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A sharp necessary condition for rectifiable curves in
metric spaces

Guy C. David and Raanan Schul

Abstract. In his 1990 Inventiones paper, P. Jones characterized subsets of recti-
fiable curves in the plane, using a multiscale sum of what is now known as Jones
β-numbers, numbers measuring flatness in a given scale and location. This work
was generalized to Rn by Okikiolu, to Hilbert space by the second author, and has
many variants in a variety of metric settings. Notably, in 2005, Hahlomaa gave a
sufficient condition for a subset of a metric space to be contained in a rectifiable
curve. We prove the sharpest possible converse to Hahlomaa’s theorem for dou-
bling curves, and then deduce some corollaries for subsets of metric and Banach
spaces, as well as the Heisenberg group.

1. Introduction

1.1. Background

In an Inventiones paper [17], Peter Jones proved the following theorem for sets in R2,
later generalized by Kate Okikiolu to sets in Rn [23]. For sets E,B ⊆ Rn, define

(1.1) βEuc
E,∞(B) =

2

diam(B)
inf
L

sup{dist(y, L) : y ∈ E ∩B},

where L ranges over lines in Rn.
Theorem 1.1. (Jones: R2 [17]; Okikiolu: Rn [23]) Let n ≥ 2. There is a C = C(n) such
that the following holds. Let E ⊆ Rn. Then there is a connected set Γ ⊇ E such that

(1.2) H 1(Γ) .n diam(E) +
∑
Q∈∆
Q∩E 6=∅

βEuc
E,∞(3Q)2diam(Q).

Conversely, if Γ is connected and H 1(Γ) <∞, then

(1.3) diam(Γ) +
∑
Q∈∆
Q∩Γ6=∅

βEuc
Γ,∞(3Q)2diam(Q) .n H 1(Γ).
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Here, H k is the k−dimensional Hausdorff measure, and ∆ is the collection of dyadic
cubes in Rn. Given two functions a and b into R we say a . b with constant C, when
there exists a constant C such that a ≤ Cb; the subscript .n indicates the dependence of
the implied constant on n. We say that a ∼ b if a . b and b . a.

Equation (1.3), whose variants are the main subject of this paper, gives a “quantitative
flatness” statement for rectifiable curves in Rn. In other words, a rectifiable curve in Rn
must lie close to a line at most locations and scales, in a very precise manner. This may
be viewed as a quantitative version of the qualitative statement that a rectifiable curve
has linear tangents almost everywhere along its length. In addition to the clear geometric
information it provides, (1.3) and its variants have had an important influence on the study
of singular integrals from the 1980’s onward. As a small sample of these connections,
we point the reader to the works of Jones [16], David-Semmes [6, 7] and Tolsa [30], as
well as the survey [24]. There are also connections to recent developments in the study of
harmonic measure (see, e.g., [2] and the many advances by the same authors).

Theorem 1.1 was later generalized to setsE lying in Hilbert space [29], which requires
replacing ∆ by a multiscale collection of balls centered on the set in question. There are
also variants in some metric settings [12, 13, 27], including the Heisenberg group [20, 21]
and a collection of non-Euclidean metric spaces generalizing a construction of Laakso [9].
We will return to some of these variants in more detail in the sections below, but for now
we note that these variants require changes in the definition of the β-number (as there are
no longer Euclidean lines), as well as for modifying the exponent 2 in the sums analogous
to those in (1.2) and (1.3).

Remark 1.2. A point that the authors find intriguing is that, for these variants of Theo-
rem 1.1, even when analogs of both (1.2) and (1.3) are known, the exponents of β in these
results are generally not known to match. Hence, one does not always achieve a character-
ization of subsets of rectifiable curves by this method. To our knowledge, the only settings
where these exponents are known to match are in Hilbert spaces [29], in Ahlfors 1-regular
metric spaces [13, 27] (where an average replaces the supremum in the definition of β),
and, to some extent, in the graph inverse limit spaces studied in [9]. In other settings, such
as the Heisenberg group and general Banach spaces, the situation is not completely clear.1

We now wish to state a metric analogue of the first half of Theorem 1.1. Given a metric
space E and a ball B = B(p, r), let

(1.4) βE∞(B)2 = r−1 sup{∂(x, y, z) : x, y, z ∈ E ∩B}.

(If the metric space is understood, we will drop the superscript.)
The quantity ∂(x, y, z) is is the defect in the triangle inequality, and is defined in

Section 2.3; for now let us say that for a triple x, y, z such that dist(x, y) ≤ dist(y, z) ≤
dist(x, z), the quantity ∂(x, y, z) is given by dist(x, y) + dist(y, z) − dist(x, z). See
Section 2.3 for a more detailed definition of ∂.

In particular, βE∞(B) gives a measurement of “flatness” that can be studied in general
metric spaces without notions of lines. Thus, one can use this notion of β-number to study

1A very recent preprint by Sean Li [19], posted to the arXiv on the same day as this paper, gives a version of
Theorem 1.1 with matching exponents in general Carnot groups, including the Heisenberg group.
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the validity of metric space analogs of Theorem 1.1. In that case, one must replace the
family of dyadic cubes in Rn by a “multiresolution family of balls” G , as defined in in 2.1
below.

Given these modifications, Hahlomaa proved the following analogue of (1.2).
Theorem 1.3 ([12], Theorem 5.3). Let E be a bounded metric space and G a multireso-
lution family such that

(1.5)
∑
B∈G

β∞(B)2diam(B) <∞

Then there is a set A ⊆ [0, 1] and a surjective Lipschitz map f : A → E with Lipschitz
constant bounded by

(1.6) C

(
diam(E) +

∑
B∈G

β∞(B)2diam(B)

)
.

The constant C > 0 is absolute.
The notion of a multiresolution family G is defined in Section 2.1.
In fact, as stated, Theorem 5.3 of [12] uses a different β-number, defined using Menger

curvature, rather than our β∞. However, Hahlomaa’s definition of β is bounded above by
an absolute constant times that in (1.4). See Remark 1.5 below. Hence, the theorem
above follows immediately from his work. We note that Menger curvature was further
used as a sufficient condition for 1-rectifiability by Léger [18] in the Euclidean setting and
Hahlomma [14] in the metric setting. The book [24] gives a nice survey of this up to the
time it was written.
Remark 1.4. The converse to Theorem 1.3 is false, as is demonstrated in [28, Example
3.3.1]. In that example, a sequence of rectifiable curves {Γn} is constructed in the Banach
space (R2, ‖·‖`1) so thatH1(Γn) = 2 for all n but the analog of sum (1.6) tends to infinity
with n.

The goal of the present paper is to prove the sharpest possible converse of this result
for doubling metric spaces, and then deduce a few corollaries for specific metric spaces
and alternative notions of flatness.
Remark 1.5. The definition of β∞ which is needed for the proof of Theorem 1.3 only
requires the sup to be over triples {x, y, z} whose mutual distances are & the radius of
the ball B in question. It is in this situation that ∂{x, y, z} is proportional to the Menger
curvature of {x, y, z}, which is how Hahlomaa had stated his result. This is discussed in
more detail in Remark 2.3 of [28] and in [12] .

1.2. New results

The main theorem of this paper, Theorem A, is a converse to Theorem 1.3 for doubling
spaces, to the extent allowed by Remark 1.4. To our knowledge, it is the first theorem of
this type for rectifiable curves in general doubling metric spaces, i.e., which states that all
rectifiable curves in doubling metric spaces admit a quantitative local flatness condition
analogous to that in (1.3). Further below, we apply Theorem A to deduce four corollaries,
Corollaries B, C, D and E.
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Theorem A. Let Γ be a connected, doubling metric space. Let G be a multiresolution
family of balls in Γ, where the inflation factor for the balls of G is A > 1 (see Definition
2.1). Then ∑

B∈G

βΓ
∞(B)pdiam(B) ≤ CpH1(Γ)

for all p > 2. The constant Cp depends only on p, the doubling constant of Γ, and the
constant A.

As noted in Remark 1.4, this theorem is sharp in the sense that for p = 2 it is false.

Remark 1.6. The authors conjecture that with similar techniques to those of [29] one
would get that Theorem A holds for non-doubling Γ as well.

We now go on to describe some corollaries of Theorem A that will be proven in the
paper.

1.2.1. Gromov-Hausdorff β-numbers. In [8], the authors define another measure of
flatness for subsets of arbitrary metric spaces, different from β∞. Their notion is es-
sentially a normalized Gromov-Hausdorff distance to Euclidean balls, and applies in all
dimensions, not just dimension one.

(Note: Although for most of the paper B(z, r) will refer to a closed ball in a metric
space, for the purposes of agreement with [8] in this subsection and in Section 6 we write
B(z, r) for an open ball.)

We take the following definitions from [8, Section 2], specializing to the 1-dimensional
case and making some minor changes to the notation. Let (M,d) be a metric space,
B(z, r) a ball in M , and consider (not necessarily continuous) mappings

I : B(z, r)→ (−r, r) ⊆ R.

For such a mapping I , let

(1.7) α(I) = ε(I) + δ(I),

where
ε(I) = sup{||I(x)− I(y)| − d(x, y)| : x, y ∈ B(z, r)},

and
δ(I) = sup{dist(u, I(B(z, r))) : u ∈ (−r, r)}.

Lastly, we set
α(B(z, r)) = r−1 inf

I
α(I),

where the infimum is taken over all mappings I : B(z, r)→ (−r, r).
In [8], the smallness or summability of (the n-dimensional version of) α(B) for a

metric space is taken as an assumption that is then used to construct interesting embed-
dings into low-dimensional Euclidean spaces. By contrast, we obtain the summability of
α(B)2+ε as a necessary condition for rectifiable curves in doubling metric spaces.

Let G0 ⊆ G is the collection of balls in G with diameters at least one tenth that of Γ.
The following corollary is proven in Section 6.
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Corollary B. Let Γ be a doubling curve in a metric space, with a multiresolution family
of balls G having inflation factor A ≥ 10. Then∑

B∈G\G0

α(B)prad(B) . H1(Γ),

for all p > 2. The implied constant depends only on p, A, and the doubling constant of Γ.

Corollary B can be viewed as a bilateral analog to the upper bound in Jones’ Analyst’s
traveling salesman theorem for arbitrary doubling metric curves, though with a non-sharp
exponent.

Note that, while the 1
10 in the definition of G0 is somewhat arbitrary, some restriction

in Corollary B to “small” balls is necessary, since for any ball B in G with diam(B) ≥
2diam(Γ), one has α(B) & 1.

1.2.2. β-numbers for nets in `∞. We now turn our attention to the Banach space `∞,
the space of real sequences (a1, a2, . . . ), equipped with the norm

‖(a1, a2, . . . )‖ = sup |ai|.

One may measure the flatness of a subset S ⊆ `∞ in a variety of ways. A method
with a clear geometric picture associated to it is to ask: how easy is it to approximate S,
or a finite net in S, by a geodesic in `∞? (Note that the set of geodesics in `∞ a strictly
larger class than the class of all lines in `∞.) This yields a notion of β-number that we
investigate.

If K is a set in `∞, {Xn} is a family of 2−n separated nets in K, and B ∈ G is a ball
at scale 2−n in the associated multiresolution family (see Definition2.1), we will write

(1.8) βK, net
`∞

(B)rad(B) = inf
L

sup
x∈Xn+1∩B

dist(x, L),

where
dist(x, L) = inf{d(x, y) : y ∈ L}

and the infimum is taken over all geodesics L in `∞. Thus, βK, net
`∞

(B) measures how close
a net in B ∩K is to a geodesic in `∞. The following corollary is proven in Section 7.

Corollary C. Let Γ be a doubling curve in `∞ with a multiresolution family G of balls.
Then ∑

B∈G

βΓ, net
`∞

(B)pdiam(B) . H1(Γ)

for all p > 1. The implied constant depends only on p and the doubling constant of Γ.

Remark 1.7. Because of the Kuratowski embedding theorem (see [15, Section 12.3]),
every separable metric space admits an isometric embedding into `∞. Thus, Corollary C
allows one to show that, for a doubling curve Γ in an arbitrary metric space, most balls B
in a multiresolution family on Γ have the property that a net in B is close to lying on an
abstract geodesic.

Another way to view Corollary C is as follows: Suppose one has a separable metric
spaceX with a natural class of geodesics, with respect to which one defines a β number or
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βnet number and proves an upper bound on the summability of these quantities for curves.
As we have seen, X may be a Euclidean space, a Banach space, or the Heisenberg group,
in which case the appropriate summability power p is larger than 1 and depends on the
geometry of the space. One may instead consider isometrically embedding the spaceX in
`∞ (using the Kuratowski embedding theorem) and using the richer class of `∞ geodesics
to approximate the net points on a given curve in X . Corollary C shows that one may
achieve better summability (any power greater than 1) for this quantity. In the case of the
Heisenberg group, this idea is explored further in Corollary E and Section 9.

1.2.3. β-numbers in uniformly convex Banach spaces.. We now turn our attention to
a class of Banach spaces that excludes `∞, the uniformly convex Banach spaces, which we
define below. In these spaces, as in Hilbert spaces, it is natural to simply measure flatness
by distance to lines.

If X is a Banach space, E ⊆ X , and B = B(z, r) a ball in X , set

(1.9) βEX(B)r = inf
L

sup{dist(x, L) : x ∈ E ∩B},

where
dist(x, L) = inf{d(x, y) : y ∈ L}

and the infimum is taken over all lines L inX . Note that while in Section 1.2.2 we allowed
all geodesics in our β-number, here we allow only lines. However, our focus in this section
is on Banach spaces in which these notions agree.

We will use the notion of modulus of convexity of a Banach space to connect βX and
β∞.

Definition 1.8. The modulus of convexity of a Banach space (X, ‖ · ‖) is the function δ
defined as follows:

(1.10) δ(ε) = inf

{
1−

∥∥∥∥x+ y

2

∥∥∥∥ : ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε
}

for ε ∈ [0, 2].

For more background and information on this concept, we refer the reader to [22,
Section 1.e]. It will be convenient to note that this definition is unchanged if in the set on
the right hand side one allows ‖x‖ ≤ 1 and ‖y‖ ≤ 1. (See [22, Section 1.e].)

The Banach space X is uniformly convex if and only if δ(ε) > 0 for all ε > 0. In this
case, a theorem of Pisier [25] states that there is an equivalent norm on X such that

(1.11) δ(ε) ≥ cεq

for some c > 0 and q ≥ 2.
For p ∈ (1,∞), the standard Lp spaces each have modulus of convexity satisfying

(1.11) with some constant c = cp > 0 and exponent

q =

{
2 if 1 < p ≤ 2,

p if p > 2.

The following corollary is proven in Section 8.
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Corollary D. Let (X, ‖ · ‖) be a Banach space with modulus of convexity δ satisfying
(1.11) with c > 0 and q ≥ 2. Let p > q. Then for any doubling curve Γ ⊆ X with a
multiresolution family G = G Γ of balls, we have∑

B∈G

βΓ
X(B)pdiam(B) . H1(Γ).

The implied constant depends only on p, c, q, the inflation factor of G , and the doubling
constant of Γ.

Remark 1.9. In [10], Edelen-Naber-Valtorta study the converse problem of finding a
curve (or k-rectifiable set more generally) that captures a large portion of a given set or
measure µ in a Banach space X . (This can be seen as an analog of Theorem 1.1(1.2),
where Corollary D corresponds to Theorem 1.1(1.3).)

The notion of β-number studied there is an average (rather than supremum) associated
to a measure µ on X:

(1.12) β1
µ(B(x, r))2 = inf

lines L
r−3

�
B(x,r)

dist(·, L)2 dµ.

Edelen-Naber-Valtorta show that for constructing curves (the case k = 1 in [10])
in a Banach space X , the relevant property of X is not uniform convexity but uniform
smoothness. Without giving the precise definition, we recall that a Banach space is uni-
formly smooth if and only if its dual is uniformly convex [22][Section 1.e]. In that case,
as for convexity, there is an associated exponent of smoothness α, which is p for Lp if
1 < p ≤ 2 and 2 for Lp if 2 < p <∞.

In Theorem 2.6 of [10], the authors prove that, given a measure µ with positive and
finite upper and lower 1-dimensional densities on a Banach space X with smoothness
exponent α, integral control on the quantity β1

µ(B(x, r))α implies 1-rectifiability of µ.
We refer the reader to [10] for the details and other related results.

1.2.4. A comparison with the Heisenberg group. We present one more corollary of our
work by observing a consequence of Corollary C for curves in the Heisenberg group H,
equipped with its sub-Riemannian Carnot-Carathéodory metric d. (For a brief introduction
to the Heisenberg group and this metric, we refer the reader to [20, 21] and the references
in those papers.)

In [11, 20, 21], a notion of β-number was defined for subsets K of the Heisenberg
group as follows. If B is a ball in H, write

(1.13) βKH (B)rad(B) = inf
L

sup
x∈K∩B

dist(x, L),

where
dist(x, L) = inf{d(x, y) : y ∈ L}

and the infimum is taken over all so-called horizontal lines L in H. Sub-segments of
horizontal lines form a proper sub-class of all geodesics in the Heisenberg group.

By the Kuratowski embedding theorem, we may fix an isometric embedding ι : H →
`∞ and thus view H as a subset of `∞. (A different choice of embedding ι will not affect
the results described here, so we suppress it from the notation.)
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Given ι, we may view a curve Γ in H as also being a subset of `∞. Thus, we may
compare βH to the notion of βΓ, net

`∞
introduced earlier. Since horizontal lines in H are

geodesics, we have βKH (B) ≥ βK, net
`∞

(B).
Improving earlier work by Ferrari-Franchi-Pajot [11], Li and Schul [21] proved the

following analog of (1.2) in Theorem 1.1:

Theorem 1.10 ([21], Theorem A). Let r < 4 be fixed. There is a constant Cr > 0 such
that, for any K ⊆ H and multi-resolution family of balls G in K, if

diam(K) +
∑
B∈G

βKH (B)rdiam(B) <∞,

then there is a rectifiable curve Γ ⊆ E such that

H1(Γ) ≤ Cr

(
diam(K) +

∑
B∈G

βKH (B)rdiam(B)

)
.

If one starts with a curve Γ whose length is a definite factor larger than its diameter
(equation (9.1) below), and one considers the measure Mr on the multiresolution family
G defined by

Mr(G
′) =

∑
B∈G ′

βKH (B)rdiam(B)

for G ′ ⊆ G , then Theorem 1.10 implies that the mass of the whole collection G is bounded
below by a multiple of the length of Γ:

Mr(G ) &r H1(Γ).

The gap between the exponents p = 1 + ε in Corollary C and r = 4 − ε in Theorem
1.10 then leads to the following observation, which says that for q < r < 4 and “most”
balls in G (measured with respect to Mr), we have that

βΓ, net
`∞

(B) . βΓ
H(B)q.

Corollary E. Let Γ be a curve in the Heisenberg group whose length is sufficiently large
compared with its diameter (see (9.1)), with multiresolution family G having inflation
factor A = 10. Let q < 4, r ∈ (q, 4), and δ > 0. There is a constant c = cq,r,δ > 0 such
that if

(1.14) Gc,q = {B ∈ G : βΓ, net
`∞

(B) > cβΓ
H(B)q}

then
Mr(Gc,q) ≤ δH1(Γ) ≤ 2δCrMr(G ).

Corollary E indicates that the complement of Gc,q is a large set in the sense of Mr.
For balls in this complement, βΓ, net

`∞
(B) is either itself close to one, or much smaller than

βΓ
H(B). We note that Theorem I in [20] shows that M4(G ) . H1(Γ).

In Section 9, we present the short proof of Corollary E, and describe how, although
one can prove an analogous result in Euclidean spaces, the situations do indicate a genuine
difference between the Heisenberg group and Euclidean space.



SHARP NECESSARY CONDITION FOR RECTIFIABLE CURVES 9

Remark 1.11. In the setting of the Heisenberg groups there is also a connection of β
with singular integrals. An example of a recent result on this is [3]. See also [4] for more
general Carnot groups.

1.3. Structure of the paper

In Section 2, we establish the basic notations and definitions used in the paper. The proof
of Theorem A occupies Sections 3, 4, and 5.

More specifically, in Section 3, we divide the curve Γ into a family of “cubes” and
consider collections of cubes with β∞ ≈ 2−M/2 for each M ∈ N. For each M , we
associate to this collection of cubes a finite number of filtrations of Γ into arcs. We then use
these filtrations to separate each ball B ∈ G into one of two categories (flat or non-flat),
by comparing the flatness of arcs contained in B to β∞(B)2diam(B). More specifically,
in Section 3, we divide the curve Γ into a family of “cubes” and consider collections of
cubes with β∞ ≈ 2−M/2 for each M ∈ N. For each M , we associate to this collection of
cubes a finite number of filtrations of Γ into arcs. We then use these filtrations to separate
each ball B ∈ G into one of two categories (flat or non-flat), by comparing the flatness of
arcs contained in B to β∞(B)2diam(B).

The sum of β∞(B)pdiam(B) over non-flat balls is then controlled in Section 4 by
reducing to a sum over filtrations. The sum over flat balls is controlled in Section 5 using
a martingale argument, a modification of the one which appears in [29, 27].

Corollaries B, C, D, and E are then proven in Sections 6, 7, 8, and 9, respectively.

1.4. A table of β-numbers

Throughout the paper we define or reference various different notions of flatness for a set.
As these may be confusing to keep track of, we provide the following table of reference:
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Notation Description Definition location

βEuc
∞ Distance to lines in Rn (1.1)

∂1 Ordered triangle inequality deficit (2.2)

∂ Unordered triangle inequality deficit (2.3)

β∞ Supremum of ∂ (2.4)

α “Gromov-Hausdorff” distance to line segment (1.7)

βnet
`∞

Distance of net to geodesics in `∞ (1.8)

βX Distance to lines in Banach space X (1.9)

β1
µ Averaged distance to lines of a measure µ (1.12)

β̃∞ Supremum of ∂1 along an arc (2.5)

Acknowledgments. The authors would like to thank Jonas Azzam for helpful discus-
sions, and the anonymous referee for a detailed critique of the manuscript.

2. Notation and definitions

2.1. Balls, nets, and multiresolution families

For a metric space M , we denote balls in X by

B(x, r) = {y ∈ X : d(x, y) ≤ r}.

A ball is considered to be equipped with a center and radius (which may not be uniquely
defined by the ball seen only as a set). The radius ofB will sometimes be denoted rad(B).

If B = B(x, r) and λ > 0, then we write

λB = B(x, λr).

If E ⊆M , we say that X ⊆ E is an ε-net (or ε-separated net) for E if

(i) for all x1, x2 ∈ X we have dist(x1, x2) > ε

(ii) for all y ∈ E there exists x ∈ X such that dist(x, y) ≤ ε



SHARP NECESSARY CONDITION FOR RECTIFIABLE CURVES 11

Hence E ⊆
⋃
x∈X B(x, ε), given an ε-net X for E.

Fix a set E. Denote by XE
n a sequence of nested 2−n-nets for E. In other words, XE

n

are 2−n-nets for E such that XE
n+1 ⊆ XE

n for each n ∈ Z.

Definition 2.1. A multiresolution G for a set E (denoted by GE when not clear from
context) is defined by

GE = {B(x,A2−n) : x ∈ XE
n , n an integer}(2.1)

for a constant A > 1. The constant A may then be referred to as the inflation factor of G .

Remark 2.2. Throughout the proof of Theorem A in sections 3 through 5, most statements
will involve constants that depend on the inflation factor A in the given multiresolution
family G of the given curve Γ. To avoid repetition, we will not remark on this dependence
each time, though of course it is noted in the statement of Theorem A.

2.2. Curves and sub-arcs

Fix a compact, connected set Γ in a metric space with a doubling metric d. Without loss
of generality, when proving Theorem A, we may assume thatH1(Γ) ≤ 1.

In that case, there is a 2-Lipschitz (not necessarily injective) parametrization γ : T→
Γ, where T = R/Z, i.e., [0, 1] with 0 and 1 identified. (In [1], the statement with do-
main [0, 1] is attributed to Ważewski [31]. A proof with domain T can be found in [26,
Proposition 5.1] or, with a worse Lipschitz constant, in [27, Lemma 4.2].)

By scaling the metric on Γ, we may assume that γ is an arc-length (in particular,
1-Lipschitz) parametrization. Note that this implies that diam(Γ) ≤ 1.

An arc in Γ is the restriction γ|I of γ to a compact, connected subset I ⊆ T. We
denote by length(τ) the arc-length of τ (which is simply the length of I as γ is an arc-
length parametrization) and by diam(τ) the diameter of the image of τ , i.e., diam(γ(I)).

2.3. β-numbers

Let M be a metric space.
As in [27], for an ordered triple (x1, x2, x3) ∈M3 we define

(2.2) ∂1(x1, x2, x3) := dist(x1, x2) + dist(x2, x3)− dist(x1, x3).

We also define an unordered version of this quantity. Let {x1, x2, x3} ⊆ M be an un-
ordered triple, and set

(2.3) ∂(x1, x2, x3) = min
σ∈S3

∂1(xσ(1), xσ(2), xσ(3)) ,

where S3 is the permutation group on {1, 2, 3}. Equivalently,

∂(x1, x2, x3) := ∂1(x1, x2, x3),

whenever dist(x1, x2) ≤ dist(x2, x3) ≤ dist(x1, x3). We have for all {x, y, z} ⊆M

∂(x, y, z) ≤ diam{x, y, z},
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as well as

0 ≤ ∂(x, y, z) ≤ ∂1(x, y, z) ≤ 2diam{x, y, z},

where non-negativity follows from the triangle inequality.
Let E be a metric space. Let B be a ball of radius r. We define

(2.4) βE∞(B)2 = r−1 sup{∂(x, y, z) : x, y, z ∈ E ∩B}

If the E is understood, we suppress it from the notation and write simply β∞(B). See the
introduction, [12], and [28] for further background on this definition and how it relates to
Jones’s classical definition in [17].

We also define an ordered version of β∞ for arcs in the parametrization. For an interval
I and arc τ = γ|I ⊆ Γ, let

(2.5) β̃∞(τ)2diam(τ) = sup{∂1(γ(a), γ(b), γ(c)) : a < b < c ∈ I}.

3. Cubes, filtrations, and flat versus non-flat balls

We now begin proving Theorem A in earnest.
Let Γ be a doubling metric curve and let G be a multiresolution family for Γ, as

defined above. As remarked in subsection 2.2, we without loss of generality equip Γ with
a 1-Lipschitz parametrization γ : T→ Γ.

Fix a small absolute constant εβ > 0 and a large constant K ∈ N such that 2−K ≤
εβ

2/100. These will be defined to be sufficiently small in the course of the proof of
Theorem A.

3.1. Cubes

We first split our multiresolution family into a fixed number of disjoint subcollections,
using the following lemma from [27].

Lemma 3.1 (Lemma 2.14 of [27]). Let R > 0 be given. There is a P1 = P1(R) such that
one can write a disjoint union

G = G 1 ∪ · · · ∪ G P1 ,

such that, for each 1 ≤ p ≤ P , if B1, B2 ∈ G p have the same radius r, then

dist(B1, B2) ≥ Rr.

The number P1 depends only on R and the doubling constant of Γ.

Note that the proof of this lemma in [27] relies only on the doubling property of Γ,
and not its Ahlfors regularity.

Fix R > 10 sufficiently large depending on K, to be determined after Lemma 3.2
below, and apply Lemma 3.1 to obtain the disjoint decomposition

G = G 1 ∪ · · · ∪ G P1 .
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Given M ∈ N and 1 ≤ p1 ≤ P1, let

G p1

M = {B ∈ G p1 :
1

2
β∞(B)2 ∈ [2−M , 2−M+1)}.

We then split this collection further into

G p1

M = G p1

M,1 ∪ .... ∪ G p1

M,KM

as follows. For 1 ≤ i ≤ KM , set

G p1

M,i = {B ∈ G p1

M : r(B) = A2−nKM+i, n ∈ Z}.

Note that if B1, B2 ∈ G p1

M,i and have different radii r1 > r2, respectively, then

r2 ≤ 2−KMr1 ≤ 2−Kr1 .

Lemma 3.2. If R is sufficiently large, depending on K, then for each p1,M, i as above,
there exists a family Qp1

M,i of sets with the following properties:

(i) There is a bijection Q : G p1

M,i → Qp1

M,i such that

2B ⊆ Q(B) ⊆ (1 + 4 · 2−KM )2B.

(ii) If Q,Q′ ∈ Qp1

M,i, then Q ∩Q′ = ∅, Q ⊆ Q′, or Q′ ⊆ Q.

(iii) If B 6= B′ ∈ G ′ have the same radius, then Q(B) and Q(B′) are disjoint.

Proof. This construction is entirely contained in Proposition 2.15 of [27] and the preced-
ing discussion. 2

We call the elements of Qp1

M,i constructed by this lemma “cubes”. We note that they
are simple variants of Christ’s cubes [5].

In the construction of the lemma, we write B : Qp1

M,i → G p1

M,i for the inverse of the
map Q, so that B(Q) denotes the ball in G p1

M,i that gave rise to the cube Q. If Q ∈ Qp1

M,i,
we will write r(Q) and c(Q) to denote the radius and center of the ballB(Q), respectively,
and we define

β∞(Q) = β∞(B(Q)),

extending the definition of β∞ from balls to cubes.
For each 1 ≤ p1 ≤ P1, set

Qp1 =

∞⋃
M=1

KM⋃
i=1

Qp1

M,i,

Q =

P1⋃
p1=1

Qp1 .
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3.2. Defining partial filtrations by arcs

Given a cube Q ∈ Q, let

Λ(Q) = {γ|I : I ⊆ T, I = a connected component of γ−1(Q), γ(I) ∩B(Q) 6= ∅}.

In particular, since 2B(Q) ⊆ Q, this means that if τ ∈ Λ(Q), then diam(τ) ≥
r(B(Q)) ≥ 1

6diam(Q), where diam(τ) is always though of as the diameter of its image.
We need to know the following simple fact about our arcs:

Lemma 3.3. If Q,Q′ ∈ Qp1

M,i and η ∈ Λ(Q) and η ∈ Λ(Q′), then Q = Q′.

Proof. Assume that η ∈ Λ(Q) and η ∈ Λ(Q′) but Q 6= Q′

The assumption that η is in both Λ(Q) and Λ(Q′) implies that Q∩Q′ 6= ∅, and hence
that Q ⊆ Q′ or Q′ ⊆ Q. Assume without loss of generality that Q ⊆ Q′.

Let B = B(Q) have radius r and B′ = B(Q′) have radius r′. Note that we cannot
have r = r′, since if r = r′ then dist(B,B′) > Rr > 10r > diam(Q′), which is
impossible since both B and B′ are contained in Q′, which has diameter at most 3r.

Therefore we either have r < r′ or r′ < r. In either case, the ratio between the larger
and smaller of r and r′ is at least 2K > 10.

On the other hand, η ∈ Λ(Q) implies that

r ≤ diam(η) ≤ 5r

and similarly η ∈ Λ(Q′) implies that

r′ ≤ diam(η) ≤ 5r′.

This is a contradiction.
2

Next, for each positive integer M ∈ N and 1 ≤ i ≤ kM , we let

F p1

M,i = ∪{Λ(Q) : Q ∈ Qp1

M,i}

and endow it with the partial order given by containment.
We note that we do not expect any F p1

M,i to cover all of Γ, nor for each “level” of F p1

M,i

to cover the previous “level”. Thus, we consider F p1

M,i a “partial filtration” of γ.

3.3. Completing the partial filtrations

Our next goal is to complete each partial filtration F p1

M,i to a “full” filtration of the portion

of Γ covered by its maximal elements. In other words, we will define a collection F̂ p1

M,i

of arcs in Γ such that:
• For each k ≥ 0, the collection of arcs in F̂ p1

M,i with exactly k ancestors is a disjoint
(up to endpoints) cover of the union of maximal elements of F p1

M,i.

• F̂ p1

M,i ⊇ F p1

M,i
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We will perform this completion by starting with F p1

M,i and adding subarcs of T to
our filtration in a way which we now specify. The construction below has the following
property: if τ2 ⊆ τ1 are both in F p1

M,i and there is no arc τ ∈ F p1

M,i such that τ2 ⊆ τ ⊆ τ1,

then there will be no such arc τ ∈ F̂ p1

M,i either.

For each arc τ ∈ F̂ p1

M,i, we will define C(τ) to be the maximal elements in F̂ p1

M,i

contained in τ . We will write C(τ) = C1(τ) ∪ C2(τ), a disjoint (up to endpoints) union,
and refer to these as type I and type II children, where

C1(τ) = C(τ) ∩F p1

M,i

and
C2(τ) = C(τ) \F p1

M,i .

The filtration F̂ p1

M,i will always have roots in F p1

M,i.

In order to specify F̂ p1

M,i, we may simply specify C(τ) for τ ∈ F̂ p1

M,i. For τ /∈ F p1

M,i

we will always have C(τ) = τ . (In other words, type 2 children are never subdivided
further.) For τ ∈ F p1

M,i, the collection C1(τ) is given by maximal F p1

M,i elements inside
τ , and we need to specify C2(τ) such that τ can be written as a disjoint union ∪C(τ).

To this end, we will simply set C2(τ) to be any finite partition of τ \ ∪C1(τ) into arcs,
subject to the condition that

diam(η) ≤ 2−KMdiam(τ) for all η ∈ C2(τ).

Note that, by our choice of F p1

M,i, the above inequality is satisfied also when η ∈ C1(τ).

We have now completed our definition of C(τ) = C1(τ) ∪ C2(τ). The filtration F̂ p1

M,i

is then defined inductively beginning with the maximal elements of F p1

M,i and using the
C(τ) operation repeatedly.

3.4. Flat versus Non-flat balls and the two halves of Theorem A

In proving Theorem A, it is convenient to first dispose of the collection of balls that are
too large. Let G0 be the collection of balls B ∈ G such that diam(B) ≥ 1

10diam(Γ).
Then we have the following:

Lemma 3.4. For each p > 2,∑
B∈G0

β∞(B)pdiam(B) . length(γ),

where the implied constant depends only on p > 2 and the doubling constant of Γ.

Proof. Let n0 be the smallest integer such that A2−n ≥ 1
10diam(Γ). Each B ∈ G0 is

at scale 2−n for some n ≤ n0. By the doubling property of Γ, there are at most a fixed
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number D of balls B ∈ G0 at each such scale. Therefore

∑
B∈G0

β∞(B)pdiam(B) ≤
∑
B∈G0

(
diam(Γ)

rad(B)

)p/2
diam(B)

.
∞∑

n=−n0

diam(Γ)p/22n(1−p/2)

. diam(Γ)p/22−n0(1−p/2)

. diam(Γ)

≤ length(γ)

Note that above we used the fact that diam(Γ) . 1 which we had already assumed without
loss of generality in section 2.2. 2

We may now focus on balls B ∈ G \ G0. Note that for such balls,

rad(B) ≤ diam(B) ≤ 2rad(B).

We define two classes of balls in G \ G0 based on the notions defined in this section,
calling them colloquiually “non-flat” balls and ‘flat” balls. Let

G1 = {B ∈ G \ G0 : β̃∞(τ) > εββ∞(B) for some τ ∈ Λ(Q(B))}

G2 = {B ∈ G \ G0 : β̃∞(τ) ≤ εββ∞(B) for all τ ∈ Λ(Q(B))}

For each non-flat ball B with associated Q = Q(B), we will fix an arc τQ ∈ Λ(Q) which
satisfies

β̃∞(τ) > εββ∞(B).

We will show the following two propositions.

Proposition 3.5. For all p > 2,∑
B∈G1

β∞(B)pdiam(B) . length(γ).

The implied constant depends only on p and the doubling constant of Γ.

Proposition 3.6. For all p > 2,∑
B∈G2

β∞(B)pdiam(B) . length(γ).

The implied constant depends only on p and the doubling constant of Γ.

These two Propositions, along with Lemma 3.4, combine immediately to prove Theo-
rem A.
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4. Non-flat arcs and balls

In this section, we prove Proposition 3.5.
We begin with a few lemmas. Recall the definitions of ∂1 and ∂ from subsection 2.3.

Lemma 4.1. Let τ be an arc in some F̂ p1

M,i and let C(τ) be the partition of τ into its
children.

For each η ∈ C(τ) write a(η) and b(η) for the start and finish of η (in the domain of
τ ).

Let a, b, c ∈ Domain(τ) be three points that are each a start or end of an element in
C(τ) and such that a ≤ b ≤ c. Then

∂1(γ(a), γ(b), γ(c)) ≤
∑

η∈C(τ)

d(γ(a(η)), γ(b(η)))− d(γ(a(τ)), γ(b(τ))).

Proof. This is a direct application of the triangle inequality. 2

Now consider any Q ∈ Qp1

M,i and τ = γ|I ∈ Λ(Q). If t1 ≤ t2 ≤ t3 are in I , then, by
shifting each point ti to an endpoint of the arc in C(τ) containing it, we may find points
t′1 ≤ t′2 ≤ t′3 such that

d(γ(ti), γ(t′i)) ≤ 2−Kβ∞(Q)2diam(Q) for i = 1, 2, 3.

Therefore, if we write s(η) = γ(a(η)) and f(η) = γ(b(η)) for the start and end of an arc
in the image, we have

∂1(γ(t1), γ(t2), γ(t3)) ≤ ∂1(γ(t′1), γ(t′2), γ(t′3)) + 6 · 2−Kβ∞(Q)2diam(Q)

≤
∑

η∈C(τ)

d(s(η), f(η))− d(s(τ), f(τ)) + 6 · 2−Kβ∞(Q)2diam(Q).

Hence, we have proven the following lemma:

Lemma 4.2. For Q ∈ Qp1

M,i and τ ∈ Λ(Q), we have

β̃∞(τ)2diam(τ) ≤
∑

η∈C(τ)

dist(s(η), f(η))−dist(s(τ), f(τ))+62−Kβ∞(Q)2diam(Q).

If moreover B(Q) ∈ G1 (i.e., is non-flat) and τ = τQ, then

(4.1) β̃∞(τ)2diam(τ) ≤ 2

 ∑
η∈C(τ)

dist(s(η), f(η))− dist(s(τ), f(τ))


Equation (4.1) follows from the fact that

62−Kβ∞(Q)2diam(Q) <
1

2
β̃∞(τ)2diam(τ)

if τ = τQ, by our choice of K relative to εβ at the start of Section 2.3.
Equation (4.1) will be useful for us as it telescopes well. We can now control the sum

of β̃2
∞(τQ)diam(τQ) over a single family of non-flat cubes.
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Lemma 4.3. For each fixed M and i we have∑
Q∈Q

p1
M,i

B(Q)∈G1

β̃∞(τQ)2diam(τQ) ≤ 2length(γ).

Proof. Using Lemmas 3.3 and 4.2, we write∑
Q∈Q

p1
M,i

B(Q)∈G1

β̃∞(τQ)2diam(τ) =
∑

τ∈F
p1
M,i

τ=τQ, B(Q)∈G1

β̃∞(τQ)2diam(τ)

≤ 2
∑

τ∈F
p1
M,i

τ=τQ, B(Q)∈G1

 ∑
η∈C(τ)

d(s(η), f(η))− d(s(τ), f(τ))



≤ 2
∑

τ∈F̂
p1
M,i

 ∑
η∈C(τ)

d(s(η), f(η))− d(s(τ), f(τ))


≤ 2length(γ)

as the last sum telescopes and the total length is controlled by the total length of the
maximal elements of F p1

M,i, which is bounded by the length of γ. 2

We now prove Proposition 3.5.

Proof of Proposition 3.5. It suffices to show that∑
B∈G1

β∞(B)pdiam(B) . length(γ)

if p > 2, where the implied constant depends only on p, P1, εβ , and K.
We write, using the definition of G1 and Lemma 4.3:

∑
B∈G1

β∞(B)pdiam(B) =

P1∑
p1=1

∞∑
M=1

KM∑
i=1

∑
B∈G1

Q(B)∈Q
p1
M,i

β∞(B)pdiam(B)

≤
∞∑
M=1

2P1KM2−(p−2)(M−1)/2ε−2
β

∑
Q∈Q

p1
M,i

B(Q)∈G1

β̃∞(τQ)2diam(τQ)

≤
∞∑
M=1

4P1KM2−(p−2)(M−1)/2ε−2
β length(γ)

. length(γ),

2
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5. Flat arcs and balls

In this section, we prove Proposition 3.6.

5.1. Statement of the key intermediate proposition

For now, fix p1 ∈ {1, . . . , P1}, M ≥ 0, and i ∈ {1, . . . ,KM}. Consider the associated
collection of non-flat cubes

∆ = ∆p1

M,i = {Q ∈ Qp1

M,i : B(Q) ∈ G2.}

Recall that these are cubes for which all arcs in Λ(Q) are flat.
In proving Proposition 3.6, the main step will be to show the following.

Proposition 5.1. There is an absolute constant c > 0 with the following property. Let
B ∈ G2 ∩ G p1

M,i with Q = Q(B) the associated cube in ∆. Write

(5.1) Q = RQ ∪
⋃
Qj

where Qj are maximal subcubes of Q in ∆ and RQ is the remainder.
Then

(5.2) length(RQ) +
∑

diam(Qj) ≥ (1 + cβ∞(B)2)diam(Q).

Here c is fixed after choosing εβ . The relationship between K and εβ is also used.
Once we establish Proposition 5.1, Proposition 3.6 will follow by a martingale argu-

ment similar to those in [27, 29]. This will be done in subsection 5.3.

5.2. Proof of Proposition 5.1

We continue to use the same notation and assumptions as fixed at the start of subsection
5.1: B ∈ G2 ∩ G p1

M,i, Q = Q(B) ∈ ∆.
Let ξ ∈ Λ(B) be an arc passing through the center of B.
As in Proposition 5.1, we write

Q = RQ ∪
⋃
Qj ,

where Qj are maximal subcubes of Q in ∆ and RQ is the remainder.
Our goal in this subsection is to prove Proposition 5.1 for B.
We will do this by way of the following two lemmas:

Lemma 5.2. For all C1 ≥ 1, if εβ satisfies εβ−2 > 60C1, then the following holds:

(5.3) length(RQ \ ξ) +
∑

j:Qj∩ξ=∅

diam(Qj) ≥ C1εβ
2β∞(B)2diam(Q).

Lemma 5.3. We have

(5.4) length(RQ ∩ ξ) +
∑

j:Qj∩ξ 6=∅

diam(Qj) ≥ (1− ε3β∞(B)2)diam(Q),

where
ε3 = 16 · 2−K + εβ

2.
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First we observe that Proposition 5.1 for B follows from these two lemmas:

Proof of Proposition 5.1. Lemmas 5.2 and 5.3 combine to show that (5.2) holds with

c = C1εβ
2 − 16 · 2−K − εβ2.

We have chosen K such that 2−MK ≤ 2−K < εβ
2, and C1 can be chosen such that C1 ≥

20. This yields (5.2) for the ball B with c ≥ 4εβ
2, which suffices to prove Proposition

5.1. 2

Now we work to prove Lemmas 5.2 and 5.3.

Proof of Lemma 5.2. To prove Lemma 5.2, it suffices to find a single point x ∈ B such
that

(5.5) dist(x, ξ) ≥ 3C1εβ
2β∞(B)2diam(Q).

Indeed, if x satisfies (5.5), then there is an arc η containing x of diameter at least

C1εββ∞(B)2diam(Q)

and whose distance from ξ is at least

C1εβ
2β∞(B)2diam(Q) ≥ 2 · 2−Kdiam(Q) ≥ 2diam(Qj) for all j.

It follows that (5.3) holds for B.
Suppose, therefore, that there was no such point x ∈ B. In that case, for any points

x1, x2, x3 ∈ B, we can find x′1, x
′
2, x
′
3 ∈ ξ such that

d(xi, x
′
i) ≤ 3C1εββ∞(B)2diam(Q) for i = 1, 2, 3.

Hence

∂(x1, x2, x3) ≤ 9C1εβ
2β∞(B)2diam(Q) + ∂(x′1, x

′
2, x
′
3)

≤ 9C1εβ
2β∞(B)2diam(Q) + β̃∞(ξ)2diam(ξ)

≤ 54C1εβ
2β∞(B)2diam(B) + 6εβ

2β∞(B)2diam(B)

≤ 60C1εβ
2β∞(B)2diam(B).

Since xi were arbitrary in B, it follows that

β∞(B)2diam(B) ≤ 60C1εβ
2β∞(B)2diam(B),

which is a contradiction for εβ2 < 1/(60C1). 2

Proof of Lemma 5.3. By assumption,

2−(M+1) ≤ 1

2
β∞(B)2 ≤ 2−M .
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Recall that
diam(Q) ≤ (1 + 4 · 2−KM )diam(2B).

Write [a, c] = Domain(ξ), so that O1 := γ(a) and O2 := γ(c) are in ∂Q. (Note that
γ must both enter and exit Q, since B(Q) /∈ G0.) There is also b ∈ (a, c) such that
O := γ(b) is the center of B.

Hence,

d(O1, O2) = d(O1, O) + d(O,O2)− ∂1(a, b, c)

≥ 2rad(2B)− β̃∞(ξ)2diam(ξ)

≥ diam(Q)− 4 · 2−KMdiam(Q)− εβ2β∞(B)2diam(Q)

= (1− 4 · 2−KM − εβ2β∞(B)2)diam(Q)

≥ (1− (8 · 2−(K−1)M + εβ
2)β∞(B)2)diam(Q).

We may therefore set

ε3 = 16 · 2−K + εβ
2 ≥ 8 · 2−(K−1)M + εβ

2.

2

5.3. Proof of Proposition 3.6

All that remains to prove Theorem A is to prove Proposition 3.6.
We begin by summing over a fixed family ∆ = ∆p1

M,i as defined at the beginning of
this section.

Proposition 5.4. For each p > 2, we have∑
B:Q(B)∈∆

β∞(B)pdiam(B) . 2−( p2−1)M length(γ)

where the implied constant depends only on p and the constant c from Proposition 5.1.

Proof. To begin, suppose that ∆ is a finite collection of cubes. Let ` denote the measure
on Γ given by pushing forward Lebesgue measure under the arc-length parametrization
γ : T→ Γ.

For each cube Q ∈ ∆, we will construct a weight wQ : Q → [0,∞) satisfying three
conditions:

(i)
�
Q
wQd` ≥ diam(Q)

(ii) for almost every x0 ∈ Γ,
∑
Q∈∆

wQ(x0) < C2M ,

where C is a positive constant depending only on c

(iii) supp(wQ) ⊆ Q.
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We will construct wQ as a martingale. We denote by wQ(Z) :=
�
Z
wQd`. Set

wQ(Q) = diam(Q).

Assume now that wQ(Q′) is defined. We define wQ(Q′i) and wQ(RQ′), where

Q′ = (∪Q′i) ∪RQ′ .

is a decomposition as given by equation (5.1).
Take

wQ(RQ′) =
wQ(Q′)

s′
length(RQ′)

and

wQ(Q′i) =
wQ(Q′)

s′
diam(Q′i),

where
s′ = length(RQ′) +

∑
i

diam(Q′i).

This will give us wQ. Note that s′ . length(Γ ∩Q′). Clearly (i) and (iii) are satisfied. To
see (ii):

wQ(Q′i
∗
)

diam(Q′i∗)
=
wQ(Q′)

s′

=
wQ(Q′)

diam(Q′)

diam(Q′)

s′

=
wQ(Q′)

diam(Q′)

diam(Q′)

length(RQ′) +
∑
i

diam(Q′i)

≤ wQ(Q′)

diam(Q′)

1

1 + c′2−M

for c′ depending only on c (the ultimate inequality followed from Proposition 5.1.
And so,

wQ(Q′i
∗
)

diam(Q′i∗)
≤ q wQ(Q′)

diam(Q′)

with q = 1
1+c′2−M

.
Now, suppose that x ∈ QN ⊆ ... ⊆ Q1. we get:

wQ1(QN )

diam(QN )
≤ q wQ1(QN−1)

diam(QN−1)

≤ ...

≤ qN−1 wQ1
(Q1)

diam(Q1)
= qN−1.
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Hence, we have wQ1(x) . qN−1. This will give us (ii) as a sum of a geometric series,
since ∑

qn =
1

1− q
.

1

2−M
= 2M .

Now, ∑
B:Q(B)∈∆

β∞(B)pdiam(B) . 2−(p/2)M
∑

B:Q(B)∈∆

diam(B)

. 2−(p/2)M
∑

B:Q(B)∈∆

�
wQ(B)(x)d`(x)

= 2−(p/2)M

� ∑
B:Q(B)∈∆

wQ(B)(x)d`(x)

. 2−(p/2)M

�
2Md`(x)

. 2−( p2−1)M length(γ).

2

Finally, we complete the proof of Proposition 3.6 by summing over all p1,M, i:

Proof of Proposition 3.6. We have, for p > 2,

∑
B∈G2

β∞(B)pdiam(B) =

P1∑
p1=1

∞∑
M=1

KM∑
i=1

∑
B:Q(B)∈∆

p1
M,i

β∞(B)pdiam(B)

≤
∞∑
M=1

P1KM2−( p2−1)M length(γ)

. length(γ),

where the implied constant depends only on p and the doubling constant of Γ.
To conclude, the case where ∆ is infinite is obtained as a limit, as our bounds do not

depend on the cardinality of ∆. 2

6. “Gromov-Hausdorff” β numbers

Recall the definition of α from subsection 1.2.1. In this section, we will relate α to β∞
for metric curves, and obtain Corollary B as a corollary of Theorem A.

6.1. Orders and preliminary lemmas

To prove Corollary B, a useful notion is that of an order of a set in a metric space, as
defined by Hahlomaa in [12].
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Definition 6.1. Let E be a subset of a metric space M . An order on E is an injective map
o : E → R such that

o(x) < o(y) < o(z)⇒ d(x, z) > max{d(x, y), d(y, z)}

for all x, y, z ∈ E.

Note that if o is an order on E and x, y, z ∈ E satisfy o(x) < o(y) < o(z), then

∂(x, y, z) = ∂1(x, y, z).

A key fact about orders is the following lemma of Hahlomaa.

Lemma 6.2 (Lemma 2.3 of [12]). Let K ≥ 1 and ε > 0. Suppose that E is a metric
space such that

(i) d(x, y) ≤ Kd(z, w) for all x, y, z, w ∈ E with z 6= w,

(ii) d(x, z) ≥ d(x, y)+εd(y, z) whenever x, y, z ∈ E satisfy d(x, z) = diam({x, y, z}),

(iii) ε3 ≥ 4K−1
4K+1 , and

(iv) ]E 6= 4.

Then E has an order.

We will now use Lemma 6.2 to show that nets in balls with sufficiently small β∞ can
be ordered. Two versions of this result will be useful.

Lemma 6.3. Let Γ be a compact connected set in a metric spaceM , and letB = B(p,A ·
2−n) be a ball centered on Γ. Assume that A ≥ 10 and

β∞(B)2 ≤ (24A2(16A+ 1))−1 ≤ 1/40.

(i) If E is a ηdiam(B)-net for B ∩ Γ, for η = 2β∞(B), then E has an order.

(ii) If diam(B) < 1
10diam(Γ), Xn+1 is a 2−(n+1)-net for Γ, and N = Xn+1 ∩B, then

N has an order.

Proof. We begin with (i). Let
η = 2β∞(B),

and let E be a maximal ηdiam(B)-net in B. We first work to show that E satisfies the
assumptions i, ii, iii, and iv of Lemma 6.2, with appropriate choice of K and ε. We verify
these assumptions in equations (6.1), (6.2), (6.3), and (6.4) below.

It follows immediately from the definition of E that if we set K = 1/η, then

(6.1) d(x, y) ≤ Kd(z, w) for all x, y, z, w ∈ E with z 6= w.
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Moreover, if {x, y, z} ⊆ E is such that d(x, z) = diam{x, y, z}, then

d(x, z) = d(x, y) + d(y, z)− ∂1(x, y, z)

≥ d(x, y) + d(y, z)− β∞(B)2diam(B)

= d(x, y) + d(y, z)−
(η

4

)
ηdiam(B)

= d(x, y) + d(y, z)−
(η

4

)
d(y, z)

≥ d(x, y) + (1− η

4
)d(y, z).

Setting ε = 1− η
4 , we get

(6.2) d(x, z) ≥ d(x, y) + εd(y, z).

Note that

(6.3) ε3 =
(

1− η

4

)3

≥ 1− 3η

4
≥ 1− 2η

1 + η
=

4K − 1

4K + 1
.

Lastly, since η ≤ 1/20, the number of points m in E must satisfy

1

2
diam(B) ≤ H1

∞(B) ≤ m · 2ηdiam(B)⇒ m ≥ 5.

(HereH1
∞ denotes the Hausdorff content.) In other words,

(6.4) ]E ≥ 5.

The four equations (6.1), (6.2), (6.3), and (6.4) verify the assumptions of Lemma 6.2,
and hence there is an order on E.

The proof of statement (ii) in this lemma is quite similar:
As above, we first show that N satisfies the assumptions of Lemma 6.2, with appro-

priate choice of K and ε. These assumptions are equations (6.5), (6.6), (6.7), and (6.8)
below.

If we set K = 4A, then

(6.5) d(x, y) ≤ Kd(z, w) for all x, y, z, w ∈ N with z 6= w.

Moreover, if {x, y, z} ⊆ N is such that d(x, z) = diam{x, y, z}, then

d(x, z) = d(x, y) + d(y, z)− ∂1(x, y, z)

≥ d(x, y) + d(y, z)− β∞(B)2diam(B)

= d(x, y) + d(y, z)− 4Aβ∞(B)2d(y, z)

≥ d(x, y) + (1− 4Aβ∞(B)2)d(y, z).

Setting ε = 1− 4Aβ∞(B)2, we get

(6.6) d(x, z) ≥ d(x, y) + εd(y, z).
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Note that

(6.7) ε3 ≥ 1− 12Aβ∞(B)2 ≥ 1− 4A

24A2(16A+ 1)
≥ 4K − 1

4K + 1
.

Lastly, since A ≥ 10 and B does not contain all of Γ, the number of points m in N
must satisfy

(6.8) A · 2−n ≤ H1
∞(B) ≤ m · 2−(n+1) ⇒ m ≥ 2A ≥ 5.

The four equations (6.5), (6.6), (6.7), and (6.8) verify the assumptions of Lemma 6.2,
and hence N has an order. 2

6.2. Proof of Corollary B

We now relate our notions of β∞ and ε(I):

Lemma 6.4. For any curve Γ and any ball B = B(z, r) ⊆ Γ, there is a 1-Lipschitz
mapping I : B → (−r, r) such that

ε(I) ≤ Cβ∞(B)diam(B),

where C is an absolute constant.

Proof. We may assume, by taking C sufficiently large, that β∞(B) ≤ (24A2(16A +
1))−1.

Let E be an ηdiam(B)-net in B, where η = 2β∞(B). Lemma 6.3(i) grants us an
order o on E. We order the set E according to o and write

E = {x1, x2, . . . , xn}

with o(xi) < o(xj) for all 1 ≤ i < j ≤ n.
Let f : B → R be the map

f(x) = d(x1, x).

Note that f is 1-Lipschitz and therefore maps B into a closed interval of length at most
2r.

We now claim that f satisfies the condition

(6.9) ||f(x)− f(y)| − d(x, y)| ≤ β∞(B)2diam(B)

for all x, y ∈ E. Since f is 1-Lipschitz,

|f(x)− f(y)| ≤ d(x, y) for all x, y ∈ E.

On the other hand, consider xi and xj in E with i < j. Using the order, we see immedi-
ately that f(xj)− f(xi) ≥ 0. In addition,

f(xj)− f(xi) = d(x1, xj)− d(x1, xi)

= d(xi, xj)− ∂(x1, xi, xj)

≥ d(xi, xj)− β∞(B)2diam(B).
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which completes the proof of (6.9).
Now consider arbitrary points x′, y′ ∈ B, not necessarily in E. Let x and y be corre-

sponding points of E within distance ηdiam(B) of x′ and y′, respectively.
It follows that

||f(x′)− f(y′)| − d(x′, y′)| ≤ 4ηdiam(B) + ||f(x)− f(y)| − d(x, y)|
≤ 4ηdiam(B) + β∞(B)2diam(B)

≤ 9β∞(B)diam(B).

Lastly, we may postcompose f with a translation so that the center of B maps to
0 ∈ R. This yields a 1-Lipschitz map I : B → (−r, r) such that

ε(I) ≤ Cβ∞(B)diam(B),

as desired. 2

For the next lemma, we recall some of the notation used in the proof of Theorem
A. In particular, suppose we have a doubling curve Γ and a 1-Lipschitz parametrization
γ : T→ Γ as in the start of subsection 2.2. We will use the notion of β̃∞(τ) for an arc τ of
γ defined in subsection 2.3. We will also use the “cube” decomposition and the division
of G into families G p1

M,i given in subsection 3.1, and the distinction between “non-flat”
balls G1 and “flat” balls G2 given in subsection 3.4.

If B is a ball in Γ, we use the notation Λc(B) to denote the connected components of
γ−1(B) whose images contain the center of B.

Lemma 6.5. Let Γ be a curve in a metric space and B = B(z, r) ∈ G \ G0 a ball in the
multiresolution family. Let

I : B → (−r, r)

be the mapping provided by Lemma 6.4. Lastly, let τ ∈ Λc(B).
Then

δ(I) ≤ C ′(β̃∞(τ)2r + β∞(B)r),

where C ′ is an absolute constant.

Proof. We parametrize Γ by γ as in subsection 2.2.
We first argue, similarly to Lemma 5.3, that

(6.10) diam(τ) ≥ 2r − β̃∞(τ)2r.

for some absolute constant c > 0. Indeed, let τ = γ[a,b], so thatO1 = γ(a) andO2 = γ(b)
lie on ∂B. Let O = γ(c) be the center of B, for some c ∈ (a, b).

Then

d(O1, O2) = 2r − ∂1(O1, O,O2)

≥ 2r − β̃∞(τ)2diam(τ),

which proves (6.10).
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It now follows from (6.10), and the properties of our chosen I , that I(τ) ⊆ I(B) ⊆
(−r, r) contains an interval of length at least

2r − β̃∞(τ)2r − Cβ∞(B)r.

Hence δ(I) ≤ β̃∞(τ)2r + Cβ̃∞(B)r. 2

Proof of Corollary B. We have immediately from Lemmas 6.4 and 6.5 that

α(B)r . β∞(B)r + β̃∞(τ)2r

for each B = B(z, r) ∈ G \ G0 and τ ∈ Λc(B).
We therefore have, for p > 2, that

(6.11)∑
B∈G\G0

α(B)prad(B) .
∑

B∈G\G0

β∞(B)pdiam(B) +
∑

B∈G\G0

β̃∞(τB)2pdiam(B),

where B 7→ τB is any function that maps each ball B ∈ G \ G0 to an arc τ ∈ Λc(B).
The first sum on the right hand side of (6.11) is bounded by length(γ), up to a constant

depending only on p and the doubling constant of Γ, by Theorem A. It remains to bound
the second sum, which we do using Lemma 4.3, similarly to the proof of Proposition 3.5.

Recall the division of G into families G p1

M,i for p1 ∈ {1, . . . , P1}, M ∈ N, and
i ∈ {1, . . . ,KM}, and the construction of families of cubes QM,i. For each choice
of p1,M, i, let

G p1,∗
M,i = {B ∈ G p1

M,i : β̃∞(τ) ≤ β∞(B) for all τ ∈ Λc(B)},

G p1,∗∗
M,i = {B ∈ G p1

M,i : β̃∞(τ) > β∞(B) for some τ = τB ∈ Λc(B)},
In that case, we control the third term in equation (6.11) as follows:∑

B∈G\G0

β̃∞(τB)2pdiam(B) =

P1∑
p1=1

∞∑
M=1

KM∑
i=1

∑
B∈G

p1,∗
M,i

β̃∞(τB)2pdiam(B)

+

P1∑
p1=1

∞∑
M=1

KM∑
i=1

∑
B∈G

p1,∗∗
M,i

β̃∞(τB)2pdiam(B)

≤
P1∑
p1=1

∞∑
M=1

KM∑
i=1

∑
B∈G

p1,∗
M,i

β∞(τB)2pdiam(B)(6.12)

+

P1∑
p1=1

∞∑
M=1

KM∑
i=1

∑
B∈G

p1,∗∗
M,i

β̃∞(τB)2pdiam(B)

We control the first main sum in (6.12) simply by Theorem A. For the second main sum
in (6.12), notice that each ball in B ∈ G p1,∗∗

M,i is non-flat, i.e., in G1. By Lemma 4.3, we
can therefore control each innermost sum in the second main sum of (6.12) by∑

B∈G
p1,∗∗
M,i

β̃∞(τB)2pdiam(B) .
∑

Q∈Q
p1
M,i

B(Q)∈G1

β̃∞(τQ)2pdiam(τQ) . length(γ),
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where τQ is an extension of τB to an arc in Λ(Q).
Hence, the second main sum in (6.12) is controlled by

P1∑
p1=1

∞∑
M=1

KM∑
i=1

∑
B∈G

p1,∗∗
M,i

β̃∞(τB)2pdiam(B)

≤
∞∑
M=1

2P1KM2−(2p−2)(M−1)/2
∑

Q∈Q
p1
M,i

B(Q)∈G1

β̃∞(τQ)2diam(τQ)

.
∞∑
M=1

P1KM2−(2p−2)(M−1)/2length(γ)

. length(γ).

This completes the proof.
2

7. β numbers for nets in `∞

Recall the notion of βΓ, net
`∞

from subsection 1.2.2.
In the proof of Corollary C, we will use the following notation: We say that an n-tuple

of points (x1, . . . , xn) in `∞ is ordered if the map o(xi) = i is an order in the sense of
Hahlomaa. (See Definition 6.1.) In other words, the n-tuple is ordered when

‖xi − xk‖ > max{‖xi − xj‖, ‖xj − xk‖} for each i ≤ j ≤ k.

We say that the n-tuple is r-separated, for some r ≥ 0, if ‖xi − xk‖ ≥ r for each i, j.
Corollary C will follow from Lemma 7.1 below and our main result, Theorem A.

Lemma 7.1. Let (x1, x2, . . . , xn) be an ordered n-tuple of r-separated points in `∞.
Assume that

h = sup
i<j<k

∂1(xi, xj , xk) < r/200.

Then there is a geodesic L ⊆ `∞ such that

sup
1≤i≤n

dist(xi, L) ≤ 15h.

Proof of Corollary C. As in the proof of Theorem A, we must first dispose of the balls
that are “too large”. Namely, let

G0 = {B ∈ G : diam(B) ≥ 1

10
diam(Γ)}.

Let n0 be the smallest integer such that A2−n ≥ 1
10diam(Γ). Then, as in Lemma 3.4,

we have that each B ∈ G0 is at scale 2−n for some n ≤ n0. By the doubling property of
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Γ, there are at most a fixed number D of balls B ∈ G0 at each such scale. Therefore∑
B∈G0

βΓ, net
`∞

(B)pdiam(B) ≤
∑
B∈G0

(
diam(Γ)

rad(B)

)p
diam(B)

.
∞∑

n=−n0

diam(Γ)p2n(1−p)

. diam(Γ)p2−n0(1−p)

. diam(Γ)

≤ length(γ)

To complete the proof of Corollary C, it suffices to show that for each ball B ∈ G \G0

from the multiresolution family of Γ,

(7.1) βΓ, net
`∞

(B) . β∞(B)2,

with an absolute implied constant, as we can then apply Theorem A.
By adjusting the implied constant in (7.1), we may assume that β∞(B)2 is small

enough so that Lemma 6.3 is applicable.
Given a ball B ∈ G \ G0, write {x1, . . . , xn} = Xn+1 ∩B, where Xn+1 is the net at

scale 2−(n+1) of Γ.
By Lemma 6.3(ii), we may re-number the points so that the n-tuple (x1, . . . , xn) is

ordered. Moreover, it is r-separated for r = 2−(n+1) & rad(B).
Let

h = sup
i<j<k

∂1(xi, xj , xk) ≤ β∞(B)2rad(B).

If h ≥ r/200, then (7.1) holds automatically, since r & rad(B).
Otherwise, Lemma 7.1 implies that

βΓ, net
`∞

(B) .
15h

rad(B)
. β∞(B)2.

2

Remark 7.2. Lemma 7.1 is false in Euclidean space. For example, consider the three
1-separated points x1 = (0, 0), x2 = (1, t), x3 = (2, 0) in R2. In this case,

sup
i<j<k

∂1(xi, xj , xk) . t2

but
sup
i

dist(xi, L) & t.

for any geodesic (line) L in Euclidean space.

We now focus on building up some preliminary facts needed for the proof of Lemma
7.1. For a point x in `∞, we write x = (xm)∞m=1.
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Lemma 7.3. Let S = (x1, x2, . . . , xn) be an n-tuple of points in `∞. Assume that

|x1
1 − x1

n| = ‖x1 − xn‖.

(a) If
∂1(xi, xj , xk) ≤ h

for each i < j < k, then

‖xi − xj‖ ≤ |x1
i − x1

j |+ 2h

for each i, j.

(b) If (x1, . . . , xn) is ordered and

‖xi − xj‖ = |x1
i − x1

j |

for each i < j < k, then
∂1(xi, xj , xk) = 0

for each i < j < k.

Proof. We begin with (a). To the contrary, suppose we had i < j such that

‖xi − xj‖ > |x1
i − x1

j |+ 2h.

Then

|x1
1 − x1

n| = ‖x1 − xn‖
= ‖x1 − xi‖+ ‖xi − xj‖+ ‖xj − xn‖ − ∂1(x1, xi, xn)− ∂1(xi, xj , xn)

≥ ‖x1 − xi‖+ ‖xi − xj‖+ ‖xj − xn‖ − 2h

> |x1
1 − x1

i |+ |x1
i − x1

j |+ |x1
j − x1

n|
≥ |x1

1 − x1
n|,

which is a contradiction.
For (b), we use the order to write

∂1(xi, xj , xk) = ‖xi − xj‖+ ‖xj − xk‖ − ‖xi − xk‖
= |x1

i − x1
j |+ |x1

j − x1
k| − |x1

i − x1
k|

= ∂(x1
i , x

1
j , x

1
k)

= 0.

2

Lemma 7.4. Let E ⊆ R be non-empty and let f : E → R satisfy

(7.2) |f(x)− f(y)| ≤ |x− y|+ t

for some t ≥ 0 and all x, y ∈ E.
Then there is a 1-Lipschitz g : R→ R such that

|g(z)− f(z)| ≤ t

for all z ∈ E.
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Proof. Define

g(x) = inf{f̃(x) : f̃ : R→ R 1-Lipschitz, f̃(z) ≥ f(z) for all z ∈ E}.

Note that for any x, z ∈ E, we have

f̃z(x) := |x− z|+ f(z) + t ≥ f(x)

and so this f̃z is admissible in the above infimum.
This shows, first of all, that g is finite onE and hence a 1-Lipschitz function satisfying

g ≥ f on E. (See, e.g., [15, Lemma 6.3].) Moreover, for each z ∈ E, we have

|g(z)− f(z)| = g(z)− f(z) ≤ f̃z(z)− f(z) = t,

which completes the proof. 2

Lemma 7.5. Let (x1, x2, . . . , xn) be an ordered n-tuple of r-separated points in `∞.
Assume that

∂1(xi, xj , xk) ≤ h < r

10

for each i < j < k.
Then there is an ordered n-tuple (z1, . . . , zn) of r/2-separated points in `∞ and a

coordinate i0 ∈ N such that
‖zi − xi‖ ≤ h

for each i and
|zi01 − zi0n | = ‖z1 − zn‖.

Proof. We may find an i0 ∈ N such that

|xi01 − xi0n | ≥ ‖x1 − xn‖ − h.

We then increase or decrease xi01 by h so that

(7.3) |xi01 − xi0n | = ‖x1 − xn‖,

holds. We relabel the resulting point z1. Let zi = xi for i ≥ 2.
Of course, we have ‖zi− xi‖ ≤ h for each i, and so the {zi} have mutual distances at

least r − 2h ≥ r/2. It remains only to show that (z1, . . . , zn) is ordered.
If i < j < k, then

‖zi − zk‖ = ‖zi − zj‖+ ‖zj − zk‖ − ∂1(zi, zj , zk) > max(‖zi − zj‖, ‖zj − zk‖),

using the fact that ∂1(zi, zj , zk) ≤ ∂1(xi, xj , xk) + 6h ≤ h+ 6h < r − 2h.
2

Finally, we prove Lemma 7.1.
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Proof of Lemma 7.1. Let (x1, x2, . . . , xn) be an ordered n-tuple of r-separated points in
`∞. Assume that

∂1(xi, xj , xk) ≤ h < r

1000
for all i < j < k.

We would like to find a geodesic L in `∞ such that

dist(xi, L) ≤ 15h

for each i ∈ {1, . . . , n}.
We begin by applying Lemma 7.5 to find an ordered n-tuple (z1, . . . , zn) of r/2-

separated points in `∞ and a coordinate i0 ∈ N such that

‖zi − xi‖ ≤ h

for each i and
|zi01 − zi0n | = ‖z1 − zn‖.

Note that we have
∂1(zi, zj , zk) ≤ h+ 6h = 7h

for each i < j < k. We set r′ = r/2 and h′ = 7h. Note that h′ < r′/20.
For the remainder of the proof, we will assume without loss of generality that i0 = 1,

which we can achieve by reordering the coordinates.
Fix m ≥ 2 for the moment. By Lemma 7.3(a), we have that

|zmi − zmj | ≤ ‖zi − zj‖ ≤ |z1
i − z1

j |+ 2h′

for all i, j.
Let E = {z1

1 , . . . , z
1
n} ⊆ R and define fm : E → R by fm(z1

i ) = zmi . The function
fm then satisfies the “coarse 1-Lipschitz” property (7.2), with t = 2h′. By Lemma 7.4,
there is a 1-Lipschitz gm : R→ R satisfying

(7.4) |gm(z1
i )− zmi | = |gm(z1

i )− fm(z1
i )| ≤ 2h′.

We now use each gm, for m ≥ 2, to define points y1, . . . , yn ∈ `∞. For i ∈
{1, . . . , n}, let

yi = (z1
i , g2(z1

i ), g3(z1
i ), . . . ).

Because of (7.4) and the definition of fm, we have

‖yi − zi‖ ≤ 2h′

for each i.
It follows, first of all, that (y1, . . . , yn) is ordered just as (z1, . . . , zn) is. Indeed, if

i < j < k, then

‖yi − yk‖ = ‖yi − yj‖+ ‖yj − yk‖ − ∂1(yi, yj , yk) ≥ max(‖yi − yj‖, ‖yj − yk‖),

using the fact that ∂1(yi, yj , yk) ≤ ∂1(zi, zj , zk) + 6h′ ≤ h′ + 6h′ < r′ − 4h′.
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Furthermore, since each gm is 1-Lipschitz, we have that

|y1
i − y1

j | = |z1
i − z1

j | ≥ |gm(z1
i )− gm(z1

j )| = |ymi − ymj |

for each i, j ∈ {1, . . . , n} and m ≥ 2, and so

‖yi − yj‖ = |y1
i − y1

j |

for each i, j ∈ {1, . . . , n}.
Therefore, Lemma 7.3(b) implies that

(7.5) ∂1(yi, yj , yk) = 0

for all i < j < k.
It follows that the union of line segments [y1, y2] ∪ [y2, y3] ∪ · · · ∪ [yn−1, yn] is a

geodesic segment passing within distance 2h′ of each zi. This segment can then be ex-
tended to a bi-infinite geodesic L ⊆ `d∞ with the same property.

Finally, since ‖zi − xi‖ ≤ h for each i, we see that

dist(xi, L) ≤ h+ 2h′ = 15h

for each i, which completes the proof.
2

8. β numbers in uniformly convex Banach spaces

In this section, we prove the following:
Lemma 8.1. Let (X, ‖·‖) be a Banach space with modulus of convexity δ satisfying (1.11)
with c > 0 and q ≥ 2. Let Γ ⊆ X be a compact, connected subset. Then

βX
Γ(B) . β∞

Γ(B)2/q

for each ball B in X with diam(B) ≤ 1
10diam(Γ).

The implied constant depends only on c and q.
Using Theorem A, we will then obtain Corollary D.

Proof of Corollary D. Let X be a Banach space satisfying the assumptions of the corol-
lary and let Γ be a doubling curve in X with a multiresolution family G .

Exactly as in the proof of Corollary C, it suffices to show that∑
B∈G\G0

βX
Γ(B)pdiam(B) . H1(Γ),

where
G0 = {B ∈ G : diam(B) ≥ 1

10
diam(Γ)}.

Using Lemma 8.1 and Theorem A, we get∑
B∈G\G0

βX
Γ(B)pdiam(B) .

∑
B∈G\G0

βX
Γ(B)2p/qdiam(B) . H1(Γ),

which completes the proof. 2
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We now focus on proving Lemma 8.1.

Lemma 8.2. Let (X, ‖·‖) be a Banach space with modulus of convexity δ satisfying (1.11)
with c > 0 and q ≥ 2. Let x, y, z be three points in X with diam({x, y, z}) ≤ r, and let
L denote the line through x and z. Then(

dist(y, L)

r

)q
r . ∂1(x, y, z).

The implied constant depends only on c and q.

Proof. Assume that y /∈ L, otherwise the lemma is trivial.
Let y0 denote a point on the segment [x, z] ⊆ L such that

(8.1)
‖y0 − x‖

‖y0 − x‖+ ‖y0 − z‖
=

‖y − x‖
‖y − x‖+ ‖y − z‖

Note that the quantity on the right side of (8.1) is in [0, 1], and the quantity on the left side
ranges continuously from 0 to 1 as y0 moves from x to z in the segment [x, z], so such a
y0 exists. By simple algebra, this y0 also satisfies

(8.2)
‖y0 − z‖

‖y0 − x‖+ ‖y0 − z‖
=

‖y − z‖
‖y − x‖+ ‖y − z‖

.

It follows that

‖y0 − x‖ = ‖y − x‖
(
‖y0 − x‖+ ‖y0 − z‖
‖y − x‖+ ‖y − z‖

)
(8.3)

= ‖y − x‖
(

‖x− z‖
‖y − x‖+ ‖y − z‖

)
≤ ‖y − x‖

and

‖y0 − z‖ = ‖y − z‖
(
‖y0 − x‖+ ‖y0 − z‖
‖y − x‖+ ‖y − z‖

)
(8.4)

= ‖y − z‖
(

‖x− z‖
‖y − x‖+ ‖y − z‖

)
≤ ‖y − z‖.

Let y′ = y+y0

2 and h = ‖y − y0‖ = 2‖y − y′‖.
Equation (8.3) implies that y and y0 are in the closed ball B = B(x, ‖x − y‖). We

now want to apply (1.10) to these points in B, which we may rescale and translate to the
unit ball. Doing so, we see that

δ(h/‖x− y‖) ≤ 1− ‖y
′ − x‖
‖x− y‖
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or

(8.5) ‖x− y‖δ
(

h

‖x− y‖

)
≤ ‖x− y‖ − ‖y′ − x‖.

Doing the same on the ball B(z, ‖y − z‖) (which contains y and y0 by (8.4)), we see that

(8.6) ‖z − y‖δ
(

h

‖z − y‖

)
≤ ‖z − y‖ − ‖y′ − z‖.

Using equations (8.5) and (8.6), we obtain that

∂1(x, y, z) = ‖x− y‖+ ‖z − y‖ − ‖x− z‖
≥ ‖x− y‖+ ‖z − y‖ − ‖x− y′‖ − ‖z − y′‖

≥ ‖x− y‖δ
(

h

‖x− y‖

)
+ ‖z − y‖δ

(
h

‖z − y‖

)
& hq(‖x− y‖1−q + ‖z − y‖1−q)
& hqr1−q.

Since y0 ∈ L, h is an upper bound for dist(y, L). Therefore,(
dist(y, L)

r

)q
r ≤

(
h

r

)q
r . ∂1(x, y, z),

as the lemma states. 2

Proof of Lemma 8.1. Fix a compact, connected set Γ ⊆ X and a ball B = B(x, r) cen-
tered on Γ with diam(B) ≤ 1

10diam(Γ). Note that for such B, r ≈ diam(B), so we may
freely interchange these at the cost of some absolute constant factors.

Write β∞ and βX for β∞Γ and βXΓ, respectively. We may assume, by adjusting the
implied constant, that β∞(B) is small enough to apply Lemma 6.3.

By that lemma, we obtain a 2β∞(B)diam(B)-net N ⊆ B with an order o : N → R
satisfying

(8.7) o(x) < o(y) < o(z)⇒ d(x, z) > max{d(x, y), d(y, z)}

for all x, y, z ∈ N . Ordering N according to o, we write

N = {x1, x2, . . . , xn}.

Let L be the line passing through x1 and xn. For each xi ∈ N , we have(
dist(xi, L)

2r

)q
(2r) . ∂1(x1, xi, xn) = ∂(x1, xi, xn) ≤ β∞(B)2,

by Lemma 8.2. Here the equality between ∂1 and ∂ comes from the order property (8.7).
Therefore, for each xi ∈ N we have

dist(xi, L) . β∞(B)2/qr.
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It follows that for each x ∈ B, we have

dist(x, L) . β∞(B)2/qr + β∞(B)r . β∞(B)2/qr,

where the second inequality follows from the fact that q ≥ 2.
It follows that

βX(B) . β∞(B)2/q,

as Lemma 8.1 states.
2

9. A comparison with the Heisenberg group

Fix an isometric embedding ι : H → `∞. As a different choice of embedding ι will not
affect the results in this section, we suppress ι throughout and simply consider H ⊆ `∞.

Fix a curve Γ ⊆ H ⊆ `∞, with multiresolution family G having inflation factor
A = 10. Recall that we defined a measure on G by setting

Mr(G
′) =

∑
B∈G ′

βKH (B)rdiam(B)

for G ′ ⊆ G and r < 4.
Theorem 1.10 then implies that if r < 4 and Γ is a rectifiable curve in the Heisenberg

group satisfying

(9.1) H1(Γ) ≥ 2Crdiam(Γ),

then

(9.2) Mr(G ) ≥ 1

2Cr
H1(Γ).

On the other hand, by Corollary C, we have for each p > 1, that

(9.3)
∑
B∈G

βΓ, net
`∞

(B)pdiam(B) ≤ CpH1(Γ).

Comparing these will yield Corollary E, which says that the set

Gc,q = {B ∈ G : βΓ, net
`∞

(B) > cβΓ
H(B)q}

is small, measured by Mr.

Proof of Corollary E. Let p = r/q > 1.
Using (9.3), we have∑

B∈Gc,q

βΓ
H(B)rdiam(B) ≤ c−p

∑
B∈Gc,q

βΓ, net
`∞

(B)pdiam(B)

≤ c−pCpH1(Γ)

≤ 2c−pCpCr
∑
B∈G

βΓ
H(B)rdiam(B).
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If c is chosen, depending on q, r, and δ, so that

2c−pCpCr < δ,

then that completes the proof. 2

In the next two remarks, we argue that Corollary E indicates some genuine difference
between Euclidean space and the the Heisenberg group, in the sense that the analogous
Euclidean statement is in some sense trivial while Corollary E is not.

Remark 9.1. Fix an isometric embedding of Rn into `∞ and a compact subset K ⊆ Rn.
Given Theorem 1.1, the natural analog of Corollary E might be to show, for a suitable
choice of c = cδ , that

(9.4) M2

(
{B ∈ G : βΓ, net

`∞
(B) > cβΓ

Rn(B)q}
)
< δH1(Γ).

However, while true, this statement is trivial in Rn for all q ≤ 2, because in fact one may
make the measured collection of balls not only small but empty by an appropriate choice
of c. (In particular, (9.4) holds for all sets in Rn, and not simply curves.) This is for the
following reason:

One may show that for any ball B in a multi-resolution family for K, we have

(9.5) βΓ, net
`∞

(B) . βKRn(B)2,

with an absolute implied constant (once A = 10 is fixed). Indeed, consider a 2−(n+1)-
separated net N in K ∩ B(x,A2−n), and let β = βKRn(B(A2−n)). As in the proof of
Corollary C, we may assume N is ordered and β < A/100 = 1/10. There is a line
L containing N in its 2β neighborhood. Standard computations with the Pythagorean
theorem show that the orthogonal projection π onto L satisfies

||π(y)− π(z)| − |y − z|| . β2 for all y, z ∈ N.

(Note that it is important here that y, z ∈ N are well-separated.) It follows that for any
ordered triple of points a, b, c ∈ N ,

∂1(a, b, c) . ∂1(π(a), π(b), π(c)) + β2 = β2.

Hence, Lemma 7.1 implies that

βΓ, net
`∞

(B) . β2,

proving (9.5).
In turn, (9.5) shows that, if q ≤ 2, the collection of balls summed over in (9.4) can

be made empty by choosing c sufficiently large, which justifies the statement made at the
beginning of this remark.

Remark 9.2. In the Heisenberg group, on the other hand, Corollary E is non-trivial in the
following sense: For each fixed q ∈ (2, 4), one can construct a set K ⊆ H and a ball B
centered on K such that

βK, net
`∞

(B)

βK, net
H (B)q
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is arbitrarily large. Indeed, page 393 of [21] gives an example, for any ρ > 0, of a 1-
separated set K = {a, b, c} in B = B(a, 2) ⊆ H such that

ρ > ∂(a, b, c) & βKH (B)2,

with an absolute implied constant.
Since ∂(a, b, c) is easily seen to be a lower bound for βK, net

`∞
(B), we see that

βK, net
`∞

(B)

βKH (B)q
&

1

ρq−2
,

which can be made arbitrarily large.
In particular, given q ∈ (2, 4), there is no choice of c = cq that makes Gc,q empty for

all sets in H, as was the case for Rn in the previous remark.
Nonetheless, Corollary E shows that for curves in the Heisenberg group that are a

definite factor longer than their diameter, the collection Gc,q must be small (for q < 4 and
appropriate c = cq,r).
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[31] WAŻEWSKI, T.: Kontinua prostowalne w związku z funkcjami i odwzorowaniami absolutnie
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