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ABSTRACT

Arctic sea surface temperatures (SSTs) are estimated mostly from satellite sea ice concentration (SIC)
estimates. In regions with sea ice the SST is the temperature of open water or of the water under the ice.
A number of different proxy SST estimates based on SIC have been developed. In recent years more Arctic
quality-control buoy SSTs have become available, allowing better validation of different estimates and the
development of improved proxy estimates. Here proxy SSTs from different approaches are evaluated and an
improved proxy SST method is shown. The improved proxy SSTs were tested in an SST analysis, and showed
reduced bias and random errors compared to the Arctic buoy SSTs. Almost all reduction in errors is in the
warm melt season. In the cold season the SIC is typically high and all estimates tend to have low errors.
The improved method will be incorporated into an operational SST analysis.

1. Introduction

Temperature is a key indicator of climate change in
the Arctic. However, sea surface temperature (SST)
observations in this region are limited, whether from
satellite or in situ platforms. A common practice is to
generate simulated, or proxy SST based on sea ice
concentrations (SIC), for which there is good coverage
in the Arctic from satellite observations. The SST in ice-
covered regions is defined as the seawater surface tem-
perature in open-water areas for partial ice-covered
regions. In fully ice-covered regions it is the seawater
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temperature just below the ice. An example of SST
simulated from NASA Team SIC is shown in Fig. 1a.
The other panels show SST estimates from satellites and
buoys for the same day. The observed SSTs are much
sparser but roughly consistent with the estimates from
SIC in areas near the ice. Different SIC estimates are
discussed in section 2. The SIC is given as the fraction
of a sampled region covered by sea ice, from 0 to 1. The
SST simulated from the SIC can be used as an input for
an SST analysis, that is, a gap-filled SST map used in a
wide range of applications such as weather prediction,
climate studies, and ecological modeling.

There are many methods for converting sea ice
concentration to SST. Examination of the most com-
monly used level 4 (L4) products from GHRSST indi-
cates four main approaches. The simplest approach is
to set the SST to the freezing point of seawater
(approximately —1.8°C). Chin et al. (2017) set SST to
the freezing value north of 88°N regardless of ice con-
centration, to compensate for the lack of data near the
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FIG. 1. Maps of SST inputs: (a) ice SST based on NASA Team SIC and the current OISST methods; (b) satellite SSTs (combined day and
night from MetOp-A and NOAA-19); and (c) in situ SSTs. All are daily estimates for 15 Sep 2012.

North Pole, and everywhere else where SIC > 0.3
to deal with the ice margins. Donlon et al. (2012)
compute a first guess in ice zones that assigns a back-
ground SST value of —1.8°C where SIC > 0.5 and re-
laxes the anomaly from the previous time step toward
that background value. The forcing toward the back-
ground value is dependent on the SIC, with modest
forcing for SIC at 0.5 and much stronger forcing for SIC
at 1.0.

A second approach is used by Brasnett and Surcel
Colan (2016). In most cases when the sea ice concen-
tration is at least 0.6 they estimate the SST as —1.8°C.
They adjust that estimate when an analysis of surface air
temperature is above 0°C and the ice concentration is
between 0.6 and 0.9. In that case they assume that
meltwater is present and they set the SST to 0°C. In their
analysis of the Arctic they assign a large error estimate
of the proxy SST estimated this way.

A third approach, used in the Real-Time Global
(RTG) analysis, derives the surface freezing temperature
from Millero’s formula (see Fofonoff and Millard 1983,
and references therein) and the Levitus (1982) salin-
ity climatology (Thiebaux, J.E., 2003; and https://
polar.ncep.noaa.gov/sst/rtg_high_res/description.shtml).
The annual Levitus (1982) salinity is needed since sea-
sonal estimates for that climatology are too sparsely
sampled to describe the entire Arctic. The RTG estimate
is used by Maturi et al. (2017) for the Arctic. Surface
salinity has large spatial variation over the Arctic Ocean
with relatively low values, about 20 psu, on some shelves.
Within the Atlantic inflow from the Nordic seas salinity is
much higher, around 34-35 psu (Zweng et al. 2013). This
gives surface freezing temperatures of between —1.08°
and —1.87°C (Fofonoff and Millard 1983). There is also
strong seasonal change in surface salinity, which is not

accounted for when using the annual mean. Thus,
using a salinity climatology improves the surface freez-
ing temperature estimate compared to holding it con-
stant at —1.8°C, and a seasonal climatology is better than
an annual climatology. Improvements can be increased
by use of an updated climatology that better reflects
recent changes in Arctic salinity. With the typical
Arctic salinity, the rate of change of surface freezing
temperature with salinity is roughly —0.06°C psu~'. The
Measuring the Upper Layer Temperature of the Polar
Oceans (UpTempO) buoy accuracy is 0.1°C, so a 2-psu
change could cause detectible errors. Since the regional
and seasonal salinity changes could cause Arctic SST
changes that are important to some users, it is useful to
minimize the errors associated with those changes.

Regression formulas have also been used to relate
satellite SST estimates to SIC. Regressions have taken
various forms, including linear (Reynolds et al. 2007,
hereafter REAQ07), quadratic (Reynolds et al. 2002;
Rayner et al. 2003), or cubic (Hurrell et al. 2008).
REAO07 reasoned that a bilinear equation is sufficient to
approximate the quadratic relation, and can be further
simplified into a linear equation if applied only where
SIC > 0.5. With the regression approach, the proxy SST
value is set to a minimum constant temperature (—1.8°C
for oceans, 0.0°C for large lakes) when the ice concen-
tration is above a certain threshold value. When the ice
concentration is less than the threshold value, the re-
gression formula is then used. The regressions vary
temporally and geographically, with the boundaries
varying by authors.

There are valid arguments why each of these four
approaches may work. As noted in Reynolds et al. (2002;
REAQ7), the regressions are fit to the best data available
at the time of their development, although there are now
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some better Arctic SST estimates. The RTG estimate is
based on a physical limit, the freezing temperature of
seawater. But there is now an improved monthly salinity
climatology for computing the freezing temperature so it
could be improved.

Until recently there was not enough quality-controlled
in situ data in the Arctic to evaluate the various ap-
proaches or to develop better methods. Quality control is
needed to remove suspect or unrealistic SSTs, which can
occur when buoys are frozen out of the water and ex-
posed to air. These problems are here addressed using
data from the UpTempO project, available in a raw and
quality-controlled version. Castro et al. (2016) used the
UpTempO to show large differences (sometimes in ex-
cess of 2°C) among the analyzed SST values in the
Beaufort Sea. These differences may be due to the proxy
SST estimation or from how the proxy SST is analyzed.

The focus of this study is on the proxy SST estimation
methods using an expanded UpTempO dataset. First,
we verify the relationship between SST and ice, which is
the basic assumption of the ice-to-SST conversion. Next,
we generate proxy SST using the four main methodol-
ogies and validate them using the in situ data. Finally,
we investigate ways to improve and implement the
best method, for inclusion in the NOAA 0.25° daily
Optimum Interpolation SST (OISST; described by
REAQ7) analysis.

In the following sections, first the datasets used are
described. That is followed by a section that examines
the relation between SIC and SST and the evaluation of
the four proxy methods discussed above. The adaptation
of the method for use in OISST is then discussed, fol-
lowed by a brief summary and conclusions section.

2. Data and methods

This study uses the NASA Team SIC dataset at 25-km
resolution (also identified as NSIDC-0051; Cavalieri
et al. 1996, 1999). Available from 1978, it is the ice
dataset used for computing proxy SSTs in long runs of
OISST and has been used for other long-term SST an-
alyses (e.g., Rayner et al. 2003). The NSIDC-0051 SIC is
available with about 1 year of latency. This particular
SIC dataset had been used for long OISST analyses in
the past and therefore was used here. There may now be
better long-record SIC datasets, and we hope to evalu-
ate them for possible use in future improvements to the
analysis. That could potentially give additional im-
provements, but the basic improvements shown in the
new proxy SST estimates are not expected to change.

The NCEP ice is used for operational daily OISST
updates. The NCEP SIC is on a 0.5° grid in GRIB for-
mat. Data for the most recent 3 days are available online
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(ftp:/ftpprd.ncep.noaa.gov/data/nccf/com/omb/prod/),
and older data are in monthly or yearly files (which
can be obtained from ftp://polar.ncep.noaa.gov/cdas/
archive/). The 0.5° data are linearly interpolated onto
the OISST 0.25° grid. In addition, some testing was done
using a higher-resolution version of the NCEP SIC
averaged to the 0.25° grid (downloaded from ftp:/
polar.ncep.noaa.gov/cdas/archive/). On the 0.25° grid
there is little difference between results from the two
NCEP SIC analyses. Some further details of the NCEP
product are given by Grumbine (2014).

The buoy SSTs are level 2 quality-controlled UpTempO
data (Steele et al. 2018; see also similar datasets for
other years at the Arctic Data Center and at http://
psc.apl.washington.edu/UpTempQO/). The shallowest tem-
perature in profile is identified by first wet thermistor
(FWT) indicator. The data are most consistently reliable
from 2012 onward. UpTempO buoys have been de-
scribed in Castro et al. (2016). With regard to level 2
data, they have been quality controlled relative to raw
level 1 data via (i) bias and drift checks against nearby
in situ temperature profile data (when available) and
subtraction of long-term trends in the deepest temper-
ature and pressure sensors, (ii) range checks for un-
physical values, and (iii) outliers, dead sensors, and
other miscellaneous noise. Most buoys have been de-
ployed in summertime in open water in the Beaufort
Sea, with some in the northern Chukchi and Laptev
Seas; they subsequently freeze into the pack ice and drift
throughout the Arctic Ocean.

3. Filling the pole-hole gap

The NASA Team SICs are retrieved from microwave
observations from a series of satellites. Due to the sat-
ellite inclination, there is an observational data gap
around the North Pole [referred to as the pole-hole
gap (PHG); see Fig. 2]. The size of the PHG is satel-
lite dependent (Table 1). There are similar gaps
around the South Pole, but because they are over the
Antarctic continent, they do not affect sea ice esti-
mates. Because our intent is to use the sea ice con-
centration to generate the proxy SST, it is important to
fill the Arctic PHG.

The PHG may be filled using bilinear interpolation as
is done in the OISST analysis (REA07) and in the Ocean
and Sea Ice Satellite Application Facility (OSI SAF) ice
(Lavelle et al. 2017). In REAO07, the bilinear interpola-
tion is done after the ice data have been remapped to a
rectangular grid. Strong and Golden (2016, hereafter
SG16) developed a method that proved superior to the
bilinear method and is done using polar projected data.
To evaluate the SG16 method the SIC data for 2012
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FIG. 2. (left) NASA Team sea ice concentrations for 15 Sep 2012 with a pole-hole radius of (top) 94 km, (middle)
REAO7 filled, and (bottom) SG16 filled. (right) Simulated 611-km-radius hole (middle) REAO7 filled and (bottom)
SG16 filled. The black circle in the top-left panel is approximately the larger PHG region where data are discarded

for testing.

were used, when SIC reached a long-term minimum.
From 2008 onward, the PHG is small, making it possible
to conduct an experiment by withholding data to simu-
late conditions for when the PHG is much larger. The
focus was on September when monthly melting tends to
be greatest, making the most variation in ice concen-
trations. The high variation makes filling the pole hole
particularly challenging. Here we test the SG16 method

and compare it with the bilinear method of REAQ7.
C. Strong and K. Golden (2018, personal communications)
provided filled values using their method for September
2012 using all data and for a test of an extended PHG
that omitted data north of 85°N. Note that in Fig. 2, 85°N
is indicated by the black circle in the top-left panel from
the latitude just north of Greenland. The month used
for the test, September 2012, is a month with particularly
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TABLE 1. Satellite pole-hole masks and sizes for different time periods (from http:/nsidc.org/data/NSIDC-0051).

Pole-hole mask name Pole-hole area (million km?) Pole-hole radius (km) Lat (°N) Dates used
SSMIS pole-hole mask 0.029 94 89.18 January 2008—present
SSM/I pole-hole mask 0.31 311 87.2 July 1987-December 2007
SMMR pole-hole mask 1.19 611 84.5 November 1978-June 1987

low Arctic sea ice, making this a severe test of the inter-
polation methods.

Using the full data and the infilling results using the
two methodologies give similar results when the PHG
is small. For example, for 15 September 2012 both the
REAO07 and SG16 methods give similar results (Fig. 2,
left panels) and comparisons are similar over the en-
tire month. For times with a small PHG either method
can be used. The challenge is to fill for periods when
the PHG is relatively large. When data are withheld
north of 85°N the REA(07 method produces a wedge-
shaped pattern, while the SG16 gives a more natural
pattern as seen in the 15 September example (Fig. 2,
right panels). Over all days of the month the root-
mean-square error (RMSE) relative to the full data is
higher for the REAO7 method (0.141) compared to
the SG16 method (0.100). Based on these tests we
conclude that the SG16 method should be used for
PHG filling for the period before 2008, and is less
critical after 2008. The ice dataset used here uses the
SG16 method.

4. Proxy SST computations

First, the 7-day median of the SIC was computed to
reduce day-to-day noise and to fill short temporal gaps.
The median ice was converted to pseudo SSTs using the
four approaches previously discussed, although we do
not strictly follow what others have done. In particular,
many analyses tend to estimate the pseudo SST only
where SIC > 0.5 because the estimate is less reliable
where there is more open water. Here the computations
are done for the full range of nonzero ice concentrations
to see if the threshold of 0.5 is justified. To summarize,
the four estimates of SST from SIC tested are 1) set SST
to a constant —1.8°C (FrzPtSW), 2) set SST to —1.8°C
unless air temperature > 0°C and then set SST to 0°C
(AirTemp), 3) set SST to the freezing-temperature cli-
matology based on the salinity climatology (FrzPtClm),
and 4) a linear fit to estimate SST from SIC developed
using satellite SST estimates (LinearFit). We test for all
SIC > 0 to show the accuracy of the estimates at SIC
below the level when the estimates are normally used
for SST analysis. Only when we compute the OISST do
we restrict the concentration at which we use the proxy
SST. These tests are intended to evaluate the relative

accuracy of the different estimates of SST from SIC.
Biases may still exist, especially in the warm season
when the NASA Team algorithm may interpret melt
ponds as open water. Comparisons to the available buoy
observations indicate the relative accuracy of the dif-
ferent methods.

For the FrzPtClm approach, a monthly sea surface
salinity climatology used is from the World Ocean Atlas
(WOA; Zweng et al. 2013) from 1955 to 2012. The
computation of sea surface freezing temperature as a
function of salinity follows Fofonoff and Millard (1983).
The LinearFit method produces proxy SSTs by applying
the linear-fit equation developed by REAO7. They
used a 10-yr training period of satellite SST and SIC to
develop regressions and performed a validation using a
subsequent 10-yr period. They found that a linear fit
performed better than a quadratic fit that had been used
previously.

5. Overall and seasonal results

A plot of the Arctic UpTempO buoy SSTs against the
NASA Team median ice concentrations suggest a rela-
tionship, although for some months a constant SST may
be sufficient (Fig. 3). From January to May, most buoys
are located in areas that are ice covered (SIC > (.8)
and in situ temperatures are close to freezing (—1.5°
to —1.9°C). In the warmer months (July to October),
the buoy data represent a wide range of ice concentra-
tions. Individual months show a roughly linear pattern
in June—July that appears to become more bilinear in
August-September. Later in the cool season the shape
flattens.

Based on the result with the UpTempO buoys, one
might expect the LinearFit to produce reasonable SST
estimates. However, a plot of the Arctic LinearFit proxy
SSTs against buoy observations shows that the simu-
lated temperatures are often too warm (Fig. 4, left
panel). This is likely because the regression was based
on satellite SSTs, which are rare in the Arctic and con-
centrated around the outer edge of the basin (Fig. 1).
The warm biases in the LinearFit may also be influenced
by warm season melt ponds on the surface of the ice,
which may be warmer than open-ocean SST.

Using the freezing temperature gives good agree-
ment at lower Arctic buoy temperatures, but with
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FIG. 3. Arctic UpTempO SST vs median sea ice concentration for
all months. Individual months are indicated by the colors.

higher buoy temperatures that estimate tends to be too
cool (Fig. 4, right panel). One possible reason for the
cool bias in the warm season may be that a greater
fraction of open sea in a grid square can lead to less
reflectance and more warming of the open water. In
addition, variations in winds and differences between
the climatology and the actual salinity can also con-
tribute to that bias.

To evaluate the proxy SST estimates against the buoy
estimates we consider the RMSE, the bias, and the
standard deviation of the error (SDE). Note that the
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squares of the bias and SDE components equal the square
of the total RMSE: RMSE? = Bias® + SDE”. Therefore,
we can look at RMSE in terms of the contribution of the
bias and SDE (Fig. 5).

The freezing-point climatology (FrzPtClm) estimate
had the lowest RMSE along the full range of ice
concentrations, with consistently lower bias than the
estimate that holds the freezing temperature constant
(FrzPtSW), which has second lowest RMSE. For
SIC < 0.5, estimates adjusted using the air tempera-
ture above 0°C (AirTemp) had similar RMSE as the
FrzPtSW, but the RMSE was higher for SIC > 0.5,
mostly due to SDE. The UpTempO has quality
control to avoid reporting melt-pond temperatures
(i.e., the temperature of ponds on the surface of the
ice that are separated from the ocean), so we can
expect it to have larger differences anywhere the SST
is set to 0°C. This comparison suggests that setting
the SST to 0°C where the air temperature is above
that temperature may increase noise in the estimate
for high SIC. The linear-fit estimate gives the larg-
est overall error, almost entirely from its much
larger bias.

In individual months there can be slight differ-
ences from the all-month results discussed here, but the
overall conclusions are not changed. Since the largest
errors are associated with lower SIC values, which occur
mostly in the warm season, the results discussed here are
most representative of the warm season. In the cool
season, the SIC used for comparisons tend to be high in
most regions, giving smaller errors for all methods. That
is because UpTempO is deployed mostly in the high
Arctic Ocean Basin, which is completely covered by ice

SGfilled GSFC Ice

FreezingSST (°C)
o

-0.5 0.0 0.5 10 15

UptempoSST
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FIG. 4. UpTempO SST vs proxy SST estimates based on SIC from (left) the LinearFit and (right) the freezing
temperature of seawater estimate for observations with SIC > 0.
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FIG. 5. Proxy SST (left) error and (center),(right) error components for the linear fit (LinearFit; dark-blue line), using the freezing-point
climatology (FrzPtClm; orange line), using a constant freezing point of seawater (FrzPtSW; red line), and adjusting the freezing point of
seawater using air temperature to set SST to 0°C when the air temperature is above 0°C (AirTemp; light-blue line).

in winter. There are low SIC areas in winter, but they
tend to be south of where the buoys are deployed.

6. Improving the climatological freezing-point method

Of the four estimates tested, the climatological
freezing-point method gives the lowest overall RMSE
compared to the available quality-controlled buoy ob-
servations. However, the bias in that method at low SIC
suggests that it may be improved by an adjustment fac-
tor dependent on the SIC.

a) NASA Team Ice: 1 Sep. 2016 b)

If Ty is the daily climatological freezing temperature
then the freezing-point method can be adjusted using
the median SIC,

T,(SIC)=T,+C(1-SIC) for 0<SIC=1.

The constant C is assigned from examination of the bias
of the climatology freezing-point estimates as a function
of ice concentrations. For the NCEP SIC the constant is
about 1.2, while for the NASA Team SIC it is about 0.4.
For no adjustments the constant would be set to 0.

NCEP Ice: 1 Sep. 2016

1.0

o8

0.6

90E

Ice conc
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FIG. 6. Ice concentrations for 1 Sep 2016 plotted in polar projection for the Arctic: (a) NASA Team ice data; (b) NCEP 0.5° ice data
interpolated to a 0.25° grid as used in the operational production.
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By lowering the bias of the climatological freezing-point
estimates, adjustments provide lower overall errors for the
estimates and can improve the Arctic OISST estimates.
The reduced RMSE and bias indicate that the freezing-
point approach may be used everywhere there is ice, while
the linear fit is best applied only where SIC > 0.5 because
of its high RMSE at low concentrations.

The adjustment accounts for warming in regions with
partial ice cover. In the cool season, when warming is
less likely, most areas have higher ice cover so there may
be little advantage to having a seasonal-dependent ad-
justment. For that reason, the adjustment was not tested
for the cool season. Further study is needed to more
clearly show if there is seasonal dependence.

The different adjustment constants are used for the
different SIC estimates because of how those estimates
are produced. At high SIC values the two estimates are
similar, but the NCEP SIC estimate tends to have more
ice at low SIC values (Fig. 6). These differences can
matter since the NCEP SIC is used for operational
OISST analysis because of its near-real-time availabil-
ity, while the NASA Team SIC has a longer time delay.
However, using the appropriate adjustment constants
minimizes the impact of the choice of SIC analysis on the
proxy SST estimates.

Validation against the Arctic buoys is done for the
Arctic OISST results computed using several SIC to SST
estimates. The OISST runs include one using the linear
fit for SIC > 0.5, which is the method presently used for
operational OISST. In addition, there are OISST runs
using the climatological freezing-point estimate when
SIC > 0.5, using both the climatological freezing-point
estimate when SIC > 0 and the adjusted climatological
freezing-point estimate when SIC > 0. Errors are com-
puted as a function of SIC (Fig. 7). All freezing-point
estimates give lower OISST errors than the linear-fit
estimate, especially at low SIC. In addition, there is a
clear advantage to using the climatological freezing-
point estimates for lower ice concentrations, and the
adjustment reduces the bias in the freezing-point esti-
mate at low concentrations.

7. Summary and conclusions

When the REA(Q7 OISST analysis was developed
there were insufficient Arctic in situ data for developing
sea ice—to-SST estimates, so satellite data were used and
the SST was estimated as a linear function of sea ice
concentration (SIC) for SIC > 0.5. More recently,
quality-controlled in situ SST estimates for the Arctic
have become available, allowing the development of
improved SST estimates as a function of SIC. This note
documents several estimates of SST as a function of SIC
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F1G. 7. OISST errors as a function of ice concentration using
different sea ice—to-SST estimates: (a) RMSE; (b) bias; (c) error
standard deviation. FreezePt is the proxy SST set to the climato-
logical freezing point where 0.5 = SIC, LinearFit is the proxy
SST computed using an ice-to-SST equation where 0.5 = SIC,
FreezingPt(ice>0) is the proxy SST set to the climatological
freezing point where 0 < SIC, and AdjFrzPt(ice>0) is the proxy
SST set to the climatological freezing point where 0 < SIC and
adjusted as described.

and the influence of the different estimates on the Arctic
OISST. We show that Arctic OISST errors can be re-
duced by using an improved sea ice-to-SST estimate
based on the climatological freezing temperature of sur-
face seawater, with an adjustment as a function of SIC.
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This improvement will be incorporated into an updated
operational OISST.
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