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From machine learning (ML) and computer vision to
robotics and natural language processing, the applica-
tion of data science and artificial intelligence (AI) is
expected to transform health care (Celi et al. 2019).
While the rapid development of technological capabil-
ities offers paths toward new discoveries and
large-scale analysis, numerous critical ethical issues
have been identified, spanning privacy, data protec-
tion, transparency and explainability, responsibility,
and bias.

Last year, for instance, a commercial prediction
algorithm affecting millions of patients was shown to
exhibit significant racial bias, dramatically underesti-
mating the health needs of Black patients (Obermeyer
et al. 2019). Trained using health care cost as the proxy
for the need for more comprehensive care, the algo-
rithm had been designed specifically to exclude race as
a feature, in an attempt to avoid bias—but cost was
clearly not a race-neutral measure of health care need.
Studies have repeatedly illuminated racial disparities in
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the provision of primary care services: Black patients
incur approximately US$1800 less in medical costs per
year compared to white patients with the same number
of chronic conditions, and are less likely to be identi-
fied as high-risk for complex care in the future. But
even if another proxy, such as probability of death, had
been used to train the algorithm, would it have led to a
“better” algorithm and fair patient outcomes?

At present, a key evaluation metric for machine
learning in health care applications is accuracy. To
inspect an algorithm for bias, an additional step is
often undertaken to measure performance across dif-
ferent subpopulations, aiming for consistent accuracy
across race, gender, country, and other categories
where disparities exist. But just because an algorithm
is deemed accurate does not mean it will support fair-
ness in health care applications. In an ideal world,
only individual patient health and disease factors
would determine—and guide prediction of—clinical
outcomes. However, studies have repeatedly demon-
strated that this is far from the case. For example,
mortality from critical illness has been shown to be
higher in disproportionately minority-serving hospitals
after adjustment for illness severity and other bio-
logical factors that pertain to the patient and to the
disease (Rush et al. 2020; Danziger et al. 2020).

Data routinely collected in the process of care are
heavily influenced by long-standing social, cultural,
and institutional biases. Unless the underlying inequi-
ties in our communities are addressed, algorithms will
perpetuate, if not magnify, existing health disparities.

The bioethics community has an essential role in
providing thoughtful, ethical consideration of machine
learning health care applications (ML-HCAs), and the
model pipeline framework proposed by Char and col-
leagues (2020) is an important step forward in pro-
moting the systematic identification of relevant ethical
concerns. However, it would be misguided to think
that an insufficient consideration of ethics is the sole
factor leading to poorly designed systems that harm
users (Mittelstadt 2019). Indeed, despite a wide range
of Al ethics frameworks and principles being pub-
lished in recent years, the challenges of building eth-
ical AI are as acute and pervasive as ever. It remains
unclear whether the influx of guidelines has actually
made any impact on improving the ethical develop-
ment and implementation of Al

As the bioethics community increasingly turns its
attention to ML-HCAs, it is therefore crucial for indi-
viduals and organizations to think beyond narrow defi-
nitions of machine learning or specialized disciplines,
and to engage in addressing disparities with a holistic
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perspective. ML-HCAs exist in complex societal con-
texts, rife with biases, disparities, and ethical issues—
requiring deeper commitment than a general adoption
of ethical frameworks and principles. Efforts that do
not actively address the disparities they are informed
by, and within which they operate, will always fall short
(500 Women Scientists Leadership 2020). As Timnit
Gebru has noted, it is not just a matter of biased inputs
leading to biased outputs. Ethical considerations of
fairness or bias need to be considered beyond any
given ML or AI application (Gebru and Denton 2020).
In a health care setting for the benefit of patients, this
means stakeholders including bioethicists must inten-
tionally extend the typical range of concerns consid-
ered when thinking about what constitutes ethical or
fair AI. As Chen and colleagues note:

Researchers often frame theoretical problems of
disparity around achieving algorithmic fairness.
Looking forward, these conversations should be
expanded to acknowledge the systematic dimension of
health disparity, taking into account that data is
collected in the context of a flawed and unjust system.
The research community itself should continue to
promote and drive diversity within the field of Al, as
more diverse perspectives will ensure that the right
questions are asked. (Chen et al. 2020, 16)

A model pipeline framework such as the one pro-
posed by Char and colleagues can certainly help to
design better ML-HCAs, but only if the scope of eth-
ical deliberations is attuned to matters of structural
inequity and how technologies can be used and co-
opted to marginalize subpopulations.

With the scale of patient impacts at stake, the Al
community must recognize the call to action, for
instance, in hiring, building, and supporting more
diverse teams of developers, engineers, and research
scientists. For the Al community and the field of bio-
ethics, conversations around how to address persistent
inequities in relation to both AI development and
clinical consequences are deeply needed—and so too
are scholarship and discussion focused on topics
including social determinants of health, racial and
social justice, LGBTQ+ ethics, disability ethics, and
factors that contribute to vulnerable populations. As
Keisha Ray recently noted in an opinion piece on
#BlackBioethics, the field’s bias in this respect repre-
sents a failure to address critical needs and scholar-
ship (Ray 2020). For the worlds of both AI and
bioethics to enable the change needed in modern
health care, it will be essential to co-design approaches
with those in marginalized communities who have
experienced  harmful effects of technologies
(Technology can’t fix this 2020).
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The model pipeline framework is a solid step for-
ward for AI ethics in health care, but ultimately
frameworks are never enough. If we want to make
sure that AI applications in health care contribute to a
society we want to live in, we each have to ensure we
are building that society—both in AI ethics
and beyond.
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Where Bioethics Meets Machine Ethics

Anna C. F. Lewis
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Char et al. (2020) question the extent and degree to
which machine learning applications should be treated
as exceptional by ethicists. It is clear that of the suite of
ethical issues raised by machine learning applications,
many are familiar from other settings. The framework
for identifying these issues offered by Char et al,
alongside numerous others (Jobin et al. 2019), can be
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useful in mapping them out. There is at least one clear
way in which machine learning is exceptional, and that
is the degree of formalism—of codification—demanded
of the moral frameworks employed in the development
of applications. This topic has spawned the sub-field of
machine ethics, part of the broader AI Ethics
(Anderson and Anderson 2011). Through getting into
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