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The noble gas isotope systematics of ocean island basalts suggest
the existence of primordial mantle signatures in the deep mantle.
Yet, the isotopic compositions of lithophile elements (Sr, Nd, Hf) in
these lavas require derivation from a mantle source that is geo-
chemically depleted by melt extraction rather than primitive. Here,
this apparent contradiction is resolved by employing a compilation
of the Sr, Nd, and Hf isotope composition of kimberlites—volcanic
rocks that originate at great depth beneath continents. This compi-
lation includes kimberlites as old as 2.06 billion years and shows
that kimberlites do not derive from a primitive mantle source but
sample the same geochemically depleted component (where geo-
chemical depletion refers to ancient melt extraction) common to
most oceanic island basalts, previously called PREMA (prevalent
mantle) or FOZO (focal zone). Extrapolation of the Nd and Hf isoto-
pic compositions of the kimberlite source to the age of Earth for-
mation yields a 143Nd/144Nd-176Hf/177Hf composition within error of
chondrite meteorites, which include the likely parent bodies of
Earth. This supports a hypothesis where the source of kimberlites
and ocean island basalts contains a long-lived component that
formed by melt extraction from a domain with chondritic 143Nd/
144Nd and 176Hf/177Hf shortly after Earth accretion. The geographic
distribution of kimberlites containing the PREMA component sug-
gests that these remnants of early Earth differentiation are located
in large seismically anomalous regions corresponding to thermo-
chemical piles above the core–mantle boundary. PREMA could have
been stored in these structures for most of Earth’s history, partially
shielded from convective homogenization.
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Oceanic basalts provide a more direct approach to investigate
Earth’s convecting mantle than mantle-derived continental

magmas, as they erupt on oceanic lithosphere, which is consid-
erably thinner and less enriched in mantle-incompatible ele-
ments than the lithosphere of continental plates. Hence, most of
what is currently known about Earth’s convecting mantle—the
most voluminous domain of our planet—derives from the study
of oceanic basalts. One obvious drawback is that this knowledge
is largely limited to the last 150 to 200 My (i.e., the oldest age of
oceanic lithosphere before it is subducted).
Ocean island basalts (OIBs) derive from partial melting of

mantle plumes, the majority of which are associated with seis-
mically anomalous regions called large low shear-wave velocity
provinces (LLSVPs) located above the core–mantle boundary (1,
2). OIBs exhibit He isotope compositions that can extend to
considerably less radiogenic values (i.e., higher 3He/4He ratios)
compared with mid-ocean ridge basalts (MORBs), which has
been widely advocated as evidence that the source of OIBs
contains a primordial component preserved since Earth accre-
tion (3). The Xe isotope systematics of some high-3He/4He OIBs
further indicate that their source region became separated from
the MORB source within the first 100 My of Earth accretion (4),
where the MORB source occupies most of Earth’s convecting
mantle and is geochemically depleted in incompatible elements
due to continuous extraction of oceanic and continental crust
from the mantle (5, 6). Elevated 3He/4He ratios in OIBs appear

to be exclusively associated with plumes originating from the
LLSVPs (7, 8), thus suggesting a possible spatial link between
early Earth remnants and these seismically anomalous regions
above the core–mantle boundary.
Elevated 3He/4He ratios may be a common feature of the

prevalent mantle (PREMA) (9, 10). This mantle component was
originally defined using the narrow range of Nd and Sr isotope
ratios (e.g., 143Nd/144Nd ∼ 0.5129 to 0.5130) shown by several
OIBs (10). In Sr-Nd-Pb isotope plots, OIBs from each island
chain form compositional trends that converge from variously
enriched compositions to a common moderately depleted mantle
component dubbed focal zone [FOZO (9)], which has a radio-
genic isotope composition like that of PREMA (10, 11) (Fig. 1).
This implies that FOZO and PREMA are essentially equivalent,
and we treat them as such in this manuscript. These observations
have been widely employed to argue that PREMA represents a
fundamental and abundant constituent of Earth’s convecting
mantle, which contributes to the genesis of most OIBs [and also
some MORBs (12, 13)]. This interpretation is reinforced by the
common occurrence of PREMA-like compositions in juvenile
continental magmas (10, 11, 14, 15) and as we will show, in
kimberlites dating back to more than ∼2 Ga.
The association between primordial high-3He/4He composi-

tions with nonchondritic high-143Nd/144Nd ratios—indicative of
long-term depletion in PREMA—apparently negates a primitive
origin of PREMA (16). However, these apparently contradictory
geochemical features could be reconciled if PREMA represents
a depleted mantle residue that formed by silicate melt extraction
in the early Earth (10). Alternatively, PREMA could originate
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from mixing of geochemically depleted and enriched compo-
nents, specifically mixing the MORB source (or depleted mid-
ocean ridge basalt mantle [DMM]) with enriched recycled li-
thologies that are introduced into the convecting mantle via
subduction (10, 13, 14). This hypothesis would not predict that
PREMA has primordial noble gas signatures including high 3He/
4He because DMM and recycled lithologies have low 3He/4He.
Insights into this long-standing and yet not fully resolved as-

sociation between primordial noble gas isotope signatures and
geochemically depleted lithophile element (Sr, Nd, Hf) isotope
compositions in OIBs could be provided by kimberlites, the
deepest-derived magmatic rocks that occur in continents. Kim-
berlites contain He and Ne isotope signatures similar to those of
OIBs (17), including elevated 3He/4He ratios (18), and a recent
compilation of the Nd-Hf isotope compositions of kimberlites
through time argued that they sample a primitive mantle source
with circa-chondritic composition over much of geologic time
(19). In this context, chondrite meteorites represent the likely
building blocks of Earth. In addition, the majority of Phanero-
zoic kimberlites show a geographic correspondence to the mar-
gins of the African LLSVP in the lower mantle at the time of
their eruption (20), and some kimberlite fields occur along age-
progressive corridors corresponding to the continental portions
of OIB (hot-spot) tracks in ocean basins (21). These lines of evi-
dence suggest that kimberlites might sample deep mantle sources
similar to OIBs. However, kimberlites have been emplaced in
continental regions since at least ∼2.1 Ga and perhaps, since 2.8
Ga (22) and hence, provide a record of deep and ancient mantle
components that spans a time window more than an order of
magnitude longer than that represented by OIBs (i.e., <200 Ma).
To understand if primitive mantle is preserved in the deep

Earth and sampled by kimberlites (19) and constrain its rela-
tionship to the LLSVPs, here we interrogate an Sr-Nd-Hf iso-
tope compilation of kimberlites and closely related magmatic
rocks named ultramafic lamprophyres, which were emplaced in
the upper crust since 2.06 Ga. These carbonate-rich, silica-poor
magmas are generated by low-degree partial melting of the
sublithospheric (i.e., convecting) mantle beneath thick conti-
nental regions (cratons and surrounding belts) (23–25). Crustal

assimilation in these magmas is limited by their rapid ascent, lack
of processing in magma chambers, and high mantle-incompatible
trace element concentrations. Therefore, the radiogenic isotope
compositions (87Sr/86Sr, 143Nd/144Nd, 176Hf/177Hf) of kimberlites
provide a more robust record of deep mantle evolution (i.e., less
prone to crustal contamination) than common silicate magmas
such as continental basalts (19, 24, 26). In the following, we take
advantage of the long half-lives of the 87Rb-87Sr (half-life = 49
Gy), 147Sm-143Nd (106 Gy), and 176Lu-176Hf (37 Gy) systems,
which allow for closed system evolution of these decay systems to
be considered linear over the lifetime of the solar system.

The Radiogenic Isotope Record of Kimberlites through Time
In order to evaluate the time evolution of kimberlites, it is im-
portant to first define a suite of kimberlitic compositions that
best reflect their respective mantle sources. The term “kimber-
lite” has been previously (and incorrectly) employed to describe
different types of diamond-bearing magmas, including rocks
(e.g., group II kimberlites, also called orangeites) with an affinity
to magmas derived from metasomatized (i.e., geochemically
enriched by mantle fluids) lithospheric mantle sources (24). In
this paper, a robust screening based on a strict definition of
kimberlites is applied (27) (Materials and Methods). This com-
pilation includes Nd and Hf isotope compositions of bulk kim-
berlite samples, including some Nd isotope ratios for perovskite
separates, from worldwide localities (SI Appendix, Fig. S1) with
well-constrained emplacement ages (Dataset S1). The Sr isotope
data are less comprehensive because they are restricted to analyses
of perovskite, a robust magmatic phase, given that crustal con-
tamination commonly modifies the magmatic Sr isotope signature
of kimberlite rocks (24). We attempted to address the influence of
crustal contamination on bulk rock Nd and Hf isotope composi-
tions by applying major and trace element-based filters (e.g., Si/Al,
Nb/Th, Ba/Nb, Ce/Pb) that are extremely sensitive to continental
crust contributions (28, 29). With rare exceptions (30), major and
trace element ratios are not correlated to the Nd-Hf isotopic
compositions in kimberlites (SI Appendix, Figs. S2–S6). This ob-
servation is consistent with the occurrence of magmatic, mantle, and
crustal components in bulk kimberlites (27). However, kimberlite

Fig. 1. Present-day Sr-Nd-Hf isotope compositions of MORB and OIBs including the overlapping positions of the OIB-based PREMA or FOZO and depleted
kimberlite source. (A) 143Nd/144Nd vs. 176Hf/177Hf; (B) 87Sr/86Sr vs. 143Nd/144Nd. The OIB–PREMA corresponds to the Geochemical Centre of Konter et al. (33)
(Materials and Methods show the calculation of 176Hf/177Hf), while the depleted kimberlite source is from this study (Fig. 2); the PREMA ellipses represent
calculated values ±2σ uncertainties. MORB and OIB values are from the compilation of Stracke (11).
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magmas are highly enriched in Nd and to a lesser extent, Hf
compared with common mantle and crustal rocks (24, 28, 29). Any
contribution from crustal or enriched (i.e., metasomatized) lithospheric
mantle components would lower the 143Nd/144Nd and 176Hf/177Hf
and increase the 87Sr/86Sr ratios of kimberlite magmas (26, 30). Also,
hydrothermal alteration, which is common in kimberlites (27), is
unlikely to modify bulk rock Sm/Nd and Lu/Hf ratios due to the fluid-
immobile behavior of these elements. Therefore, rather than filtering
the bulk kimberlite Nd-Hf isotope data for crustal or lithospheric
mantle contamination using major and trace element ratios, only the
most radiogenic bulk rock 143Nd/144Nd and 176Hf/177Hf value and
the least radiogenic perovskite 87Sr/86Sr value in each kimber-
lite province are considered, as these are least likely to have
been influenced by lithospheric contamination, including conti-
nental crust assimilation (Materials and Methods). These isotopic
values are hereafter considered representative of the evolution of the
deep, sublithospheric mantle source of kimberlites through time.
When the initial Sr, Nd, and Hf isotope compositions of all

kimberlites are plotted as a function of time (Fig. 2), kimberlites
from each province have compositions that range from moder-
ately depleted (i.e., higher 143Nd/144Nd, 176Hf/177Hf, and lower
87Sr/86Sr corresponding to long-term evolution under high Sm/
Nd and Lu/Hf and low Rb/Sr) to more geochemically enriched
isotopic values (i.e., lower 143Nd/144Nd, 176Hf/177Hf, and higher
87Sr/86Sr). A first-order observation is that kimberlites do not
exhibit extreme depletion and thus, never extend to DMM
(i.e., MORB source) compositions. Some <200-Ma kimberlites
(i.e., North America Central Corridor and Lac de Gras in
Canada, Alto Paranaiba in Brazil, and South Australia) are un-
usual in that they are geochemically enriched and exhibit isotopic
compositions that overlap with the EM-1 (enriched mantle type-
1; which contains deeply subducted crustal material) composi-
tions in OIBs (SI Appendix, Fig. S7). In detail, Sr isotope com-
positions in these kimberlites are limited to higher 87Sr/86Sr
(i.e., more geochemically enriched compositions) compared with
other kimberlites and ultramafic lamprophyres of similar age
(e.g., Tanzania, Rosario do Sul [Brazil], Siberia Jurassic) (Fig. 2).
This observation is in line with the interpretation of Woodhead
et al. (19), where the sources of kimberlites emplaced in the past
200 Ma near the margins of Pangea are influenced by addition of
deeply subducted, recycled crustal material. Whether or not this
phenomenon had a limited impact on kimberlites earlier in
geologic time is unclear based on our database, which shows
variability in initial 143Nd/144Nd and especially 87Sr/86Sr and
176Hf/177Hf ratios at any given time in the kimberlite record.
After these anomalous, geochemically enriched kimberlites are
excluded, a remarkable pattern becomes clear, wherein the most
unradiogenic Sr and most radiogenic Nd-Hf isotope composi-
tions in each kimberlite province plot along a relatively narrow
linear array through time (Fig. 2). This observation appears to
indicate that a common, moderately depleted component (less
depleted than the upper mantle source of MORB) has partici-
pated in the genesis of kimberlites since at least 2.06 Ga. The
spread of isotopic values toward more geochemically enriched
compositions (i.e., lower 143Nd/144Nd, 176Hf/177Hf, and higher
87Sr/86Sr) recorded by kimberlites in each province at a given
time can be related to different factors including crustal con-
tamination (30), contribution by enriched lithospheric mantle
(25, 31), or source pollution by recycled crustal material (19,
26, 32).

Kimberlites and the Origin of PREMA
Statistically robust regressions (Materials and Methods) through
the common depleted component of kimberlites in plots of
Sr-Nd-Hf isotope ratios vs. time (Fig. 2) yield present-day com-
positions (143Nd/144Nd = 0.512897 ± 0.000060 [2σ; i.e., e143Nd =
5.2 ± 1.2]; 176Hf/177Hf = 0.283013 ± 0.000076 [i.e., e176Hf = 8.1 ±
2.7]; 87Sr/86Sr = 0.70335 ± 0.00032) within the PREMA (or

FOZO) field sampled by OIBs (143Nd/144Nd = 0.512950 ±
0.000143 [2σ]; 176Hf/177Hf = 0.283100 ± 0.000125; 87Sr/86Sr =
0.70330 ± 0.00058) (33) (Fig. 1). In detail, the depleted kim-
berlite source overlaps with the geochemically enriched side of
the PREMA field, which may be consistent with the lower
melting degree of kimberlites and hence, their sampling of more
geochemically enriched components compared with OIBs; this is
because geochemically enriched material is assumed to be more
fusible and is hence preferentially sampled relative to less fusible
(i.e., geochemically depleted) materials at lower degrees of
melting. Regardless, the data show that, like OIBs, kimberlites
sample a ubiquitous PREMA component in Earth’s mantle, not
a component with primitive 143Nd/144Nd and 176Hf/177Hf (19).
This observation provides insights into the origin of PREMA.

If PREMA compositions are widespread in kimberlites since
∼2.06 Ga and in juvenile continental magmas since the Late
Archean as previously reported by Stein and Hofmann (14), it
seems a fortuitous coincidence that mixing of depleted and
enriched mantle components in an evolving Earth can consis-
tently generate such a remarkably homogeneous isotopic com-
position over geologic time. This is because the composition of
subducted crustal material has undoubtedly changed throughout
the last 2 billion years—e.g., progressive modification of ocean
chemistry and marine sediments (34, 35) and widespread oc-
currence of mud rocks only in the Phanerozoic due to evolution
of vegetation (36). Likewise, the pressure and temperature
conditions of metamorphism in subduction zones have also
changed significantly throughout Earth history (37). The tem-
perature and oxygen fugacity of the mantle have decreased (38)
and increased (39) over time, respectively, which is reflected by
the composition of mafic magmas through time (40). Given
radical changes in subduction conditions and subducted protolith
compositions, it is unlikely that subducted crust, when mixed
with depleted mantle such as the MORB source, gives rise to the
relatively narrow range of PREMA-like compositions consis-
tently through time. This supports a hypothesis where PREMA is
a long-lived primordial mantle domain, not a mixture of geo-
chemically enriched and geochemically depleted domains.
The linear isotopic evolution of kimberlites through time

(Fig. 2) allows us to extrapolate the composition of the geo-
chemically depleted PREMA domain back in time and estimate
its initial composition. Projection of the 143Nd/144Nd and 176Hf/
177Hf isotope evolution of the depleted kimberlite source to the
approximate age of Earth formation (4.567 Ga) returns initial
143Nd/144Nd and 176Hf/177Hf values of 0.50657 ± 0.00010 (1σ)
and 0.27983 ± 0.00012, respectively, which are within uncertainty
of chondrite initial values [143Nd/144Nd = 0.50669 ± 0.00004;
176Hf/177Hf = 0.27979 ± 0.00001 (41)]. If this extrapolation is
valid, the kimberlite 143Nd/144Nd and 176Hf/177Hf data suggest
that the PREMA domain, sampled by OIBs today and kimber-
lites over the past >2 billion years, could have been established
not long after after Earth’s accretion from chondritic material.
Critically, however, the calculated 147Sm/144Nd (0.2086 ± 0.0022;
1σ) and 176Lu/177Hf (0.0358 ± 0.0010) ratios of the PREMA
domain tapped by kimberlites must be suprachondritic to gen-
erate the geochemically depleted (i.e., high) 143Nd/144Nd and
176Hf/177Hf isotopic compositions that characterize PREMA.
Hence, kimberlites do not sample a primitive, circa-chondritic mantle
reservoir as previously suggested (19) but rather, a domain (PREMA),
which derived from early depletion of chondritic mantle.
These Sm/Nd and Lu/Hf ratios are remarkably similar to those

of the Early Depleted Reservoir (EDR) modeled by Caro and
Bourdon (42) (referred to as “Super-Chondritic Earth Model” in
their paper). The EDR was originally conceived as the portion of
mantle that experienced differentiation via silicate melt extrac-
tion within the first 30 My of Earth accretion, leaving behind an
early geochemically depleted silicate reservoir with elevated
(suprachondritic) Sm/Nd that evolved to higher than chondritic
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143Nd/144Nd. This early silicate differentiation occurred during
the lifetime of the short-lived isotope 146Sm (i.e., first 500 Ma of
Earth’s history), and due to the decay of 146Sm to 142Nd (half-life∼ 103My),
the elevated Sm/Nd in the EDR also yields anomalously high
142Nd/144Nd in the accessible Earth (relative to certain classes of
chondrites) (43). A complementary hidden enriched reservoir with
low Sm/Nd, low 143Nd/144Nd, and low 142Nd/144Nd is also predicted
by this model but has not yet been observed. In this model, conti-
nental crust was subsequently extracted from the EDR, thereby
generating the depleted mantle source of MORB, explaining why
MORBs and OIBs (which sample recycled crust) exhibit anoma-
lously high 142Nd/144Nd compared to most chondrites. However,
while this 142Nd/144Nd difference was interpreted to signal an early
terrestrial silicate differentiation event (43), later work attributed

the elevated 142Nd/144Nd in the accessible silicate Earth to poor
mixing of nucleosynthetic heterogeneities during solar system
formation—where the Earth formed from a region of the solar
nebula with higher 142Nd/144Nd than most chondrites—rather than
radioactive decay (44, 45). As a result, the existence of the EDR has
been questioned.
Nonetheless, up to 10 ppm of the 142Nd/144Nd difference be-

tween Earth and enstatite chondrites (44–46) (i.e., the chondrites
with isotopic compositions most similar to Earth) may be the
result of 146Sm decay [discussion is in de Leeuw et al. (47) and
Willhite et al. (48)]. Therefore, the 142Nd/144Nd difference be-
tween Earth and enstatite chondrites can be explained as the
result of marginally suprachondritic Sm/Nd in the accessible
Earth. In this model, the required Sm/Nd is sufficiently high to

Fig. 2. Nd, Hf, and Sr isotope evolution of kimberlites and ultramafic lamprophyres through time. (A) 143Nd/144Nd vs. time, (B) 176Hf/177Hf vs. time, and (C)
87Sr/86Sr vs. time. D–F show the last 700 My of isotopic evolution for the Nd, Hf, and Sr isotope systems, respectively. All of the isotopic ratios represent
initial values corrected for radiogenic ingrowth using the emplacement ages of kimberlites and ultramafic lamprophyres. The evolution of the depleted
kimberlite source (dark blue lines with 2σ uncertainty envelope in lighter blue) represents a linear regression through the most radiogenic 143Nd/144Nd
and 176Hf/177Hf values and least radiogenic 87Sr/86Sr ratios (i.e., larger symbols) of kimberlites (circles) and ultramafic lamprophyres (crosses) from each
province (Dataset S2). The provinces that contain geochemically enriched kimberlites (diamonds) and transitional kimberlites (triangles) are excluded
from these regressions because their isotopic compositions are dominated by recycled subducted and/or enriched lithospheric components (19, 26, 31).
Three kimberlite provinces are also excluded from the regressions in 176Hf/177Hf vs. time charts (i.e., Limpopo–Zimbabwe, Premier, Slave–Cambrian)
because their 176Hf/177Hf ratios are all moderately to highly unradiogenic probably due to the ubiquitous alteration of kimberlites from these provinces.
All age and Nd-Hf-Sr isotopic values are reported in Dataset S1. Materials and Methods show the values employed to calculate the isotopic evolutions of
the DMM and CHUR.
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generate the suprachondritic 143Nd/144Nd observed in PREMA
domains (48). Alternatively, if 142Nd/144Nd differences between
Earth and chondrites reflect purely nucleosynthetic processes,
then early formation of PREMA and its long-term supra-
chondritic 143Nd/144Nd composition could still be explained if
Earth differentiation by silicate melt extraction and development
of suprachondritic Sm/Nd was delayed until the abundance of
short-lived 146Sm had been greatly diminished by decay. For
example, if the Moon-forming impact at ∼4.45 to 4.40 Ga (49)
triggered the global silicate differentiation event, which gener-
ated an early-formed depleted domain (50) and hence, PREMA,
this delayed early differentiation event would not generate ob-
servable positive 142Nd/144Nd anomalies in the depleted silicate
Earth. In detail, the Sm/Nd ratio required to generate the present-
day (kimberlite-based) PREMA 143Nd/144Nd (i.e., e143Nd of +5.2)
from differentiation of a chondritic mantle at ∼4.40 to 4.45 Ga
would generate only a small 142Nd/144Nd anomaly of a magnitude
that is close to the external reproducibility of modern instruments
(i.e., 5 ppm) and would be difficult to resolve analytically (47,50).
An even later silicate differentiation event (i.e., not linked to lunar
formation) would further suppress generation of resolvable 142Nd/
144Nd anomalies while permitting formation of the supra-
chondritic 143Nd/144Nd observed in PREMA. This might explain
the lack of resolvable 142Nd/144Nd anomalies in previously ana-
lyzed kimberlites (43). Hence, it is possible that PREMA repre-
sents a portion of an early depleted mantle domain that has not
been modified since Early Hadean silicate Earth differentia-
tion (51), and the isotopic compositions of kimberlites are best
explained by episodic tapping of this PREMA composition
over geologic time. An ancient origin for PREMA by silicate
melt extraction would reconcile the apparently paradoxical
association between primordial noble gas compositions, in-
cluding elevated 3He/4He ratios, and 143Nd/144Nd-176Hf/177Hf
ratios indicative of long-term depletion in the PREMA do-
main sampled by OIBs.

Early Earth Remnants above the Core–Mantle Boundary
Survival of a minimally modified portion of this early depleted
mantle domain (i.e., PREMA) since shortly after Earth accretion
requires (partial) isolation from convecting mixing, which is most
readily achieved if this domain is located in the deep mantle
where convective motions are slowed due to higher viscosity.
This hypothesis might be supported by the observation that
plumes generating most Phanerozoic kimberlites and modern
volcanic hot spots, including OIBs, are dominantly sourced from
large seismically anomalous regions (i.e., LLSVPs) above the
core–mantle boundary (20, 52). However, not all kimberlites are
linked to the LLSVPs, and it is unknown if the geochemistry of
kimberlites (i.e., PREMA compositions) varies as a function of
their geographic relationship with the LLSVPs. To constrain
whether PREMA-like kimberlites were spatially correlated with
the LLSVPs at the time of their eruption, we have examined the
geographic distribution of kimberlites and related ultramafic
lamprophyres for which Sr-Nd-Hf isotope compositions are
available. This survey is limited to the last ∼270 Ma, a time in-
terval for which the assumption of LLSVP fixity (53, 54) and the
association between LLSVP and plumes from the core–mantle
boundary seem to be well constrained (20, 52). Fig. 3 demon-
strates that kimberlites with radiogenic isotope compositions
typical of PREMA are exclusively associated with the LLSVPs,
whereas kimberlites that lack a PREMA signature occur both
above and far away from the LLSVPs. This observation supports
the hypothesis that minimally modified remnants of early Earth
differentiation are located within these seismically anomalous
regions representing thermochemical piles above the core–
mantle boundary and is consistent with the elevated (primordial)
3He/4He ratio of OIBs sourced from mantle plumes rooted into
the LLSVPs (8).
In conclusion, this study demonstrates that kimberlites and

ultramafic lamprophyres as old as 2.1 Ga sample a similar
PREMA component as that occurring in OIBs and that this
component likely represents a remnant of early Earth differen-
tiation. This can explain the association of primordial noble gas
signatures in kimberlites and OIBs with Nd-Hf isotope

Fig. 3. Geographic distribution of the depleted kimberlite source (PREMA) in Earth’s mantle. Kimberlite and ultramafic lamprophyre provinces within the
last 270 My and with available Sr-Nd-Hf isotope compositions are reconstructed to their location at time of eruption and compared with the position of
LLSVPs above the core mantle boundary using the GPlates software (78) paired with the continent rotation model of Torsvik et al. (54). LLSVPs are defined
based on the 1% (±0.5%; dv/v: shear-wave velocity variation) slow contour of the Savani tomography model (79) at a depth of ∼2,800 km. Kimberlites and
ultramafic lamprophyres containing the PREMA component (yellow circles) overlap the LLSVPs at time of eruption, with the notable exception of Siberian
Jurassic kimberlites, which are proximal to the Perm low shear-wave anomaly above the core–mantle boundary (80). Conversely, kimberlites lacking the
PREMA component (black diamonds) do not exhibit any preferential geographical association with the LLSVPs. These results are independent of the
employed seismic tomography model as shown in SI Appendix, Fig. S11.
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compositions indicative of long-term depletion. Derivation of
kimberlites and OIBs from common deep sources is supported
not only by the common PREMA contribution to both magma
types but also, the occurrence of similar enriched components in
OIBs and kimberlites younger than 200 Ma, including EM-1 (SI
Appendix, Fig. S7) and HIMU (i.e., high U/Pb-type) composi-
tions (55). Although no EM-2 (enriched mantle type-2) com-
positions have so far been observed in kimberlites, it should be
noted that EM-2 OIBs are restricted to the Pacific LLSVP (56),
whereas no kimberlites of Mesozoic or younger age were located
above the Pacific LLSVP at the time of eruption (20). The ex-
clusive association of PREMA-like kimberlites in the last ∼270 Ma
with the LLSVPs suggests that this early Earth component is
stored in the LLSVPs, and therefore, the origin of these struc-
tures could date back to the time of early Earth differentiation
(57). Additional studies of Paleoproterozoic and Archean alka-
line ultramafic magmas will be required to augment the isotopic
record of kimberlites and ultramafic lamprophyres presented
herein, thus improving available constraints on the evolution of
the deep mantle in the first half of Earth evolution. Kimberlites
hold unique clues of early Earth differentiation, and future ex-
amination of their noble gas, 182W, and 142Nd isotope systematics
is likely to yield fundamental insights into the evolution and
dynamics of Earth’s mantle.

Materials and Methods
Database. The initial dataset includes bulk sample 143Nd/144Nd and 176Hf/177Hf
and perovskite 87Sr/86Sr isotope compositions for rocks that were labeled
kimberlites or carbonate-rich ultramafic lamprophyres (dominantly aillikites)
in the original publications. Carbonate-rich ultramafic lamprophyres have
similar mineralogical and geochemical compositions to kimberlites, includ-
ing radiogenic isotope systematics (24, 25, 58–61). The similarity is such that
some of these lamprophyres were incorrectly classified as kimberlites when
they were originally reported (see below). In this study, kimberlites and
carbonate-rich ultramafic lamprophyres are considered to be derived from
similar sources even though we recognize that the actual petrogenetic re-
lationship between these magmas is unclear. In this compilation, we do not
consider group II kimberlites, subsequently renamed orangeites (62) and
more recently, African or Kaapvaal lamproites (63), because these rocks
represent carbonate-rich olivine lamproites derived from metasomatized
(i.e., geochemically enriched) lithospheric mantle sources (24, 32, 64). The
database consists of 817 kimberlite and ultramafic lamprophyre samples
from localities worldwide (SI Appendix, Fig. S1), all associated with a robust age,
including 752 whole-rock and perovskite 143Nd/144Nd compositions, 432 whole-
rock 176Hf/177Hf values, and 288 perovskite 87Sr/86Sr ratios (Dataset S1).

Lithological Screening. Different rock types have been described as kimber-
lites in the literature, largely due to the economic implications that the term
kimberlite bears for diamond exploration and the fact that most of these
bodies were discovered by diamond prospectors. Therefore, we have
reevaluated previous classifications of kimberlites for which radiogenic iso-
tope data are available based on mineralogical and geochemical information
from the literature, and our preferred classification is reported in Datasets S1
and S3. The following petrographic criteria have been employed to screen
(archetypal) kimberlites from mineralogically similar rocks (i.e., transitional
kimberlites, olivine lamproites, and ultramafic lamprophyres) (27): 1) clino-
pyroxene and melilite are absent in the groundmass of kimberlites; 2) high
contents of mica are atypical in the groundmass of kimberlites; and 3)
samples that combine compositional evolution of phlogopite mica toward
either tetraferriphlogopite or elevated Ti concentrations and spinel follow-
ing “compositional Trend 2” of Mitchell (65) are not considered to be kim-
berlites. These rocks have been reclassified as either transitional kimberlites
or ultramafic lamprophyres depending on their petrographic and mineral
chemical features following the criteria outlined in Mitchell (62) and Tappe
et al. (66). Dataset S3 provides a list of the provinces for which a different
classification has been adopted compared with that published elsewhere,
including the reasons why a revised classification is warranted. These prov-
inces include Kuruman, South Africa (transitional kimberlites); Rosario
do Sul, Brazil (ultramafic lamprophyres; i.e., alnoites); western Tarim, China
(ultramafic lamprophyres; i.e., aillikites); eastern Goldfields, Australia (ul-
tramafic lamprophyres; i.e., aillikites); and South Australia (kimberlites and
aillikites).

For the other samples, we have followed previously published classifica-
tions as (archetypal) kimberlites, transitional kimberlites (e.g., South Africa
transitional, Brauna–Guaniamo, Antarctica), or ultramafic lamprophyres
(e.g., Labrador, eastern United States–Carboniferous). Finally, the eastern
Dharwar province in India contains samples that were previously classified as
kimberlites, transitional kimberlites, and lamproites (67–70); however, their
radiogenic isotope compositions are largely indistinguishable regardless of
the considered lithology (except for marginally more radiogenic 87Sr/86Sr in
samples from the Narayanpet field) (Dataset S1). These samples are, there-
fore, all included in the final database and treated as a single group.

Transitional kimberlites (and lamproites) contain a dominant contribution
from geochemically enriched lithospheric mantle sources. These rocks have
been screened out from the statistical treatment of data (see next sections)
because our aim is to isolate the sublithospheric (i.e., convecting) mantle
source signature of kimberlites and related carbonate-rich ultramafic
lamprophyres. Archetypal kimberlites and ultramafic lamprophyres can also
contain components derived from enriched lithospheric mantle (25, 31).
However, by considering the most radiogenic 143Nd/144Nd and 176Hf/177Hf
and least radiogenic 87Sr/86Sr values in each province, these contributions
can be filtered out (see below).

Filtering for Crustal Contamination. Kimberlites are hybrid rocks that contain
crustal and mantle-derived fragments (i.e., xenoliths) and hydrothermal
phases that are not magmatic in origin (27). The issue of crustal contami-
nation is especially problematic for radiogenic isotope studies of kimberlites
as shown, for example, by the commonly higher 87Sr/86Sr ratios of bulk
kimberlite samples compared with those of perovskite, a robust magmatic
phase (24, 30, 71). To mitigate this issue, the 87Sr/86Sr isotope data we have
considered herein are restricted to analyses of perovskite. Even though
kimberlite magmas are highly enriched in Nd and to a lesser extent, Hf
compared with crustal rocks (24, 28, 29), crustal contamination can also af-
fect the 143Nd/144Nd and 176Hf/177Hf isotope compositions of bulk kimberlite
samples (26, 30). For this reason, we have applied several filters based on
major and trace element ratios (Si/Al, Nb/Th, Nb/U, Ba/Nb, Ba/Th, Rb/Th,
Ce/Pb, Yb/Gd), which are sensitive to crustal contamination based on previ-
ous studies of kimberlite and mafic magmas (28, 29, 48). For each filter, the
major or trace element ratios of the primitive mantle (72) and continental
crust (73) were first calculated. Next, bins were assigned for values above the
larger and below the smaller values of the two aforementioned end-
members (i.e., primitive mantle and continental crust); finally, further bins
were determined by splitting the difference between the two end-members
into evenly sized bins, typically five. Kimberlite and ultramafic lamprophyre
samples (for which bulk sample major and/or trace element results were
available together with Nd and/or Hf isotope compositions) in the entire
database were placed into these bins according to their bulk major and trace
element compositions (SI Appendix, Figs. S2–S6).

We observe no correlation between major or trace element ratios and Nd
or Hf isotope compositions on a global scale (SI Appendix, Figs. S2 and S3) or
in individual provinces (e.g., southern Africa Cretaceous, Lac de Gras) (SI
Appendix, Figs. S4–S6). This observation is not unexpected because a range
of magmatic, mantle, and crustal components contributes to the bulk
compositions of kimberlites. Given that this approach of screening for
crustal contamination did not produce appreciable results, we have adopted
a different strategy as outlined in the next section.

Filtering for Lithospheric Contribution. In the following, a kimberlite “prov-
ince” is considered to include one or more clusters and/or fields of kimber-
lites (and/or ultramafic lamprophyres) from the same geographic region,
which were emplaced in a restricted time window (typically <50 My). Kim-
berlites in each province can, therefore, be traced back to the same source
region in the sublithospheric mantle. To understand the source of isotopic
variability in each province, we have only considered provinces for which at
least three analyses of kimberlites or carbonate-rich ultramafic lamprophyres
are available for at least one of the three isotopic systems examined herein.

In most provinces, kimberlites show variable radiogenic isotope compo-
sitions despite their similar emplacement ages (Fig. 2 and SI Appendix, Figs.
S8 and S9). This variability can be attributed to one or more of the following:
1) source heterogeneity in the sublithospheric mantle, most likely related to
recycling of subducted or delaminated lithospheric material (19, 26); 2) in-
corporation of enriched lithospheric mantle material during magma ascent
(25, 31); and 3) crustal contamination (26, 30). The common effect of these
processes is to decrease 143Nd/144Nd and 176Hf/177Hf, and increase 87Sr/86Sr
ratios in kimberlites. Textbook examples of the geochemical consequences
of these processes include the aillikite dykes at Torngat, Labrador [whose Nd
and Hf isotopic compositions form a linear trend from moderately high to
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low values attributed to increasing contribution from metasomatized lith-
ospheric mantle (25)] and the Premier kimberlite in South Africa [where
143Nd/144Nd in bulk samples is inversely correlated with SiO2 contents due to
increasing crustal contamination (30)]. Therefore, to screen the dataset from
the effects of any lithospheric contribution, be it crustal or enriched litho-
spheric mantle, we have only considered the most radiogenic 143Nd/144Nd
and 176Hf/177Hf, and least radiogenic 87Sr/86Sr values in each kimberlite
province. Commonly, the selected analyses with most radiogenic 143Nd/144Nd
do not correspond to the most radiogenic 176Hf/177Hf ratio for the same
kimberlite province because 1) there are considerably more Nd isotope than
Hf isotope analyses available, and some Nd isotope compositions are of
perovskite separates, which do not have associated Hf isotope ratios, and 2)
Nd isotopes in bulk kimberlite samples are more resistant to crustal or lith-
ospheric mantle contamination than Hf isotopes, which results in occasional
decoupling between these two isotopic systems in bulk kimberlite rocks. We
acknowledge that this approach can also filter out the potential contribu-
tions of deeply subducted material in the kimberlite sources. However, our
aim is to address the origin of the moderately depleted mantle component,
least influenced by crustal recycling processes, that is evident in the majority
of kimberlites worldwide (large symbols in Fig. 2). In this sense, some kim-
berlites appear to be anomalous because they apparently lack this depleted
component (see below), or the component exists but the appropriate sam-
ples have not been analyzed.

Screening of Geochemically Enriched Kimberlites. The transitional kimberlites
identified above based on petrographic and mineral chemical criteria typi-
cally feature geochemically enriched isotopic signatures (i.e., moderately to
strongly unradiogenic 143Nd/144Nd and 176Hf/177Hf ratios combined with
moderate to high 87Sr/86Sr values) (triangles in Fig. 2). Kimberlites from four
“young” (i.e., <200-My) provinces (Lac de Gras and North America Central
Corridor in Canada, Alto Paranaiba in Brazil, and South Australia) exhibit
87Sr/86Sr ratios that are moderately (Lac de Gras, South Australia) to strongly
radiogenic (North America Central Corridor, Alto Paranaiba) and never ex-
tend to the unradiogenic compositions of kimberlites elsewhere with similar
ages (diamonds in Fig. 2). However, these geochemically enriched kimber-
lites do not exhibit mineralogical or mineral chemical features of transitional
kimberlites. They are located in proximity of the paleomargins of Pangea,
and their sources were probably enriched by subduction of oceanic litho-
sphere in the convecting mantle (19, 26) as also indicated by studies of
sublithospheric diamonds in other Cretaceous kimberlites from Brazil (74,
75). Kimberlites with such geochemical characteristics are not commonly
observed prior to 200 My, perhaps due to limited contribution of recycled
lithospheric material to the deep source of kimberlites (19). As the aim of
this work is to identify the long-term evolution of the depleted component
in the kimberlite sources, samples from these four provinces have been
screened out from calculation of the long-term 143Nd/144Nd and 176Hf/177Hf
kimberlite source composition (but are shown in the figures to provide
important context). While other provinces also include kimberlites with
moderately radiogenic 87Sr/86Sr ratios (e.g., southern Africa Cretaceous,
Great Meteor) (Fig. 2), some kimberlites from these provinces show isoto-
pically depleted compositions, which are here considered to be representa-
tive of the depleted mantle component occurring in the majority of
kimberlites worldwide. Hence, these provinces have been retained in the
calculations below.

Statistical Treatment of Data. To understand the present-day composition of
the deep kimberlite source (i.e., its depleted component) and its evolution
with time, we have calculated linear regressions through the most radio-
genic 143Nd/144Nd and 176Hf/177Hf, and least radiogenic 87Sr/86Sr ratios in
143Nd/144Nd, 176Hf/177Hf, and 87Sr/86Sr vs. time charts (Fig. 2 and SI Appendix,
Fig. S10). These regressions allow derivation of present-day 143Nd/144Nd,
176Hf/177Hf, and 87Sr/86Sr values as well as time-integrated 147Sm/144Nd, 176Lu/
177Hf, and 87Rb/86Sr ratios in the kimberlite source least influenced by recy-
cled crustal material.

We employed four different methods for calculating linear regressions
using the Python programming language (“numpy.polyfit,” “smols,” “sci-
py.stats.linregress,” and “np.linalg.lstsq”). These functions calculate a least
squares polynomial or linear fit through the data and attempts to minimize
the squared errors from the regression. Outputs also include the covariances
of both the gradient and the y intercept. The results of these calculations are
broadly similar, and those from polyfit and linregress are compared in SI
Appendix, Fig. S10. All of the data points were included in the linear re-
gressions calculated for 143Nd/144Nd vs. age and 87Sr/86Sr vs. age, whereas
three low-176Hf/177Hf data points (Limpopo–Zimbabwe, Premier, Slave–
Cambrian) were removed from the 176Hf/177Hf vs. age regression because

they fell outside the 2σ envelope of the regression. The majority of kim-
berlites in these provinces are altered, which suggests that the depleted Hf
component of these kimberlites could not be correctly identified. None-
theless, inclusion of these results would not alter the output of this model
but rather, generate considerably larger uncertainties (e.g., present-day
176Hf/177Hf = 0.282993 ± 0.000156 [2σ] compared with 0.283013 ± 0.000076
when the outliers are removed).

The apparently robust correlations between age and isotopic compositions
in Fig. 2 (i.e., R2 = 0.998, 0.993, and 0.882 for Nd, Hf, and Sr isotopes, re-
spectively) were then subjected to the standard two-tailed Student’s t test
for the null hypothesis that the correlations between variables occur by
chance. We calculated t values at the 99% level of confidence using the

relationship t   =   r   ×  
̅̅̅̅̅̅̅̅
n−2
1−r2

√
, where n is the number of data points and r is

the correlation coefficient. None of the correlations examined are likely to
have occurred by chance because calculated t values are significantly higher
than critical t values [i.e., Nd isotopes: n = 26, tcalc = 109 >> tcrit (0.01; 26) = 3.7;
Hf isotopes: n = 15, tcalc = 43 >> tcrit (0.01; 15) = 4.1; Sr isotopes: n = 13, tcalc =
9.1 >> tcrit (0.01; 13) = 4.2]. The regression results generated using linregress
are reported in Fig. 2 and have been employed for modeling the origin and
evolution of the kimberlite source, including its present-day composition.

Linear regression models were also run on Minitab 19 with the Predict
function used to extrapolate the initial 143Nd/144Nd and 176Hf/177Hf com-
positions of the kimberlite source to 4.567 Ga. This software was also
employed to determine the uncertainties of the initial values based on the
confidence and prediction intervals of the regression model.

Comparison with Other Geochemical Reservoirs. The present-day isotopic
composition of the kimberlite source obtained from the regressions above is
compared with the compositions of other mantle end-members (e.g., DMM,
PREMA, or FOZO) in Fig. 1. The present-day 143Nd/144Nd and 87Sr/86Sr com-
position of PREMA is taken from Konter et al. (33), whose Geochemical
Centre represents the volume where the trends formed by each ocean island
chain converge in Sr-Nd-Pb isotope space. The PREMA 176Hf/177Hf ratio (and
2σ variability) is then calculated using the Geochemical Centre 143Nd/144Nd
value and the Nd-Hf mantle array of Chauvel et al. (76). This comparison
shows that the present-day isotopic composition of the depleted kimberlite
source is indistinguishable from the OIB-based PREMA (Fig. 1).

In Fig. 2, the isotopic evolution of the DMM with time is calculated fol-
lowing the method of Stracke et al. (77) and assuming differentiation oc-
curred at ∼4.4 Ga. We employed present-day DMM values of 0.51320 for
143Nd/144Nd, 0.28335 for 176Hf/177Hf, and 0.70270 for 87Sr/86Sr. For the Nd-Hf
isotope evolution of the Chondrite Uniform Reservoir (CHUR), we employed
the model of Bouvier et al. (41), while for Sr isotopes, we used the following
values: 87Sr/86Srpresent day = 0.7045 and 87Rb/86Sr = 0.0827.

Finally, the initial 143Nd/144Nd and 176Hf/177Hf compositions of the kim-
berlite source at 4.567 Ga calculated using linregress and Predict (see above)
were compared with the initial CHUR composition of Bouvier et al. (41):
143Nd/144Ndkimberlite-source,4.567Ga (linregress) = 0.50657 ± 0.00010 (1σ),
143Nd/144Ndkimberlite-source,4.567Ga (Predict) = 0.50663 ± 0.00005, 143Nd/
144NdCHUR,4.567Ga = 0.50669 ± 0.00004; and 176Hf/177Hfkimberlite-source,4.567Ga

(linregress) = 0.27983 ± 0.00012, 176Hf/177Hfkimberlite-source,4.567Ga (Predict) =
0.27978 ± 0.00007, 176Hf/177HfCHUR = 0.27979 ± 0.00001. These results indicate
that the 143Nd/144Nd and 176Hf/177Hf compositions of the depleted kimberlite
source are within uncertainty of CHUR values at the approximate time of Earth
formation and suggest that the depleted kimberlite source derived from dif-
ferentiation of a mantle with chondritic composition via silicate melt extraction
not long after Earth accretion.

Data Availability. All study data are included in the article and supporting
information.
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This supplementary file includes Figures S1 to S11, and a supplementary reference list. 

 

The complete datasets are reported in Tables S1 to S3: 

Table S1. Summary of age, Nd, Hf and Sr isotope data for kimberlites and carbonate-rich 

ultramafic lamprophyres from worldwide localities 

Table S2. Summary of initial Sr-Nd-Hf isotope compositions and age values for samples in 

each province which have been employed to calculate the kimberlite PREMA regressions 

Table S3. Lithological classification of the samples employed in this work grouped by 

province 
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Figure S1. Global elevation map showing the distribution of kimberlite and ultramafic 

lamprophyre provinces considered in this study. Salmon-coloured fields indicate the 

positions of continental shields. Map modified from Giuliani and Pearson (114). 
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Figure S2. Major and trace element ratios in kimberlites and ultramafic lamprophyres 

compared to their ages and Nd isotope compositions. These major and trace element ratios 

are sensitive to crustal contamination, i.e. increasing Ba/Th, Ba/Nb, Yb/Gd, Rb/Th, and 

decreasing Si/Al, Nb/U, Nb/Th, Ce/Pb are associated with progressive crustal contamination. 

Geochemically enriched and transitional kimberlites are not included, while samples for 

which no major or trace element analyses are available are plotted using black triangles. Note 

that lack of any correlation between major or trace element ratios and 143Nd/144Nd values at 

any given time. The linear regression through the most radiogenic 143Nd/144Nd values of each 

province (i.e. depleted kimberlite source) is shown in black together with its 2 uncertainty 

(red lines), present-day 143Nd/144Nd ratio and time-integrated 147Sm/144Nd. Clement 

Contamination Index = (SiO2 + Al2O3 + Na2O)/(2×K2O + MgO). 
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Figure S3. Major and trace element ratios in kimberlites and ultramafic lamprophyres 

compared to their ages and Hf isotope compositions. Note that lack of any correlation 

between major or trace element ratios indicative of crustal contamination and 176Hf/177Hf 

values at any given time. The linear regression through the most radiogenic 176Hf/177Hf 

values of each province (i.e. depleted kimberlite source) is shown in black together with its 

2 uncertainty (red lines), present-day 176Hf/177Hf ratio and time-integrated 176Lu/177Hf. 

Clement Contamination Index = (SiO2 + Al2O3 + Na2O)/(2×K2O + MgO). 
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Figure S4. Representative major and trace element ratios in kimberlites from the 

southern African province compared to their Nd and Hf isotope compositions. Note that 

lack of any correlation between major or trace element ratios indicative of crustal 

contamination and 143Nd/144Nd or 176Hf/177Hf values. 

  



 6 

 
Figure S5. Representative major and trace element ratios in kimberlites from the Lac 

de Gras province (Canada) compared to their Nd and Hf isotope compositions. Note that 

lack of any correlation between major or trace element ratios indicative of crustal 

contamination and 143Nd/144Nd or 176Hf/177Hf values 

.  
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Figure S6. Representative major and trace element ratios in kimberlites from Maniitsoq 

(West Greenland-Labrador Neoproterozoic province) compared to their Nd and Hf 

isotope compositions. Note that lack of any correlation between major or trace element 

ratios indicative of crustal contamination and 143Nd/144Nd or 176Hf/177Hf values. 
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Figure S7. Sr-Nd-Hf isotope compositions of geochemically enriched kimberlites 

compared to southern African transitional kimberlites and ocean island basalts (OIB) 

endmembers. a. 87Sr/86Sr vs 143Nd/144Nd; b. 143Nd/144Nd vs 176Hf/177Hf. All the isotopic 

ratios of kimberlites represent initial values corrected for radiogenic ingrowth using their 

emplacement ages. Beyond Samoa, only Atlantic OIB have been plotted because the 

geochemically enriched kimberlites are preferentially located in relative proximity to the 

Atlantic Ocean, except for Lac de Gras in western Canada. Atlantic MORB are shown for 

comparison. EM: enriched mantle; HIMU: high 238U/204Pb. OIB and MORB data are from the 

compilation of Stracke (11). 
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Figure S8. Sr-Nd-Hf isotope compositions of kimberlites and ultramafic lamprophyres 

worldwide. a. Nd vs Hf; b. Sr vs Nd. All the isotopic values have been corrected for 

radiogenic ingrowth using kimberlite emplacement ages. The Nd and Hf values have been 

calculated using the Chondritic Uniform Reservoir (CHUR) composition of Bouvier et al. 

(2008), while for Sr notation the following values have been employed: 87Sr/86Srpresent day = 

0.7045 and 87Rb/86Sr = 0.0827. Nd-Hf mantle array from Chauvel et al. (79). 
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Figure S9. Nd, Hf and Sr isotope evolution of kimberlites and ultramafic lamprophyres 

through time. a. Nd vs time; b. Hf vs time; c. Sr vs time. Panels d, e and f show the last 

700 million years of isotopic evolution for the Nd, Hf and Sr isotope systems, respectively. 

All the isotopic ratios represent initial values corrected for radiogenic ingrowth using the 

emplacement ages of kimberlites and ultramafic lamprophyres. The depleted kimberlite 

source evolution (dark blue line) represents a linear regression through the most radiogenic 

Nd and Hf and least radiogenic Sr isotopic values (i.e. larger symbols) of kimberlites (circles) 

and ultramafic lamprophyres (crosses) from each province. The provinces that contain 

geochemically enriched kimberlites (diamonds) and transitional kimberlites (triangles) are 

excluded from these regressions. The Nd and Hf values have been calculated using the 

Chondritic Uniform Reservoir (CHUR) composition of Bouvier et al. (41), while for Sr 

notation the following values have been employed: 87Sr/86Srpresent day = 0.7045 and 87Rb/86Sr = 

0.0827. Nd-Hf mantle array from Chauvel et al. (79). 
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Figure S10. Sr-Nd-Hf isotope evolution of the depleted kimberlite source given by linear 

regressions through the least radiogenic 87Sr/86Sr and most radiogenic 143Nd/144Nd and 
176Hf/177Hf ratios of each province (black lines with 2 uncertainty envelope in red) in a-b 
87Sr/86Sr vs time, c-d 143Nd/144Nd vs time, and e-f 176Hf/177Hf vs time charts. Present-day 
87Sr/86Sr, 143Nd/144Nd and 176Hf/177Hf ratios, and time-integrated 87Rb/86Sr, 147Sm/144Nd 
176Lu/177Hf ratios are also shown. Three outliers in the 176Hf/177Hf vs time charts are indicated 

with blue symbols and are not included in the regressions. The outputs of two regression 

methods, ‘numpy.polyfit’ and ‘scipy.stats.linregress’, based on squared errors minimization 

are shown for comparison and show indistinguishable results. 
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Figure S11. Geographic distribution of kimberlite and ultramafic lamprophyre 

provinces within the last 270 million years at time of eruption, compared to the position 

of large low shearwave velocity provinces (LLSVPs) above the core mantle boundary. 

The reconstruction of kimberlite and ultramafic lamprophyre locations was undertaken using 

GPlates (58) paired with the continent rotation model of Torsvik et al. (54). The LLSVPs are 

defined based on the 1% (± 0.5%) slow contour of three different tomography models, a) 

Savani (59), b) S40RTS (145), and c) SEMUCB-WM1 (111), at a depth of ~2800 km – these 

models were prepared using the web-based tool SubMachine (175). Kimberlite provinces 

containing the PREMA component are shown using circles, while geochemically-enriched 

and transitional kimberlites with diamonds and triangles, respectively. Note the 

correspondence between kimberlites containing the PREMA component and the margins of 

LLSVPs at the time of kimberlite eruption with the exception of Siberian Jurassic kimberlites 

which are proximal to the Perm low-shearwave anomaly above the core-mantle boundary. 
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