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Abstract: Image crowd counting is a challenging problem. This study proposes a new deep learning method that estimates
crowd counting for the congested scene. The proposed network is composed of two major components: the first ten layers of
VGG16 are used as the backbone network, and a dual-branch (named as Branch_S and Branch_D) network is proposed to be
the second part of the network. Branch_S extracts low-level information (head blob) through a shallow fully convolutional
network and Branch_D uses a deep fully convolutional network to extract high-level context features (faces and body). Features
learnt from the two different branches can handle the problem of scale variation due to perspective effects and image size
differences. Features of different scales extracted from the two branches are fused to generate predicted density map. On the
basis of the fact that an original graph must contain more or equal number of persons than any of its sub-images, a ranking loss
function utilising the constraint relationship inside an image is proposed. Moreover, the ranking loss is combined with Euclidean
loss as the final loss function. Our approach is evaluated on three benchmark datasets, and better results are achieved
compared with the state-of-the-art works.

based on the flow of people at a different time of day. The
widespread use of crowd information has made the problem of
crowd counting become a hot issue in current research.

Like other visual tasks, estimation of a number of people and
density of population distribution based on images is challenging.
Many problems need to be solved such as occlusion, uneven

1 Introduction

With the explosion of world population, there are more and more
large-scale population gathering scenes such as holiday trips, sports
events, and political gatherings. In recent years, stampede incidents
have occurred frequently and caused a large number of casualties.

Data analysis shows that overcrowding of a large number of people
lacking effective management and control is the main cause of the
accidents. If population information could be obtained and
analysed in time, then some safety precautions could be taken to
avoid the occurrence of tragedies [1]. In addition, crowd
information is of great significance for many industries. In public
buildings such as railway stations and shopping centres, analytical
data of crowds can be used to rationally design public spaces and
optimise the safety of public spaces from the perspective of crowd
safety and convenience [2, 3]. Crowd counting can also be used to
collect information for further analysis and reasoning [4]. For
example, supermarkets can optimise the number of employees

Fig. 1 Samples in the ShanghaiTech part A dataset [14]. The scale varies
significantly within the scene and between scene
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distribution of pedestrians, uneven illumination, different scene,
different scale difference, and perspective variation. In recent
years, the complexity of this problem and the widespread use of
crowd analysis have attracted more and more attention to
researchers. Some early methods solved the crowd counting
problem by detecting pedestrian in images [5, 6]. Sliding window
detectors were used to detect a pedestrian in an image and a
corresponding number of people are counted. However, severe
occlusion makes these methods perform poorly in crowded scenes.
To overcome the occlusion problem, regression-based methods [7,
8] were proposed. First, a variety of manual features such as Haar
wavelets [9] and histogram of oriented gradients [10] were
extracted for generating low-level information, then a regression
model was learnt to convert the counting problem into a regression
problem. However, it is still difficult for regression-based
approaches to deal with high-density crowd scenarios. Owing to
the powerful learning capabilities of neural networks, recent works
[11-13] started to use convolutional neural networks (CNNs) to
solve the crowd counting problems, and the results were
significantly improved. To accommodate variation of head sizes
due to perspective effects or image resolutions, as shown in Fig. 1,
which significantly influences the performance, some researchers
designed multi-column [15, 16] or multi-resolution [17] network
structures. Zhang et al. [14] proposed a multi-column CNN, which
was able to process images of any sizes. The network consists of
three sub-networks with different kernel sizes in different
convolution layers to handle targets with different scales.
Moreover, the final feature is obtained by fusing extracted features
from the three sub-networks. This design increases the ability of
the network to handle scale variations. To deal with scale
variations, Sam et al. [18] proposed the Switch-CNN, which used a
density classifier to select different regressions for a particular
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input patch. Although approaches use multi-column architectures
(multi-column convolutional neural network (MCNN)) or density
classifiers achieve the most advanced performance so far, a lot of
computational effort is needed for regressions. In this paper, we
propose a method that combines two network branches with
different depths to extract features of different scales, and these
features are fused to get a predicted density map for the counting
task. Furthermore, by exploiting the counting relationship inside an
image, we design a ranking loss function as a part of the final loss
function to improve the prediction accuracy.
In summary, the main contribution of this paper is as follows:

(1) A new learning framework for crowd density estimation and
crowd counting with a dual-branch scale-aware network (DBSAN)
is proposed. Branches with different depths are used to extract
information on different scales.

(2) Dilated convolution is applied to generate high-resolution
density map for accurate crowd counting with less computation
comparing with normal convolution.

(3) On the basis of the fact that number of people in a crowd image
are no less than the number of people in any of its sub-images
cropped from the original one, we propose a novel training loss
function named ranking loss. Moreover, it is combined with
traditional loss function as a final loss to make the network
converge faster and have better performance.

Our approach is evaluated on three benchmark datasets
(shanghaiTech, UCF _CC 50, and UCF_QNRF), and it
outperforms the state-of-the-art approaches.

2 Related work

In recent years, the improvement of computing power by graphics
processing unit and the emergence of many large datasets have
prompted deep learning to achieve excellent performance in many
computer vision fields. Inspired by the success of CNNs in image
classification [19, 20] and object detection [21-23], researchers
began to apply deep learning methods in the field of crowd
counting [24-26]. Moreover, CNNs were applied to learn a non-
linear mapping from a crowd image to its corresponding density
map. This has made a great improvement in the accuracy of crowd
counting, especially in high-density crowd scenarios.

Wang et al. [27] proposed an end-to-end CNN regression model
for high-density crowds. They used a well known network
architecture called AlexNet [28], and they added some background
pictures without people as negative samples into training data to
reduce the impact of background noise. Boominathan et al. [29]
combined a deep network and shallow network into a two-column
fully CNN, and such a network fusion can effectively extract high-
level context features and low-level spatial structural features,
which helps the crowd counting in the case of large-scale changes.
The Switch-CNN proposed by Sam et al. [18] used a density
classifier to select different network branches for each input
patches. They used pre-trained VGG16 to classify density levels of
crowd images and performed training according to the
classification results. However, in real-time crowded scene

input VGG—backbone Branch S(BS)

c4

Fig. 2 Architecture of the proposed DBSAN
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analysis, it is difficult to determine the granularity of the density
level due to the large variation in the number of people. If we chose
fine-grained classifiers, then more columns should be
implemented, which is more complex and leads to more
redundancy.

Taking the above shortcomings into account, Li et al. [30]
proposed CRSNet, and they chose a simple model of a single-
column network. In CRSNet, the authors adjusted the network to
make better use of VGG16 to generate accurate density maps. They
designed a back-end structure, where dilated convolution was
introduced. It reduces the loss of spatial information and generates
a density map with higher resolution. Idrees et al. [31] proposed a
method to solve crowd counting, density map estimation, and
pedestrian localisation in dense crowd images simultaneously
based on the fact that the three problems are inherently related.

To solve the problem of a limited number of labelled crowd
counting images, Liu et al. [17] proposed a novel crowd counting
method based on the observation that an original crowded scene
image contains no fewer people than its sub-image, which made
use of a large number of unmarked crowd images.

3 DBSAN with ranking loss constraints
3.1 Structure of DBSAN

In this section, we first introduce the proposed network structure,
which is named as DBSAN. The overall framework is shown in
Fig. 2. The basic idea of this paper is to obtain different scale
information from different branches and add constraints to the loss
function to make the system have better learning ability.

As we all know, crowd images captured from different views
result in scale variations of heads. Usually, people near the camera
get clear detail information, their faces and body are captured and
the scale of the head is large. Contrarily, if a person was away from
the camera or captured from an aerial viewpoint, then only rough
information of the person is captured, the person appears as a head
blob in the image and the scale of the head is small. On the basis of
this observation, we design a network, which has two different
branches to get information for people of different scales.

We choose the first ten layers of VGG16 [32] as the backbone
network (marked as blue in Fig. 2) because of its strong migration
learning ability and flexible architecture.

For small size targets, deeper network structures will lose more
information. To extract features of different scales, we design two
different network branches as the second part of our network
(marked as green in Fig. 2). Information on different scales is
extracted from the two branches. The shallow network (denoted as
Branch_S (BS)) is better for extracting lower-level information
(head blob). The deeper network (denoted as Branch D (BD)) is
better for extracting high-level context features (faces and body).
Feature maps from different depths capture information of different
scales. This is the key to solve the problem of different scales
caused by different perspectives.

Meanwhile, to reduce the loss of spatial information, the second
part of the network wuses dilated convolution instead of
conventional convolution. The details of dilated convolution are
introduced in Section 3.2.

output
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Fig. 3 3 x 3 Convolution kernels with different dilation rates

Table 1 Configuration of convolution layers in the proposed
DBSAN

Backbone Block
VGG-backbone C1

Layers
C-3*3-64
C-3*3-64
MP-2*2
C2 C-3*3-128
C-3*3-128
MP-2*2
C3 C-3*3-256
C-3*3-256
C-3*3-256
MP-2*2
C4 C-3*3-512
C-3*3-512
C-3*3-512
MP-2*2
Branch_S (C5_a) Branch_D (C5_b)
D-3*3-256-2 D-3*3-512-2
D-3*3-128-2 D-3*3-512-2
D-3*3-64-2 D-3*3-512-2
D-3*3-256-2
D-3*3-128-2
D-3*3-64-2

dual branch C5

fusion C6 C-1*1-1

Fig. 4 Ranked sub-images

Finally, features extracted from the two branches are fused to
generate a density map. To get a better estimation of crowd number
in a crowd image, we also propose a ranking loss function based on
the constraint between an image and its sub-image, which is
combined with the traditional Euclidean loss as the final loss.

3.2 Dilated convolution

In normal convolutional networks, convolution layers are usually
followed by pooling layers. However, pooling layers have the
following problems: pooling layers are unlearnable, internal data
structure, and spatial-hierarchical information are lost, small object
information cannot be reconstructed. To overcome these problems,

IET Comput. Vis., 2020, Vol. 14 Iss. 3, pp. 101-109
© The Institution of Engineering and Technology 2020

Input: A crowd scence image I,
number of subimages K,
scale factor a.

Output: subimages I1,..., k.
(z,y) = center coordinates of I.
W = width of I,

H = height of I,
L =1
for each i € [2, K] do
W; =W x o'~ 1,
H;,=H x o' 1,
get subimage I; by cropping image I with center (,y), width
W; and height H;.
resize I; to the size of image I.
end for

Fig. 5 Algorithm 1: generate ranked sub-images

dilated convolutions are applied to the second part (both of
Branch_S and Branch_D) of our network.

Compared to normal convolutions, dilated convolutions inject
holes into convolution kernels to increase receptive fields. Dilated
convolution was first introduced in segmentation tasks, the purpose
of its structure is to provide a larger receptive field without using
pooling layer, and with the same amount of computation compared
with normal convolution.

A two-dimensional dilated convolution is defined in the
equation below:

S T
qli, )= Y pli+res, j+r*om(s, 1) (1)
s=1t=1

where p(i, j) is the value at a location (i, j) in the input feature
map, ¢(i, j) is the corresponding output, w(s, ) is a convolution
kernel with width S and height 7, and the parameter r is the dilation
rate.

As shown in Fig. 3, with a kernel size of 3*3, a dilated
convolution with r=1 turns into a normal convolution
corresponding to a 3*3 receptive field, a dilated convolution with
r=2 corresponds to a 5*5 receptive field, and a dilated
convolution with » = 3 corresponds to a 7*7 receptive field.

The configurations of convolution layers in the proposed
DBSAN is shown in Table 1. Configurations of normal
convolutional layers are denoted as ‘C—(kernel size)—(number of
filters)’, configurations of dilated convolutional layers are denoted
as ‘D—(kernel size)—(number of filters)—(dilation rates)’, and the
size of feature map is the same before and after convolution
operation. Configurations of max-pooling layers are denoted as
‘max-pooling (MP)-(kernel size)’. As shown in Table 1, Branch S
consists of three 3*3 dilated convolutional layers and Branch D
consists of six 3*3 dilated convolution layers. Moreover, feature
maps of Branch S and Branch D are finally fused by a 1*1
convolution.

The dilated convolution has the characteristics of retaining
internal data structure and avoiding downsampling, so it is a better
choice for a large receptive field.

3.3 Loss function

Generally, crowd counting methods based on density estimation
mainly use Euclidean distance between predicted density map and
ground-truth (GT) density map as the loss function. We name it as
Euclidean loss (LE) and it is defined below:

1 M N 2
LE = 37 2, I DX) = D) I @

where LE is the Euclidean loss, M is the number of images in a
training batch, D(X)) is the density map of the /th image in the
training batch, and D(X)) is the GT density map of the /th image.

As mentioned in SANet [33], Euclidean loss assumed pixels
and pixels are independent. It ignores the internal relationship
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inside an image. To solve this problem, we propose a ranking loss,
which uses the constraint of the number of relationships between
an image and its sub-image.

For any crowd image, it contains no fewer people than any of
its sub-images. As shown in Fig. 4, we crop the original image in
descending order to get sub-images I, I, ..., Ix_;, Ix and
IgClIg_, C - CI,CI. From Fig. 4, one may easily find that
counts of the crowd in any sub-image I; [denoted as C(/;)] must
satisfy the following conditions:

Clx) <Clg-) < <C(L) £ CUY) (3)

On the basis of this observation, we proposed a new loss function,
named as a ranking loss. Before we give the formal definition of
the ranking loss function, we first introduce the way we generate
ranked sub-images. It is shown in Algorithm 1 (see Fig. 5).

Assume that the predicted number of people in the image I; is

CA‘ (1;), then we should have
Cp) < CUg-) < -+ < C) < €y (4)

where C (1) is calculated by the formula below:

Wi Hy

Cly =Y Y dili. j) (5)

i=1j=1

where dAk(i, J) is the value of density at a location (i, j) in the
predicted density map of sub-image /.

For any image /, we define the ranking difference between its
sub-image k and sub-image k + 1 as LD(/, k), which is calculated
by the formula below:

LD(, k) = max (0, (C(Ip) — Clx, 1)) (6)

Moreover, we define the ranking loss of a single image 7 and its
sub-images as LRS(/), which is calculated by the formula below:

-1
LRS() = )| LDU, k) (7)
K=
where K is the number of sub-images.

The ranking loss of the network, denoted as ranking loss (LR),
is defined in the formula below:
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M
LR = - Y LRS(X) ®)
=1

where M is the number of training batch.

As shown in Fig. 6, the final loss function of our network is a
combination of two losses: the Euclidean loss (LE) used in most of
the related work and the ranking loss (LR) we proposed. The final
loss function of the network is formulated as a weighted sum of
these two losses, as the formula below:

L=LE+ LR 9

where 4 is a parameter to balance contributions of Euclidean loss
and ranking loss, the selection of A will be described in Section
43.1.

3.4 GT density map

Existing crowd counting datasets only provide coordinates of
positions of human heads in images. In our approach, a predicted
density map is calculated to approximate the GT density map, and
then we use the predicted density map to calculate the estimated
counting. To get the GT density map of crowd counting datasets,
we use the method proposed in MCNN [14], which uses a
geometric adaptive kernel function. We first represent a head
labelled at pixel z; as a delta function d(z — z;). 6(z — z;) = 1 if there
is a head of a pedestrian at position z; and §(z — z;) = 0 otherwise.
Thus, an image with 7 labelled heads can be represented as shown
below:

|4
H@) = ) 8z -2) (10)

i=1

To convert an image to a continuous density map, we convolve
6(z—z) with G, 2 to generate the density map, and the
corresponding GT density map is calculated by the equation below:

Vv
D)= Y 8(z = 2)* Gy 2(2) (1

i=1

where V is the number of people in the crowded image, z;
represents the location of the ith head in the image, G, ,2(-)
represents a Gaussian kernel with mean u and variance o°.
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Table 2 Results of ablation experiments
L 2 5 Configuration ShanghaiTech ShanghaiTech
7 part_A part_B
6 MAE MSE MAE MSE
E1:BS+LE 65.4 98.7 9.7 16.0
3 4 S E2:BD +LE 682 1082  10.2 16.8
E3:BS+BD +LE 64.1 98.8 9.5 15.0
E4:BS+BD +LE + 62.7 96.9 9.3 14.0
LR(DBSAN)
Fig. 7 Cropping method of nine patches
Table 3 Results of ResNet50 with different numbers of
64.5 - el MAE layers
Configuration ShanghaiTech part_A ShanghaiTech part_B
MAE MSE MAE MSE
| E5:Res22+LE  99.4 152.2 12.1 205
E6:Res40 + LE 75.8 120.0 8.2 14.5
635 | E7:Res49 + LE 76.5 123.1 8.4 14.7
63 - is cropped by different ways to get nine patches first. Moreover, the
size of each patch is 1/4 of its corresponding original images. The
cropping method is shown in Fig. 7. The first four patches are
B3 T obtained by dividing the original image into four equal size sub-
images without overlapping. The other five patches are obtained by
6 L randomly cropping the image with different centre locations.

N

& /ng\( x\(/%/&pg PP A2 P S
¥ ¥
\-.

Fig. 8 MAE with different values of lambda

MAE MSE
66 654 99 987
65 98.5 98.2
o8 97.9
64 63.4 631
63 627 625 97.5 g9 971
97
Ml <
61 96
k=1 k=2 k=3 k=4 k=5 k=1 k=2 k=3 k=4 k=5

Fig. 9 Result of different numbers of sub-images k

4 Experiment
4.1 Datasets

In this paper, we choose three commonly used datasets to evaluate
our method:

1. ShanghaiTech [14]: The ShanghaiTech dataset contains 1198
annotated images with a total of 330,165 heads. This dataset is
divided into two parts, part A with highly congested scenes
and part B with relatively sparse crowd scenes. part A
contains 482 images (300 training images and 182 test images)
and part_B contains 716 images (400 training images and 316
test images).

2. UCF_CC_50 [34]: The UCF _CC_50 dataset contained 50
images with different sizes. Moreover, the number of people
per picture ranges from 94 to 4543. We adopt the five-fold
cross-validation method, as mentioned in [34] for this dataset.

3. UCF_QNRF [31]: The UCF_QNRF dataset is a new, large
dataset for evaluating crowd counting and localisation. It
contains 1535 pictures of dense crowds including 1201 training
images and 334 testing images. The UCF_QNRF dataset owns
the largest number of high-density crowd images and
annotations, which makes this dataset very complex.

4.2 Training details

Data augmentation: To get more training images, image
augmentation is applied at the training stage. Each training image
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Moreover, then we select one patch from the nine patches and put
its mirror image into the training set. Thus, the number of training
images is doubled.

Parameter initialisation: Parameters of the VGG-backbone
network are initialised by the pre-trained VGG net on ImageNet.
The remaining parameters of the network are initialised with
Gaussian distribution with mean 0 and variance 0.01. We train the
network using a stochastic gradient descent optimiser with
momentum set to 0.95. The initial learning rate is set to 1 x 107,
and it is adaptively reduced according to the number of iterations.
In our experiments, we empirically set the scale factor of sub-
images as a = 0.95, and the selection of & will be described in
Section 4.3.1.

Evaluation metrics: Following other works of crowd counting, the
mean absolute error (MAE) and mean square error (MSE) are used
to measure the performance of the network. The definitions of
MAE and MSE are shown in formulae below:

1 N A 2
MSE = \/N,Zl (CUy) —CUy) (12)

Cay - C1y) (13)

1 N
MAE = ﬁ;

where N is the number of testing images, C(/;) is the GT number of

persons in the image I;, and é(li) is the predicted number of
persons in the image I;.

The smaller the values of MSE and MAE are, the better the method
is.

4.3 Experimental results

4.3.1 Ablation experiments: As mentioned in Section 3.3, 4
balances the contributions of Euclidean loss and ranking loss. The
value of A will influence the predicted results. Thus, we try
different values of A on the ShanghaiTech part A dataset; the
results are shown in Fig. 8. When 1 =1, Euclidean loss and
ranking loss are equally weighted, the result is best.

We also try different numbers of sub-image & for the ranking
loss on the ShanghaiTech part A dataset; the results are shown in
Fig. 9. Although MAE is smallest when k£ = 5, but MAE and MSE
are both competitive when k£ = 3. The amount of calculation of the
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Table 4 Results of different basic backbone networks

Configuration ShanghaiTech UCF_QNRF
part A part B

MAE MSE MAE MSE MAE MSE
E8:Res40 + LE 75.8 120.0 8.2 14.5 116.2 203.0
E9:VGG10 + LE 66.8 99.7 9.7 16.7 112.0 187.0
E10:Res40+BS+BD +LE +LR 74.8 117.4 8.1 13.3 110.1 181.7
E11:VGG10+BS+BD +LE +LR 62.7 96.9 9.3 14.0 107.5 176.2
Table 5 Results of different structures on the ShanghaiTech part A dataset
Configuration MAE MSE
E12:VGG10+B_FPN+LE +LR 82.7 128.5
E13:VGG10+BS+BD_PSP+LE +LR 66.5 101.8
E14:VGG10+BS+BD+LE+LR 62.7 96.9
Table 6 Configuration of different structures as the second part of the network

VGG-backbone (C1-C4 in Table 1)
B_FPN BS + BD_PSP BS +BD
F5: C-3*3-512 D-3*3-256-2 D-3*3-512-2 D-3*3-256-2 D-3*3-512-2
F6: UP-2*2 D-3*3-128-2 D-3*3-512-2 D-3*3-128-2 D-3*3-512-2
F7: concatenate(F6,C4) D-3*3-64-2 D-3*3-512-2 D-3*3-64-2 D-3*3-512-2
F8: C-1*1-256 MP-1*1 MP-2*2 MP-3*3 MP-6*6 D-3*3-256-2
F9: UP-2*2 D-3*3-256-2 D-3*3-128-2
F10: concatenate(F9,C3) D-3*3-128-2 D-3*3-64-2
D-3*3-64-2
C-1*1-1

network increases as k increases, so k=3 is chosen as our
experimental configuration.

To verify the effectiveness of the proposed dual-branch
structure and ranking loss function, ablation experiments are done
on the ShanghaiTech dataset. We set up four different
configurations:

1. Experiment 1 (denoted as E1:BS+LE in Table 2) uses only
Branch_S as the second part of the network, and use only
Euclidean loss as the loss function.

2. Experiment 2 (denoted as E2:BD +LE in Table 2) uses only
Branch_D as the second part of the network, and use only
Euclidean loss as the loss function.

3. Experiment 3 (denoted as E3:BS+BD+LE in Table 2) uses
the proposed two branches (Branch S+ Branch D) as the
second part of the network, and use only Euclidean loss as the
loss function.

4. Experiment 4 (denoted as E4:BS+BD +LE + LR in Table 2)
uses the proposed two branches (Branch S+ Branch D) and
use the combination of ranking loss and Euclidean loss as a
final loss. Its result is used to evaluate the effectiveness of the
proposed ranking loss.

The results of Experiment 1 and Experiment 2 are used as baselines
for comparison. The result of Experiment 3 is used to evaluate the
effectiveness of the proposed two-branch network structure. The
result of Experiment 4 is used to evaluate the effectiveness of the
proposed ranking loss. All results of the ablation experiments are
shown in Table 2. If we compare the results of Experiment 1 and
Experiment 2, one may find that the shallow branch (BS) get better
results than the deeper branch (BD), which means lower-level
features of heads are more discriminative than higher-level
features. This may be because the crowd is dense in the image; the
deeper branch cannot extract better feature than a shallow branch.
The values of MAE and MSE of Experiment 3 are better than those
of Experiment 1 and Experiment 2, which means that the proposed
two-branch structure does help to improve the prediction accuracy.
The result of Experiment 4 is better than that of Experiment 3,
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which means the proposed ranking loss is useful for the counting
task.

With well-designed architecture and deeper layers, CNNs can
perform better in feature extracting. To find out which convolution
network is better as a backbone network, we also tried some other
structure besides VGG16. Since ResNet is a popular and powerful
convolution network, we compare the results of ResNet50 and
VGG16.

To find out how many layers of ResNet50 should be used for
crowd counting, we try ResNet50 [19] with different numbers of
layers as a backbone network. We set up three different
configurations:

1. Experiment 5 (denoted as E5:Res22 + LE in Table 3) uses the
first 22 layers (corresponding to convl-conv3 x in ResNet50)
of ResNet50 network as the backbone network. Experiment 6
(denoted as E6:Res40 + LE in Table 3) uses the first 40 layers
(convl-conv4 x) of ResNet50 network as the backbone
network. Experiment 7 (denoted as E7:Res49 + LE in Table 3)
uses the first 49 layers (convl-conv5_x) of ResNet50 network
as the backbone network. All of them are followed by 1 x 1
convolution to obtain a single-channel predicted density map,
and use Euclidean loss as the loss function.

The results of ResNet50 with different numbers of layers on
the ShanghaiTech dataset are shown in Table 3. The values of
MAE and MSE on both part A and part B of Res40 + LE are
better than Res22 + LE and Res49 + LE, so we use ResNet50
with first 40 layers as backbone network when comparing with
VGG16 in the following experiments.

We set up four different experiment configurations to compare the
results of ResNet50 and VGG16 as different backbone networks:

1. Experiment 8 (denoted as E8:Res40+ LE in Table 4) uses the
first 40 layers of ResNet50 network as the backbone network
and followed by a 1 X 1 convolution to obtain a single-channel
predicted density map, and use Euclidean loss as the loss
function.
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2. Experiment 9 (denoted as E9:VGG10 + LE in Table 4) uses the
first ten layers of VGG network as the backbone network and
followed by a 1x 1 convolution to obtain a single-channel
predicted density map, and use Euclidean loss as the loss
function.

3. Experiment 10 (denoted as E10:Res40 + BS+ BD +LE + LR in
Table 4) uses the first 40 layers of ResNet50 network as the
backbone network, and followed by the proposed dual
branches (Branch_S + Branch D) and use the combination of
ranking loss and Euclidean loss as a final loss.

4. Experiment 11 (denoted as E11:VGG10+BS+BD+LE+LR
in Table 4) uses the first ten layers of VGG network as the
backbone network, and followed by the proposed dual
branches (Branch_S + Branch D) and use the combination of
ranking loss and Euclidean loss as a final loss.

Results of the four experiments are shown in Table 4. The MAE
and MSE based on VGG10 are lower on the ShanghaiTech part A
dataset and the UCF_QNREF dataset. The MAE and MSE based on
Res40 are lower on ShanghaiTech part B. To find out the reason,
we look into the details of the three datasets. The number of people
in ShanghaiTech part_A ranges from 33 to 3139/image, the number
of people in ShanghaiTech part B ranges from 9 to 578/image, and
the number of people in UCF_QNRF ranges from 49 to 12,865/
image. One may find that the number of people in ShanghaiTech
part B is far less than the number of people in ShanghaiTech
part A and UCF_QNREF, i.e. the crowd scene in ShanghaiTech
part B is relatively sparse. When the crowd is dense, the resolution
of each head is low, and deeper network loses more information on
small objects. Thus, the deeper network (ResNet50) does not work
as good as the simple network (VGGI16) in the dense crowd
counting task.

In this paper, we propose dual branches, a parallel fully
convolutional network (FCN) block as the second part of our

Table 7 Results on the ShanghaiTech dataset

Methods part_ A part_ B
MAE MSE MAE MSE

MCNN [14] 110.2 173.2 26.4 41.3

CNN-based cascaded multi-task learning 101.3 152.4 20.0 31.1
(CMTL) [37]

Switch-CNN [18] 90.4 135.0 20.1 30.1
CRSNet [30] 68.2 115 10.6 16.0
SaNet [33] 67.0 1045 8.4 136
perspective crowd counting (PCC) Net [38] 73.5 124.0 11.0 19.0
DBSAN (ours) 62.7 96.977 9.3 14.0

Table 8 Results on the UCF CC 50 dataset

UCF_CC_50 MAE MSE
MCNN [14] 377.6 509.1
CMTL [37] 322.8 397.9
Switch-CNN [18] 318.1 439.2
CRSNet [30] 266.1 397.5
SaNet [33] 258.4 334.9
PCC Net [38] 240.0 315.5
DBSAN (ours) 186.8 247 4

Table 9 Results on the UCF QNRF dataset

UCF_QNRF MAE MSE
Idrees et al. [31] 315.0 508.0
MCNN [14] 277.0 426.0
CMTL [37] 2520 514.0
Switch-CNN [18] 228.0 445.0
composition loss (CL)-CNN [31] 132.0 191.0
PCC Net [38] 148.7 2473
DBSAN (ours) 107.0 176.2
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network to capture features with different scales. In the
experiments, we also tried other architectures as the second part of
the network to deal with scale variations. The pyramid pooling
module (PPM) in PSPNet [35] and the feature pyramid in feature
pyramid network (FPN) [36] are tried for comparison, and three
different configurations are set up:

1. Experiment 12 (denoted as E12: VGG10+B FPN+LE in
Table 5) uses the first ten layers of VGG network as the
backbone network and followed by B_FPN as the second part
of the network. B_FPN is similar to the feature pyramid. The
configuration of B_FPN is shown in Table 6. Moreover, we use
the combination of ranking loss and Euclidean loss as a final
loss.

2. Experiment 13 (denoted as E13: VGG10+BS+BD PSP+ LE
in Table 5) uses the first ten layers of VGG network as the
backbone network and followed by BS+BD PSP as the
second part of the network. The structure of BD PSP is similar
to the PPM. The configuration of BD_PSP + BS is also shown
in Table 6. To capture features with different scales, a PPM
module, which fused features under four different pyramid
scales, is inserted into Block C5_b. Moreover, we also use the
combination of ranking loss and Euclidean loss as the final
loss.

3. Experiment 14 (denoted as E14:VGG10+BS+BD+LE in
Table 5) is our proposed method, which uses the first ten layers
of VGG network as the backbone network, and followed by the
proposed two branches (Branch S+ Branch D) as the second
part of the network, and use the combination of ranking loss
and Euclidean loss as final loss.

Results of different structures to deal with different scales are
shown in Table 5. For the counting task, both MAE and MSE of
the proposed dual branches are better than the other two methods.

4.3.2 Comparisons with state-of-the-art works: In this section,
we compared our approach with some state-of-the-art works [14,
18, 30, 31, 33, 37, 38] on four datasets, ShanghaiTech part A,
ShanghaiTech part B, UCF_CC_50, and UCF_QNREF.

The experimental results on ShanghaiTech are shown in
Table 7, and our approach achieves the best result on part A.
Compared to other methods, our method achieves the lowest MAE
and lowest MSE. In terms of MAE, we achieve a decrease of 6.4%
comparing with the best result of state-of-the-art works. In terms of
MSE, we achieve a decrease of 5.6% comparing with the best
result of state-of-the-art works. For part B, our method achieves a
competitive performance in terms of MSE and MAE.

The experimental results on UCF_CC_50 are shown in Table 8.
Since this dataset only contains 50 low-resolution crowd images
and images contain a wide range of crowd, so the error is the
largest compared with other datasets. Compared to other methods,
our method achieves the lowest MAE and lowest MSE. The
significant improvements to this dataset validate the effectiveness
of our methods. In terms of MAE, we achieve a decrease of 27.9%
comparing with the best result of other methods. In terms of MSE,
we achieve a decrease of 26.1% comparing with the best result of
other methods.

The experiment results on UCF_QNRF are shown in Table 9.
Our method achieves the best performance in terms of both MAE
and MSE. We beat the second-best approach by 18.9% decrease in
MAE and 7.8% decrease in MSE.

The density maps of some test images generated by our method
on four datasets are shown in Fig. 10. From top to bottom, the
original images are from ShanghaiTech part A, ShanghaiTech
part B, and UCF_CC 50, UCF_QNRF.

5 Conclusion

In this paper, we propose a new CNN structure that performs
crowd counting tasks, named DBSAN. The main novelty of the
DBSAN is that it consists of two network branches with different
depths, which is the key element to solve scale variation problem.
We use a basic convolutional network as the backbone and extract
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Fig. 10 Some samples of testing images and density maps on ShanghaiTech part A. From left to right are original images, GT density map, and predicted
map by our method. The number of people are marked on the bottom right corners in density map images (G1: ground truth, Pre: prediction)

features of multi-scale objects by two branches with different
depths. On the basis of the observation that an image must contain
equal or more persons compared with its sub-image, we propose a
novel loss function named ranking loss according to the constraint
inside an image. Moreover, we combine the proposed ranking loss
with Euclidean loss to get the final loss function for the network.
Extensive experiments are conducted on three challenging crowd
counting datasets, and the results of experiments show that our
method achieves significant improvements over most of the recent
state-of-the-art approaches, which demonstrates the effectiveness
of our method. In our experiments, we find that crowd images with
the complex background will get inaccurate density map. In our
next work, we plan to focus on how to reduce the influence of
complex background to crowd counting.
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