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Abstract: For face recognition, some very large-scale datasets are publicly available in recent years, which are usually
collected from the Internet using search engines, and thus have many faces with wrong identity (ID) labels (outliers).
Additionally, the face images in these datasets have different qualities because of uncontrolled situations. The authors propose
a novel approach for cleaning the ID label error, handling face images in different qualities. The face ID labels cleaned by their
method can train better models for low-quality face recognition since more low-quality images are correctly labelled for training a
deep model. In their low-to-high-quality face verification experiments, the deep model trained on their cleaning results of MS-
Celeb-1M.v1 face dataset outperforms the same model trained on the same dataset cleaned by the semantic bootstrapping
method. They also apply their ID label cleaning method on a subset of the cross-age celebrity dataset (CACD) face dataset, in
which their quality-based cleaning can deliver higher precision and recall than a previous method on detecting the ID label
errors.

1 Introduction
Owing to recent advances in deep learning techniques for face
recognition, the need for large face datasets with accurate identity
(ID) labels has increased dramatically. To build large datasets,
researchers typically collect a large number of face images from
the Internet. However, these kinds of datasets usually contain ID
label ambiguity. Also, the fact of being large scale makes them
almost impossible to be cleaned from ID label errors by just taking
a manual approach.

Furthermore, these large face datasets are not only filled with
wrong ID labels but also have different levels of quality. Low-
quality face images with low resolutions in addition to uncontrolled
poses and illumination conditions are hard to identify. In the
current automated ID label cleaning methods, low-quality faces are
likely to be removed because they are less similar to face of higher
qualities. Therefore, developing an automated ID label cleaning
method, which keeps more inlier low-quality face images, helps in
training better face models by providing a diversity of face images.
The problem of low-quality face matching and recognition happens
very often in real life, where face images are usually captured by
surveillance cameras in unconstrained conditions and matched to
passport-style high-quality face images in the gallery.

Additionally, many research studies tried to tackle the low-
quality face recognition problem by introducing new data-
processing methods [1], loss functions [2, 3], robust local face
features [4] and model structures [5]. In our work, we believe that
improving the process of collecting and cleaning face datasets to
include more accurate low-quality face images will improve the
low-quality face recognition models. Therefore, we propose a
novel approach for reducing ID label errors in a large face dataset
with more considerations to the face image quality issue. Our
contributions include:

• Developing a novel method to detect ID label errors in a large
face dataset using a face image quality assessment (FIQA)
which can preserve low-quality face images as inliers.

• An evaluation of the proposed approach in comparison with
other representative approaches: indirect comparison to the
semantic bootstrapping cleaning approach [5] shows that our
method can produce better training data for low-to-high-quality
deep face matching. Also, a comparison with human annotations

shows that our ID label cleaning approach achieves higher recall
and precision on a larger face dataset than Ng and Winkler's [5]
dataset.

The remaining of this paper is organised as follows: Section 2
introduces prior face dataset cleaning works and approaches. In
Section 3, our novel ID label cleaning for a large face dataset using
FIQA is presented with all steps in details. In Sections 4 and 5, we
compare our method indirectly to semantic bootstrapping [5] by
conducting two low-to-high-quality deep face matching
experiments. Also, we compare our ID label cleaning output to
human annotations as a direct way to evaluate our method. Finally,
concluding remarks and future directions are given in Section 6.

2 Related work
Recently, a number of large face datasets consisting of
unconstrained face images have been constructed. During the
construction, different methods were applied for correct ID
annotation and noise label removal. Ng and Winkler [5] proposed a
method to identify the outliers by formulating it as a quadratic
programming problem that combines the outputs of an outlier
detection classifier and a gender classifier, enforcing visual
dissimilarity between the outliers and inliers, while at the same
time constrains to at most one face per image to be an inlier. Their
results on the FaceScrub dataset show that the method can
effectively clean the raw data. To clean the VGG-Face dataset,
Parkhi et al. [6] first used human annotators to select the identities
with over 90% pure images, then removed erroneous faces in each
set automatically using the support vector machine (SVM) trained
for each ID with the Fisher vector faces descriptor [7]. After that,
they removed the near duplicates by clustering the vector of locally
aggregated descriptors [8] of the images. Finally, they used human
annotators after ranking images within each ID set to decrease the
likelihood of being an outlier. Yi et al. [9] built a large-scale
dataset, which includes about 10,000 identities and 500,000
images, called CASIA-WebFace. They crawled the Internet Movie
Database, a well-structured website containing rich information of
celebrities, to collect the images. Then, all images were processed
by a multi-view face detector. After that, they used a tag-similarity
clustering method to clean the dataset. Later on, to illustrate the
quality of CASIA-WebFace, they trained a deep convolutional
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neural network (CNN) on it. Wu et al. [5] used semantic
bootstrapping to clean the MS-Celeb-1M.v1 [10]. First, they
trained a light CNN [11] model on the original noisy label dataset.
Second, the trained model was utilised to predict the labels. Finally,
using a threshold, they decided to whether accept or reject the
prediction according to a conditional probability. They called their
cleaned result set as MS-1M-2R. Table 1 gives a comparative view
of the different cleaned face datasets; some are with manual works.

3 Quality-based cleaning method
The input is a set of ID face images with possible ID label noise.
Here, noise means the set includes outlier face images, which do
not belong to the assigned ID. The output is the input face images
excluding the outliers. The method starts with defining a clean
subset from the input set using some preliminary assumptions. We
call this set the ‘reference set’. Then, a further cleaning is done on
this reference set. After that, a ‘quality adaptive similarity (QAS)
threshold’ is applied to decide whether a sample face image is
similar to the reference set (inlier) or not. The QAS threshold
means using adaptive threshold values for the face images based on
their qualities. Since the low-quality inlier faces are likely to
achieve a lower similarity score to the reference than the high-
quality inlier faces, using a QAS threshold to classify a sample face
image may save many low-quality face images from being falsely
classified as the noise. Fig. 1 is an illustration of our framework,
showing the major steps and components. 

We can divide our cleaning method into four steps: (i)
constructing an initial reference set based on some preliminary
measures, (ii) processing this reference set to become cleaned, (iii)
applying the QAS thresholds, and (iv) building the final cleaned
set. In the following, we provide explanations of our quality-based

cleaning method in details. See Algorithm 1 (see Fig. 2) for a
procedural description of the proposed method. 

3.1 Defining an initial reference set

Building a reference set, which includes images with a high
probability to be inliers helps in classifying any sample from the
original noisy ID set S, such that, samples which are similar to the
reference set are considered inliers. Thus, we build an initial
reference set Rinit consisting of images that have a high probability
of being inliers. First, because the images are collected via a search
engine, there is usually a ranking of images based on the search
result, and the images with high rankings have a relatively high
probability of being inlier images of the ID. On the basis of that,
the top three searches ranked images related to the ID are added to
Rinit. Second, because the majority of the high-quality face images
are potential inliers, all the images above the mean quality value Q
are considered high quality and added to the initial reference set
Rinit. The mean quality Q is the average of the quality values for all
the face images in the dataset. At this point, the ID initial reference
set Rinit contains the top high-quality images, and the top three
searches ranked images of that ID.

3.2 Fixing the reference set

To avoid any noise in the initial reference set Rinit, we estimated a
similarity threshold Tinit, such that, any image in Rinit that has a
similarity measure less than the threshold Tinit to the remaining set
of face images in Rinit is not added to the final reference set. By
excluding any potential outliers, we create the reference R from
Rinit. In other words, the reference set R is a subset of Rinit, where
the image I ∈ Rinit is considered as a good reference only if its

Table 1 Large-scale face datasets
Dataset Type Identities Images Cleaning
FaceScrub public 695 141,130 automated
VGG-Face public 2622 ∼2.6M hybrid
WebFace public 10,575 494,414 automated
MS-1M-2R public 79,077 5049,824 automated
In the cleaning method column, automated means there was no human involvement in the cleaning process. The hybrid method means it used a combination of automated and human
processing.
 

Fig. 1  Flowchart of the proposed method for cleaning the face images with incorrect ID labels, using the FIQA. First, the method defines a reference set out
of the collected noisy face set. Then, using quality-based similarity threshold, decides whether the face image is similar to the reference set. If not, the system
considers the face image as a noise; otherwise, the image will be added to the output ID cleaned face set
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average similarity to the images in the set Rinit is above a similarity
threshold Tinit. The ID reference set R is defined as follows:

R = {I sim(I, Rinit) > Tinit, I ∈ Rinit}, (1)

where sim( ⋅ ) is the function that calculates the mean similarity
between image I and the images in the set Rinit using a cosine
distance measure and Tinit is an estimated similarity threshold.

3.3 QAS threshold

The QAS depends on the FIQA to determine the best similarity
threshold for the sample. The method developed by Chen et al.
[12] is used to estimate the quality for each face image. It is
learning to rank-based FIQA method, which uses the ranking
SVMs trained on a rank-ordered set of face images. At first, the
rank SVMs learn rank weights for five different image features
(histogram of oriented gradients (HoG), Gabor, Gist, local binary
pattern (LBP) and CNN features), then the features are fused into a
single feature set using a polynomial kernel mapping and another
weight vector is learned for the fusion feature. To get the predicted
score for an image I, the five image features are extracted and
multiplied by their corresponding weight vectors, then fused into a
second-level feature, and finally multiplied with the fusion feature
weight. The quality score is then normalised to a value within the

range of 0–100. If f ( ⋅ ) is the function that extracts the feature
vector from an image, the quality assessment function Q( ⋅ ) can be
defined as

Q(I) = P(ωT f (I))ω′ (2)

where I is an image, ω is the learned weight vector for first-level
features, P( ⋅ ) is the polynomial kernel mapping function and ω′ is
the learned weight for the fused features.

As mentioned earlier, to decide whether a sample is an inlier or
not, it should be compared with the ID reference set. To do that, a
similarity threshold is needed. Since R has mostly high-quality
images, it is highly possible that the low-quality inlier samples will
have small similarity scores than the high-quality ones when
comparing them to the reference set R. If we try to classify the
samples using a strictly high similarity threshold, we could falsely
classify the inlier low-quality faces as non-match. On the other
hand, if we use a low threshold, it could lead to many outliers to be
falsely included.

To solve this dichotomy, an adaptive similarity threshold is
proposed, where the threshold goes lower when the image quality
is lower. However, the relation between the quality and the
similarity threshold is not strictly linear because the threshold is
highly affected by the quality of the image in the low-quality range,
whereas the range of middle to-high-quality images has less
influence by the similarity threshold. On the basis of these facts,
we define our QAS threshold function TQAS( ⋅ ) as follows:

TQAS(I) = Tmax −
(Tmax − Tmin)

e(Q(I)/2Q)
(3)

where I is a face image sample, Tmax, Tmin are the maximum and
minimum allowed similarity thresholds, Q is the average quality
and Q(I) is the function provided in (2). TQAS threshold changes
faster in the low-to-mid-quality range but smoother for the range
above the average quality (Q). Fig. 3 shows one example of how
the function TQAS( ⋅ ) values change for different quality values. 

3.4 Building the final clean set

After calculating the QAS threshold at step 3, the images from the
original noisy set that achieves a mean similarity to the reference
set R above threshold TQAS are considered as inliers. Therefore, the
final ID clean set C is defined as follows:

C = {I sim(I, R) > TQAS), I ∈ S}, (4)

where S is the noisy ID set, sim( ⋅ ) is the function that calculates
the mean similarity between the image I and the images in the set R
using the cosine distance similarity measure and TQAS is QAS
similarity threshold, varying with the face image qualities.

By repeating the method for each ID set in the noisy dataset, we
obtain the final cleaned sets for all the identities.

4 Experimental settings
In this section, we will discuss our experimental settings in details
before we present the experimental results.

4.1 Dataset description

To evaluate the proposed method, we have chosen the MS-
Celeb-1M.v1 dataset [10]. It contains about 100 K identities of 10
million face images. This is a subset of the one million celebrity
list collected from a knowledge graph called freebase. Public
search engines were used to collect ∼100 images for each celebrity,
resulting in about 10M web images. The one million celebrities list
includes people with more than 2000 different professions from
more than 200 distinct countries/regions. It also covers all major
ethnic groups of the world and has a large age range. Some sample
images from the dataset are shown in Fig. 4. The outlier faces are

Fig. 2  Algorithm 1: quality-based face ID label cleaning
 

Fig. 3  QAS threshold function TQAS( ⋅ ) which is designed for in the MS-
Celeb-1M.v1 cleaning experiment. The similarity threshold values increase
as the quality of the face images increases
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highlighted. We can also see that the collected faces have different
qualities in this dataset.

As mentioned in [10], Guo et al. do not manually remove noise
labels in the dataset because its size is beyond the scope of manual
cleaning. In some cases, we found that the outliers for one ID can
contain up to five different identities.

4.2 Face detection and alignment settings

All face images are detected, aligned, converted to grey-scale
images and normalised into a size of 144 × 144 for the training
data, and 140 × 140 for the testing data. We use the OpenFace [13,
14] library to detect facial landmarks. The mouth, ears and eyes
from detected landmarks are used in the normalisation and
alignment process.

4.3 Similarity measure settings

Since our automated cleaning method uses a face matching, we
trained a light CNN on CASIA-WebFace dataset using the same
settings as in [5]. The momentum is set to 0.9, and the weight
decay is set to 5 × 10−4 and the learning rate is set to 1 × 10−3. The
fully connected layer ‘eltwise_fc1’, which has 256 dimensions, is

used to extract deep features. The similarity measure is based on
the cosine distance computation.

4.4 MS-Celeb-1M.v1 dataset cleaning settings

Before starting the actual cleaning process, we need to estimate the
values of the cleaning parameters which are appropriate to clean
MS-Celeb-1M.v1, e.g. the mean quality value (Q), the initial
reference similarity threshold (Tinit) and both the minimum and
maximum thresholds in the quality-based similarity function (Tmin,
Tmax). The mean quality value (Q) is the mean quality value of all
the images in the dataset and is equal to 54. To find the best values
for the other parameters, we defined a validation set of 40
identities. Our validation experiments show that the best clean
result is obtained when Tinit = 0.25, Tmin = 0.34, Tmax = 0.63.
Fig. 3 shows the function TQAS( ⋅ ) with the mentioned settings.

5 Experiments and results
In this section, we discuss the results of the two conducted
experiments and show how effective our method is in cleaning the
data and preserving the low-quality face images.

5.1 Comparison to the state of the art

Wu et al. [5] used a semantic bootstrapping to clean the MS-
Celeb-1M.v1. In the following, we compare our MS-Celeb-1M.v1
cleaning results with their published cleaning results.

5.1.1 MS-Celeb-1M.v1 cleaning results: Our final quality-based
cleaned set contains 88,176 identities and 4,517,039 face images.
The average number of images per ID is 49. From here on, we
denote the cleaned version of ‘MS-Celeb-1M.v1’ as ‘MS-
Celeb-1M-Clean’ dataset. Compared to the semantic bootstrapping
cleaning results sets (MS-1M-1R and MS-1M-2R), our method can
keep around 10K more identities. Fig. 5 shows the comparison
between the number of identities of our MS-Celeb-1M-Clean
dataset and the semantic bootstrapping dataset MS-1M-2R. Our
MS-Celeb-1M-Clean dataset has 10,961 identities that do not exist
in MS-1M-2R. However, 1862 identities in MS-1M-2R could be
falsely removed from ours, which means that our method could be
improved further to include more identities. Since we limited our
method to use light CNN deep architecture and WebFace dataset
for a fair comparison with the semantic bootstrapping, using better
deep models and more data to train could overcome what looks like
some limitations.

Additionally, to show the effectiveness of our method on
correctly classifying the low-quality images, we visually compare
with the semantic bootstrapping method. Fig. 6 shows examples of
identities mainly with low-quality face images, are correctly kept
by our method but are falsely considered as noise by the semantic
bootstrapping method. We see that there are a number of low-
quality faces with blurry, low resolution, large pose change and
partially covered faces in these examples.

5.1.2 Low-to-high-quality face verification comparison: To
evaluate the usefulness of our cleaned data, especially keeping
low-quality face images, we chose the deep network proposed in
[5] using the original settings but trained with our cleaned data.
Using the original settings helps to make a fair comparison
between our model and [5] released model, which is trained with
the MS-Celeb-1M.v1 cleaned by the bootstrapping method
(bootstrapping model). Since the main goal of our method is
preserving inlier low-quality face images, we designed two low-to-
high-quality face verification experiments using two different face
datasets. In the following sections, we present the experimental
details and results on the IJB-A [15] and FaceScrub [5] datasets.

IJB-A experiment: Using the protocol in [16], IJB-A dataset is
divided into two subsets based on the face image quality: (i) 10,089
high-quality images and (ii) 362 low-quality images. To perform
the low-to-high-quality match experiments, we chose 6676 positive
pairs and 3,645,542 negative pairs. Each pair contains one low- and
one high-quality images. Our model can obtain 6% higher

Fig. 4  Sample images of ID in the MS-Celeb-1M.v1 dataset. Noise images
are highlighted by red boxes

 

Fig. 5  Our MS-Celeb-1M-Clean and MS-M1-2R (semantic bootstrapping)
ID sets of the MS-Celeb-1M cleaning results (77,215 overlapped identities,
10,961 identities are only in our MS-Celeb-1M-Clean and 1862 identities
are only in MS-1M-2R)
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verification rate (VR) at false acceptance rate (FAR) equal to 10−3

than the bootstrapping model, where our model achieves 50%
VR@FAR = 10−3, while the bootstrapping model achieves 44%
VR@FAR = 10−3. The ROC curve comparison is shown in Fig. 7. 
Additionally, the verification accuracy comparison is given in
Table 2. On the basis of the results, our model achieves better face
VRs for various FARs on the IJB-A dataset, compared with the
bootstrapping model.

FaceScrub experiment: Similarly and using the protocol in [16],
the FaceScrub dataset is divided into two subsets based on the
quality: (i) 1543 high-quality images, and (ii) 6196 low-quality
images. To perform the low-to-high-quality match experiments,
there are 18,978 positive pairs and 9541,450 negative pairs. Each
pair contains one low- and high-quality images. Similar to the

recognition results on IJB-A dataset, our model can obtain 6%
higher VR than the bootstrapping model at FAR equal to 10−3,
where our model achieves 48% VR@FAR = 10−3, while the
bootstrapping model [5] achieves 42% VR@FAR = 10−3. The ROC
curve performance comparison is shown in Fig. 8. Additionally, the
verification accuracy comparisons are given in Table 3. Again, our
model outperforms the bootstrapping model by achieving better
face VRs for various FARs on the FaceScrub dataset.

Since the low-to-high-quality face verification is very
challenging compared with other face verification problem, the
marginal accuracy improvement achieved by our method is still
very valuable. Therefore, we can say that compared with[5], our
clean version of MS-Celeb-1M.v1 contains more face variations in
terms of the face quality and better training data for low-to-high
face matching tasks.

5.2 Comparison with human annotation

Up to now, human labelling is still considered as the best possible
annotation and cleaning method, even though it is time-consuming
and error-prone to some extent. For this reason, we decided to
evaluate our cleaning method using a manually cleaned dataset.
Then, we compare the result with another state-of-the-art cleaning
method proposed by Ng and Winkler's method [5] that has also
been compared with a manually labelled dataset.

Note that, it was not possible for us to perform a direct
comparison with Ng and Winkler's cleaning method [5] since their
code and the original datasets are not publicly available. So we
perform an ad hoc study by applying our cleaning method on a
manually annotated noisy subset of CACD [17] dataset and

Fig. 6  Some examples from our MS-Celeb-1M-Clean dataset which were
falsely classified by MS-M1-2R (semantic bootstrapping) as noise

 

Fig. 7  ROC comparison on IJB-A low-to-high-quality face verification
experiments

 

Table 2 Performance comparison of IJB-A low-to-high-
quality face verification experiments

Bootstrapping [5] Our model
FAR = 0.001 0.44 0.50
FAR = 0.01 0.60 0.67
FAR = 0.1 0.76 0.82
equal error rate (EER) 0.18 0.14
area under the curve (AUC) 0.88 0.92
Bold values indicate that the best performance.

 

Fig. 8  ROC comparison on FaceScrub low-to-high-quality face
verification experiments

 
Table 3 Performance comparison on FaceScrub low-to-
high-quality face verification experiments

Bootstrapping [5] Our model
FAR = 0.001 0.42 0.48
FAR = 0.01 0.58 0.64
FAR = 0.1 0.72 0.78
EER 0.20 0.18
AUC 0.87 0.89
Bold values indicate that the best performance.
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measure the recall and precision. Then, we compare the precision–
recall results with their published result. Our argument is that, even
though we do not perform our comparative analysis using the same
dataset, if we use a much larger dataset with much more noisy
labels and still get a better precision–recall curve than theirs, this
can indirectly indicate that our method could be better than theirs.

CACD [17] is a large dataset collected for cross-age face
recognition in 2014, which includes 2000 identities of 162,815 face
images. We manually cleaned a subset of the CACD dataset for our
experiment. We chose 500 random identities of 40,757 face images
and manually annotated the faces as inliers or outliers. Our manual
cleaning found out 6967 outliers in this chosen subset of the
CACD.

To clean those 500 identities with our proposed method, we
used the same settings as we used to clean MS-Celeb-1M.v1,
except we set the maximum and minimum similarity thresholds to
higher values, where Tmin = 0.36 and Tmax = 0.66. Higher
similarity threshold values give better cleaning results since there
are higher-quality faces overall in the CACD dataset compared
with MS-Celeb-1M.v1.

Our method successfully detected 76% of the outliers (true
positive (TP) rate) but removed 11% of the inliers (false positive
(FP) rate). Comparing to Ng and Winkler's [5] method, our
cleaning method outperforms their reported results in terms of both
the recall and precision. Our cleaning results have a recall of 0.76
and precision of 0.58, whereas their method reported 0.72 recall
and 0.52 precision. Note that, our test dataset is much larger
compared with [5], since their test set contains 5791 face images
from 20 people, with 794 of them being outliers. Compared to
theirs, our test dataset has 25 times more identities of 40,757 face
images with 6967 outliers (Table 4). 

6 Conclusion
Cleaning large-scale face datasets have become a major challenge
recently. We have presented a novel method for cleaning very
large-scale face image datasets using an FIQA scheme. Our method
has shown that it can more efficiently solve the ID label noise
problem in a large face dataset. Our high-to-low-quality face
verification experiments on FaceScrub and IJB-A datasets have

shown the effectiveness of our method in face data cleaning by
keeping more low-quality face images. Our cleaned version of MS-
Celeb-1M.v1 has 10,000 more identities than the bootstrapping-
based cleaned version [5] and contains more low-quality faces. Our
MS-Celeb-1M-Clean dataset can be released to other researchers.
Also, a benchmark analysis of our cleaning method has been
performed using a human-annotated test set. Our cleaning results
have produced higher recall and precision than a previous method,
even working on a much larger dataset.
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