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Cell-line screens create expansive datasets for learning predictive markers of drug           

response, but these models do not readily translate to the clinic with its diverse contexts               

and limited data. Here we apply a recently developed technique, few-shot machine            

learning, to train a versatile neural network model in cell lines that can be tuned to new                 

contexts using few additional samples. The model quickly adapts when switching among            

different tissue types and in moving from cell-line models to clinical contexts, including             

patient-derived tumor cells and patient-derived xenografts. It can also be interpreted to            

identify the molecular features most important to a drug response, highlighting critical            

roles for RB and SMAD4 in the response to CDK inhibition and RNF8 and CHD4 in the                 

response to ATM inhibition. The new learning framework provides a bridge from the             

many samples surveyed in high-throughput screens (N-of-many) to the distinctive          

contexts of individual patients (N-of-one).  

 

  



 

Translating biomarkers from basic research to clinical utility involves transfer of information            

across a series of contexts in which data are progressively harder to obtain. In-vitro platforms               

such as human cell culture are amenable to high-throughput screening, yielding large datasets             

characterizing the molecular profiles of thousands of cell lines and their responses to millions of               

chemical compounds, genetic interventions or environments1,2. Promising indications may         

progress to advanced culture systems and animal models3,4, few of which are further evaluated              

in human cohorts and, ultimately, used in diagnosis and treatment of individual patients.  

 

It is well known that drug response predictions learned in cell-line or animal models do not                

always transfer to clinical contexts in a straightforward manner5–7. For example, dual inhibition of              

EGFR and VEGFR was found to induce sustained tumor regression in a mouse model of               

EGFR-mutant non-small cell lung cancer8 (Naumov et al. 2009), whereas follow-up clinical            

studies failed to replicate such an effect9 (Lee et al. 2012). Similarly, upregulation of IGF1R had                

been noted as a prominent marker of tamoxifen resistance in breast cancer cell lines10 (Parisot               

et al. 1999), whereas opposite behavior – reduced IGF1R protein levels – was observed in               

tamoxifen-resistant patients11 (Drury et al., 2011). It remains unclear, however, whether such            

failures are caused by fundamental irreconcilable differences between biological contexts or           

missed opportunities to identify the correct markers likely to translate. A key challenge in marker               

selection is that the common signal is easily overwhelmed by context-specific patterns,            

especially given the very limited amounts of data available in patients relative to cell lines. 

 

To improve biomarker transfer across contexts, we formulated a neural network model,            

Translation of Cellular Response Prediction (TCRP), using the technique of few-shot           

learning12,13. Few-shot learning is an emerging method of transfer learning, a field that             
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postulates that prior knowledge acquired in one problem domain can be reused and applied to               

solve different but related problems14–16. Transfer learning has proven instrumental in fields such             

as linguistics, where people (and machines) can learn to speak a new language much more               

quickly if they have extensive prior knowledge of a related tongue which can be transferred               

efficiently to the new one17. Recent applications in biomedicine include an improved ability to              

identify chemical compounds with biological activity18 or to classify tissue type and tumor grade              

in histopathological images19. 

 

Few-shot learning aims to identify widely applicable input features by optimizing their            

transferability, rather than their overall prediction accuracy as in conventional learning           

approaches (Online Methods). In an initial “pre-training” phase (Fig. 1 top), the model is              

exposed to a variety of different pre-defined contexts, each of which is represented by              

numerous training samples. In a second “few-shot learning” phase (Fig. 1 bottom), the model is               

presented with a new context not seen previously, and further learning is performed on a small                

number of new samples. Neural networks trained by this two-phase design have been shown to               

learn surprisingly rapidly in the new context relative to models trained by conventional             

means20–23.  

 

Here, we applied the few-shot learning paradigm to three context-transfer challenges of high             

interest in predictive medicine: (1) Transfer of a predictive model learned in one tissue type to                

the distinct contexts of other tissues; (2) Transfer of a predictive model learned in tumor cell                

lines to patient-derived tumor cell cultures in vitro; and (3) Transfer of a predictive model learned                

in tumor cell lines to the context of patient-derived tumor xenografts in mouse models in vivo                

(Fig. 1, Supplementary Table 1).  
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Results 

Challenge 1: Transfer across tissue types 

For the first challenge, we evaluated the ability of our TCRP model to predict the growth rates of                  

tumor cell lines from a target tissue for which very few samples were available for learning. Data                 

were taken from a recent survey of 335 human cell lines from 19 tissues, in which cell growth                  

rates had been measured across a genome-wide panel of gene disruptions using            

CRISPR-Cas91 (Online Methods). For each cell line, this same survey summarized the binary             

genotype status of genes (0 = unmutated or synonymous mutation; 1 = non-synonymous             

mutation) and their quantitative mRNA abundance levels during nominal growth. For each            

CRISPR-Cas9 gene disruption (focusing on 469 genes with demonstrated tumor growth           

dependencies), we trained TCRP alongside a collection of conventional learning models to            

predict the growth responses of all cell lines. During this process, 1 of the 19 tissues was                 

designated as the target. A training set was then created that included all cell lines from the                 

other 18 tissues but only a small number of cell lines from the target tissue; the remaining target                  

cell lines constituted the test set. TCRP was trained in two phases, first on the large number of                  

cell lines from the 18 tissues (pre-training phase), then on the small number of cell lines                

available from the target tissue (few-shot learning phase, Fig. 1, Online Methods).            

Conventional models were trained using a standard one-phase training procedure, by pooling all             

samples designated as training, after which the model was evaluated on all samples designated              

as test. Key questions were how quickly a predictive model transfers to the new tissue, having                

been trained mainly on others, and to which tissues the model transfers worst/best. 
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Models displayed a range of prediction accuracies during pre-training, as assessed by five-fold             

cross validation, with conventional random forests performing best (Supplementary Fig. 1,           

Online Methods). However, when switching to the target tissue, no model performed better             

than random, demonstrating the difficulty posed by new contexts (Fig. 2a). We then entered into               

the few-shot learning phase. For conventional models, accuracy improved very slowly as            

samples from the new tissue were added to the training set. In contrast, TCRP improved rapidly,                

with an average gain of 829% in performance after examining only five additional samples (Fig.               

2a). Tissues with the most improvement were the kidney, urinary tract and pancreas (Fig. 2b).               

For example, we observed a very high accuracy when predicting the response to CRISPR              

knockout of hepatocyte nuclear factor 1 beta (HNF1B), for which TCRP achieved a performance              

of 0.60 (Pearson correlation) in contrast to the second best approach (random forests, 0.19).              

The importance of HNF1B to tumor growth has been verified in multiple cancer types, including               

hepatocellular carcinoma, pancreatic carcinoma, renal cancer, ovarian cancer, endometrial         

cancer, and prostate cancer24.  

 

We also conducted a related Challenge 1b, in which cell growth response data were drawn from                

a high-throughput pharmacogenomic screen of 255 anti-cancer drugs (including both          

FDA-approved and experimental compounds, Online Methods) administered to each of 990           

cancer cell lines encompassing 30 tissues2. Similar to Challenge 1a, but for each drug, TCRP               

was trained alongside conventional learning models to predict the growth sensitivity of cell lines              

using their molecular markers. As before, TCRP learned rapidly when switching to the target              

tissue, with the largest improvements seen when learning from the first few cell-line samples              

(Fig. 2c,d). We found that the accuracy of drug predictions was highly correlated with the               

accuracy of CRISPR predictions across the tissues examined, with tissues like urinary tract             
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generating highly accurate predictions in both settings, and tissues like central nervous system,             

skin, and lung generating poor predictions (Spearman rho = 0.73, p = 0.012). 

 

Challenge 2: Transfer to patient-derived tumor cells 

Next, we studied whether models of drug response trained on cell lines could be transferred to a                 

pre-clinical context (Challenge 2, Fig. 3a). For this challenge we used data on breast cancer               

patient-derived tumor cells (PDTCs) made available by Project Biobank4 (Online Methods). In            

this prior study, tumors (n=83) were biopsied, subjected to whole-exome and mRNA sequencing             

to generate molecular profiles, and implanted in immunodeficient mice. PDTCs were then            

isolated from the host mice and tested for drug responses in vitro. From these data we selected                 

50 drugs for which the protein targets were well characterized, with drugs administered to 15-19               

PDTCs each. For each drug, TCRP was pre-trained using the GDSC cell-line drug response              

data from Challenge 1b before switching context to PDTCs. 

 

As observed with earlier challenges, all models performed poorly when switching contexts,            

achieving accuracies near or below zero (Supplementary Fig. 1). However, once again we             

observed that TCRP improved substantially after exposure to each new patient sample: the             

average performance was r = 0.30 at 5 samples, reaching r = 0.35 at 10 samples versus r <                   

0.10 for the runner up (Fig. 3b,c, Supplementary Fig. 2a). Nearly all drug predictions were               

improved by the few-shot paradigm. For example, the ATM inhibitor KU-55933 had the top              

performing drug response predictions, with a Pearson correlation of 0.56 between predicted and             

actual growth response measurements (top row of Fig. 3c, average performance over 5-10             

samples). KU-55933 also represented the largest improvement over conventional approaches,          
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where the best performing conventional model, the random forest, obtained correlations of            

approximately 0.12.  

 

Challenge 3: Transfer to PDX in mice 

Finally, in Challenge 3 we went a step further, moving from PDTCs tested against drugs in vitro                 

to patient-derived tumor xenografts (PDXs) tested against drugs in live mice (Fig. 4a,             

Supplementary Fig. 2b, Supplementary Fig. 3). For this purpose we obtained data for 228              

PDX mouse models from the PDX Encyclopedia25, where each model was exposed to one of               

the five drugs on which TCRP had been trained in cell lines (Cetuximab, Erlotinib, Paclitaxel,               

Tamoxifen, and Trametinib; see Challenge 1b). Also provided were genotype and mRNA            

transcriptomes of each PDX, from which we obtained the molecular features used by TCRP to               

make drug response predictions. In cell lines, the predicted output from TCRP was the area               

under dose response curve (AUC); for PDXs, the analogous measurement was the percent             

change in tumor volume resulting from drug treatment in vivo (Δvol). Therefore, these predicted              

and measured values were each normalized to a standard normal distribution to translate             

between the two (i.e. z-score; Online Methods). 

 

Although TCRP models pre-trained on cell-line data initially performed poorly in predicting PDX             

responses, we observed significant improvements during training on the first few PDX samples             

(Fig. 4a). Such improvements were seen for all five drugs and led to a range of final prediction                  

accuracies from r = 0.50 for Erlotinib to r = 0.18 for Paclitaxel (Spearman correlation between                

predicted and actual drug response after training on ten PDX samples, Fig. 4a, Supplementary              

Fig. 2b). We also explored the effect of translating the continuous-valued drug response             

predictions to discrete treatment outcomes, as are typically assigned in a clinical setting,             
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designating each response as either Progressive Disease (PD, Δvol ≥ 30%) or Stable Disease              

or better (SD, Δvol < 30%). We found that these predicted binary classifications were strongly               

associated with the observed PD/SD outcomes, with a range of odds ratios from 3.0              

(Cetuximab) to 10.5 (Tamoxifen) (Fig. 4b,c). For Cetuximab, Paclitaxel, Tamoxifen, and           

Trametinib but not Erlotinib, we found that the predicted PD/SD designations also showed             

significant differences in progression-free survival, depending on how many PDX samples had            

been used for few-shot learning (Fig. 4d-g). 

 

Interpreting the predictive models 

A common critique of machine learning systems is that they produce ‘black boxes’ whose              

predictions are difficult to interpret26,27. Here, since we had focused on drugs with known specific               

targets, we found that model predictions were typically explainable by molecular markers within             

that target’s pathway (using models constrained to these features, Online Methods). For            

example, a top feature in predicting the response of PDTCs to PD-0332991 (Palbociclib, Fig.              

5a,b) was the expression of RB-Like-Factor RBL2, a cell-cycle transcriptional repressor           

inactivated by CDK4/6. RBL2 expression was associated with Palbociclib resistance (third from            

top in Fig. 5c, r = 0.47), suggesting that high RBL2 activity masks upstream inhibition of CDK4/6                 

by the drug. Another important feature was somatic mutation of SMAD4, a transcriptional             

modulator repressing CDK4 transcription28 (Fig. 5d). SMAD4 inactivation may release CDK4 to            

drive cell cycle29, with CDK4 inhibition counteracting this effect (Fig. 5b). While SMAD4 mutation              

was rare in PDTCs (1/19 samples), it was much more common in cell lines (43/811 samples).                

The model thus learns to strongly rely on the SMAD4 mutation during pre-training, in which               

frequent SMAD4 mutations are strongly associated with drug response. When switching to the             
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PDTC data set, this prior information is combined with the prevalence and effect of SMAD4               

mutation in the new dataset to jointly estimate its importance to the drug response. 

 

As a second example, a top feature in the response to ATM inhibition (KU-55933, Fig. 5e,f) was                 

the expression of RNF8, which is recruited to DNA double-stranded breaks (DSBs) following             

activation of ATM by DNA damage30–32. RNF8 expression was correlated with KU-55933            

resistance (third from top in Fig. 5g, r = 0.54), suggesting that, when RNF8 activity is high, ATM                  

is not limiting for DSB repair. Also correlated with drug resistance was mutation of CHD4 (Fig.                

5h), encoding the chromodomain-helicase-DNA-binding subunit of NuRD, a complex essential          

for chromatin relaxation at DSBs33. Disabled NuRD may interfere with DNA repair, masking the              

effects of ATM inhibition. Alternatively, it may dampen the impact of ATM on CHD4-dependent              

cell-cycle progression34. 

 
A significant third example involved BRAF inhibition, which leads to drug sensitivity in the              

context of a BRAF activating mutation. It is well-established that some tissue types respond to               

BRAF inhibition more strongly than others; for instance, BRAF-mutant melanomas are generally            

responsive whereas colorectal tumors are not, for reasons that are not fully understood but are               

partially explained by expression of EGFR35. As expected from these prior observations, the             

TCRP model predicted significant sensitivity to the BRAF inhibitor Dabrafenib in BRAF-mutant            

cells, but not in wild-type cells, with a much more pronounced effect in melanoma than               

colorectal cancer (Supplementary Fig. 4a). Of note, the drug response predicted by TCRP was              

significantly more accurate than the response predicted solely based on BRAF mutation and             

EGFR expression status (Supplementary Fig. 4b), raising the question of which features TCRP             

had used to achieve higher accuracy. Further examination indicated that the model drew from a               

combination of novel features (Supplementary Fig. 4c-f). These included expression of mRAS,            
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which has been shown to function as a RAF phosphatase36, expression of 14-3-3 proteins              

YWHAE and YWHAH, which interact with RAF proteins in signal transduction37, and mutation of              

RAPGEF1, a human guanine nucleotide exchange factor central to activation of the            

Ras/Raf/MEK/ERK signal transduction pathway. 

 

Discussion 

Recently an abundance of biological response data have been generated for targeted            

perturbations in numerous contexts. The usual way of analyzing these data is to pool all               

samples, under the assumption that accruing the maximal amount of data will result in a               

predictive model with greatest statistical power. Here, we have identified a more efficient means              

of building predictive models, using the technique of few-shot learning. The two-phase learning             

procedure overlays naturally on the process of translating observations from basic research in             

vitro to predictive markers in tumors (Fig. 3a): First, in a basic research phase, a general                

predictive model is pre-trained from extensive data generated in high-throughput cell-based           

screens. Second, in a pre-clinical or clinical phase, few-shot learning is used to tune the general                

model to make predictions for a specific type of human tumors, by testing drugs with high                

predicted sensitivity in settings such as patient-derived tumor cells and xenografts and,            

ultimately, patients. Thus far, few-shot learning shows encouraging performance in multiple           

datasets and translation scenarios where conventional learning fails. In all three challenges we             

examined, the initial pre-training phase was the same: optimizing the model for transfer across              

cell lines of different tissue types. Notably, this particular transfer task was sufficiently general to               

enable predictive models to transfer from cell lines to the settings of PDTCs and PDXs.  
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Models like TCRP may have compelling applications in clinical contexts seeking to implement             

precision medicine, in which the task is to match a patient’s specific molecular profile to an                

optimal course of therapy. For this purpose molecular tumor boards have been established in              

many cancer centers, where clinical experts must often make treatment decisions for a patient              

based on just a few precious cases with matching histopathology and molecular profiles. A              

second compelling application is in the pharmaceutical industry, in which a key goal is to select                

patients that are most likely to respond to a targeted agent. In both cases, classical predictive                

models have been significantly hampered by lack of access to large numbers of             

well-characterized clinical samples, i.e. for which molecular profiles have been coupled to            

precise information on treatment outcomes.  

 

In this regard, an important question for future exploration concerns the degree to which an               

approach like TCRP is ready for use in clinical or pharmaceutical settings. There are many               

uncertainties when deciding on treatment, and how the predictive value of the models built here               

compare to other molecular and clinical markers, and their predictive values, will need to be               

determined for each disease setting. In terms of absolute predictive performance, we observed             

a range of accuracy across the drugs examined, with some drugs indeed yielding promising              

results. For example, in the PDX analysis of paclitaxel (Figs. 4b,c,e), a drug non-response was               

predicted for 23 tumors, of which 20 were in agreement with the actual observations of tumor                

growth in mice, a very high success rate by any standard (20/23 = 87% correct predictions of                 

progressive disease). As another example, non-response of PDX tumors to tamoxifen was            

correctly predicted in 23/24 of cases (96%). In these analyses, a non-response (progressive             

disease) was called if the change in tumor volume was ≥30%, the standard threshold              

implemented by the PDX Encyclopedia25,38. Given more data and a focused clinical study, one              
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could likely tune the prediction threshold to drive performance higher. For example, at a              

threshold value of >60%, TCRP predicts paclitaxel non-response with 100% accuracy given the             

current PDX dataset (14/14 patients). Future investigations with larger cohorts of PDX models or              

patients will be able to shed further light on the best uses of few-shot learning clinically.  

 
In our analysis of both the PDTC (Fig. 3b) and PDX (Fig. 4a) datasets, we noted that the                  

performance of few-shot learning improves quickly and then appears to saturate. Further            

inspection reveals that the reason for this phenomenon relates to the balance of training versus               

test samples during evaluation. Given a fixed number of tumor samples, as the number of               

few-shot training samples increases, the number of testing samples decreases proportionally. In            

turn, a fewer number of testing samples means that the statistical power used to evaluate the                

prediction performance gets weaker, with a concomitant increase in variance. For most drugs in              

the PDTC dataset, a total of 19 tumor samples were available to be split between training and                 

validation. To evaluate performance for 1-shot learning, 18 of these samples were therefore             

available as a test set, whereas for 10-shot learning, only 9 samples were available for test. 

 

We also observed that drug responses were better predicted in some tissues compared to              

others (Fig. 2b,d). Although the poor predictive power in some tissues is in need of further                

investigation, a potential factor relates to the significant molecular heterogeneity observed within            

some cancer tissue types. For example, cell lines of lung tumors have been organized into as                

many as nine subtypes based on their transcriptomic profiles, in contrast to pancreatic tumor              

cell lines which appear far more homogeneous39. These findings are superficially in agreement             

with those of our study, in that drug response predictions in lung cancer lines are less predictive                 

than those of pancreas (Fig. 2b,d).  
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While the results demonstrated here were obtained with gene mutation and mRNA expression             

features, the TCRP framework is general with potential relevance to many other data types,              

such as copy number variants, features extracted from histopathological images, or data            

transferred from disease models in other species. Furthermore, while each perturbation by            

CRISPR (Challenge 1a) or drugs (all other challenges) was considered a separate machine             

learning task, a worthy future direction would be to explore the extent to which information can                

be transferred from one perturbation to another. If significant information is shared, one might              

pursue a single unified model with predictive capacity across many or all drugs rather than               

training models separately. 

 

A final future direction is to better understand the relationship between the predictability of a               

drug and its pharmacological properties, including its number of recognized targets and            

off-target effects (i.e. polypharmacology). This relationship is difficult to study with the present             

TCRP, for which features are selected from the protein interaction network of each known              

target, yielding a tendency to include more features for drugs that have more known targets               

(Online Methods). On the other hand, our understanding of drug target genes and pathways is               

far from complete, and the protein network we used for feature selection is not cancer-specific.               

Future model configurations using the same numbers of biomarkers across drugs will potentially             

shed light on the complex interactions between drug response and polypharmacology.  

 

Data Availability 

The software implementation of TCRP and dataset are available at          

https://github.com/idekerlab/TCRP/. 
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Figure Legends 

Figure 1. Study design. Three distinct translation challenges are considered. Each challenge            

involves a pre-training phase (top) based on cell-line response data across tissues, followed by              

a few-shot learning phase (bottom) in which data in the new context are presented for additional                

learning, one sample at a time. Challenge 1: Transfer of CRISPR (1a) or drug (1b) response                

model for prediction in the context of a new tissue. Challenge 2: Transfer of model to                

patient-derived tumor cells in vitro. Challenge 3: Transfer of model to patient-derived xenografts             

in vivo.  

 

Figure 2. Transfer of predictive models across tissue types. (a) Challenge 1a. For each              

CRISPR gene knockout and target tissue, model accuracy is measured by the Pearson             

correlation between predicted and actual drug responses, considering only the test samples            

from the target. The plot shows the distribution of average model accuracy across CRISPR              

knockouts (y-axis, mean ± 95% CI) as a function of the number of cell lines from the target                  

tissue provided to the model during training (x-axis). (b) Model accuracy (x-axis) is displayed              

separately for each tissue in Challenge 1a (y-axis). Accuracy is the average achieved when              

training includes 5-10 samples of the target tissue. The accuracy standard deviation is shown              

over all CRISPR gene knockouts (point size). (c) Challenge 1b. As for panel (a) for models                

trained on perturbations with targeted drugs. (d) As for panel (b) for models trained on               

perturbations with targeted drugs. 

 

Figure 3. Transfer of cell-line models to patient-derived tumor cell lines. (a) Schema for              

translating a predictive model from cell lines to patients using few-shot learning. The model is               

trained over successive rounds of data, each with fewer samples but closer to the desired               



 

clinical context. (b) Challenge 2. Predictive models were pre-trained using responses of breast             

cancer cell lines to targeted perturbations with a particular drug (Supplementary Table 1).             

Few-shot learning was then performed on 0-10 PDTC breast tumor samples exposed to that              

drug (x-axis), and model accuracy (Pearson correlation, y-axis) validated using the remaining            

held-out PDTC samples. Results averaged across 48 drugs. (c) Predictive accuracy (x-axis) is             

displayed separately for each drug model (y-axis). Colors as in previous figures. 

 

Figure 4. Transfer of cell-line models to patient-derived xenografts. (a) Challenge 3.            

Predictive models were pre-trained using responses of cancer cell lines to targeted            

perturbations with drugs, one model per drug. Few-shot learning (x-axis, number of few-shot             

samples used) was performed using PDX samples exposed to one of five drugs (line colors),               

and the improved model used to predict the change in tumor volume (Δvol, Online Methods).               

Accuracy of this prediction was validated using the actual changes in volume of the remaining               

held-out PDX tumors (Pearson correlation, y-axis). (b) Odds ratio. We evaluated the odds of              

obtaining progressive disease to stable disease (PD:SD) outcomes when stratifying tumors into            

predicted responsive versus unresponsive subtypes (predicted Δvol < or ≥ 30%, respectively).            

Odds ratio (left) and corresponding contingency table (right) is shown for each drug. (c) Ranking               

of all PDX samples (x-axis) by the predicted Δvol (y-axis) for Trametinib, Paclitaxel and Erlotinib.               

Color indicates actual clinical outcome. (d-g) Kaplan–Meier survival plots when stratifying           

tumors into responsive versus unresponsive subtypes for (d) Cetuximab, (e) Paclitaxel, (f)            

Tamoxifen, and (g) Trametinib. 

 

Figure 5. Model interpretation to identify predictive markers. (a) Measured versus predicted            

resistance to the CDK4/6 inhibitor Palbociclib after few-shot learning on five PDTC samples             



 

treated with this drug. (b) Schematic of CDK pathway with Palbociclib targets and selected              

molecular markers. (c) Left: mRNA expression profiles for the top expression-based features of             

Palbociclib. Right: Pearson correlation of Palbociclib resistance and mRNA expression for the            

top expression-based features. (d) Left: Somatic mutation profiles for the top mutation-based            

features of Palbociclib. Right: Increase of Palbociclib resistance when comparing mutated and            

wild type samples for each top feature. (e) Same as panel (a) for the response to ATM inhibitor                  

KU-55933. (f) Schematic of ATM pathway with selected predictive markers. (g-h) Same as             

panels c, d for the response to ATM inhibitor KU-55933. Numbered sample labels in panels (a,                

e) correspond to PDTC sample numbers in (c, d, g, h), in which molecular profiles for the 6 most                   

sensitive and 6 most resistant samples are shown (PDTC1-6 and PDTC14-19, respectively). 
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Online Methods 
 
Challenge 1a 
Overview. The first challenge was based on the Cancer Dependency Map (DepMap), which             
used CRISPR/Cas9 gene editing to disrupt nearly all (~17,700) human genes in each of 335               
cancer cell lines (19 tissues), in each case measuring the relative cellular growth response1.              
The machine learning task was to use molecular features of each cell line to predict its growth                 
response to the gene disruptions. Each gene disruption was considered as a separate learning              
task, in which cell lines represent learning samples. We studied 469 gene disruptions that had               
been reported by DepMap to have demonstrated ability to influence cellular growth, as             
evidenced by the presence of at least one cell line for which the response was at least six                  
standard deviations away from the mean across cell lines1. Even though there is a modest               
difference between the distribution of fitness values for all genes versus the selected genes              
(Supplementary Fig. 5a), we did not observe a strong relationship between the overall fitness              
effect of a gene knockout and model predictive performance (Supplementary Fig. 5b).  
 
Task-specific features. Features for learning were based on gene somatic mutations and            
expression levels for each cell line, as reported in the Cancer Cell Line Encyclopedia (CCLE)               
project2 and downloaded from the DepMap website (https://depmap.org/portal/download/). For         
each learning task (CRISPR gene disruption, see above) we selected genes reported as having              
either a protein-protein interaction (PPI) or an mRNA co-expression relationship (|r| > 0.4) with              
the disrupted gene. The PPI data were taken as the union of the InBioMap3, PathwayCommons4               
and CORUM5 databases. The co-expression relationship is calculated over all the cell lines from              
the feature mRNA expression data. Such a feature selection strategy, based on the molecular              
network neighborhood of the disrupted gene, was similar to that adopted earlier by the DepMap               
project6. We further removed gene expression features for which the standard deviations fell             
into the lowest 10% over all genes and excluded genes with less than 10 somatic mutations                
across cell lines. The somatic mutations and mRNA expression levels of the remaining genes              
were applied to construct the input feature vector for each cell line.  
 
Labels. Sample labels were taken as the growth response of a cell line to the CRISPR                
disruption of interest (see above) using the CERES-corrected single-gene disruption scores           
downloaded from DepMap (https://depmap.org/portal/). These scores are calculated by         
comparing the abundances of guide RNAs for the disrupted gene between the starting plasmid              
pool and the end of the CRISPR disruption experiment. The CERES method7 then processes              
these scores by removing effects due to copy-number variation.  
 
Few-shot design. For each gene disruption learning problem, the 19 tissues represented by             
DepMap cell lines were split such that 18 tissues were used in the pre-training phase and the                 
remaining tissue was held out for the few-shot phase. To ensure sufficient samples for              
performance evaluation, this held-out tissue was selected from among the 9 tissues having ≥15              
cell lines. In this few-shot phase, we randomly selected k cell lines as the few-shot samples to                 
fine tune the model (k = [0..10], plotted along the x axis of Fig. 2a) and used the remaining cell                    
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lines as testing data. For each k, the selection of few-shot samples was random, thus we                
repeated this selection 20 times and reported the average and standard deviation of the              
prediction performance over these replicates (y axis of Fig. 2a).  
 
Challenge 1b 
Overview. This challenge was based on the dataset collected by the Genomics of Drug              
Sensitivity in Cancer (GDSC) project8, which systematically tested the cellular growth responses            
elicited by a panel of 265 drugs applied to each of 1001 tumor cell lines (representing 30                 
tissues). The machine learning task was to use molecular features of each cell line to predict its                 
growth response to a drug. Each drug was considered as a separate learning task, in which cell                 
lines represent learning samples. We focused on 199 drugs for which the mechanism of action               
was at least partially characterized, i.e. with a documented protein target or pathway. Drug              
target and pathway information was obtained from Table S1G of the original GDSC 1000              
paper8.  
 
Task-specific features. Task-specific features were constructed for each drug by selecting           
genes having PPI or mRNA co-expression relationships (|r|>0.4) with the documented drug            
targets, with the PPI and mRNA co-expression networks defined as per Challenge 1a above.              
For drugs with multiple targets we included all PPI/co-expressed neighbors of these targets. As              
above, we further removed gene expression features for which the standard deviations fell into              
the lowest 10% over all genes and excluded genes with less than 10 somatic mutations across                
cell lines. Somatic mutations and mRNA expression levels of the remaining selected genes             
were applied to construct the input feature vector for each cell line. 
 
Labels. Sample labels were taken as the growth response of a cell line to the drug of interest,                  
using area under the dose-response curve (AUC) as the measure of drug response. All drug               
response data were downloaded from the GDSC 1000 website:         
https://www.cancerrxgene.org/gdsc1000/GDSC1000_WebResources/. 
 
Few-shot design. For each drug, the tissues were split such that one tissue was held out for the                  
few-shot phase, and the remaining tissues were used in the pre-training phase. We required              
that the held-out tissue have data for ≥15 cell lines to provide sufficient samples for the few shot                  
learning phase. A consequence of this requirement was that the number of held-out tissues              
differed from drug to drug, since drugs had a variable number of cell lines for which drug                 
responses had been measured8. Similar to Challenge 1a, in the few-shot phase we randomly              
selected k cell lines from the held-out tissue as few-shot samples to fine tune the model (k =                  
[0..10], plotted along the x axis of Fig. 2c) and used the remaining cell lines as testing data. For                   
each k, the selection of few-shot samples was random, thus we repeated this selection 20 times                
and reported average and standard deviation of prediction performance over all of these             
replicates (y axis of Fig. 2c).  
 
Challenge 2 
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Overview. In this second challenge, we pre-trained TCRP to predict drug responses in the              
GDSC dataset (see Challenge 1b) and then subjected this model to few-shot learning using a               
study of patient-derived tumor cells (PDTC)9. This study obtained 83 human breast tumor             
biopsies and, using mice as intermediary, established distinct human cell cultures from these             
tumors. Each of these human cell cultures was exposed to a panel of drugs, from which we                 
considered the 50 drugs with known protein targets and for which cell-line responses had also               
been measured in the GDSC dataset. The machine learning task was to use the pre-trained               
model to predict the growth response of these PDTCs to each drug. Each drug was considered                
as a separate learning task, in which PDTCs represent learning samples.  
 
Features. We considered gene expression and mutation features that had been characterized in             
both the PDTC and GDSC datasets. Both drug-specific features and mini cancer genome             
features were evaluated. Expression and somatic mutation data of the PDTC dataset were             
downloaded from the following URL: 
https://figshare.com/articles/Bruna_et_al_A_biobank_of_breast_cancer_explants_with_preserve
d_intra-tumor_heterogeneity_to_screen_anticancer_compounds_Cell_2016/2069274.  
 
Labels. For the PDTC responses we used AUC as the measure of drug response, similar to the                 
GDSC dataset in Challenge 1b. These data were downloaded from: 
https://figshare.com/articles/Bruna_et_al_A_biobank_of_breast_cancer_explants_with_preserve
d_intra-tumor_heterogeneity_to_screen_anticancer_compounds_Cell_2016/2069274. 
 
Few-shot design. In the few-shot learning phase, we randomly selected k PDTCs as the              
few-shot samples to fine tune the model (k = [0..10], plotted along the x axis of Fig. 3b) and                   
used the remaining cell lines as testing data. For each k, the selection of few-shot samples was                 
random, thus we repeated this selection 20 times and reported the average and standard              
deviation of prediction performance over all of these replicates (y axis of Fig. 3b).  
 
Challenge 3 
In this third challenge, we pre-trained TCRP to predict drug responses in the GDSC dataset               
(see Challenge 1b) and then used few-shot learning to transfer it to make drug response               
predictions in a study of patient-derived tumor xenografts (PDX)10. This study created a large              
collection of mouse xenografts of human tumor biopsies, all characterized for tumor somatic             
mutations and mRNA expression levels. PDXs were exposed to a panel of drug treatments (one               
PDX per animal per treatment) during which in-vivo tumor growth was measured. The machine              
learning task was to use the pre-trained TCRP to predict tumor growth in vivo. In particular, we                 
used data for 228 PDX mouse models, where each model was exposed to one of the five drugs                  
on which TCRP had been trained in cell lines (Cetuximab, Erlotinib, Paclitaxel, Tamoxifen, and              
Trametinib).  
 
Mini cancer genome features. Expression and somatic mutation data for all PDX samples were              
downloaded from Supplementary Table 1 of the original paper10. Most drugs in the PDX dataset               
do not have known drug targets, a requirement for feature selection in previous challenges (see               
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above). Therefore, we adopted an alternative means of selecting features which does not             
require knowledge of drug mechanism of action, as introduced in recent work11. These features              
were based on the “mini cancer genome panel”, a set of known cancer related genes collected                
by the Center for Personalized Cancer Treatment (CPCT, The Netherlands)12. From this panel,             
we first removed gene expression and mutation features that had not been characterized in both               
the PDX and GDSC datasets. Second, we removed gene expression features for which the              
standard deviations fell into the lowest 10% over all genes in GDSC, and we removed gene                
mutation features with less than 10 somatic mutations across GDSC cell lines. The somatic              
mutations and mRNA expression levels of the remaining selected genes were applied to             
construct the input feature vector for each cell line. In this scenario, all the learning tasks (drugs)                 
shared the same feature set. 
 
Labels. PDX drug response was measured by the minimum change in tumor volume in              
comparison to baseline, over the period from 10 days post-treatment until completion of the              
study (Δvol in the main text). This measure captures the speed, strength and durability of the in                 
vivo response; all values were downloaded from Supplementary Table 1 of the original paper10.              
When comparing TCRP predictions to Δvol measurements, both were normalized to a standard             
normal distribution to translate between the two (i.e. z-score). 
 
Few-shot design. In the few-shot learning phase, we randomly selected k PDXs as the few-shot               
samples to fine tune the model (k = [0..10], plotted along the x axis of Fig. 4a) and used the                    
remaining PDX samples as testing data. For each k, the selection of few-shot samples was               
random, thus we repeated this selection 20 times and reported average and standard deviation              
of prediction performance over all of these replicates (y axis of Fig. 4a).  
 
TCRP neural network model 
We trained a multi-layer neural network model to predict the phenotype of a tumor sample using 
its molecular features. For each sample , the output of the th layer is defined as ai j + 1  hi

(j+1)  
non-linear function of the output of  th layer  as follows,j hi

(j)  
 
                                                                                                        (1)elu (  Linear( h  )  )hi

(j+1) = R i
(j)  

 
where is a linear function of defined as . is the weight matrix inear( h  )L i

(j)      hi
(j)   W (j)

* hi
(j) + b(j)  W (j)      

and is the bias vector. is the rectified linear activation function13 which thresholds b(j)      eluR          
values less than 0 to exactly 0. The first layer is the input molecular feature of sample and          hi

(1)        i   
the last layer acts as its final prediction , where are parameters containing and   hi

(N )      (θ)p︿i   θ     W (j)   
from all the linear layers. For each machine learning task, we scan all combinations ofb(j)                 

layers={1,2} and hidden neurons={5,10,15,20} and determine the architecture of the neural           
network by cross validation. All parameters are trained by minimizing the mean square error              
function  which is a function of sample set  and parameters :L C θ  
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                                                                                                    (2)(C, )  Σ ( p (θ) )L θ = 1
M c∈Ci  i − p︿i

2  

 
where  is the measured label for sample  and is the number of samples in .pi i M C  
 
Model pre-training phase 
In the pre-training phase, the aim is to train a neural network model that can quickly adapt to a                   
new learning task with only a few additional training samples. The rationale is to acquire prior                
knowledge from a set of related tasks where training samples are abundant. In this work, we                
adopted an established computational framework called the Model Agnostic Meta-Learning          
(MAML) algorithm14. Meta-learning approaches like MAML seek to identify universal knowledge           
across multiple conditions and then to transfer this knowledge to make robust predictions in a               
new condition. In recent studies, the MAML technique has shown superior performance in             
comparison to other meta-learning frameworks14, and it is flexible and model agnostic such that              
it can be applied to any gradient-based learning algorithm.  

For each training iteration, we first sample a subset of 12 tissue types from the pool         Si         
of all types available. is then randomly partitioned into 2 non-overlapping sets of 6 cellS      Si             

lines and 6 cell lines . A loss function adapted from Eq. (2) is defined as follows with T      V              
respect to :S  
 
                                                                                    (3)E  [ L( V  ,   ) ] ]E  [S ∈Si  <T , V >∈Si  

θ − α ∂θ
∂L(T  , θ)  

 
Here is a mean square error function with respect to . The second argument of the loss L           V        
function is a one-step gradient descent which seeks a better regression loss for cell line set .                T  
We then optimize (3) using the gradient descent algorithm ADAM15. Note that using gradient              
descent requires calculation of a second order gradient of loss function . The intuition is that           L      
for each training iteration of minimizing (3), we seek parameters that can achieve a smaller          θ       
regression loss on cell line set after performing one iteration of gradient descent on a distinct      V            
cell-line set . A total of 200 training iterations were performed, sampling different , with  T            Si   
each  including 20 partitions.Si  
 
Few-shot learning phase 
In the second training phase, we observe a task with only a few training samples (e.g. cell         Q          
lines, PDTCs or PDX models). We perform only one iteration of gradient descent to achieve               

suitable for the new task (e.g. new tissue or mouse models): θ few−shot  
 
                                                                                (4)  |θ few−shot = θ pre−training − α ∂θ

∂L(Q , θ)
θ=θ pre−training

 

 
Here is the TCRP model trained in the pre-training phase. In theory, one can perform  θ pre−training               
multiple iterations of gradient descent using (4) until convergence. However, one of the             
unsolved problems in the field of meta-learning is that the few-shot model can be easily over-fit                
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on a new task given its very few samples. Therefore, we chose to only update parameters once.                 
Note that in (3) and (4) refers to the same hyperparameter. The structure of the neural  α                
network was defined as in Eq. (1).  
 
Nested cross validation 
The appropriate architecture of a neural network is dependent on the particular problem and              
datasets. For drug prediction problems (Challenge 1b, 2, 3), all hyperparameters, including            
mini-batch size and the size of and , were determined by the technique of nested cross      T   V          
validation as previously described16. For Challenge 1a, we used regular cross-validation due to             
the greater number of prediction tasks. 
 
Interpreting TCRP model predictions 
We used the framework of Local Interpretable Model-Agnostic Explanations (LIME)17 to           
generate locally faithful explanations for the TCRP neural network model. LIME works by taking              
the feature vector of a query sample of interest and perturbing it randomly, resulting in many                
perturbed samples around this query. Subsequently, it trains a much simpler interpretable            
model on this perturbed neighborhood (Supplementary Fig. 6). In this way, LIME is able to               
select important features specific for sample , which is the major difference from conventional      i         
feature selection methods which act globally over all samples, not locally to a sample of interest.                
More formally, for the molecular feature vector of each sample , we generated N (=10,000)       f i     i      
perturbed samples. Each of these perturbed samples was created by adding to the original       j         
features independent Gaussian noise with mean 0 and standard deviation 1. For each perturbed              
sample, we made a prediction using the TCRP neural network. A second simpler model,     gij           
regularized linear regression, was then trained to fit the perturbed samples to their             
corresponding neural network predictions . Empirically, we applied both Elastic Net18 and    }{gij         
Lasso19 regularization methods with different sparsity parameters (={0.1,0.01,0.001,0.0001}).        
The final ranking of features was averaged from the rankings produced by Elastic Net and               
Lasso over all sparsity parameters and over all tested samples. 

LIME was chosen over alternative model interpretation techniques such as layer-wise           
relevance propagation20, as these other techniques do not generate sample-specific          
explanations. LIME is an approximation of gradient-based methods21 and could be used            
interchangeably with those methods in our work. 
 
Implementation details of competing methods 
We used the Python package “scikit-learn” (http://scikit-learn.org/stable/index.html) to implement         
four conventional machine learning methods: random forests, conventional neural networks, K           
nearest neighbors, and linear regression, as follows: 
 
Random forests. For Random Forests, we chose the max depth for each of the learning tasks                
based on five-fold cross validation.  
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Conventional neural networks. Conventional neural network models were implemented using          
the PyTorch library (https://pytorch.org/), selecting the number of hidden neurons (={5, 10, 20,             
30, 40, 50, 100}), layers (={1, 2}) and learning rates (={0.1, 0.01, 0.001}) based on five-fold                
nested cross validation. For each machine learning task (e.g. drugs and gene perturbations),             
there are approximately (or fewer than) 1000 cell line examples (plus <20 PDTC/PDX models in               
some cases); thus, the data do not support a very deep neural network architecture with many                
parameters. Therefore, we focused on exploration of small neural network architectures in this             
study. The number of hidden layers (={1, 2}) and the number of hidden neurons (={5, 10, 15,                 
20}) of the neural network were also determined by cross validation. We implemented the              
algorithm using the PyTorch library (https://pytorch.org/) running on Tesla K20 GPUs. The            
non-linear transformation was the same as Eq. (1) and optimized using ADAM15. Notice that              
both TCRP and this baseline method rely on a neural network model; however, the two models                
are trained in different ways and with potentially different network architectures (# hiddens,             
layers) due to separate cross-validation processes. 
 
K nearest neighbors (KNN). For the KNN algorithm, to evaluate the accuracy of a sample in               i   
the training data, we ruled out sample when making its prediction. Otherwise, KNN will       i         
achieve a zero prediction error on the training set. The best ‘K’ for KNN was selected using                 
five-fold cross validation.  
 
Linear regression. For the final conventional method, we implemented linear regression with the             
regular least squares loss function and without regularization.  
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