]. The PioAB system is conserved in R. vannielii and R.
udaipurense, phototrophs that can also perform EEU from
Fe(II)/electrodes [52].

PioA and PioB are homologs of the MtrA and MtrB
proteins, respectively of the MtrCAB system of the iron-
reducing bacterium Shewanella oneidensis MR-1. Although
both the PioAB and MtrCAB systems bridge electrons
between microbes and the extracellular environment, there

@ Springer

are fundamental biophysical and biochemical differences in
the electron transfer process. Firstly, extracellular electron
transfer, preferably or naturally, occurs in opposite direc-
tions. Secondly, the PioAB system has a single decaheme
cytochrome ¢ (PioA), unlike two decaheme cytochrome ¢
proteins (MtrA and MtrC) encoded in S. oneidensis MR-1. In
addition, PioA homologs in phototrophic bacteria contain a
larger N-terminal region compared to MtrA homologs. This
N-terminal extension controls heme maturation and its pro-
teolytic cleavage is required to produce decaheme-attached
PioA. The post-secretory proteolysis of the extended N-ter-
minal of PioA homologs in these phototrophic bacteria is
hypothesized to control the synthesis of bioenergetically
expensive decaheme cytochrome c [52].

Some phototrophic iron-oxidizing bacteria lack homologs
of the PioAB/MtrAB or Cyc2 system. Rhodobacter sp. strain
SW2 contains a three-gene operon foxEYZ encoding FoxE,
a periplasmic diheme cytochrome c; FoxY, a predicted qui-
noprotein; and FoxZ, a predicted inner membrane transport
protein (Fig. 2h) [29]. Structural studies of FoxE suggest
a controlled rate of electron transfer that could allow the
periplasmic oxidation of Fe(Il) without the formation of
lethal Fe(III) precipitates [108]. However, many questions
regarding the molecular and physiological nature of this
model remain unknown. Currently, it is unclear whether
iron-oxidation by Rhodobacter sp. strain SW2 involve an
EEU mechanism or whether it can oxidize mixed-valence
iron minerals or electrodes. Further investigation of the iron
oxidation pathway could help determine the precise electron
transfer mechanism, and help resolve the location of Fe(II)
oxidation.

Some isolates of iron-oxidizing phototrophs lack
homologs of known iron oxidation pathways and/or do not
have genetic systems. Thus, molecular understanding of
iron oxidation in these microbes is lacking. These microbes
include Rhodovulum iodosum and Rhodovulum robiginosum,
green sulfur bacteria from the genus Chlorobium, and purple
sulfur bacteria, such as strain L7 in the genus Chromatium
[39]. Comparative genome analyses of several phototrophic
iron oxidizers have provided some insights into their iron
oxidation pathways. The draft genome of R. robiginosum
DSM12329 does not have clear homologs of proteins known
to participate in extracellular electron transfer or iron oxida-
tion pathways but contains several uncharacterized multi-
heme cytochromes that could play analogous roles [51]. Bio-
chemical, structural, and functional genomic studies could
help elucidate whether these genes contribute to electron
uptake processes.

Unlike chemoautotrophs, anoxygenic phototrophs uti-
lize cyclic photosynthesis to generate cellular energy and
reducing equivalents. The photosystem (photosystem II,
Pg,o) of anoxygenic phototrophs is excited by light energy
and electrons flow cyclically from the reaction center to the

120z Iudy 1 uo ysenb Aq 2809%09/£98/0 -6/ /101He/quil/woo dno-ojwapede//:sdiy Wody papeojumod



Journal of Industrial Microbiology & Biotechnology (2020) 47:863-876

871

ubiquinone pool to re-oxidize cytochrome bc,. This process
generates a proton motive force to drive ATP synthesis via
cyclic photophosphorylation. Electrons are typically shut-
tled to the photosystem by periplasmic cytochrome c-type
proteins. Within the Rhodospirillaceae, cytochrome ¢, and/
or high-potential iron—sulfur proteins (HiPIPs) mediate pho-
tosynthetic electron transfer between cytochrome bc; and
the reaction-center bacteriochlorophyll [145]. External elec-
tron donors are required to generate reducing equivalents,
namely NAD(H), for biosynthesis. This process is driven
by reverse electron transfer mechanisms that push electrons
uphill against their electrochemical gradient. This is likely
mediated by cytochrome bc; and NADH dehydrogenase
which transfer electrons from the ubiquinone pool to reduce
NAD™* to NAD(H). Similar to iron- and sulfur-oxidizing
chemoautotrophs, photoautotrophs use CBB cycle for CO,
assimilation.

Recent studies have suggested that the EEU pathways of
anoxygenic phototrophs are linked to energy transduction
and carbon fixation via photosynthetic electron transfer [52,
53]. Physiological studies of the electron uptake pathway of
R. palustris TIE-1 have revealed that EEU from electrodes
is catalyzed by a cytochrome bc,-mediated process and is
dependent upon a functional proton motive force. This could
suggest that reverse electron flow is active in R. palustris
TIE-1 to transfer electrons from poised electrodes, where the
redox potential is sufficiently lower than the NAD*/NAD(H)
redox couple. Reverse electron flow has been suggested for
phototrophic Fe(II)-oxidizing bacteria and this process is
well-studied in chemoautotrophic Fe(Il)-oxidizing bacte-
ria. Interestingly, treatment of R. palustris TIE-1 biofilms
with NADH dehydrogenase-specific inhibitors was shown to
cause a substantial defect in electron uptake from electrodes
further implicating reverse electron flow processes in reduct-
ant generation in this organism [53] (Fig. 2g).

Syntrophic anoxygenic phototrophs

The green sulfur bacterium Prosthecochloris aestuarii is
also known to utilize EEU to carry out anoxygenic photo-
synthesis [54]. This bacterium can take up electrons from
either solid electrodes or from a syntrophic partner [54]. In
the latter case, electrons from acetate oxidation by Geobac-
ter sulfurreducens are transferred to Prosthecochloris aes-
tuarii via DIET [54]. This mechanism of electron transfer
is supported by two-chamber bioelectrochemical studies. In
syntrophic association, electrons generated from acetate oxi-
dation by G. sulfurreducens in the dark anode chamber drive
light and CO,-dependent electron uptake by P. aestuarii in
the illuminated cathodic chamber [63]. The outer membrane
porin—cytochrome c system of G. sulfurreducens was shown
to be essential for DIET [54]. A recent study based on the
electrochemical in situ Fourier transform infrared (FTIR)

spectroscopy suggested that outer membrane-associated
redox-active proteins, such as cytochrome ¢ may be utilized
by P. aestuarii [63], however, the precise mechanism of elec-
tron uptake awaits elucidation.

Sulfur-oxidizing chemoautotrophs

Microbial sulfur oxidation is an important biogeochemical
process in modern marine ecosystems and may have been
critical in ancient euxinic environments [86, 91, 101]. Evi-
dence for sulfur-dependent chemolithoautotrophic metabolic
activity dates back nearly 3.4 billion years [147]. Sulfur-
oxidizing bacteria have the metabolic capability to oxidize
inorganic forms of sulfur, typically sulfide (H,S/HS™),
coupled to the reduction of oxygen (O,) or nitrate (NO;")
[46]. The majority of sulfur oxidizers are autotrophs and use
reduced sulfur species as electron donors for carbon fixation
[46]. Thus, sulfur oxidizers represent an important link in
the biogeochemical carbon cycle in oxygen-poor, sulfide-
rich environments, such as oxygen minimum zones, marine
sediments, and hydrothermal systems [1, 21, 31, 57, 95, 134,
154].

Slowly coming to light is the role of solid substrates for
energy flow in sulfur-oxidizing marine sediment microbial
communities [82, 83, 123]. Sulfur-oxidizing chemoauto-
trophs utilize a range of solid substrates in the natural envi-
ronment, including elemental sulfur (SO), metallic iron (Feo),
and reduced iron minerals [82, 123]. Several recent studies
have utilized bioelectrochemical approaches to investigate
the diversity of mineral-oxidizing microbes in marine sedi-
ments [49, 82, 83, 123, 138]. These studies revealed a diver-
sity of bacteria capable of EEU from electrodes over a range
of redox potentials [82, 83]. Sulfur-oxidizing chemoauto-
trophs are known to encode the CBB cycle [12], however,
a detailed physiological analysis of EEU in these chemoau-
totrophs is still lacking. Electrochemical approaches have
also been used to isolate sulfur-oxidizing bacteria, including
Thioclava electrotropha E10x9, which can utilize electrodes
for nitrate reduction and S° for carbon fixation [25]. Many
members of the Thioclava genus are known to assimilate
inorganic carbon via CBB cycle [137], howeyver, it is unclear
whether Thioclava electrotropha E10x9 can utilize elec-
trodes for carbon fixation [74].

Characterization of the EEU pathways in sulfur oxidizers
has been limited to electrochemical studies, because detailed
genetic and biochemical work is limited by a lack of organ-
isms in pure culture. Cyclic voltammetry of sulfur and iron-
oxidizing bacteria isolated from sediments has revealed a
wide range of midpoint potentials that could represent redox-
active proteins involved in extracellular electron transfer [82,
123]. Interestingly, electrochemical studies of marine sedi-
ment microbes show that iron-oxidizing bacteria have lower
(more reduced) midpoint potentials than sulfur oxidizers
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[82]. This could indicate divergent molecular pathways for
EEU that enable niche differentiation. Detailed comparative
genomic, biochemical, and genetic studies are needed to elu-
cidate the molecular pathways that sulfur oxidizers utilize to
access electrons from solid substrates.

Biotechnological implications
of extracellular electron uptake

The ability of EEU autotrophs to capture and sequester car-
bon using electricity opens opportunities to develop bioel-
ectrochemical technologies that address the global rise of
greenhouse gas emissions [94, 127]. Of particular interest is
the ability of these microbes to drive electrosynthesis, where
value-added chemical commodities are produced from CO,
and electricity [76, 107, 132]. Microbial electrosynthesis
has been exploited in both chemoautotrophic and photoau-
totrophic microbes to produce multicarbon chemical com-
modities [113, 118, 142]. The major bottleneck for wide-
spread use of EEU capable autotrophs for biotechnology is
the lack of genetic engineering tools to manipulate these
organisms [113].

The current microbial electrosynthesis technologies are
primarily focused on the use of acetogens (reviewed in
[113]). Microbial electrosynthesis using photoautotrophs
is an emerging field. Recent studies of photoautotrophs
have advanced our understanding of the molecular mecha-
nisms and the physiology of how electrons from cathodes
are utilized for energy transduction and biomass production
[11, 52, 53]. Lastly, the rate of electron uptake by microbes
directly depends on the total amount and the electron-trans-
fer efficiency of the protein electron—conduits they encode
[52, 104]. Although the native EEU capacity of most charac-
terized microbes is limited, it could be improved by genetic
engineering. For example, further development of engi-
neered chassis microorganisms with overexpression of either
native or heterologous electron—conduit systems could lead
to higher electron transfer efficiencies. This could bypass
electron-transfer rate limitations. In addition, the develop-
ment of metabolic engineering strategies to uncouple the
use of electrons to biomass production in the native host
could improve the ability to direct fixed carbon towards more
specific production of value-added chemical commodities.
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