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a b s t r a c t 

Despite the impressive progress in face recognition, current systems are vulnerable to presentation at- 
tacks, which subvert the face recognition systems by presenting a face artifact. Several techniques have 
been developed to automatically detect different presentation attacks, mostly for 2D photo print and 
video replay attacks. However, with the development of 3D modeling and printing technologies, 3D mask 
has become a more effective way to attack the face recognition systems. Over the last decade, various 
detection methods for 3D mask attacks have been proposed, but there is no survey yet to summarize the 
advances. We present a comprehensive overview of the state-of-the-art approaches in 3D mask spoof- 
ing and anti-spoofing, including existing databases and countermeasures. In addition, we quantitatively 
compare the performance of different mask spoofing detection methods on a common ground (i.e., using 
the same database and evaluation metric). The effectiveness of several 2D presentation attack detection 
methods is also evaluated on two 3D mask spoofing databases to show whether they are applicable or 
not for 3D mask attacks. Finally, we present some insights and summarize open issues to address in the 
future. 

© 2019 Elsevier Ltd. All rights reserved. 

1. Introduction 

Face recognition technologies have been widely used in peo- 
ple’s daily lives because of the high efficiency and accuracy. The 
popularity, however, also makes face recognition systems become 
a major target of spoofing attacks [1] (also known as presentation 
attack in ISO/IEC 30107-1). An impostor can fool the biometric sys- 
tem simply by presenting a face artifact of a legitimate user, which 
can be easily generated due to the easy availability of face images 
and videos of a person in social networks. 

The presented face artifact can be a face of 2D type, us- 
ing printed/digital photographs or recorded videos on the mo- 
bile/tablet, or of 3D type, which is more challenging by wearing 
a 3D mask on the face [2] . In recent years, the vulnerability of face 
recognition systems to such spoofing attacks have raised increasing 
concerns in the academia and industry. Developing presentation 
attack detection (PAD) methods to determine whether the face at 
sensor level is real or fake is the efficient countermeasure. Existing 
methods mainly explore the difference between real faces and face 
artifacts by a hardware-based analysis (such as sensor characteris- 
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tics, blink detection, and challenge response) or a software-based 
detection (including texture, frequency and motion patterns) [3] . 

Some face PAD methods have achieved promising results in 
real-world situations, such as phone unlocking applications, mo- 
bile payment, security surveillance, and banking services. However, 
current systems pay more attentions to common 2D face presen- 
tation attacks because they are easier and cheaper to implement 
than 3D presentation attacks. As 3D manufacturing technologies 
improve, easily attainable facial masks take the presentation at- 
tacks one step further and introduce new challenges for PAD stud- 
ies [4] . The hyper-realistic face masks with 3D structures make 
it more difficult to tell the difference between the real face and 
the spoofed one, even for those systems which have already taken 
spoofing detection into consideration. For example, a young per- 
son, disguised himself as an old man using a silicon face and neck 
mask (see Fig. 1 (a)), successfully fooled the border control author- 
ities when boarding a plane from Hong Kong to Canada in 2010 
[3] . The Apple’s iPhone X, released in 2017, has also been proved 
by researchers from Bkav that the Face ID can be unlocked when 
pointed at a face mask of about 200 dollars (see Fig. 1 (b)). 

Most existing detection methods proposed for fake faces with 
planar surfaces are rendered futile for 3D masks [4] . For exam- 
ple, texture based methods using the recapture effect of faces in 
2D spoofing attacks (with paper-based photos or glass-based video 
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Fig. 1. Examples of 3D mask attacks. (a) Airport security system fooled by silicon mask 1 , (b) iPhone X face ID unlocked with 3D mask 2 . 

screens) may fail to identify 3D mask attacks [5] . The study in 
[6] shows that a face recognition system with presentation attack 
detection based on eye blinking and lip movements can also be 
defeated by photographic masks with eyes and mouth regions cut 
out. Because the 3D mask generally has more resemblance with 
human skin, the detection of 3D mask attacks is more challenging 
and different from traditional 2D PAD methods [7] . 

Kim [8] first presented a masked fake face detection method 
using radiance measurements in 2009. After that, a significant 
amount of literature has been devoted to 3D mask presentation 
attack detection. However, several surveys [9–11] focused more on 
the advances in 2D face spoofing detection, but there is no survey 
yet to summarize and evaluate the recent advances in 3D mask 
spoofing detection. The aim of this paper is to present a compre- 
hensive overview of the research works in 3D mask spoofing and 
anti-spoofing. Our main contributions are as follows. 

(1) We summarize the characteristics of 3D mask presentation 
attacks, and review the recent development of 3D mask at- 
tack databases and different categories of detection tech- 
niques over the past decade. To the best of our knowledge, 
this paper is the first survey which focuses on 3D mask 
spoofing and anti-spoofing techniques. 

(2) Different 3D mask spoofing detection methods are evaluated 
and quantitatively compared under a unified framework, i.e., 
on the same databases, with the same protocols, and using 
the same metric, to show which kind of methods perform 

better in detecting 3D mask attacks. 
(3) It is usually believed that countermeasures proposed for 2D 

attacks may fail on the more challenging 3D mask attacks, 
while we also conduct experiments to evaluate if the 2D 

PAD methods can still perform well against 3D mask attacks. 
Surprisingly, experimental results on two public 3D mask at- 
tack databases show the outstanding performance and good 
robustness of some texture based methods. 

(4) A comprehensive analysis is provided based on the experi- 
mental results, giving some insights into the detection per- 
formance, the databases, and some other issues, which helps 
to have a better understanding of the research in 3D mask 
spoofing. 

The rest of the paper is organized as follows. In Section 2 , 
we introduce the characteristics of 3D mask presentation attacks. 
Section 3 briefly describes existing 3D mask spoofing databases, 
and Section 4 reviews the recent research works in 3D mask pre- 

1 Picture is downloaded from https://chameleonassociates.com/security-breach/ . 
2 Picture is downloaded from https://www.theregister.co.uk/2017/11/28/iphone _ 

x _ face _ id _ system _ cracked _ again/ . 

sentation attack detection. Experimental evaluation of different 3D 

mask PAD methods and 2D PAD methods against 3D mask attacks 
are presented in Sections 5 . Finally, we provide some insights into 
the problems and open issues in Section 6 , followed by the con- 
clusions in Section 7 . 

2. 3D Mask presentation attack 

In 3D mask presentation attacks, imposers wear masks made 
of different materials, which have very similar 3D face character- 
istics to the target face. 3D facial mask spoofing was previously 
thought impossible to become a common practice in the literature 
[12] , because compared to 2D type attacks, 3D mask is much more 
difficult and high-cost to manufacture, requiring special 3D devices 
and materials. However, the recent rapid advancement of 3D print- 
ing technologies and services has made it easy and cheap to make 
hyper-realistic masks. In this section, we briefly introduce existing 
ways to generate 3D masks. 

In the literature, it always requires 3D scanners and printers 
to generate a mask, no matter by self-manufacturing [13] or re- 
lying on third-party services [14,15] . The scanner helps to capture 
a 3D model of the user face, and then the model is sent to the 3D 

printer to obtain real size 3D reproduction of the face [13] . 
Based on different mask materials, the face masks can be clas- 

sified into hard/rigid and soft/flexible ones [16] . The former can 
be made of paper, resin, or plastic, which are relatively low-cost. 
This kind of mask attack is the advanced type of photo-attack in 
essence; the 3D structure makes it more like a genuine face com- 
pared to photo-attack with a 2D planar face. Soft masks, however, 
often use latex and silicone materials. The flexible surface terrains 
not only offer closer color and texture fidelity to human skins, but 
also can adjust to different facial sizes, shapes, and movements, 
therefore, making the face presentation attack detection more dif- 
ficult than rigid masks [17] . 

Importantly, some masks can make the eyes, nostrils, and 
mouth cavity parts visible via close-fitting holes that match the 
topology of the face beneath [18] . All these advances in manufac- 
turing 3D masks have made the 3D mask attack more and more 
popular in practice. 

3. 3D Mask attack databases 

Due to the advances in 3D mask manufacturing technologies, 
several 3D mask attack databases have been created to develop 
new face PAD schemes. In this section, we provide details of 10 
existing 3D mask attack databases (see an overview in Table 1 and 
Fig. 2 ). 
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Table 1 

Summary of existing 3D mask face spoofing databases. 

Database Year #Subject #Sample Material Sample description 

Morpho 2013 20 406 / 2D grayscale images + 3D scans, non-public 
3DMAD 2013 17 255 paper, hard resin 2D color images + 2.5D depth maps 
3DFS-DB 2016 26 520 plastic 2D, 2.5D images + 3D information, indirect access 
BRSU Skin/Face/Spoof 2016 137 141 silicon, plastic, resin, latex multispectral SWIR, color images 
HKBU-MARs 2016 12 1008 / color images 
SMAD 2017 / 130 silicone color images, from online resources 
MLFP 2017 10 1350 latex, paper visible, NIR, thermal images 
ERPA 2017 5 86 resin-coated, silicone RGB, thermal, NIR images + depth 
Rose-Youtu 2018 20 3350 cropped and full paper color images of 2D and 3D attacks 
WMCA 2019 72 1941 plastic, silicone, and paper multiple channels of 2D and 3D attacks 

Morpho Database. Morpho is a non-public mask database, cre- 
ated by MORPHO 3 , mainly used for early studies on mask PAD 

[4,19–22] . This database provides high-quality face samples of 20 
subjects, totally 207 real access and 199 mask attack samples, with 
both the 3D scans, and the corresponding 2D grayscale images. 

3D Mask Attack Database (3DMAD). 3DMAD is the first pub- 
licly available 3D mask database, proposed in [14] . It comprises 
255 video sequences of 17 different users, recorded by an RGB- 
D camera of Micsoft Kinect device [23] for both real access and 
presentation attacks using 3D facial masks. The masks are manu- 
factured using services of ThatsMyFace 4 by uploading frontal and 
profile face images. Two kinds of masks, a life-size wearable mask 
and a paper-craft mask, are provided for each subject. In all video 

Fig. 2. 3D masks examples in existing databases. 6 (a) Morpho DB, (b) 3DMAD, (c) 3DFS-DB, (d) BRSU Skin/Face/Spoof DB, (e) HKBU-MARs, (f) SMAD, (g) MLFP DB, (h) ERPA 
DB, (i) Rose-Youtu DB, (j) WMCA. 

3 http://www.morpho.com/ . 
4 http://thatsmyface.com/ . 

samples, each frame consists of a depth image, the corresponding 
color image and manually annotated eye positions. 

3D-face spoofing database (3DFS-DB). 3DFS-DB is a self- 
manufactured and gender-balanced face spoofing database [13] . 
It consists of two datasets (real and fake) of 26 subjects, 13 men 
and 13 women. Each dataset contains both videos in.avi format 
with 2D and 2.5D information, and 3D models in.stl format. The 
masks are made using two 3D printers: the ShareBot Pro-and the 
CubeX 5 , which are relatively low-cost and worth about 1,0 0 0 and 
20 0 0 €, respectively. Acrylonitrile Butadiene Styrene (ABS) plastic 
material is used to generate the physical artifacts. Note that only 
indirect access to the data is possible for research purposes due to 
the EU personal data protection regulation, impling that interested 

5 https://www.sharebot.it . and http://www.cubify.com . 
6 All pictures are downloaded from the corresponding references. 
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researchers are allowed to run their algorithms on the database 
remotely but not to download the data. 

BRSU Skin/Face/Spoof Database. This dataset contains 137 sub- 
jects and provides multispectral SWIR (Short Wave Infrared) and 
RGB color images incorporating various types of masks and facial 
disguises [24] . Two face presentation attack scenarios are consid- 
ered: disguise of the own identity and counterfeiting of a foreign 
identity with a mask made of silicon, plastic, latex, or hard resin 
materials. 

HKBU 3D Mask Attack with Real World Variations Database 

(HKBU-MARs). This is a 3D mask spoofing database with more 
variations to simulate the real world scenario [15] . It generates 12 
masks from two companies (ThatsMyFace and REAL-F 7 ) with dif- 
ferent appearance qualities. 7 camera types and 6 typical lighting 
settings are also included to form totally 1008 videos. However, 
this database only releases version 1 with 110 videos, and the ver- 
sion 2 with 1008 videos is still under construction and not avail- 
able so far. 

Silicone Mask Attack Database (SMAD). This database [25] is 
collected and compiled from online resources and consists of 
videos of people wearing silicone masks. It contains 65 genuine ac- 
cess videos of people auditioning, interviewing, or hosting shows, 
and 65 attacked videos of people wearing a complete 3D structure 
(but not customized) mask around the head which fits well with 
proper holes for the eyes and mouth. 

Multispectral Latex Mask based Video Face Presentation At- 

tack database (MLFP). MLFP database [16] is a unique multispec- 
tral database for face presentation attacks using latex and paper 
masks. It contains 1350 videos of 10 subjects in visible, near in- 
frared (NIR), and thermal spectrums, which are captured at differ- 
ent locations (indoor and outdoor) in unconstrained environment. 
Both attack videos and real videos are provided. 

ERPA Database. ERPA is a small dataset of bonafide and 3D 

mask attack presentations, with frame images of 5 subjects stored 
[17] . The images are captured using two special cameras: the Xen- 
ics Gobi thermal camera, and the Intel Realsense SR300 camera 
recording RGB images, NIR images, and depth information. Both 
rigid resin-coated masks and flexible silicone masks are consid- 
ered. 

Rose-Youtu Face Liveness Detection Dataset. This dataset 
[26] is a comprehensive face anti-spoofing database, which covers 
a large variety of illumination conditions, camera models, and at- 
tack types. It consists of 4225 videos of 25 subjects in total, but 
only 3350 videos of 20 subjects are publically available. Three pre- 
sentation attack types are created, including printed paper attack, 
video replay attack, and paper masking attack. For masking attack, 
the cropped mask, full mask, and upper mask are considered. 

Wide Multi Channel Presentation Attack (WMCA) database. 

This [27] is a multi-channel face presentation attack database with 
a wide variety of 2D and 3D presentation attacks. It contains 1941 
short video recordings of both bonafide and presentation attacks 
from 72 identities. The data is recorded from different channels, 
including color, depth, near-infrared and thermal. For 3D mask pre- 
sentation attacks, it used custom made rigid masks, flexible sili- 
cone masks, and paper masks. Additionally, the pulse reading data 
for bonafide recordings is also provided. 

4. 3D Mask PAD methods 

Existing 3D mask PAD methods are mainly based on the differ- 
ence between real face skin and mask materials, which can be clas- 
sified into the following categories: the reflectance/multispectral 
properties based, texture based, shape based, deep features based, 
and other cues/liveness based methods. 

7 http://real- f.jp/en _ the- realface.html . 

4.1. Reflectance/multispectral properties based detection methods 

The earliest studies in 3D mask spoofing detection were based 
on the reflectance difference of object surfaces. Kim et al. [8] first 
analyzed the distribution of albedo values for illumination of var- 
ious wavelengths to find how different facial skins and mask ma- 
terials (silicon, latex, and skinjell) behave in reflectance, and then 
created a 2D feature vector that consists of two average radiance 
values under 850 nm illumination (to distinguish between skins 
and mask materials) and 685 nm illumination(to distinguish dif- 
ferent facial skin colors). Using Fisher’s linear discriminant (FLD) 
classifier, this method achieved 97.78% accuracy in fake face de- 
tection on their own experimental data (with mask materials in- 
stead of masks). Zhang et al. [7] also measured the albedo curves 
of skins and non-skin materials, and proposed a distance ro- 
bust method using two discriminative wavelengths (1450nm and 
850nm) to detect fake faces (in photo, video, or mask forms). How- 
ever, the detection accuracy on mask faces was only 89.18% at 
multi-distances. Wang et al. [28] pointed out that obtaining im- 
ages at the band around 1450nm is quite expensive, so they pro- 
posed a gradient-based multispectral method using two smaller 
spectral bands (420nm and 800nm) to detect face presentation 
attacks. Experiments on their private dataset with planar photos, 
3D mannequins, and masks showed promising detection perfor- 
mance, with the True Positive Rate (TPR) of 96.7% and True Neg- 
ative Rate (TNR) of 97% under the Support Vector Machine (SVM) 
classifier. 

However, all these methods designed PAD schemes indepen- 
dently from the face recognition (FR) process, only focusing on 
classification performance at the sensor level. Steiner et al. [24] in- 
tegrated multispectral SWIR skin authentication into existing face 
verification systems, and also proposed a new public database 
(named BRSU Skin/Face/Spoof) of corresponding RGB and SWIR 
images showing different presentation attacks. They designed two 
methods, one masking out non-skin pixels as a preprocessing step 
to FR systems, another using a generic region of interest (ROI) as 
postprocessing of the FR results, and both ensured a high spoof 
detection performance. 

One main limitation of these methods is the requirements of 
special and expensive devices to acquire multispectral images at 
various wavelengths. Kose et al. [22,29] tried to obtain the re- 
flectance information from grayscale texture images in the Morpho 
database without any extra hardware. They used variational retinex 
algorithm to decompose the texture image into reflectance and il- 
lumination components, and then a feature vector was extracted 
from the reflectance component. Their methods achieved around 
95% classification accuracy on their non-public dataset. Table 2 
presents a brief overview of these reflectance/multispectral prop- 
erties based detection methods. Note that only results on 3D mask 
spoofing databases are reported. 

4.2. Texture based detection methods 

This kind of methods explore the texture pattern difference of 
real faces and masks with the help of different texture feature de- 
scriptors. 

Local Binary Patterns (LBP), one of the most popular face de- 
scriptors [36] , has been widely used in face presentation attack de- 
tection due to its computational simplicity, discriminative power, 
and robustness to illumination variations. Kose et al. [19] proposed 
a LBP based method to detect mask attacks, and achieved 88.1% 
accuracy on Morpho database, slightly better than a depth maps 
based method (86.0%). With a score level fusion of features from 

texture images and depth maps, the accuracy was increased to 
93.5% in [20] . Erdogmus and Marcel [4,14] compared various types 
of LBP operators with different classifiers on the proposed 3DMAD 
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Table 2 

Brief overview of reflectance/multispectral properties based detection methods. 

Reference Year Technique Spectrum Database Performance (classifier) 

Kim et al. [8] 2009 Reflectance disparity based on albedo 685 + 850 nm Private data Accuracy = 96.77% (FLD) 
Zhang et al. [7] 2011 Multispectral reflectance using Lambertian model 850 + 1450 nm Private data Accuracy = 89.18% (SVM) 
Wang et al. [28] 2013 Gradient-based multispectral analysis 420 + 800 nm Private data TPR = 96.70% (SVM), 

TNR = 97.00% (SVM) 
Kose et al. [22] 2013 Reflectance analysis using variational retinex / Morpho Accuracy = 94.47% (SVM) 
Kose et al. [29] 2014 Micro-texture analysis on reflectance images / Morpho Accuracy = 95.98% (SVM) 
Steiner et al. [24] 2016 Multispectral SWIR skin authentication 1060 nm BRSU Skin /Face/Spoof FRR < 5.00% (SVM), 

FAR < 7.00% (SVM) 

Table 3 

Brief overview of texture based detection methods. 

Reference Year Technique Database Performance (classifier) 

Kose et al. [19] 2013 Multi-scale LBP on texture images Morpho Accuracy = 88.1% (SVM) 
Multi-scale LBP on depth maps Accuracy = 86.0% (SVM) 

Kose et al. [20] 2013 Score level fusion of LBP features on texture images and depth maps Morpho Accuracy = 93.5% ∗ (SVM) 
Erdogmus et al. [14] 2013 Block-based LBP on 2D images 3DMAD HTER = 0.95% (LDA) 

Block-based LBP on 2.5D images HTER = 1.27% (LDA) 
Erdogmus et al. [4] 2014 Block-based LBP on 2D images 3DMAD, 

Morpho 
HTER = 0.12 ± 0.47%(LDA) 

Block-based LBP on 2.5D images HTER = 3.91 ± 6.04%(LDA) 
Raghavendra et al. [30] 2014 Local features + global BSIF on 2D and 2.5D images 3DMAD HTER = 0.03% (SVM) 
Raghavendra et al. [31] 2014 Local and global LBP + BSIF on 2D and 2.5D images 3DMAD ACER = 4.78% (SVM) 
Pinto et al. [32] 2015 Time-spectral features and visual codebooks on 2D images 3DMAD Accuracy = 96.16%, (nonlinear SVM) 
Naveen et al. [33] 2016 Local and global LBP + BSIF on 2D and 2.5D images 3DMAD HTER = 7.65% (Euclidean distance) 
Siddiqui et al. [34] 2016 Multi-scale LBP + HOOF on 2D images 3DMAD EER = 0% (RBF SVM) 
Agarwal et al. [35] 2016 Haralick features with block-wise on 2D images 3DMAD HTER = 0% (SVM) 
Liu et al. [15] 2016 Multi-scale LBP HKBU-MARs EER ≈ 50% (RBF SVM) 

∗ Using the best result of score level fusion. 

database. Results indicated that the classification of block-based 
LBP features with the Linear Discriminant Analysis (LDA) gives the 
best results for both color and depth images. 

Combining different features in distinguishing between real 
faces and 3D masks is also one popular and effective way to im- 
prove the detection performance. In [30] , the global features us- 
ing Binarized Statistical Image Features (BSIF), and local features 
(sharp variation and discontinuities) from periocular and nose re- 
gions were extracted from both 2D color and depth images on 
3DMAD to detect mask attacks. This scheme achieved a satisfac- 
tory performance with the Half Total Error Rate (HTER) of 0.03% 
using the linear SVM classifier. Similarly, both [31] and [33] pro- 
posed mask attack detection schemes based on global and local 
features (LBP and BSIF), and provided superior performance with 
the Average Classification Error Rate (ACER) of 4.78% and HTER 
of 7.65%, respectively, on the 3DMAD database. By combining LBP 
with motion estimation using the Histogram of Oriented Optical 
Flow (HOOF) features, the study [34] presented a multifeature evi- 
dence aggregation approach for both 2D and 3D face presentation 
attack detection, which achieved an Equal Error Rate (EER) of 0% 
on the 3DMAD database. 

Also aiming at different presentation attacks (including pho- 
tos, videos, and 3D masks), Pinto et al. [32] took advantage of 
noise and artifacts of spoofing samples caused by the manufacture 
and recapture process, and extracted time-spectral features from 

the video as low-level feature descriptors, and then used the vi- 
sual codebook concept to find mid-level feature descriptors. Their 
method performed well in a variety of scenarios and datasets. Re- 
cently, Haralick texture features are also explored in [35] , showing 
a good performance in both 2D and 3D mask spoofing databases 
(with the HTER of 0% on 3DMAD). 

A brief overview of these texture based 3D mask spoofing de- 
tection methods is shown in Table 3 . Although this kind of meth- 
ods is easy-to-implement and effective on certain databases, their 
robustness to different mask spoofing attacks needs further in- 
vestigation. For example, Liu [15] tested different LBP features on 

their proposed database (HKBU-MARs) with more variations, and 
showed the LBP based methods can not generalize well when con- 
fronting different mask appearance. 

4.3. Shape based detection methods 

Shape-based 3D mask PAD methods use shape descriptors or 
image transformation to extract discriminative features from faces 
and 3D masks. 

Kose et al. [21] extracted the 3D face shape information based 
on warping parameters (WP), and compared its performance with 
LBP features on 2D images and 2.5D depth maps to analyze the im- 
pact of mask spoofing on face recognition systems. They concluded 
that the syetem based on 3D shape analysis is the most vulner- 
able to mask attacks (with the highest successful attacks rate of 
91.46%). Tang and Chen [37,38] applied 3D shape analysis based on 
one popular geometric attribute, named principal curvature mea- 
sures (PCM), and meshedSIFT-based features [42] to describe the 
meshed facial surface. This method obtained both high verifica- 
tion rates for real faces and satisfactory performance against mask 
spoofing attacks on the FRCGv2 database (with only genuine 3D 

face scans) and Morpho database (with 6.72% EER). However, these 
methods extracted shape information based on spoofing masks 
stored in 3D triangle meshes, which may limit their applications. 
Hamdan et al. [39] combined a mask PAD method with the face 
recognition system. They used the Angular Radial Transformation 
(ART) to extract shape features from the RGB images as the in- 
put to a Maximum Likelihood (ML) classifier. The detection per- 
formance on 3DMAD showed the efficiency in discriminating be- 
tween real faces and masks, with the HTER of 0.91%. They later 
presented another face recognition method against mask spoofing 
attacks, which combined the Legendre Moments Invariants (LMI) 
decomposition of the RGB image with the LDA projection for fea- 
ture extraction. Using the ML classifier on the 3DMAD datatbase, 
the Spoof False Acceptance Rate (SFAR) was significantly reduced 
from 65% to 0.83%. 
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Table 4 

Brief overview of shape based detection methods. 

Reference Year Technique Database Performance (classifier) 

Kose et al. [21] 2013 Warping parameters Morpho Successful attacks 
rate = 91.46% (/) 

Tang et al. [37,38] 2016 PCM-meshedSIFT facial features Morpho, 
FRCGv2 

EER = 6.72% (/) 

Hamdan et al. [39] 2017 ART on 2D images 3DMAD HTER = 0.91% (ML) 
Hamdan et al. [40] 2018 Combining LMI with LDA projection on 2D images 3DMAD SFAR = 0.83% (ML) 
Wang et al. [41] 2018 Geometry cues reconstruction using 3DMM + mLBP 

on 2D images 
3DMAD EER = 2.65% (MLK_SVM) 

EER = 0% (CNN_Softmax) 

Table 5 

Brief overview of deep features based detection methods. 

Reference Year Technique Database Performance (classifier) 

Menotti et al. [43] 2015 Hyperparameter optimization of network architectures 
(AO) and learning filter weights via back-propagation (FO) 

3DMAD HTER = 0% (AO_SVM), HTER = 24% (FO_Softmax), 
HTER = 40% (AO + FO) 

Feng et al. [44] 2016 Image quality and motion cues fusion using a hierarchical 
NN 

3DMAD HTER = 0% (Softmax) 

Lecena et al. [45] 2017 Transfer learning using the pre-trained VGG-16 model 3DMAD HTER = 0% (Softmax) 
Manjani et al. [25] 2017 Multilevel deep dictionary learning based 3DMAD, SMAD HTER 3DMAD = 0% (SVM), HTER SMAD = 13.1% (SVM) 
Shao et al. [46,47] 2018 Facial motion estimation and deep convolutional dynamic 

texture learning 
3DMAD, SUP HTER 3DMAD = 1.76% (SVM), HTER SUP = 13.44% (SVM) 

Liu et al. [48] 2018 Several CNN methods on visible and NIR images Private data ACER = 3.19% (/) ∗

∗ Using the average ACER on two protocols of the best results. 

Besides image transformation based methods, reconstructing 
geometry cues from 2D images through 3D reconstruction models 
is another way to gain shape features. Wang et al. [41] used the 
3D Morphable Model (3DMM) to reconstruct depth cues from RGB 
images, and then extracted normal features to represent the geom- 
etry differences between real faces and masks. They also combined 
modified LBP (mLBP) features to describe the texture. Experiments 
on the 3DMAD database compared both hand-craft features and 
deep learning features, and showed good detection performance 
with the EER of 2.65% and 0%, respectively. 

Table 4 gives a brief summary of the above shape based de- 
tection methods. Different from the reflectance-based or some 
texture-based detection methods, shape-based PAD schemes can 
be directly applied to the RGB images, with no need of using spe- 
cial sensors to acquire additional information. 

4.4. Deep features based detection methods 

In contrast to the traditional hand-crafted features, deep feature 
based methods trend to have a higher detection accuracy and a 
better generalization ability. 

Menotti et al. [43] investigated two deep representation ap- 
proaches for detecting spoofing in different bimetric modalities. 
One is based on the hyperparameter optimization of network ar- 
chitectures (AO), and another focues on learning filter weights 
via back-propagation (referred to as FO). Experiments for the AO 

and FO approaches along with their combination (AO+FO) on nine 
databases showed the detection robustness of convolutional net- 
works. For the 3DMAD database, AO method achieved the lowest 
HTER of 0%, while FO scheme and AO+FO scheme performed poorly 
in mask spoofing detection with HTER of 24% and 40%, respectively. 
Lecena et al. [45] also presented a face PAD network (named FAS- 
Net) to recognize photo, video or mask attacks. It was based on 
transfer learning using a pre-trained VGG-16 model architecture 
except for the top layers, and achieved 0% HTER on the 3DMAD 

database. 
Furthermore, some methods tried to combine deep learning 

based features with hand-craft features, and achieved outstanding 
results in mask spoofing detection. Feng et al. [44] fused image 
quality cues (Shearlet) and motion cues (dense optical flow) using 
a hierarchical neural network to improve the generalization abil- 

ity for both 2D and 3D spoofing detection. With a bottleneck fea- 
ture fusion, this method achieved a HTER of 0% on the 3DMAD 

database. Shao et al. [46] observed that dynamic facial texture in- 
formation can robustly reflect the face motion patterns, such as eye 
blinking, lip movements and other spontaneous local facial mus- 
cle movements. They then learned the subtle dynamic informa- 
tion from texture features of deep convolutional layers. Both intra- 
dataset and cross-dataset evaluation on the 3DMAD and their sup- 
plementary (SUP) dataset indicated the efficiency and robustness 
of the proposed method. 

Focusing on 3D mask spoofing in varied environments, Man- 
jani et al. [25] introduced a challenging silicon face mask database 
(SMAD), and also developed a PAD method based on multilevel 
deep dictionary learning. Experiments were performed on five 
databases with both 2D and 3D face spoofing attacks, showing 
promising results in both intra-database and cross-database exper- 
iments with the SVM classifier. 

Recently in [48] , several CNN architectures were investigated on 
their own dataset to detect 3D masks from visible and NIR images. 
Results indicated that the multispectral imaging gained better per- 
formance than using visible and NIR images separately, and differ- 
ent CNN models showed different detection abilities. We present a 
summary of existing deep features based 3D mask spoofing detec- 
tion methods in Table 5 . 

4.5. Other cues/liveness based detection methods 

There are also methods based on other cues of real faces for 
liveness detection, such as thermal signatures [17] , gaze informa- 
tion [53,55,56] , and pulse or heartbeat signals [49–52] . 

Agarwal et al. [16] found that the thermal imaging spectrum is 
the most effective in detecting mask presentation attacks for dif- 
ferent detection methods on their MLFP database (with videos in 
visible, near infrared, and thermal spectrums). However, thermal 
imaging devices are always at a high cost and not as easily avail- 
able as visible imaging cameras. 

Using intrinsic liveness signals to distinguish real faces from 

masked faces is another effective way. In [53–55] , gaze informa- 
tion was extracted for detecting both 2D and 3D spoofing attempts 
on mobile devices. It achieved 0.07% HTER and 0.14% ACER for 
3D mask attacks on their private dataset. However, this method 
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Table 6 

Brief overview of 3D mask PAD methods based on other cues. 

Reference Year Techniques Databases Performance (classifier) 

Liu et al. [49] 2016 Heartbeat signal analysis based on local rPPG COMB, SUP EER COMB = 9.9%, EER SUP = 16.2%(RBFSVM) 
Agarwal et al. [16] 2017 Five algorithms in thermal spectrum MLFP EER = 10.8% ∗ (SVM) 
Li et al. [50] 2017 Pulse analysis based on global PSD signal (green channel) 3DMAD, REAL-F HTER 3DMAD = 7.94%, HTER REAL = 4.29% (SVM) 
Liu et al. [51] 2018 Heartbeat analysis based on rPPG correspondence feature 3DMAD, HKBU-MARs EER 3DMAD = 7.44%, EER HKBU = 4.04% (SVM) 
Hernandez et al. [52] 2018 Pulse detection based on rPPG 3DMAD, HR EER 3DMAD = 22% (SVM) 
Ali et al. [53–55] 2018 Gaze information Private data ACER = 14% (k-NN) 

∗ Using the best video-based result of the algorithm combining of Redundant Discrete Wavelet Transform (RDWT) and Haralick features. 

Table 7 

Summary of advantages and limitations of different methods. 

Method Advantages Limitations 

Reflectance/ multispectral based Good robustness; good generalizability Requring special lighting devices 
Texture based Simple to implement; high accuracy Low robustness; depending on image resolution 
Shape based Simple to implement; high accuracy High computation cost; sensitive to mask qualities 
Deep features based Very high accuracy; good generalizability Sensitive to database size 
Other cues/livenss based Difficult to spoof; good generalizability High computational cost; requiring special devices/ 

user collaboration; sensitive to lighting and noise 

We use ‘robustness’ to describe the performance stability of detection methods on different databases with the same presentation attacks, 
while use ‘generalizability’ to describe the performance of the method on different types of attacks. 

is a challenge-response mechanism and requires the user collabo- 
ration for capturing eye movements. Photoplethysmography (PPG), 
as one general way for heart rate monitoring, has been applied for 
3D mask spoofing detection in recent years because it can be de- 
tected in a non-contacting way using the remote Photoplethysmog- 
raphy technique (rPPG) through a web camera. Liu et al. [49] ex- 
tracted local rPPG siginals, and showed the detection effectiveness 
and robustness on two mask spoofing databases (a self-collected 
Supplementary (SUP) dataset, and a merging database (COMB) of 
SUP and 3DMAD). To precisely identify the heartbeat information 
from noisy rPPG signals, they later proposed a liveness feature 
called rPPG correspondence feature (CFrPPG) in [51] , which con- 
structed the correspondence between learned rPPG spectrum tem- 
plates and local rPPG signals. Although results of this method on 
the 3DMAD database were slightly worse than some appearance 
based methods, the performance on HKBU-MARS with hyper real 
masks (with the EER of 4.04%) was significantly better than other 
methods (with the EER between 9% and 23%). 

Similarly, Li et al. [50] detected pulse signals based on rPPG 

from facial videos for anti-spoofing. They extracted the global 
power spectral density (PSD) signal (of green channel) from faces, 
and quantified it using the maximum value of the spectrum. Exper- 
iments on 3DMAD and high quality REAL-F masks datasets demon- 
strated its effectiveness in detecting 3D mask attacks. Different 
from Li et al. [50] , a smaller and more robust face region (only 
nose and cheeks) was seleted for rPPG signal extraction in [52] . 
They also collected a dataset of photo attacks called Heart Rate 
Database (HR), which contains long videos in visible and NIR spec- 
trum. In time-variant attack scenarios on both 3DMAD and HR 
databases, experiments showed that longer video sequences re- 
sulted in more robust rPPG signals and better detection perfor- 
mance, but the EER was not so satisfactory with more than 20%. 

Table 6 presents a brief overview of the liveness cues based 
detection methods. Generally, this kind of methods performs well 
in distinguishing real faces from masks. However, extension and 
application of these methods still have some limitations. For ex- 
ample, thermal signature based methods require special and ex- 
pensive thermal cameras, while pulse/heartbeat based approaches 
using remote photo-plethysmography (rPPG) are highly dependent 
on good light conditions and sensitive to different camera settings 
(e.g. exposure rates) [46] . 

For these different categories of methods, we summarize their 
advantages and limitations in Table 7 . 

5. Experimental evaluation 

In this section, we present a series of experimental comparisons 
and evaluation on 3D mask attack databases, and try to investigate 
the following two questions. 

(1) Which 3D mask spoofing detection methods perform better 
based on the same database and evaluation metric? 

(2) Will the countermeasures with an outstanding performance 
for 2D attacks still perform well on 3D mask presentation attacks? 

5.1. Comparison results on a common ground 

For the first question, we collected several 3D mask attack de- 
tection algorithms and evaluated their performance on a common 
framework, i.e., on the same databases, with the same protocols, 
and using the same classifier and evaluation metric. Considering 
the challenge in re-implementing various 3D mask spoofing detec- 
tion methods, especially some reflectance analysis based and live- 
ness based methods (most relying on special hardwares or with 
no original codes available for the public), we limit the perfor- 
mance evaluation to some software based approaches with orig- 
inal codes or codes provided by the third party. To the end, 10 
state-of-the-art methods were tested, including two alogorithms 
using reflectance properties [22,29] , six texture based methods 
(multi-scale LBP [19] , block-based LBP [14] , LBP+BSIF [31] , multi- 
scale LBP+HOOF [34] , time-spectral features and codebooks [32] , 
and Haralick features [35] ), one shape based method [40] , and one 
learned features based method [45] . These methods were imple- 
mented and run under Matlab R2016b on a Windows 10 system 

with an Intel(R) Core(TM) i7-7500U CPU, 2.70 GHz with a 16 GB 
RAM, or Python 2.7 under Ubuntu Linux 16.04 LTS with an Intel(R) 
Core(TM) i7-6850K CPU, 3.60 GHz ×12. 

5.1.1. Databases and protocols 

The experiments were performed on two publicly available 3D 

mask attack databases: the 3DMAD (the most widely-used), and 
the HKBU-MARs-V1 database (with hyper-real 3D masks). Note 
that the masks in both databases are user-customized, which are 
closer to reality applications. Two protocols are employed in ex- 
isting detection methods on these two databases, including the 
random partition (RP) protocol which divides the whole database 
into training and testing subsets, and the leave one out cross val- 
idation (LOOCV) protocol which is widely used in databases with 
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Table 8 

Random partition protocols of two 3D mask spoofing databases. 

Database 
/#Subject #Video 

#Frame/video 
Train Test Total Train Test Total Real:Fake 

3DMAD 11 6 17 165 90 255 1:2 300 
HKBU-MARs-V1 5 3 8 75 35 110 1:2 300 

The training and testing sets have non-overlaps in both subjects and video samples. 

Table 9 

The HTERs (%) of different 3D methods on mask spoofing databases. 

No. Method 
3DMAD HKBU-MARs-V1 

Category 
RP LOOCV RP LOOCV 

A01 Reflectance analysis [22] 0 1.18 ±4.9 37.50 33.57 ±16.3 Reflectance 
A02 Micro-texture and reflectance [29] 0 1.18 ±4.9 31.67 8.57 ± 15.7 Reflectance 
A03 Multi-scale LBP [14] 0 0.00 ±0.0 5.83 5.71 ± 15.1 Texture 
A04 Block-based LBP [14] 16.67 4.41 ±13.9 45.83 17.14 ±29.3 Texture 
A05 LBP + BSIF [31] 0 2.94 ±8.5 58.33 18.57 ±32.9 Texture 
A06 Multi-scale LBP + HOOF [34] 4.17 1.18 ±4.9 31.67 7.86 ± 15.2 Texture 
A07 Time-spectral features and codebooks [32] 11.67 13.59 ± 10.2 25.83 36.43 ±7.5 Texture 
A08 Haralick features [35] 0 0.00 ±0.0 51.67 2.14 ±5.7 Texture 
A09 LMI based method [40] 0 2.06 ± 8.5 65.83 30.00 ± 37.7 Shape 
A10 VGG-16 based [45] 9.67 9.59 ±11.2 33.67 10.0 ± 22.4 Deep 

The best results are indicated in bold. 

small subject numbers. Therefore, we evaluated all algorithms un- 
der these two protocols respectively to show the detection perfor- 
mance. For the random partition protocol, since the two databases 
do not contain explicit subsets for training and testing, we ran- 
domly divided the subjects into two non-overlapping subsets for 
performance evaluation, so that the training set and testing set are 
person-disjoint. The details are shown in Table 8 . 

5.1.2. Detection process 

Both the 3DMAD and HKBU-MARs-V1 databases contain videos 
of 300 frames, while the 3DMAD database also provides depth 
images. For a higher detection efficiency, we only used the color 
images as most algorithms do, and randomly selected 20 frames 
for spoofing detection. The general steps are as follows. First, the 
faces in the 20 frames were detected, cropped, and normalized 
into 64 × 64 pixels, similar to the previous approaches [14,15] . The 
faces in the 3DMAD database were cropped based on the anno- 
tated eye positions, while the faces in the HKBU-MARs database 
were cropped based on the dlib face detector [57] . Next, different 
features were extracted from each frame. The aggregated feature 
vectors were fed into a linear SVM classifier to compute the scores, 
which were then averaged to obtain the final score for a video. Fi- 
nally, the HTER metric was calculated to report the detection per- 
formance. 

5.1.3. Evaluation results 

Table 9 shows the experimental results of different 3D mask 
spoofing detection methods on the 3DMAD and HKBU-MARs-V1 
databases. 

We can first observe the big performance differences on the 
two 3D mask spoofing databases. All methods achieved lower 
HTERs (between 0% and 14%) on the 3DMAD database, and expe- 
rienced performance degradation on the HKBU-MAR-V1 database 
(with HTERs in the range of 2% to 70%). Such results are reason- 
able since the masks in the HKBU-MARs-V1 are more realistic and 
closer to real faces (as shown in Fig. 3 ), making it harder to dis- 
tinguish from real accesses. Specifically, two texture based meth- 
ods using the multi-scale LBP features [14] and Haralick features 
[35] showed outstanding detection performance on both databases, 
with the HTER of 0% on the 3DMAD database under two protocols, 
and the HTER under 6% on the HKBU-MARs-V1 database under 

Fig. 3. Examples of cropped faces in two 3D mask spoofing databases. (a) 3DMAD; 
(b) HKBU-MARs-V1 database. The first two columns are real faces, and the last col- 
umn is mask spoofing faces. 

the LOOCV protocol. This indicates the higher robustness of these 
two texture feature descriptors. By contrast, the reflectance anal- 
ysis based method [22] , the time-spectral features based method 
[32] , and the LMI decomposition based method [40] demonstrated 
lower robustness and worse performance in detecting mask attacks 
in the HKBU-MARs-V1 database, with the HTER over 30%. 

Besides, we can see the influence of different protocols on the 
detection performance. Table 9 shows that most methods achieved 
lower HTERs under the random partition protocol than the LOOCV 

protocol on the 3DMAD database, while the results are reversed 
on the HKBU-MARs-V1 database. This can be attributed to the 
different subject number of the two databases. The HKBU-MARs- 
V1 database contains smaller number of subjects (with only 8); 
therefore, the LOOCV protocol using more training data and longer 
training time demonstrated a greater advantage in providing more 
stable detection results than the random partition protocol. 

We further explored the influence of classifiers on the 3D mask 
spoofing detection performance. Four different classifiers (SVM 

with linear kernel, SVM with RBF kernel, Softmax, and LDA) were 
used for each 3D mask detection method under the RP protocol 
on two databases. Optimal parameters were experimentally found 
with the objective to minimize the error rates on the training set. 
From the results in Fig. 4 (a), we can see that the detection dif- 
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Fig. 4. The HTERs (%) of different methods using different classifiers on two databases. (a) 3DMAD, (b) HKBU-MARs-V1 database. 

ferences among the four classifiers are not significant, while the 
linear SVM classifier achieves the best results for most feature ex- 
traction algorithms on the 3DMAD database. For the HKBU-MARs 
database in Fig. 4 (b), however, the HTER values are much higher, 
and vary greatly using different classifiers. This can be attributed 
to the highly realistic mask qualities and small data size of this 
database. Overall, no classifiers work the best for all features, but 
we can claim that the linear SVM performs better for the LBP 
based methods (A02–A06), which reaches the similar conclusion 
as in [4] . 

5.2. Examining 2D PAD methods for 3D mask attacks 

It is usually believed that countermeasures proposed for 2D at- 
tacks may fail on 3D mask attacks because of the smaller texture 
defects, better preserved motion, or more geometric properties in 
mask attacks [4,29,32,39,49,58] . To verify the correctness, we col- 
lected several methods from different categories with outstanding 
performance against 2D face presentation attacks to evaluate their 
effectiveness against 3D mask attacks. 

5.2.1. Algorithms 

Totally there are 10 methods based on different types of fea- 
tures to be evaluated here, namely, (1) motion intensity based 
[59] ; (2) image distortions based [60] ; (3) color LBP based [61] ; (4) 
WLD-TOP (Weber Local Descriptor from three orthogonal planes) 
based [62] ; (5) method combining mulit-scale LBP, GLCM (gray 
level co-ocacurrence matrices) and image distortions [63] ; (6) 
MB-LPQ (multi-block Local Phase Quantization) [64] ; (7) color 
SURF(speeded-up robust features) [65] ; (8) method combining LBP 
and GSLBP (guided scale based LBP) [66] ; (9) SqueezeNet features 
fusing with color LBP [64] ; and (10) ResNet-50 based method [67] . 
For comparison with the results in Section 5.1 , we also evaluated 
these algorithms on the 3DMAD and HKBU-MARs-V1 databases us- 
ing the HTER metric under the same protocols (the random parti- 
tion and LOOCV protocol, respectively). 

5.2.2. Evaluation results 

The experimental results of different 2D PAD methods on the 
3DMAD and HKBU-MARs-V1 databases are shown in Table 10 . 

From Table 10 , we can observe the similar performance differ- 
ences of these methods to the methods in Table 9 on the two 
mask attack databases. One exception is that two dynamic meth- 
ods (using motion intensity features [59] and WLD-TOP features 
[62] ) can perform better on the HKBU-MARs-V1 database than on 
the 3DMAD database. We attribute this to the fact that compared 
with the 3DMAD database, the cut-out eye regions in the HKBU- 
MARs-V1 database did not perfectly fit the users’ eyes (see Fig. 3 ). 
Therefore, the relatively larger eye motion difference between the 

real accesses and the mask spoofing faces leads to a better detec- 
tion performance on this database. 

Another interesting observation is that several 2D PAD meth- 
ods, including the texture based and deep learning based, achieved 
0% HTERs on the 3DMAD database. Their performance on the 
more challenging HKBU-MARs-V1 database was also satisfactory 
compared with the results in Table 9 . Specifically, the MB-LPQ 

based method achieved the best results on the two databases. 
Other methods using hybrid features, including combining LBP 
with GSLBP features, fusing multi-scale LBP, GLCM, with image dis- 
tortions features, and method based on color LBP, also demon- 
strated an outstanding performance, with the HTERs of 0% on the 
3DMAD database, and the average HTER lower than 13% on the 
HKBU-MARS-V1 database under the LOOCV protocol. This indicates 
the common perception that spoofing detection methods proposed 
for 2D attacks will fail on 3D mask attacks is not true. Thanks to 
the feature robustness, many evaluated face spoofing methods de- 
signed for 2D type attacks even showed better performance in de- 
tecting 3D mask attacks than methods specially designed for 3D 

type attacks. 
It is also worth noting that two deep learning based methods 

[64,67] performed worse on the HKBU-MARs-V1 database when 
compared with their outstanding performance on the 3DMAD 

database. This is because the deep learning based features are 
obtained in a data-driven manner, while the HKBU-MARs-V1 
database with small data size fail to provide enough data for 
training the deep models by fine-tuning the pretrained models 
to their full potential. This also accounts for the similar trend to 
Table 9 that most methods achieved lower HTER under the LOOCV 

protocol than the random partition protocol on this database. 

5.3. Reported results of existing 3D mask PAD methods 

To further show and compare the detection performance of 
more 3D mask PAD methods, we summarized the reported results 
from existing detection methods on a unified framework based 
on the fact that many methods have been evaluated on the same 
database (3DMAD or HKBU-MARs databases) using the same HTER 
metric. 

The detection performance of 17 methods on the 3DMAD 

database under two protocols is shown in Table 11 . It can be seen 
that the reported HTERs of most methods are lower than 8% un- 
der different classifiers. Deep learning features and texture fea- 
tures show stronger abilities in detecting 3D mask presentation at- 
tacks than the liveness cues based methods on this database. Be- 
sides, although the 3DMAD database provides both 2D color im- 
ages and 2.5D depth maps, most algorithms only extract features 
from 2D color images for computational efficiency and wide gen- 
erality. Also, the comparison results of block-based LBP method in 
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Table 10 

The HTERs (%) of different 2D methods on 3D mask spoofing databases. 

Method 
3DMAD HKBU-MARs-V1 

Category 
RP LOOCV RP LOOCV 

Motion intensity [59] 15.00 20.59 ± 14.9 25.83 8.57 ±22.7 Dynamic 
Image distortions [60] 0.83 0.00 ±0.0 42.50 35.71 ± 32.8 Image quality 
Color LBP [61] 0 0.00 ±0.0 25.00 12.86 ± 18.9 Texture 
WLD-TOP [62] 20.83 5.29 ± 12.7 15.00 7.14 ±12.5 Dynamic 
MsLBP + GLCM+distortions [63] 0 0.00 ±0.0 31.67 5.71 ±15.1 Hybrid 
MB-LPQ [64] 0 0.00 ±0.0 11.67 5.71 ±9.8 Texture 
Color SURF [65] 0 0.00 ±0.0 60.00 17.14 ± 31.5 Texture 
LBP + GSLBP [66] 0 0.00 ±0.0 20.00 2.14 ±5.7 Texture 
SqueezeNet + color LBP [64] 0 0.00 ±0.0 48.33 16.42 ± 28.1 Hybrid 
ResNet-50 based [67] 0 0.00 ±0.0 20.00 22.14 ± 39.1 Deep 

The best results are indicated in bold. 

Table 11 

Reported results of 3D mask spoofing detection methods on 3DMAD database. 

Method Images Protocol HTER(%) Category 

Hyperparameter optimization of network architectures (AO) [43] 2D RP 0 Deep 
Transfer learning using the pre-trained VGG-16 model [45] 2D RP 0 ∗ Deep 
Image quality and motion cues fusion using a hierarchical NN [44] 2D RP 0 ∗ Deep 
Local features from periocular and nose region + global BSIF [30] 2D + 2.5D RP 0.03 Texture 
Angular Radial Transformation (ART) [39] 2D RP 0.91 a Shape 
Block-based LBP [14] 2D RP 0.95 b Texture 
Block-based LBP [14] 2.5D RP 1.27 b Texture 
Global LBP + BSIF [33] 2D + 2.5D RP 7.65 c Texture 
Time-spectral features and visual codebooks [32] 2D RP 8.00 Texture 

Multilevel deep dictionary learning based [25] 2D LOOCV 0 Deep 
Haralick features with blockwise [35] 2D LOOCV 0 Texture 
Facial motion estimation and deep convolutional dynamic texture learning [47] 2D LOOCV 1.76 Deep 
Multi-scale LBP [4] 2D LOOCV 4.22 ± 10.3 b Texture 
VGGNet based CNN [68] 2D LOOCV 6.07 ±11.3 Deep 
Heartbeat analysis based on rPPG correspondence feature [51] 2D LOOCV 6.82 ± 12.1 Liveness 
Pulse analysis based on global PSD signal [50] 2D LOOCV 7.94 Liveness 
Heartbeat signal analysis based on local rPPG [49] 2D LOOCV 8.57 ± 13.3 Liveness 

∗ The best results are indicated in bold. Most results are reported under the SVM classifier, except: ∗ using the Softmax classifier; 
a Using the ML classifier; 
b Using the LDA classifier; 
c using the Euclidean distance classifier. 

Table 12 

Reported results of 3D mask spoofing detection methods on HKBU-MARs database. 

Method Database version HTER(%) Category 

Heartbeat signal analysis based on local rPPG [49] V1 14.70 ±10.9 ∗ Liveness 
Multi-scale LBP [69] V1 23.00 ± 21.2 ∗ Texture 

Heartbeat analysis based on rPPG correspondence feature [51] V2 4.42 ±5.1 Liveness 
Heartbeat signal analysis based on local rPPG [49] V2 8.67 ± 8.8 Liveness 
VGGNet based CNN [68] V2 14.80 ± 22.2 Deep 
Pulse analysis based on global PSD signal [50] V2 16.10 ± 20.5 Liveness 
Multi-scale LBP [4] V2 24.00 ± 25.6 Texture 

The best results are indicated in bold. Most results are reported under the linear SVM classifier, except: ∗ using the 
RBF-SVM classifier. 

[14] show that extracting features from 2D images yielded better 
performance, which reached a similar conclusion to [19,33] . 

Compared with the algorithms in Table 9 , we can see four 
methods [14,32,35,45] in Table 11 were evaluated in Section 5.1 . 
However, three of them [14,32,45] show different performance 
from our evaluated results. This can be ascribed to the influence 
of classifiers and ways of database partition in protocol designing. 

Table 12 presents the reported results of 6 detection meth- 
ods under the LOOCV protocol on two versions of HKBU-MARs 
databases (V1 with 110 videos from 8 subjects while V2 with 
1008 videos from 12 subjects). From the limited results shown in 
Table 12 , we can see that liveness based methods using the rPPG 

signals perform better than the multi-scale LBP and CNN based 
methods on this superrealistic spoofing database. Further, similarly 
to the evaluation results in Tables 9 and 10 , the HTERs achieved 

on this database are relatively high, indicating the challenges for 
existing methods in detecting superrealistic mask attacks. 

6. Discussion 

Based on the experimental evaluation of different methods in 
Section 5 , we present some insights, and challenges as well, to 
have a deeper understanding of 3D mask spoofing detection in this 
section. 

6.1. Detection performance 

From the detection results in Tables 9–11 , first we can see 
that the detection performance of different methods depends on 
the database and evaluation protocol. Some deep learning based 
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and texture features achieved outstanding performance on one 
database (reaching 0% HTERs on the 3DMAD dataset), but their 
performance is not satisfactory on another database or under dif- 
ferent protocols. Further, some texture based 2D PAD methods 
have been proved to work well for existing 3D mask databases. 
This indicates the potential of designing more generalizable coun- 
termeasures against various types of presentation attacks. Overall, 
benefiting from the features’ highly discriminative power in lo- 
cal texture description, the methods based on the multi-scale LBP, 
Haralick features, MB-LPQ, and fusion of LBP with GSLBP features, 
achieved impressive detection performance against 3D masks at- 
tacks in our experimental evaluation. 

Inspired by the advances in 2D face PAD methods, the detec- 
tion performance against 3D mask spoofing attacks could be im- 
proved by designing new feature descriptors and exploring new 

deep learning frameworks [70] , or fusing multimodal biometrics 
[71] . Besides, we emphasize the need to study the interdependency 
between the 3D mask spoofing detection process and face recogni- 
tion system. Most existing detection methods for 3D mask spoof- 
ing only focus on the PAD performance at the sensor level, without 
taking the whole recognition process into consideration. Unlike 2D 

type spoofing, existing 3D mask spoofing databases are more di- 
verse. For some databases with less realistic attacks, the false posi- 
tive errors of the spoofing detection module may have smaller im- 
pact on the false match rate of the face recognition system, while 
for those databases with hyperreal and user-customized mask at- 
tacks, the higher errors (both the false positive and false negative 
errors) will affect a lot on the face recognition performance. Two 
recent studies [39,40] presented both the recognition rates and 3D 

mask spoofing detection performance, which are more complete 
and powerful to show the effectiveness of the PAD schemes. 

6.2. Databases 

The databases for 3D mask attacks play a significant role in de- 
signing effective and practical detection schemes. Compared to the 
2D spoofing samples, 3D mask spoofing is much more complicated 
and high-cost. Therefore, although several 3D mask databases have 
been released for the public, there still exist two major issues. One 
is the lack of large-size 3D mask spoofing databases with more 
subjects, more types of masks, and more real world variations. 
This will certainly limit the research works in reporting the anti- 
spoofing performance. For example, as shown in Table 10 , some 
deep learning based methods showed less advantages on the small 
HKBU-MARS-V1 than the 3DMAD database. Also, the detection per- 
formance of most methods under the common and high-efficient 
random partition protocol for training and testing is far from sat- 
isfactory on small databases. 

Another issue is that the different acquisition processes of 3D 

mask attacks lead to different qualities of spoofing samples, and 
thus have a great influence on the detection performance. Here we 
summarize three factors related to the acquisition of 3D mask at- 
tack databases, listed as follows. 

Mask production process. Existing production of 3D masks is 
quite diverse, i.e., relying on the third-party services [14,15,17] , by 
self-manufacture based on 3D printers [13] , using cut-out papers 
[26] , and using noncustomized masks [16,25] . This process affects a 
lot on the mask spoofing qualities. For example, the SMAD [25] and 
MLFP [16] databases used noncustomized masks with textural fea- 
tures such as wrinkles, mustache, beard, and in some cases, facial 
hair. Compared with the user-customized masks, these masks not 
only result in larger difference between real accesses and spoofing 
samples (see Fig. 2 ), but also make it harder to accurately detect 
the face regions. Besides, our experimental results showed the in- 
fluence of the fitness between the cut-out regions and the eyes on 
the detection performance for motion-based methods. 

Sample recording process. Based on the experimental results, 
we also observed the collection process of mask spoofing videos 
has an impact on the detection performance. Even using the same 
3D mask production service (of ThatsMyFace), the 3DMAD and 
HKBU-MARs-V1 databases show different spoofing effect with dif- 
ferent video recording devices and environment (see Fig. 3 ). There- 
fore, the detection results of the same method on these two 
databases differed greatly. In addition to 2D color images, depth 
information or multispectral images have been considered using 
special device in current databases. This helps to provide more dis- 
criminative features for 3D mask attack detection, however, the re- 
quirement of special devices will restrict its wide application. Be- 
sides, multimodal biometric systems have also been explored to 
protect the systems from presentation attacks, such as fusion of 
electrocardiogram with face and fingerprint [72] , combining face 
with iris [73] , fusing face with fingerprint [71,74] . Although these 
multimodal schemes require the collection or recording of multi- 
ple biometric samples, it is a promising solution to enhance the 
robustness of biometric systems to different kinds of presentation 
attacks. 

Protocol design. Most existing 3D mask databases do not de- 
sign protocols for training and testing detection methods. However, 
from the results in Tables 9 and 10 , we can see the large difference 
of the same detection methods under different protocols, especially 
in the smaller HKBU-MARs-V1 database. Therefore, the design of 
proper protocols for different 3D mask databases is necessary to 
evaluate the effectiveness of the detection schemes. 

6.3. Other issues 

We also highlight the research of more generalizable algorithms 
to detect various 3D mask attacks, and also 2D presentation at- 
tacks. Most existing 3D mask PAD methods are specifically aimed 
at 3D mask attacks. It is not clear how they perform for 2D presen- 
tation attacks, and it is much harder to learn their detection ability 
for unknown attacks. Some studies [25,31,34,35,43–45] proposed 
detection schemes for both 2D and 3D presentation attacks, but 
few explored the effectiveness of the detection approach in cross 
dataset experiments. Due to the limited training data and large gap 
between different types of attacks, the generalizability of existing 
methods in cross-database experiments still needs to be explored 
and improved. 

Besides, like the detection of 2D presentation attacks, the de- 
sign of user-friendly 3D mask PAD schemes plays an important 
role in extending them to real-time applications. Some existing re- 
flectance, texture, or thermal signal based methods require extra 
hardwares or user collaboration to detect mask spoofing, which are 
expensive and inconvenient to use in practical applications. 

7. Conclusion 

The development of 3D mask manufacturing technologies has 
provided great opportunities for the research on 3D mask spoof- 
ing, and PAD techniques as well. In this survey, we have summa- 
rized the advances of 3D mask spoofing and anti-spoofing works 
over the past decade. Over 30 3D mask attack detection methods 
and 10 3D mask spoofing databases have been analyzed. We have 
also presented experimental evaluation to quantitatively compare 
different 3D mask PAD methods under a unified framework, and 
conducted experiments to show the detection performance of sev- 
eral 2D anti-spoofing methods on 3D mask attack databases. Based 
on the experimental results, we have presented some insights and 
open issues, which are beneficial for researchers to develop more 
effective and generalizable face spoofing detection schemes in the 
future. 
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