
Mitigation of host cell mutations and regime shift during
microbial fermentation: a perspective from flux memory
Jeffrey J Czajka1, Burak Okumuş2, Mattheos AG Koffas3,4,
Mark Blenner5 and Yinjie J Tang1

Available online at www.sciencedirect.com

ScienceDirect
Microbial engineering forces flux redistribution to accommodate

higher production rates, straining the cellular supply chain and

leading to growth deficiency. Thus, there is a selective pressure to

alleviate metabolic burden and revert towards the innate flux

distribution (‘flux memory’) via mutations. Suboptimal

fermentation exacerbates this phenomenon as increased number

of generations prolong the selection window for the underlying flux

memory to generate faster growing non-producers. New

strategies to mitigate host genetic instability include laboratory

evolution, high-resolution genome resequencing combined with

phenotype screening, mismatch repair protein engineering, and

advanced synthetic biology approaches (e.g. oscillators and

biosensor regulators). Moreover, 13C-metabolic flux analysis can

quantify flux suboptimality driven by metabolic burdens and

cultivation stresses. Elucidation of correlations between metabolic

suboptimality and host mutation rates/spectra may lead to early

stage risk assessments of culture-population’s regime shift during

process scale-up as well as strategies to boost bioproductions.
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Introduction
Current advances in synthetic biology and automation

have enabled the generation and screening of large

microbial host libraries, and quite a few engineered
www.sciencedirect.com 
microbial strains have reached industrial-scale biomanu-

facturing [1,2]; however, microbial cell factory develop-

ment still faces economic challenges from relatively low

strain-productivity and stability exacerbated by process

variations from the design set points. The most straight-

forward strategy for improving fermentation scalability is

to reduce bioreactor stresses (e.g. optimize O2, pH and

substrate gradients) [3�,4,5], and tools such as computa-

tional fluid-dynamics coupled with kinetic models have

been developed to guide bioreactor operations [6].

However, even the most optimal large-scale reactor

systems face severe heterogeneity in growth conditions

as well as locally induced stresses. Systems biology may

resolve production bottlenecks under stress conditions,

complementing tolerance engineering [7] and adaptive

laboratory evolution [8,9] to facilitate the moving of

strains to industrial-scale applications. However, genetic

divergence (random genetic alternations) is ubiquitous,

leading to permanent loss of production during industrial

fermentations. Genetic mutations are difficult to handle

due to their stochastic nature. As a result, promising

laboratory strains may exhibit poor productivity during

commercialization. Because the risk for companies is

considerable owing to the high capital costs (typically

above $100 million) for implementing bioprocess

development, host strains must be carefully designed

and rigorously tested for robustness and compatibility

with large-scale production [3�,4,5]. Scaled-down

fermentations combined with systems biology methods

gain insight into strain stability, but many aspects of how

metabolic burden and environmental stresses drives

genetic divergence remain elusive.

Genetic divergence in engineered strains
The process of DNA replication is inherently error prone

and leads to spontaneous mutations during cell replica-

tion. A study examining mutation accumulation in wild

type Escherichia coli over 20 years found that mutations

occurred at a rate of 10�9 per base pair per generation [10].

At the typical E. coli production cell density, there are 243

cells (�1012) in a 0.5 L bioreactor. At the basal mutation

rate of 10�9 mutations per base and a 4.6 million bp

genome, �5 � 109 cells in the next division will have one

mutation (the so-called ‘single nucleotide polymorphism’

or SNP, denoted with a star, Figure 1). Considering an

average sized bioproduction gene of 1 kb (�300 amino

acids), �106 cells will have at least one mutation across

the coding region of that gene. For synthesis of products
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Figure 1
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Summary of mechanisms and modeling perspective of genetic drift in engineered strains.

For bioreactor production, it takes a single E. coli cell �43 generations to reach typical production ODs in 0.5 L bioreactors and a further

23 generations for production in industry-scale reactors (100 000 L) [15��]. During this process, engineered hosts have numerous possibilities for

genetic mutations [16] that lead to non-producing cells. Sequencing populations after exposure to a variety of stresses (e.g. pH, oxygen, and

shear) can provide insights on likely mutational responses. Further combination of sequencing data with 13C-MFA can lead to the development of

models that can predict strain mutation rates.
involving multiple genes, the risks of mutations in the

production pathway are accordingly increased (Table 1).

While mutation rates seem intrinsically low, mechanisms

exist for mutations to occur at elevated frequencies

during stressed conditions [11,12]. The increased rates

can be mapped to specific pathways, such as stress

response, DNA repair and respiration, as was shown for

Saccharomyces cerevisiae growing under high ethanol levels

[13]. Furthermore, species-specific factors can shape the
Table 1

Spontaneous mutagenesis rates based on genome sizes in bioproduc

Organism Genome size (bp) Genes Assu

E. coli K12 4.6 � 106 4377 1.0 �
S. cerevisiae 1.2 � 107 5770 5.0 �
Y. lipolytica 2.1 � 107 7864 5.0 �
CHO cells 5.2 � 109 24 383 5.0 �
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mutational landscape, including chromosome size, GC

content and mobile elements within the genome [14],

causing some species to be more prone to genetic

mutations. Quantifying these factors will help inform

decisions on choices of microbial chassis.

In addition to increased mutational frequencies in

response to stress conditions, spontaneous mutations

can occur at higher rates in overexpressed bioproduction

genes [15��]. Bioproduction gene mutations can lead to
tion hosts

med mutation/bp Mutation/genome Mutation/gene

 10�9 4.6 � 10�3 1.1 � 10�6

 10�10 6.0 � 10�3 1.0 � 10�6

 10�10 1.1 � 10�2 1.3 � 10�6

 10�9 2.6 � 101 1.1 � 10�3
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non-producing (or lower-producing) populations with

alleviated metabolic burden – hence faster growth. Such

non-producer (or lower-producing) mutants do not simply

impose a suboptimality problem by creating a zero-yield

(or lower-yield) subpopulation but can also readily out-

compete their producer ancestors after a number of cell

generations (Figure 1). Stresses in bioreactors may create

‘hypermutable’ subpopulations [17], intensifying this

outcome. Strains carrying complex engineered pathways

will face more modes of deleterious mutations that favor

the formation of non-producers. Population heterogene-

ity and stochasticity of cellular production can therefore

be exacerbated via rapid accumulation of mutations dur-

ing cell multiplication in suboptimal large bioreactors

[18,19]. Thus, over the course of scale-up, the fermenta-

tion culture will eventually shift its population majority

from producers towards non-producers. The daunting

challenge of addressing these issues involves a more

detailed understanding of the driving forces and muta-

tional landscapes behind the rise of non-producers.

Perspective of metabolic flux memory
It is generally challenging to explore the underlying

possibilities of a mutational take-over within a population

holistically: metabolic burden, in addition to product

toxicity, respiration impairment and stressed cultivation

conditions, can all be drivers of increased mutation

frequency with convoluted impacts. To capture these

synergistic effects, we envision examining the driving

force of genetic divergence through the lens of metabolic

‘flux memory’ (i.e. mutation of the host cells causes

metabolic shifts towards the pre-engineered flux

network). Metabolic fluxes represent the flow of material

through enzymatic steps, while the fluxome covers the

complete distribution of fluxes among the reaction net-

work, which is functional output of the integrated

response of all levels of cellular regulation systems

[20]. Wild type cells have evolved flux configurations

to maintain stable resource-allocation to provide the

precursors, cofactors and energy molecules for growth.

Such configurations are largely conserved by the cell via

latent and redundant reactions in the presence of genetic

and environmental variations [21–24]. Some flux model-

ing techniques, such as minimization of metabolic adjust-

ment (MOMA), have adopted a form of the flux-memory

assumption: ‘metabolic fluxes undergo a minimal redistribu-
tion with respect to the flux configuration of the wild type’ [25].

However, engineering higher flux towards an endogenous

or heterogeneous pathway forces a redistribution of the

flux network, which strains the cellular supply chain and

can cause growth stresses (e.g. toxicity). Although cell

metabolism has elasticity and redundancies to deal with

metabolic burden, high-producing strains often operate

around a ‘metabolic cliff’, namely a breaking point for

metabolic supply, as shown in one of our earlier papers

[26]. At this unstable point, cell metabolism is vulnerable

to bioreactor stresses. For example, decreased respiration
www.sciencedirect.com 
efficiency can force cells to fall off the cliff, causing a

significant loss of biosynthesis capability. Such perturba-

tion is severe in large bioreactors and constantly

affects high-producing strains. Therefore, mutations that

restore the pre-engineered flux network are more likely to

balance the metabolic usage for cell survival, leading to

selective pressure to revert cell metabolism towards the

native flux distribution.

Damping the effects of mutations in
engineered cells
In plasmid-encoded bioproduction circuits, plasmid loss

due to random segregation during cell division is a com-

mon problem. The plasmid-free cells can outcompete the

producers due to their liberation from the fitness cost of

plasmid maintenance. Incorporating active partitioning

mechanisms (e.g. the par and the cer loci) in plasmids can

ensure even plasmid distribution to minimize their loss

[27]. Moreover, the use of antibiotics or auxotrophic

mutants can further extend the stability of the biopro-

duction circuitry. However, plasmid loss still occur under

such selection pressures, as plasmid-containing cells may

protect plasmid-free cells from the selective agent, by

either degrading antibiotics or producing public goods.

Consistently, it was shown that a selective pressure on

E. coli hosts was not sufficient to prevent their genetic

circuit from failing in a 10 L bioreactor [28]. On the other

hand, whereas chromosomally integrated synthetic

circuits are more stable than plasmids, they still

experience natural mutations and loss-of-function.

Recently, new methods have been reported to control the

rate of naturally occurring mutations with varying success.

One approach is to couple fitness and product production.

For example, insertion of essential genes into the pro-

duction-pathway operon can maintain the pathway com-

ponents in the growing cells, leading to increases of

stability (e.g. by additional 5–10 generations in an E. coli
mevalonic acid producing strain), but this method does

not prevent enzymatic loss-of-function via mutations that

only affect enzyme activity rather than enzyme expres-

sion levels [15��]. Moreover, advanced feedback-genetic-

circuits have been designed to automatically tune the

expression of pathways or bypass resource sharing under

metabolic burden or stresses [29��,30]. For example,

Lv et al. achieved stability for over 300 generations in

flavonoid-producing Yarrowia lipolytica strain via linking

production to leucine biosynthesis by replacing the native

leucine promoter with a flavonoid induced promoter

(coupled with further strain optimization) [29��]. Despite

the successful examples, biosensor-regulator circuits may

introduce new cell stresses or burdens and often need

extensive tuning [29��,31]. In addition, the engineered

modularity can break down due to crosstalk between

different regulatory systems or unexpected interactions

with RNA, proteins or metabolites [28].
Current Opinion in Biotechnology 2020, 66:227–235
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A different strategy involves de-coupling growth and

bioproduction. Such de-coupling allows engineered sys-

tems to grow without burden from production, minimiz-

ing the selection pressure for deleterious mutations.

Thereby, the production-phenotype is only triggered in

the final large-scale reactor. For example, a quorum

sensing based biosensor allows for autoinduction of pro-

duction after cells reach the desired density [32�]. Exter-

nal signals can also be used as inducers to control the

production phenotype. Recently, the addition of caffeine

to activate protein kinase R can switch off most transla-

tion processes during the production phase of mammalian

cell cultures and thus reduce their non-product proteins

synthesis [33]. Moreover, copper inducible promoters

have been built to improve dynamic regulations of Yar-
rowia bioproduction pathways [34]. However, the appli-

cability of de-coupling strategy can still be limited by the

quality and the availability of inducible promoters as well

as the additional manufacturing costs associated with

external inducers. Alternatively, ultraprecise synthetic

oscillators [35��] can be used to drive expression of the

engineered pathways, allowing for the periodic relaxation

of metabolic burden for production, to avoid accumula-

tion of toxic metabolites and deleterious runaway

mutations, and to mitigate the effect of environmental

perturbations on cell phenotypic states [36]. Simulations

suggested that oscillators need further improvement for

metabolite production, and their stability and scalability

for industrial applications remain to be seen [37].

Another promising strategy is to create background strains

that are less prone to mutations. For example, by the

elimination of error-prone DNA polymerases and removal

of transposable elements, an E. coli chassis can produce

higher L-threonine and recombinant protein titers [38].

Modifying heat-shock chaperones (e.g. DnaK and GroEL)

[16] or deleting the so-called ‘evolvability factor’ (i.e. mfd
gene of E. coli) [39] has also proven promising to reduce

strain mutational rates. Moreover, the DNA mismatch

repair (MMR) system has been identified as a key mecha-

nism for the formation of a hypermutator population in E.
coli that exhibits increased mutation rates. The MMR

system corrects erroneous insertions of bases and repairs

various DNA damage that occurs during DNA replication

andrecombination.The levels ofmajorMMRproteins (e.g.

MutS, MutL and MutH) that are inherently low [40], are

further repressed under stress conditions (such as nutrient

limitation, extreme temperatures or pH) by the general

stress regulon, namely RpoS in E. coli [41]. In the presence

of stressors, the downregulation of the already limiting

levels of MMR proteins thus creates an MMR-insufficient

phenotype, which displays markedly increased mutational

rates (stress-induced mutagenesis) [42,43]. Targeting the

MMR system is therefore a promising approach to reduce

mutability and increasing the MMR dosage has indeed

been shown to prolong genome stability in E. coli [44].

However, this strategy must be carefully implemented
Current Opinion in Biotechnology 2020, 66:227–235 
since it is subject to the goldilocks principle: MMR levels

cannot be arbitrarily high, as demonstrated in baker’s yeast

[45��]. Lastly, gene-specific analysis of mutational ‘hot

spots’ can guide mitigation techniques, as illustrated in a

recent investigation on mevalonic acid-producing E. coli
over many generations [15��]. While ultra-deep time-lapse

sequencing identified very few SNPs in the native genome,

high-frequency of IS insertion appeared in the engineered-

pathway genes. Selecting production-gene sequences

without specific IS insertion sites increased stability while

switching the host to a completely IS-free strain (MDS42)

led to further improvement of pathway stability by �20

additional generations.

Elucidation of mutations in engineered cells
The common technique for utilizing genetic divergence is

adaptive laboratory engineering and subsequent pheno-

type screening that reveals evolutional trends to enforce

cell memory of desired fluxome configurations [46,47]. In

one example, adaptive laboratory evolution led to improve-

ment of microbial growth with minimal intracellular flux

rewiring [48��]. In another example, adaptive evolution

balanced the metabolic tradeoffs between microbial

growth rate and biosynthesis yield by fine-tuning flux ratios

in a few reaction nodes (e.g. between the glycolysis and the

pentose phosphate pathway) [49]. In this context, the

MMR genes can be purposefully deleted (e.g. DmutS in

E. coli) to accelerate the mutational rate and the exploration

of the mutational landscape during adaptive evolution

[50�]. This allows for the rapid generation of a wide

range of genotypes and the evolution of bioproduction

workhorses towards increased yields [51].

High throughput micro-bioreactor apparatuses, genetic

diversification methods (random mutagenesis by error-

prone PCR, genome shuffling, MAGE, CRISPR-Cas,

etc.) and fluorescence-activated cell sorting (FACS) are

enabling approaches towards rapid strain generation as well

as screening and identification of enhanced production

phenotypes [1]. Advancements are also allowing for real

time visualization of mutations, following their effects on

growth directly, and quantifying mutation rates for single

cells [52�]. Furthermore, it is possible to isolate single cells of

E. coli growing in well-defined trenches on a similar micro-

fluidic device, while monitoring dynamic gene expression

profiles and growth properties of individual strains in a

complex library with high temporal resolution [35��]. As

opposed to FACS, which relies on single-dimensional data

for screening, this platform can enable isolation of the best

performing mutants yielding high bioproduction with mini-

mally compromised growth rates with high precision.

The aforementioned state-of-the-art approaches for high-

throughput generation and screening of strains will

undoubtedly synergize with advances in building of bet-

ter models for deciphering genotype-phenotype linkages.

For example, a recent deep-learning model can predict
www.sciencedirect.com
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effects of genomic alterations on physiological pheno-

types such as growth rates, thus providing an invaluable

tool for assessing the genotype-phenotype associations

[53]. Recent computational strain design algorithms have

also made strides to elucidate regulatory-metabolic net-

works from data, allowing for the pinpointing of gene

targets that contribute to strain enhancement and muta-

tion landscape [54]. While these in silico techniques

provide hypotheses for addressing strain production

metrics, there are still knowledge gaps between the

degree of genome alternations, metabolic burdens and

flux re-organizations under stressed bioreactor conditions.

The process of scaling up, which is usually empirical

and fraught with failure, begs for approaches that possess

predictive power to reliably gauge strain performance

a priori.

Authors’ perspective: explore flux memory to
predict genetic drift rates and
pseudoreversions
Starting with the perspective of flux-network rigidity as a

driving force behind strain mutations a comparative analysis

of the flux differences between an engineered or adapted

strainversus thewild-typeconfiguration canrevealkeystone

reaction fluxes associated with dynamics in commercial-

scale bioreactors, while genomics approaches can help iden-

tify pathway-specific mutations. Such analyses(namely, 13C-

MFA) have been employed to discover that the adaptive

evolution of a pgi knockout E. coli mutant changed cofactor

metabolism and glucose transport by mutations in the trans-

hydrogenase genes and phosphotransferase system [55].

Similar studies identified three SNPs relevant to energy

pathways that enabled the relatively fast photosynthesis and

growth in the cyanobacterial Synechococcus elongatus
2973 [56�,57]. Reverse engineering these SNPs in the slower

growing S. elongatus 7942 led to a doubling in growth rate,

putting it on par with that of S. elongatus 2973. These

examples illustrate that adaptive evolution, genome

resequencing and 13C-MFA provide an effective framework

to reveal the linkage between mutations and cellular

outcomes under specified growth conditions.

In our perspective, the knowledge of the mutational land-

scape and rates in the context of bioproduction-induced

flux reorganization may identify escape mechanisms and

offer guidelines for preemptive strain designs. Such corre-

lations will also allow for risk analysis when moving cells

from laboratories to large-scale industrial applications so

that scale-up fermentation wouldbecomemorepredictable

and that strains could be developed with an eye towards

‘biomanufacturability’. In the authors’ opinion, the flux-

memory concept can therefore be valuable for predicting

strain scalability and performance in large reactors. Quan-

tifying the distance between the parent non-producer

configuration and the post-engineering flux network can

provide an estimate for the speed of metabolic shifts the

production strain may experience. To determine how the
www.sciencedirect.com 
flux network will be redistributed, 13C-MFA can capture

the degreeoffluxsuboptimality (i.e. the distancebetween a

parent strain’s flux distribution and an engineered strain).

To this end, several mathematical expressions exist to

determine flux differences. For example, for a given

engineered strain, the Euclidean distance [25] from a

non-producer strain can be calculated by Eq. (1) (assuming

all flux differences are equally weighted):

Dðw; vÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðwi � viÞ2
vuut ð1Þ

where the parent non-producer strain has the flux vector

wi and the engineered strain has the flux vector

vi. Obtaining D values and genomic information from

many different strains can help elucidate a generalization

of mutation rates as a function of D.

Rm ¼ f ðDÞ ð2Þ

where Rm is the deleterious mutation rate (namely, the

mutation rate that generates non-producing cells). The

distance index D is expected to be in a nonlinear function

(Eq. (2)) due to the complex outputs of engineered cells

(likely stemming from intricate networks with feedback

loops as well as interactions exhibiting various coopera-

tivities and stoichiometries). To verify this hypothesis,
13C-MFA of a large number of engineered mutants along

with evolutional experiments to determine the muta-

tional frequency of these mutants can be a necessary

direction to help elucidate the correlation function

(Eq. (2)) [58]. Simple models can then be built to predict

the number of producing cells during scale-up processes.

For example, a simple model with two ordinary differen-

tial equations (ODEs) shows that increased rates of

mutations and larger metabolic burden lead to more rapid

loss of stability. The model includes: mutation rates Rm,

which generate non-producing cells; growth rates of pro-

ducing and non-producing cells ðm1 and m2, respectively)

and the number of producing and nonproducing cells (X1

and X2, respectively). The ODEs describing the cell

subpopulation growth are as follows:

dX1

dt
¼ m1X1 � Rmm1X1 ð3Þ

dX2

dt
¼ m2X2 þ Rmm1X1 ð4Þ

The two equations can estimate the remaining fraction of

producing cells within the population after certain

number of generations during batch culture.
Current Opinion in Biotechnology 2020, 66:227–235
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Figure 2 illustrates an example for a range of mutation

(RmÞ and relative growth ðm1/m2) rates. Interestingly, the

figure shows a population production cliff that results in the

regime shift. In brief, when cell generation numbers are low

and the growth rate of the producer is close to its non-

producer counterpart, the non-producers may not have an

apparent impact on the fermentation performance. The

increase of initial non-producer subpopulation, mutation
Figure 2

Estimating the scalability of engineered strains in a batch culture.

Fraction of the cell population that generates the bioproduct at 25 generatio

generation of non-producer cells and metabolic burden (relative growth rate

Current Opinion in Biotechnology 2020, 66:227–235 
rates, number of cellular generations, or differences in

growth rates (i.e. m1 and m2) can push fermentation cul-

tures to a regime where cell production can rapidly drop

due to the emergence of non-producers. The location,

where the population regime shift takes place, deter-

mines the baseline of the scalability of the engineered

strains, which helps engineers make better informed

decisions on microbial chassis for industrial applications.
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ns (top) and 65 generations (bottom) as a function of rate of

). Simulation is based on Eqs. (3) and (4).
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Conclusion
Elucidation of the causes of heterogeneity in engi-

neered microbial hosts may facilitate developing new

approaches to control the rate and landscape of muta-

tions during industrial fermentation processes. There

are still critical knowledge gaps in our understanding of

the synergistic effects between introduced genetic

parts and the metabolic alterations encountered in

multiple stages of scale-up. Employing fluxomics and

genomics will help identify the linkage between muta-

tion rates and metabolic stresses of engineered strains,

leading to strategies to mitigate deleterious mutations

and enhance production stability.  The acquired knowl-

edge on dynamics and spectra of mutations (e.g. SNPs,

Indels, and structural rearrangements)  as well as their

fitness effects can lead to preemptive engineering of

gene targets and background strains that have low

frequency mutations for increased stability. Finally,

we hypothesize that 13C-MFA and the concept of flux

memory together bolster a robust opportunity for

the prediction towards laboratory strain scalability.

For validation, new experiments involving measure-

ments of flux as well as rates of mutations and growth

should be designed and carefully performed.
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