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Microbial engineering forces flux redistribution to accommodate
higher production rates, straining the cellular supply chain and
leading to growth deficiency. Thus, there is a selective pressure to
alleviate metabolic burden and revert towards the innate flux
distribution (‘flux memory’) via mutations. Suboptimal
fermentation exacerbates this phenomenon as increased number
of generations prolong the selection window for the underlying flux
memory to generate faster growing non-producers. New
strategies to mitigate host genetic instability include laboratory
evolution, high-resolution genome resequencing combined with
phenotype screening, mismatch repair protein engineering, and
advanced synthetic biology approaches (e.g. oscillators and
biosensor regulators). Moreover, *C-metabolic flux analysis can
quantify flux suboptimality driven by metabolic burdens and
cultivation stresses. Elucidation of correlations between metabolic
suboptimality and host mutation rates/spectra may lead to early
stage risk assessments of culture-population’s regime shift during
process scale-up as well as strategies to boost bioproductions.
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Introduction

Current advances in synthetic biology and automation
have enabled the generation and screening of large
microbial host libraries, and quite a few engineered

Check for

microbial strains have reached industrial-scale biomanu-
facturing [1,2]; however, microbial cell factory develop-
ment still faces economic challenges from relatively low
strain-productivity and stability exacerbated by process
variations from the design set points. The most straight-
forward strategy for improving fermentation scalability is
to reduce bioreactor stresses (e.g. optimize O,, pH and
substrate gradients) [3°4,5], and tools such as computa-
tional fluid-dynamics coupled with kinetic models have
been developed to guide bioreactor operations [6].
However, even the most optimal large-scale reactor
systems face severe heterogeneity in growth conditions
as well as locally induced stresses. Systems biology may
resolve production bottlenecks under stress conditions,
complementing tolerance engineering [7] and adaptive
laboratory evolution [8,9] to facilitate the moving of
strains to industrial-scale applications. However, genetic
divergence (random genetic alternations) is ubiquitous,
leading to permanent loss of production during industrial
fermentations. Genetic mutations are difficult to handle
due to their stochastic nature. As a result, promising
laboratory strains may exhibit poor productivity during
commercialization. Because the risk for companies is
considerable owing to the high capital costs (typically
above $100 million) for implementing bioprocess
development, host strains must be carefully designed
and rigorously tested for robustness and compatibility
with large-scale production [3°4,5]. Scaled-down
fermentations combined with systems biology methods
gain insight into strain stability, but many aspects of how
metabolic burden and environmental stresses drives
genetic divergence remain elusive.

Genetic divergence in engineered strains

T'he process of DNA replication is inherently error prone
and leads to spontaneous mutations during cell replica-
tion. A study examining mutation accumulation in wild
type Escherichia coli over 20 years found that mutations
occurred at a rate of 107 per base pair per generation [10].
At the typical E. coli production cell density, there are 2*
cells (~1012) in a 0.5 LL bioreactor. At the basal mutation
rate of 10~° mutations per base and a 4.6 million bp
genome, ~5 x 107 cells in the next division will have one
mutation (the so-called ‘single nucleotide polymorphism’
or SNP, denoted with a star, Figure 1). Considering an
average sized bioproduction gene of 1 kb (~300 amino
acids), ~10° cells will have at least one mutation across
the coding region of that gene. For synthesis of products
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Summary of mechanisms and modeling perspective of genetic drift in engineered strains.
For bioreactor production, it takes a single E. coli cell ~43 generations to reach typical production ODs in 0.5 L bioreactors and a further

23 generations for production in industry-scale reactors (100 000 L) [15°°]. Di
genetic mutations [16] that lead to non-producing cells. Sequencing populat

uring this process, engineered hosts have numerous possibilities for
ions after exposure to a variety of stresses (e.g. pH, oxygen, and

shear) can provide insights on likely mutational responses. Further combination of sequencing data with '*C-MFA can lead to the development of

models that can predict strain mutation rates.

involving multiple genes, the risks of mutations in the
production pathway are accordingly increased (Table 1).

While mutation rates seem intrinsically low, mechanisms
exist for mutations to occur at elevated frequencies
during stressed conditions [11,12]. The increased rates
can be mapped to specific pathways, such as stress
response, DNA repair and respiration, as was shown for
Saccharomyces cerevisiae growing under high ethanol levels
[13]. Furthermore, species-specific factors can shape the

Table 1

mutational landscape, including chromosome size, GC
content and mobile elements within the genome [14],
causing some species to be more prone to genetic
mutations. Quantifying these factors will help inform
decisions on choices of microbial chassis.

In addition to increased mutational frequencies in
response to stress conditions, spontaneous mutations
can occur at higher rates in overexpressed bioproduction
genes [15°°]. Bioproduction gene mutations can lead to

Spontaneous mutagenesis rates based on genome sizes in bioproduction hosts

Organism Genome size (bp) Genes Assumed mutation/bp Mutation/genome Mutation/gene
E. coli K12 4.6 x 10° 4377 1.0 x 107° 4.6 x 1072 1.1x 107
S. cerevisiae 1.2 x 107 5770 5.0x10°° 6.0 x 1072 1.0x 107
Y. lipolytica 2.1 x 107 7864 5.0x1071° 1.1 x 1072 1.3x 107
CHO cells 5.2 x 10° 24 383 5.0 x 107° 2.6 x 10 1.1x 1073
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non-producing (or lower-producing) populations with
alleviated metabolic burden — hence faster growth. Such
non-producer (or lower-producing) mutants do not simply
impose a suboptimality problem by creating a zero-yield
(or lower-yield) subpopulation but can also readily out-
compete their producer ancestors after a number of cell
generations (Figure 1). Stresses in bioreactors may create
‘hypermutable’ subpopulations [17], intensifying this
outcome. Strains carrying complex engineered pathways
will face more modes of deleterious mutations that favor
the formation of non-producers. Population heterogene-
ity and stochasticity of cellular production can therefore
be exacerbated via rapid accumulation of mutations dur-
ing cell multiplication in suboptimal large bioreactors
[18,19]. Thus, over the course of scale-up, the fermenta-
tion culture will eventually shift its population majority
from producers towards non-producers. The daunting
challenge of addressing these issues involves a more
detailed understanding of the driving forces and muta-
tional landscapes behind the rise of non-producers.

Perspective of metabolic flux memory

It is generally challenging to explore the underlying
possibilities of a mutational take-over within a population
holistically: metabolic burden, in addition to product
toxicity, respiration impairment and stressed cultivation
conditions, can all be drivers of increased mutation
frequency with convoluted impacts. To capture these
synergistic effects, we envision examining the driving
force of genetic divergence through the lens of metabolic
‘lux memory’ (i.e. mutation of the host cells causes
metabolic shifts towards the pre-engineered flux
network). Metabolic fluxes represent the flow of material
through enzymatic steps, while the fluxome covers the
complete distribution of fluxes among the reaction net-
work, which is functional output of the integrated
response of all levels of cellular regulation systems
[20]. Wild type cells have evolved flux configurations
to maintain stable resource-allocation to provide the
precursors, cofactors and energy molecules for growth.
Such configurations are largely conserved by the cell via
latent and redundant reactions in the presence of genetic
and environmental variations [21-24]. Some flux model-
ing techniques, such as minimization of metabolic adjust-
ment (MOMA), have adopted a form of the flux-memory
assumption: ‘metabolic fluxes undergo a minimal redistribu-
tion with respect to the flux configuration of the wild type’ [25].
However, engineering higher flux towards an endogenous
or heterogeneous pathway forces a redistribution of the
flux network, which strains the cellular supply chain and
can cause growth stresses (e.g. toxicity). Although cell
metabolism has elasticity and redundancies to deal with
metabolic burden, high-producing strains often operate
around a ‘metabolic cliff’, namely a breaking point for
metabolic supply, as shown in one of our earlier papers
[26]. At this unstable point, cell metabolism is vulnerable
to bioreactor stresses. For example, decreased respiration
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efficiency can force cells to fall off the cliff, causing a
significant loss of biosynthesis capability. Such perturba-
tion is severe in large bioreactors and constantly
affects high-producing strains. Therefore, mutations that
restore the pre-engineered flux network are more likely to
balance the metabolic usage for cell survival, leading to
selective pressure to revert cell metabolism towards the
native flux distribution.

Damping the effects of mutations in
engineered cells

In plasmid-encoded bioproduction circuits, plasmid loss
due to random segregation during cell division is a com-
mon problem. The plasmid-free cells can outcompete the
producers due to their liberation from the fitness cost of
plasmid maintenance. Incorporating active partitioning
mechanisms (e.g. the parand the cerloci) in plasmids can
ensure even plasmid distribution to minimize their loss
[27]. Moreover, the use of antibiotics or auxotrophic
mutants can further extend the stability of the biopro-
duction circuitry. However, plasmid loss still occur under
such selection pressures, as plasmid-containing cells may
protect plasmid-free cells from the selective agent, by
either degrading antibiotics or producing public goods.
Consistently, it was shown that a selective pressure on
E. coli hosts was not sufficient to prevent their genetic
circuit from failing in a 10 L. bioreactor [28]. On the other
hand, whereas chromosomally integrated synthetic
circuits are more stable than plasmids, they still
experience natural mutations and loss-of-function.

Recently, new methods have been reported to control the
rate of naturally occurring mutations with varying success.
One approach is to couple fitness and product production.
For example, insertion of essential genes into the pro-
duction-pathway operon can maintain the pathway com-
ponents in the growing cells, leading to increases of
stability (e.g. by additional 5-10 generations in an E. co/i
mevalonic acid producing strain), but this method does
not prevent enzymatic loss-of-function via mutations that
only affect enzyme activity rather than enzyme expres-
sion levels [15°°]. Moreover, advanced feedback-genetic-
circuits have been designed to automatically tune the
expression of pathways or bypass resource sharing under
metabolic burden or stresses [29°°,30]. For example,
Lv et al. achieved stability for over 300 generations in
flavonoid-producing Yarrowia lipolytica strain via linking
production to leucine biosynthesis by replacing the native
leucine promoter with a flavonoid induced promoter
(coupled with further strain optimization) [29°°]. Despite
the successful examples, biosensor-regulator circuits may
introduce new cell stresses or burdens and often need
extensive tuning [29°°,31]. In addition, the engineered
modularity can break down due to crosstalk between
different regulatory systems or unexpected interactions
with RNA, proteins or metabolites [28].
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A different strategy involves de-coupling growth and
bioproduction. Such de-coupling allows engineered sys-
tems to grow without burden from production, minimiz-
ing the selection pressure for deleterious mutations.
Thereby, the production-phenotype is only triggered in
the final large-scale reactor. For example, a quorum
sensing based biosensor allows for autoinduction of pro-
duction after cells reach the desired density [32°]. Exter-
nal signals can also be used as inducers to control the
production phenotype. Recently, the addition of caffeine
to activate protein kinase R can switch off most transla-
tion processes during the production phase of mammalian
cell cultures and thus reduce their non-product proteins
synthesis [33]. Moreover, copper inducible promoters
have been built to improve dynamic regulations of Yar-
rowia bioproduction pathways [34]. However, the appli-
cability of de-coupling strategy can still be limited by the
quality and the availability of inducible promoters as well
as the additional manufacturing costs associated with
external inducers. Alternatively, ultraprecise synthetic
oscillators [35°°] can be used to drive expression of the
engineered pathways, allowing for the periodic relaxation
of metabolic burden for production, to avoid accumula-
tion of toxic metabolites and deleterious runaway
mutations, and to mitigate the effect of environmental
perturbations on cell phenotypic states [36]. Simulations
suggested that oscillators need further improvement for
metabolite production, and their stability and scalability
for industrial applications remain to be seen [37].

Another promising strategy is to create background strains
that are less prone to mutations. For example, by the
elimination of error-prone DNA polymerases and removal
of transposable elements, an K. co/i chassis can produce
higher L-threonine and recombinant protein titers [38].
Modifying heat-shock chaperones (e.g. DnaK and GroEL)
[16] or deleting the so-called ‘evolvability factor’ (i.e. mfd
gene of E. col7) [39] has also proven promising to reduce
strain mutational rates. Moreover, the DNA mismatch
repair (MMR) system has been identified as a key mecha-
nism for the formation of a hypermutator population in £.
cofi that exhibits increased mutation rates. The MMR
system corrects erroneous insertions of bases and repairs
various DNA damage that occurs during DNA replication
and recombination. Thelevels of major MMR proteins (e.g.
MutS, Mutl. and MutH) that are inherently low [40], are
further repressed under stress conditions (such as nutrient
limitation, extreme temperatures or pH) by the general
stress regulon, namely RpoS in E. co/i [41]. In the presence
of stressors, the downregulation of the already limiting
levels of MMR proteins thus creates an MM R-insufficient
phenotype, which displays markedly increased mutational
rates (stress-induced mutagenesis) [42,43]. Targeting the
MMR system is therefore a promising approach to reduce
mutability and increasing the MMR dosage has indeed
been shown to prolong genome stability in E. co/i [44].
However, this strategy must be carefully implemented

since it is subject to the goldilocks principle: MMR levels
cannot be arbitrarily high, as demonstrated in baker’s yeast
[45°°]. Lastly, gene-specific analysis of mutational ‘hot
spots’ can guide mitigation techniques, as illustrated in a
recent investigation on mevalonic acid-producing E. coli
over many generations [15°°]. While ultra-deep time-lapse
sequencing identified very few SNPs in the native genome,
high-frequency of IS insertion appeared in the engineered-
pathway genes. Selecting production-gene sequences
without specific IS insertion sites increased stability while
switching the host to a completely [S-free strain (MDS42)
led to further improvement of pathway stability by ~20
additional generations.

Elucidation of mutations in engineered cells
The common technique for utilizing genetic divergence is
adaptive laboratory engineering and subsequent pheno-
type screening that reveals evolutional trends to enforce
cell memory of desired fluxome configurations [46,47]. In
one example, adaptive laboratory evolution led to improve-
ment of microbial growth with minimal intracellular flux
rewiring [48°°]. In another example, adaptive evolution
balanced the metabolic tradeoffs between microbial
growth rate and biosynthesis yield by fine-tuning flux ratios
in a few reaction nodes (e.g. between the glycolysis and the
pentose phosphate pathway) [49]. In this context, the
MMR genes can be purposefully deleted (e.g. AmutS in
E. coli) toaccelerate the mutational rate and the exploration
of the mutational landscape during adaptive evolution
[50°]. This allows for the rapid generation of a wide
range of genotypes and the evolution of bioproduction
workhorses towards increased yields [51].

High throughput micro-bioreactor apparatuses, genetic
diversification methods (random mutagenesis by error-
prone PCR, genome shuffling, MAGE, CRISPR-Cas,
etc.) and fluorescence-activated cell sorting (FACS) are
enabling approaches towards rapid strain generation as well
as screening and identification of enhanced production
phenotypes [1]. Advancements are also allowing for real
time visualization of mutations, following their effects on
growth directly, and quantifying mutation rates for single
cells [52°]. Furthermore, it is possible to isolate single cells of
E. coli growing in well-defined trenches on a similar micro-
fluidic device, while monitoring dynamic gene expression
profiles and growth properties of individual strains in a
complex library with high temporal resolution [35°°]. As
opposed to FACS, which relies on single-dimensional data
for screening, this platform can enable isolation of the best
performing mutants yielding high bioproduction with mini-
mally compromised growth rates with high precision.

T'he aforementioned state-of-the-art approaches for high-
throughput generation and screening of strains will
undoubtedly synergize with advances in building of bet-
ter models for deciphering genotype-phenotype linkages.
For example, a recent deep-learning model can predict
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effects of genomic alterations on physiological pheno-
types such as growth rates, thus providing an invaluable
tool for assessing the genotype-phenotype associations
[53]. Recent computational strain design algorithms have
also made strides to elucidate regulatory-metabolic net-
works from data, allowing for the pinpointing of gene
targets that contribute to strain enhancement and muta-
tion landscape [54]. While these 7z silico techniques
provide hypotheses for addressing strain production
metrics, there are still knowledge gaps between the
degree of genome alternations, metabolic burdens and
flux re-organizations under stressed bioreactor conditions.
The process of scaling up, which is usually empirical
and fraught with failure, begs for approaches that possess
predictive power to reliably gauge strain performance
a priori.

Authors’ perspective: explore flux memory to
predict genetic drift rates and
pseudoreversions

Starting with the perspective of flux-network rigidity as a
driving force behind strain mutations a comparative analysis
of the flux differences between an engineered or adapted
strain versus the wild-type configuration canreveal keystone
reaction fluxes associated with dynamics in commercial-
scale bioreactors, while genomics approaches can help iden-
tify pathway-specific mutations. Such analyses (namely, *C-
MFA) have been employed to discover that the adaptive
evolution of a pg/ knockout £. co/i mutant changed cofactor
metabolism and glucose transport by mutations in the trans-
hydrogenase genes and phosphotransferase system [55].
Similar studies identified three SNPs relevant to energy
pathways that enabled the relatively fast photosynthesis and
growth in the cyanobacterial Symechococcus — elongatus
2973 [56°,57]. Reverse engineering these SNPs in the slower
growing S. elongatus 7942 led to a doubling in growth rate,
putting it on par with that of 8. elongarus 2973. These
examples illustrate that adaptive evolution, genome
resequencing and "*C-MFA provide an effective framework
to reveal the linkage between mutations and cellular
outcomes under specified growth conditions.

In our perspective, the knowledge of the mutational land-
scape and rates in the context of bioproduction-induced
flux reorganization may identify escape mechanisms and
offer guidelines for preemptive strain designs. Such corre-
lations will also allow for risk analysis when moving cells
from laboratories to large-scale industrial applications so
thatscale-up fermentation would become more predictable
and that strains could be developed with an eye towards
‘biomanufacturability’. In the authors’ opinion, the flux-
memory concept can therefore be valuable for predicting
strain scalability and performance in large reactors. Quan-
tifying the distance between the parent non-producer
configuration and the post-engineering flux network can
provide an estimate for the speed of metabolic shifts the
production strain may experience. T'o determine how the
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fAlux network will be redistributed, "> C-MFA can capture
the degree of flux suboptimality (i.e. the distance between a
parent strain’s flux distribution and an engineered strain).
To this end, several mathematical expressions exist to
determine flux differences. For example, for a given
engineered strain, the Euclidean distance [25] from a
non-producer strain can be calculated by Eq. (1) (assuming
all flux differences are equally weighted):

where the parent non-producer strain has the flux vector
w; and the engineered strain has the flux vector
v;. Obtaining D values and genomic information from
many different strains can help elucidate a generalization
of mutation rates as a function of D.

where R,, is the deleterious mutation rate (namely, the
mutation rate that generates non-producing cells). The
distance index D is expected to be in a nonlinear function
(Eq. (2)) due to the complex outputs of engineered cells
(likely stemming from intricate networks with feedback
loops as well as interactions exhibiting various coopera-
tivities and stoichiometries). To verify this hypothesis,
BC-MFA of a large number of engineered mutants along
with evolutional experiments to determine the muta-
tional frequency of these mutants can be a necessary
direction to help elucidate the correlation function
(Eq. (2)) [58]. Simple models can then be built to predict
the number of producing cells during scale-up processes.
For example, a simple model with two ordinary differen-
tial equations (ODEs) shows that increased rates of
mutations and larger metabolic burden lead to more rapid
loss of stability. The model includes: mutation rates R,
which generate non-producing cells; growth rates of pro-
ducing and non-producing cells (uq and u,, respectively)
and the number of producing and nonproducing cells (X
and X;, respectively). The ODEs describing the cell
subpopulation growth are as follows:

dX
{j—ll = MIXI - Rm:u*lxl (3)
aX
d—[z = /‘LZXZ + le’Lle (4’)

The two equations can estimate the remaining fraction of
producing cells within the population after certain
number of generations during batch culture.

www.sciencedirect.com
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Figure 2 illustrates an example for a range of mutation
(R,;) and relative growth (u;/1,) rates. Interestingly, the
figure shows a population production cliff that results in the
regime shift. In brief, when cell generation numbers are low
and the growth rate of the producer is close to its non-
producer counterpart, the non-producers may not have an
apparent impact on the fermentation performance. The
increase of initial non-producer subpopulation, mutation

Figure 2

rates, number of cellular generations, or differences in
growth rates (i.e. iy and w,) can push fermentation cul-
tures to a regime where cell production can rapidly drop
due to the emergence of non-producers. The location,
where the population regime shift takes place, deter-
mines the baseline of the scalability of the engineered
strains, which helps engineers make better informed
decisions on microbial chassis for industrial applications.
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Estimating the scalability of engineered strains in a batch culture.

Fraction of the cell population that generates the bioproduct at 25 generations (top) and 65 generations (bottom) as a function of rate of
generation of non-producer cells and metabolic burden (relative growth rate). Simulation is based on Egs. (3) and (4).
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Conclusion

Elucidation of the causes of heterogeneity in engi-
neered microbial hosts may facilitate developing new
approaches to control the rate and landscape of muta-
tions during industrial fermentation processes. There
are still critical knowledge gaps in our understanding of
the synergistic effects between introduced genetic
parts and the metabolic alterations encountered in
multiple stages of scale-up. Employing fluxomics and
genomics will help identify the linkage between muta-
tion rates and metabolic stresses of engineered strains,
leading to strategies to mitigate deleterious mutations
and enhance production stability. The acquired knowl-
edge on dynamics and spectra of mutations (e.g. SNPs,
Indels, and structural rearrangements) as well as their
fitness effects can lead to preemptive engineering of
gene targets and background strains that have low
frequency mutations for increased stability. Finally,
we hypothesize that "> C-MFA and the concept of flux
memory together bolster a robust opportunity for
the prediction towards laboratory strain scalability.
For validation, new experiments involving measure-
ments of flux as well as rates of mutations and growth
should be designed and carefully performed.
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