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A sharp necessary condition for rectifiable curves in
metric spaces

Guy C. David and Raanan Schul

Abstract. In his 1990 Inventiones paper, P. Jones characterized subsets of recti-
fiable curves in the plane, using a multiscale sum of what is now known as Jones
B-numbers, numbers measuring flatness in a given scale and location. This work
was generalized to R™ by Okikiolu, to Hilbert space by the second author, and has
many variants in a variety of metric settings. Notably, in 2005, Hahlomaa gave a
sufficient condition for a subset of a metric space to be contained in a rectifiable
curve. We prove the sharpest possible converse to Hahlomaa’s theorem for dou-
bling curves, and then deduce some corollaries for subsets of metric and Banach
spaces, as well as the Heisenberg group.

1. Introduction

1.1. Background

In an Inventiones paper [17], Peter Jones proved the following theorem for sets in R?,
later generalized by Kate Okikiolu to sets in R™ [23]. For sets £/, B C R", define

2
Euc _ : : .
(1.1 Froo(B) = Tam(B) 1IL1fsup{dlst(y,L) :y € ENB},
where L ranges over lines in R"”.

Theorem 1.1. (Jones: R? [17]; Okikiolu: R™ [23]) Let n > 2. There is a C' = C(n) such
that the following holds. Let EE C R"™. Then there is a connected set I' O FE such that

(1.2) ANT) Sy diam(E) + > RS (3Q) diam(Q).

QeEA
QNE#0
Conversely, if T is connected and 7*(T") < oo, then
(1.3) diam(T) + Y BEY(3Q) diam(Q) S, 2 (TD).

QeA
QNU#0
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Here, 57 is the k—dimensional Hausdorff measure, and A is the collection of dyadic
cubes in R™. Given two functions a and b into R we say a < b with constant C, when
there exists a constant C' such that a < Cb; the subscript <,, indicates the dependence of
the implied constant on n. We say thata ~ bifa < band b < a.

Equation (1.3), whose variants are the main subject of this paper, gives a “quantitative
flatness” statement for rectifiable curves in R™. In other words, a rectifiable curve in R"
must lie close to a line at most locations and scales, in a very precise manner. This may
be viewed as a quantitative version of the qualitative statement that a rectifiable curve
has linear tangents almost everywhere along its length. In addition to the clear geometric
information it provides, (1.3) and its variants have had an important influence on the study
of singular integrals from the 1980’s onward. As a small sample of these connections,
we point the reader to the works of Jones [16], David-Semmes [6, 7] and Tolsa [30], as
well as the survey [24]. There are also connections to recent developments in the study of
harmonic measure (see, e.g., [2] and the many advances by the same authors).

Theorem 1.1 was later generalized to sets I lying in Hilbert space [29], which requires
replacing A by a multiscale collection of balls centered on the set in question. There are
also variants in some metric settings [12, 13, 27], including the Heisenberg group [20, 21]
and a collection of non-Euclidean metric spaces generalizing a construction of Laakso [9].
We will return to some of these variants in more detail in the sections below, but for now
we note that these variants require changes in the definition of the S-number (as there are
no longer Euclidean lines), as well as for modifying the exponent 2 in the sums analogous
to those in (1.2) and (1.3).

Remark 1.2. A point that the authors find intriguing is that, for these variants of Theo-
rem 1.1, even when analogs of both (1.2) and (1.3) are known, the exponents of 3 in these
results are generally not known to match. Hence, one does not always achieve a character-
ization of subsets of rectifiable curves by this method. To our knowledge, the only settings
where these exponents are known to match are in Hilbert spaces [29], in Ahlfors 1-regular
metric spaces [13, 27] (where an average replaces the supremum in the definition of J),
and, to some extent, in the graph inverse limit spaces studied in [9]. In other settings, such
as the Heisenberg group and general Banach spaces, the situation is not completely clear.'

We now wish to state a metric analogue of the first half of Theorem 1.1. Given a metric
space E and a ball B = B(p, r), let

(1.4) BE (B)? = r~tsup{0(x,y,2) : x,y,2 € ENB}.

(If the metric space is understood, we will drop the superscript.)

The quantity O(z,y, z) is is the defect in the triangle inequality, and is defined in
Section 2.3; for now let us say that for a triple z, y, z such that dist(z, y) < dist(y, z) <
dist(z, z), the quantity 9(x,y, z) is given by dist(z,y) + dist(y, z) — dist(x, z). See
Section 2.3 for a more detailed definition of 0.

In particular, 3Z (B) gives a measurement of “flatness” that can be studied in general
metric spaces without notions of lines. Thus, one can use this notion of S-number to study

I A very recent preprint by Sean Li [19], posted to the arXiv on the same day as this paper, gives a version of
Theorem 1.1 with matching exponents in general Carnot groups, including the Heisenberg group.
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the validity of metric space analogs of Theorem 1.1. In that case, one must replace the
family of dyadic cubes in R” by a “multiresolution family of balls” ¢, as defined in in 2.1
below.

Given these modifications, Hahlomaa proved the following analogue of (1.2).

Theorem 1.3 ([12], Theorem 5.3). Let E be a bounded metric space and 4 a multireso-
lution family such that

(1.5) Z Boo(B)?*diam(B) < oo

BeY

Then there is a set A C [0, 1] and a surjective Lipschitz map f : A — E with Lipschitz
constant bounded by

(1.6) C (diam Z Boo(B)2diam(B )).

Be9
The constant C > 0 is absolute.

The notion of a multiresolution family ¢ is defined in Section 2.1.

In fact, as stated, Theorem 5.3 of [12] uses a different S-number, defined using Menger
curvature, rather than our 3,. However, Hahlomaa’s definition of 3 is bounded above by
an absolute constant times that in (1.4). See Remark 1.5 below. Hence, the theorem
above follows immediately from his work. We note that Menger curvature was further
used as a sufficient condition for 1-rectifiability by Léger [18] in the Euclidean setting and
Hahlomma [14] in the metric setting. The book [24] gives a nice survey of this up to the
time it was written.

Remark 1.4. The converse to Theorem 1.3 is false, as is demonstrated in [28, Example
3.3.1]. In that example, a sequence of rectifiable curves {I',, } is constructed in the Banach
space (R?, [ ||¢1) so that H!(T',,) = 2 for all n but the analog of sum (1.6) tends to infinity
with n.

The goal of the present paper is to prove the sharpest possible converse of this result
for doubling metric spaces, and then deduce a few corollaries for specific metric spaces
and alternative notions of flatness.

Remark 1.5. The definition of ., which is needed for the proof of Theorem 1.3 only
requires the sup to be over triples {x,y, 2} whose mutual distances are 2> the radius of
the ball B in question. It is in this situation that d{z, y, z} is proportional to the Menger
curvature of {x, y, z}, which is how Hahlomaa had stated his result. This is discussed in
more detail in Remark 2.3 of [28] and in [12] .

1.2. New results

The main theorem of this paper, Theorem A, is a converse to Theorem 1.3 for doubling
spaces, to the extent allowed by Remark 1.4. To our knowledge, it is the first theorem of
this type for rectifiable curves in general doubling metric spaces, i.e., which states that all
rectifiable curves in doubling metric spaces admit a quantitative local flatness condition
analogous to that in (1.3). Further below, we apply Theorem A to deduce four corollaries,
Corollaries B, C, D and E.
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Theorem A. Let I" be a connected, doubling metric space. Let 4 be a multiresolution
Sfamily of balls in T, where the inflation factor for the balls of 4 is A > 1 (see Definition
2.1). Then

> BL(B)Pdiam(B) < C,H!(T)

Be9
for all p > 2. The constant C), depends only on p, the doubling constant of I, and the
constant A.

As noted in Remark 1.4, this theorem is sharp in the sense that for p = 2 it is false.

Remark 1.6. The authors conjecture that with similar techniques to those of [29] one
would get that Theorem A holds for non-doubling I" as well.

We now go on to describe some corollaries of Theorem A that will be proven in the
paper.

1.2.1. Gromov-Hausdorff 3-numbers. In [8], the authors define another measure of
flatness for subsets of arbitrary metric spaces, different from (.,. Their notion is es-
sentially a normalized Gromov-Hausdorff distance to Euclidean balls, and applies in all
dimensions, not just dimension one.

(Note: Although for most of the paper B(z,r) will refer to a closed ball in a metric
space, for the purposes of agreement with [8] in this subsection and in Section 6 we write
B(z, ) for an open ball.)

We take the following definitions from [8, Section 2], specializing to the 1-dimensional
case and making some minor changes to the notation. Let (M, d) be a metric space,
B(z,r) aball in M, and consider (not necessarily continuous) mappings

I:B(z,7)— (—r,r) CR.
For such a mapping I, let
(.7 a(l) =€(I)+46(1),

where
e(I) = sup{|[I(z) — I(y)| — d(z,y)| : z,y € B(z,7)},

and
0(I) = sup{dist(u, I(B(z,7))) : u € (—r,7)}.

Lastly, we set
a(B(z,r)) =r"1 iI}foz(I),

where the infimum is taken over all mappings [ : B(z,r) — (—r,r).

In [8], the smallness or summability of (the n-dimensional version of) «(B) for a
metric space is taken as an assumption that is then used to construct interesting embed-
dings into low-dimensional Euclidean spaces. By contrast, we obtain the summability of
a(B)**€ as a necessary condition for rectifiable curves in doubling metric spaces.

Let %, C ¥ is the collection of balls in ¢ with diameters at least one tenth that of T".
The following corollary is proven in Section 6.
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Corollary B. Let I' be a doubling curve in a metric space, with a multiresolution family
of balls 4 having inflation factor A > 10. Then

> a(B)rad(B) £ H(D),

Be¥9\%,

for all p > 2. The implied constant depends only on p, A, and the doubling constant of T.

Corollary B can be viewed as a bilateral analog to the upper bound in Jones’ Analyst’s
traveling salesman theorem for arbitrary doubling metric curves, though with a non-sharp
exponent.

Note that, while the 1—10 in the definition of % is somewhat arbitrary, some restriction
in Corollary B to “small” balls is necessary, since for any ball B in ¢ with diam(B) >

2diam(T"), one has «(B) = 1.

1.2.2. B-numbers for nets in £,,. We now turn our attention to the Banach space /.,
the space of real sequences (a',a?, ... ), equipped with the norm

(@, a?,...)]| = suplal.

One may measure the flatness of a subset S C ¢, in a variety of ways. A method
with a clear geometric picture associated to it is to ask: how easy is it to approximate S,
or a finite net in S, by a geodesic in /,? (Note that the set of geodesics in ¢, a strictly
larger class than the class of all lines in {,.) This yields a notion of S-number that we
investigate.

If K is asetin £y, {X,,} is a family of 27" separated nets in K, and B € ¥ is a ball
at scale 27" in the associated multiresolution family (see Definition2.1), we will write

(1.8) 80" (B)rad(B) = inf  sup  dist(z, L),
*° L:EGXn+1ﬂB

where
dist(x, L) = inf{d(x,y) : y € L}

and the infimum is taken over all geodesics L in {... Thus, Bﬁo’ "'( B) measures how close
anetin B N K is to a geodesic in /. The following corollary is proven in Section 7.

Corollary C. Let I" be a doubling curve in £, with a multiresolution family & of balls.
Then

S B (B)Pdiam(B) S H(T)

Be¥

for all p > 1. The implied constant depends only on p and the doubling constant of T.

Remark 1.7. Because of the Kuratowski embedding theorem (see [15, Section 12.3]),
every separable metric space admits an isometric embedding into /... Thus, Corollary C
allows one to show that, for a doubling curve I' in an arbitrary metric space, most balls B
in a multiresolution family on I" have the property that a net in B is close to lying on an
abstract geodesic.

Another way to view Corollary C is as follows: Suppose one has a separable metric
space X with a natural class of geodesics, with respect to which one defines a 5 number or
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8" number and proves an upper bound on the summability of these quantities for curves.
As we have seen, X may be a Euclidean space, a Banach space, or the Heisenberg group,
in which case the appropriate summability power p is larger than 1 and depends on the
geometry of the space. One may instead consider isometrically embedding the space X in
£ (using the Kuratowski embedding theorem) and using the richer class of /., geodesics
to approximate the net points on a given curve in X. Corollary C shows that one may
achieve better summability (any power greater than 1) for this quantity. In the case of the
Heisenberg group, this idea is explored further in Corollary E and Section 9.

1.2.3. B-numbers in uniformly convex Banach spaces.. We now turn our attention to
a class of Banach spaces that excludes ¢, the uniformly convex Banach spaces, which we
define below. In these spaces, as in Hilbert spaces, it is natural to simply measure flatness
by distance to lines.

If X is a Banach space, F C X, and B = B(z,r) aball in X, set

(1.9) BE(B)r = irLlf sup{dist(z, L) : x € EN B},

where
dist(x, L) = inf{d(x,y) : y € L}

and the infimum is taken over all lines L in X . Note that while in Section 1.2.2 we allowed
all geodesics in our S-number, here we allow only lines. However, our focus in this section
is on Banach spaces in which these notions agree.

We will use the notion of modulus of convexity of a Banach space to connect Sx and
Boo-
Definition 1.8. The modulus of convexity of a Banach space (X, || - ||) is the function §
defined as follows:

r+y

(1.10) 5(e) = inf{l -

H el = iyl = 1 and 2 — yl| > }

for e € [0, 2].

For more background and information on this concept, we refer the reader to [22,
Section 1.e]. It will be convenient to note that this definition is unchanged if in the set on
the right hand side one allows ||z|| < 1 and ||y|| < 1. (See [22, Section 1.e].)

The Banach space X is uniformly convex if and only if 6(¢) > 0 for all € > 0. In this
case, a theorem of Pisier [25] states that there is an equivalent norm on X such that

(1.11) d(e) > cel

for some ¢ > 0 and g > 2.
For p € (1,00), the standard L,, spaces each have modulus of convexity satisfying
(1.11) with some constant ¢ = ¢, > 0 and exponent

2 ifl<p<L2,
p ifp > 2.

The following corollary is proven in Section 8.
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Corollary D. Let (X, || - ||) be a Banach space with modulus of convexity ¢ satisfying
(1.11) with ¢ > O and q > 2. Let p > q. Then for any doubling curve I' C X with a
multiresolution family 4 = 4V of balls, we have

S 8% (B diam(B) < H (D).

BeY

The implied constant depends only on p, ¢, q, the inflation factor of 4, and the doubling
constant of I.

Remark 1.9. In [10], Edelen-Naber-Valtorta study the converse problem of finding a
curve (or k-rectifiable set more generally) that captures a large portion of a given set or
measure 4 in a Banach space X. (This can be seen as an analog of Theorem 1.1(1.2),
where Corollary D corresponds to Theorem 1.1(1.3).)

The notion of S-number studied there is an average (rather than supremum) associated
to a measure  on X:

lines L

(1.12) B(B(z,7))* = inf r_3/ dist(-, L)? dp.
B(x,r)

Edelen-Naber-Valtorta show that for constructing curves (the case £k = 1 in [10])
in a Banach space X, the relevant property of X is not uniform convexity but uniform
smoothness. Without giving the precise definition, we recall that a Banach space is uni-
formly smooth if and only if its dual is uniformly convex [22][Section 1.e]. In that case,
as for convexity, there is an associated exponent of smoothness «, which is p for L, if
l<p<2and2forL,if2 <p < oo.

In Theorem 2.6 of [10], the authors prove that, given a measure p with positive and
finite upper and lower 1-dimensional densities on a Banach space X with smoothness
exponent «, integral control on the quantity B}L (B(z,7))* implies 1-rectifiability of pu.
‘We refer the reader to [10] for the details and other related results.

1.2.4. A comparison with the Heisenberg group. We present one more corollary of our
work by observing a consequence of Corollary C for curves in the Heisenberg group H,
equipped with its sub-Riemannian Carnot-Carathéodory metric d. (For a brief introduction
to the Heisenberg group and this metric, we refer the reader to [20, 21] and the references
in those papers.)

In [11, 20, 21], a notion of S-number was defined for subsets K of the Heisenberg
group as follows. If B is a ball in H, write

(1.13) BE(B)rad(B) = inf sup dist(z, L),
L zeknB

where
dist(x, L) = inf{d(x,y) : y € L}

and the infimum is taken over all so-called horizontal lines L in H. Sub-segments of
horizontal lines form a proper sub-class of all geodesics in the Heisenberg group.

By the Kuratowski embedding theorem, we may fix an isometric embedding ¢: H —
£ and thus view H as a subset of /.. (A different choice of embedding ¢ will not affect
the results described here, so we suppress it from the notation.)
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Given ¢, we may view a curve I" in H as also being a subset of /.. Thus, we may
compare [y to the notion of ﬁr " introduced earlier. Since horizontal lines in H are

geodesics, we have 35 (B) > ,BK "(B).
Improving earlier work by Ferrari- -Franchi-Pajot [11], Li and Schul [21] proved the
following analog of (1.2) in Theorem 1.1:

Theorem 1.10 ([21], Theorem A). Let r < 4 be fixed. There is a constant C. > 0 such
that, for any K C H and multi-resolution family of balls 4 in K, if

diam(K) + Z BE(B)"diam(B) < oo,
BeY

then there is a rectifiable curve I' C E such that

HYD) < C, <diam )+ Z BE(B)"diam(B )) :
Be¥

If one starts with a curve I' whose length is a definite factor larger than its diameter
(equation (9.1) below), and one considers the measure .. on the multiresolution family

%4 defined by Z
BE (B)"diam(B)
Bey'

for4’ C ¢, then Theorem 1.10 implies that the mass of the whole collection ¢ is bounded
below by a multiple of the length of I':

M(G) Zr H' (D).

The gap between the exponents p = 1 + € in Corollary C and » = 4 — € in Theorem
1.10 then leads to the following observation, which says that for ¢ < r < 4 and “most”
balls in & (measured with respect to .#,.), we have that

By (B) S BE(B)L.

oo

Corollary E. Let T' be a curve in the Heisenberg group whose length is sufficiently large
compared with its diameter (see (9.1)), with multiresolution family ¢ having inflation
factor A =10. Let g < 4, v € (q,4), and § > 0. There is a constant ¢ = ¢y 5 > 0 such
that if

(1.14) Goq=1{B €9 : B, ""(B) > cBy(B)"}

then
M(Geq) < SHNT) < 26C, M(9).

Corollary E indicates that the complement of ¥, , is a large set in the sense of ...
For balls in this complement, ﬂ{ "*'(B) is either itself close to one, or much smaller than
B (B). We note that Theorem I in [20] shows that .7, (¢) < HY(T).

In Section 9, we present the short proof of Corollary E, and describe how, although
one can prove an analogous result in Euclidean spaces, the situations do indicate a genuine

difference between the Heisenberg group and Euclidean space.
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Remark 1.11. In the setting of the Heisenberg groups there is also a connection of 3
with singular integrals. An example of a recent result on this is [3]. See also [4] for more
general Carnot groups.

1.3. Structure of the paper

In Section 2, we establish the basic notations and definitions used in the paper. The proof
of Theorem A occupies Sections 3, 4, and 5.

More specifically, in Section 3, we divide the curve I' into a family of “cubes” and
consider collections of cubes with o ~ 2~M/2 for each M € N. For each M, we
associate to this collection of cubes a finite number of filtrations of I" into arcs. We then use
these filtrations to separate each ball B € ¢ into one of two categories (flat or non-flat),
by comparing the flatness of arcs contained in B to B4 (B)?diam(B). More specifically,
in Section 3, we divide the curve I' into a family of “cubes” and consider collections of
cubes with S = 2=M/2 for each M € N. For each M, we associate to this collection of
cubes a finite number of filtrations of I" into arcs. We then use these filtrations to separate
each ball B € ¢ into one of two categories (flat or non-flat), by comparing the flatness of
arcs contained in B to S (B)2diam(B).

The sum of B (B)Pdiam(B) over non-flat balls is then controlled in Section 4 by
reducing to a sum over filtrations. The sum over flat balls is controlled in Section 5 using
a martingale argument, a modification of the one which appears in [29, 27].

Corollaries B, C, D, and E are then proven in Sections 6, 7, 8, and 9, respectively.

1.4. A table of 3-numbers

Throughout the paper we define or reference various different notions of flatness for a set.
As these may be confusing to keep track of, we provide the following table of reference:



10 G. C. DAVID AND R. SCHUL

Notation Description Definition location
Bluc Distance to lines in R® (1.1)
01 Ordered triangle inequality deficit (2.2)
0] Unordered triangle inequality deficit (2.3)
Boo Supremum of 0 2.4)
« “Gromov-Hausdorff” distance to line segment (1.7)
622 Distance of net to geodesics in {, (1.8)
Bx Distance to lines in Banach space X (1.9)
,Bi Averaged distance to lines of a measure p (1.12)
Boo Supremum of J; along an arc (2.5)

Acknowledgments. The authors would like to thank Jonas Azzam for helpful discus-
sions, and the anonymous referee for a detailed critique of the manuscript.

2. Notation and definitions
2.1. Balls, nets, and multiresolution families
For a metric space M, we denote balls in X by
B(z,r)={y € X : d(z,y) <r}.

A ball is considered to be equipped with a center and radius (which may not be uniquely
defined by the ball seen only as a set). The radius of B will sometimes be denoted rad(B).
If B = B(z,r)and A > 0, then we write

AB = B(x, \r).

If E C M, we say that X C FE'is an e-net (or e-separated net) for E if

(i) forall z1,z2 € X we have dist(z1,22) > €

(i) forall y € E there exists z € X such that dist(z,y) < e
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Hence E C |J, .y B(w,¢€), given an e-net X for E.
Fix a set E. Denote by XZ a sequence of nested 2~"-nets for E. In other words, X
are 2~ "-nets for E such that X* ;| C X foreachn € Z.

Definition 2.1. A multiresolution ¢ for a set E (denoted by ¥* when not clear from
context) is defined by

(2.1) @GP = (B(x, A27") : 2 € XF n an integer}

for a constant A > 1. The constant A may then be referred to as the inflation factor of 4.

Remark 2.2. Throughout the proof of Theorem A in sections 3 through 5, most statements
will involve constants that depend on the inflation factor A in the given multiresolution
family ¢ of the given curve I'. To avoid repetition, we will not remark on this dependence
each time, though of course it is noted in the statement of Theorem A.

2.2. Curves and sub-arcs

Fix a compact, connected set I" in a metric space with a doubling metric d. Without loss
of generality, when proving Theorem A, we may assume that %! (") < 1.

In that case, there is a 2-Lipschitz (not necessarily injective) parametrization y : T —
T, where T = R/Z, i.e., [0,1] with 0 and 1 identified. (In [1], the statement with do-
main [0, 1] is attributed to Wazewski [31]. A proof with domain T can be found in [26,
Proposition 5.1] or, with a worse Lipschitz constant, in [27, Lemma 4.2].)

By scaling the metric on I', we may assume that v is an arc-length (in particular,
1-Lipschitz) parametrization. Note that this implies that diam(T") < 1.

An arc in T is the restriction 7|y of 7 to a compact, connected subset I C T. We
denote by length(7) the arc-length of 7 (which is simply the length of T as ~ is an arc-
length parametrization) and by diam(7) the diameter of the image of 7, i.e., diam(y(I)).

2.3. B-numbers

Let M be a metric space.
As in [27], for an ordered triple (21, o, 73) € M? we define

(22) 61(1’1, Z‘Q,Ig) = diSt(l’l,Ig) + diSt(IQ,Ig) — diSt(Il,Ig).

We also define an unordered version of this quantity. Let {z1, 22,23} C M be an un-
ordered triple, and set

(2.3) (w1, 20, 73) misn 01T (1) To(2), T (3)) 5
3

- [4S]
where S3 is the permutation group on {1, 2, 3}. Equivalently,

(1, w9, w3) 1= 01 (71, T2, 73),
whenever dist(z1, x9) < dist(zg, x3) < dist(z1, 23). We have for all {z,y, 2z} C M

d(z,y, z) < diam{x, y, 2},
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as well as
0 S a(xa y,Z) S al(xvyvz) S Qdiam{xv:% Z}a

where non-negativity follows from the triangle inequality.
Let ' be a metric space. Let B be a ball of radius . We define

(2.4) BE(B)? = r~'sup{d(z,y,2) : x,y,2 € EN B}

If the F is understood, we suppress it from the notation and write simply 8. (B). See the
introduction, [12], and [28] for further background on this definition and how it relates to
Jones’s classical definition in [17].

We also define an ordered version of 5 for arcs in the parametrization. For an interval
Iandarc 7 =|; C T, let

(2.5) Boo (7)2diam(7) = sup{d:1 (y(a),v(b),¥(c)) :a < b < c e I}.

3. Cubes, filtrations, and flat versus non-flat balls

We now begin proving Theorem A in earnest.

Let I" be a doubling metric curve and let ¢ be a multiresolution family for I', as
defined above. As remarked in subsection 2.2, we without loss of generality equip I" with
a 1-Lipschitz parametrization vy : T — T

Fix a small absolute constant eg > 0 and a large constant K € N such that 2-K <
€52/100. These will be defined to be sufficiently small in the course of the proof of
Theorem A.

3.1. Cubes

We first split our multiresolution family into a fixed number of disjoint subcollections,
using the following lemma from [27].

Lemma 3.1 (Lemma 2.14 of [27]). Let R > 0 be given. There is a Py = P;(R) such that
one can write a disjoint union

G=9'y...u9h,
such that, for each 1 < p < P, if By, By € 9P have the same radius r, then
diSt(Bl, BQ) Z Rr.

The number Py depends only on R and the doubling constant of T".

Note that the proof of this lemma in [27] relies only on the doubling property of I,
and not its Ahlfors regularity.

Fix R > 10 sufficiently large depending on K, to be determined after Lemma 3.2
below, and apply Lemma 3.1 to obtain the disjoint decomposition

G =9'u...ugh.
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Given M € Nand 1 < p; < P, let

Gl = {BegP : LBu(B) € 27, 27MH)).

We then split this collection further into
Gt =Y UG e

as follows. For 1 < ¢ < KM, set

Gr ={Begl :r(B) = A27"MH n e 7}
Note that if By, By € %]’C} , and have different radii r; > 7o, respectively, then

ro < 2 KMy < oKy

Lemma 3.2. If R is sufficiently large, depending on K, then for each p1, M, i as above,
there exists a family 35\)/,111 of sets with the following properties:

(i) There is a bijection Q : Gy} ; — 24} ; such that

2BCQ(B)C(1+4-27KM)p.

(i) If Q@' € 28, then QN Q' =1, Q € Q' or Q' € Q.
(iii) If B # B’ € 94’ have the same radius, then Q(B) and Q(B') are disjoint.

Proof. This construction is entirely contained in Proposition 2.15 of [27] and the preced-
ing discussion. a

We call the elements of Qﬁ}z constructed by this lemma “cubes”. We note that they
are simple variants of Christ’s cubes [5].

In the construction of the lemma, we write B : Qﬁ}[,i — %’\'}71 for the inverse of the
map @, so that B(Q) denotes the ball in &} ; that gave rise to the cube Q. If @ € 2%}
we will write 7(Q) and ¢(Q) to denote the radius and center of the ball B(Q), respectively,
and we define

extending the definition of 8., from balls to cubes.
Foreach 1 < p; < P, set

co KM

o= U U 2%

M=1 i=1

Py
2= ] 2o

p1=1
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3.2. Defining partial filtrations by arcs
Given a cube @) € 2, let

AQ)={ylr: I CT, I = aconnected component of v~ *(Q), v(I) N B(Q) # 0}.

In particular, since 2B(Q) C @, this means that if 7 € A(Q), then diam(7) >
r(B(Q)) > ¢diam(Q), where diam(7) is always though of as the diameter of its image.
We need to know the following simple fact about our arcs:

Lemma3.3. IfQ,Q" € 25} andn € A(Q) andn € A(Q'), then Q = Q'
Proof. Assume thatn € A(Q) and n € A(Q') but Q # Q’

The assumption that 7 is in both A(Q) and A(Q’) implies that Q N Q' # 0, and hence
that Q C Q' or Q' C Q. Assume without loss of generality that Q C Q.

Let B = B(Q) have radius r and B’ = B(Q') have radius 7’. Note that we cannot
have r = 7/, since if » = r/ then dist(B, B’) > Rr > 10r > diam(Q’), which is
impossible since both B and B’ are contained in Q’, which has diameter at most 37.

Therefore we either have r < v’ or 7/ < r. In either case, the ratio between the larger

and smaller of  and 7/ is at least 2% > 10.
On the other hand, € A(Q) implies that

r < diam(n) < 5r
and similarly n € A(Q’) implies that
r’ < diam(n) < 5r'.

This is a contradiction.

Next, for each positive integer M € Nand 1 < i < kM, we let
Tt =U{AQ): Q€ 25}

and endow it with the partial order given by containment.

We note that we do not expect any .%#}; , to cover all of T', nor for each “level” of Z1} .

to cover the previous “level”. Thus, we consider .71} . a “partial filtration” of .

3.3. Completing the partial filtrations

Our next goal is to complete each partial filtration .7} , to a “full” filtration of the portion

of I' covered by its maximal elements. In other words, we will define a collection .7 ﬁi
of arcs in I such that:

¢ For each k > 0, the collection of arcs in .Z}; ; with exactly k ancestors is a disjoint
(up to endpoints) cover of the union of maximal elements of .Z1; ..

;P\l O Eg'pl
* P2 F M
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We will perform this completion by starting with .#}; . and adding subarcs of T to
our filtration in a way which we now specify. The construction below has the following
property: if 75 C 71 are both in .%}; ; and there is no arc 7 € .#}; , suchthat 7o C 7 C 7,
then there will be no such arc 7 € .74} , either.

—

For each arc 7 € 1}, we will define C(7) to be the maximal elements in F}; ;
contained in 7. We will write C(7) = C1(7) U C2(7), a disjoint (up to endpoints) union,
and refer to these as type I and type II children, where

and

The filtration .7y ; will always have roots in 1} ;.

In order to specify .#y; ;, we may simply specify C(7) for 7 € 1} . For 7 & Fp1
we will always have C(7) = 7. (In other words, type 2 children are never subdivided
further.) For 7 € Z}; ,, the collection Cy(7) is given by maximal .} ; elements inside
7, and we need to specify Co(7) such that 7 can be written as a disjoint union UC(7).

To this end, we will simply set C(7) to be any finite partition of 7 \ UC; (7) into arcs,
subject to the condition that

diam(n) < 27 5Mdiam(7) for all n € Co(7).

Note that, by our choice of .7 }C} ;» the above inequality is satisfied also when ) € C; (7).

We have now completed our definition of C(7) = C1(7) U Ca(7). The filtration F3; ;
is then defined inductively beginning with the maximal elements of .7 J’\’jl and using the
C(1) operation repeatedly.

3.4. Flat versus Non-flat balls and the two halves of Theorem A

In proving Theorem A, it is convenient to first dispose of the collection of balls that are
too large. Let %, be the collection of balls B € & such that diam(B) > ;sdiam(T’).
Then we have the following:

Lemma 3.4. For eachp > 2,

> Boo(B)Pdiam(B) < length(y),
Be%,

where the implied constant depends only on p > 2 and the doubling constant of T'.

Proof. Let ng be the smallest integer such that A2~ > Ldiam(T'). Each B € % is
at scale 27" for some n < ng. By the doubling property of I", there are at most a fixed
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number D of balls B € ¥, at each such scale. Therefore

Y Bec(B)Pdiam(B) < Y ((harnm)p/Qdiam(B)

Be%, Be% rad(B)

Z diam (T p/22n(1 p/2)

n=-—ngo
< diam(T)
< diam(T)
< length(7)

P/29—n0(1-p/2)

Note that above we used the fact that diam(I") < 1 which we had already assumed without
loss of generality in section 2.2. O

We may now focus on balls B € ¢ \ 4. Note that for such balls,
rad(B) < diam(B) < 2rad(B).

We define two classes of balls in ¢ \ %, based on the notions defined in this section,
calling them colloquiually “non-flat” balls and “flat” balls. Let

G ={B e\ D : Boo(T) > €3Bs0(B) for some 7 € A(Q(B))}

Gy ={B €Y\ D : Boo(T) < €3B00(B) forall 7 € A(Q(B))}

For each non-flat ball B with associated @@ = Q(B), we will fix an arc 7¢ € A(Q) which
satisfies

Boo(T) > €58 (D).
We will show the following two propositions.
Proposition 3.5. Forall p > 2,
Z Boo(B)Pdiam(B) < length(7).

Be%,
The implied constant depends only on p and the doubling constant of T'.
Proposition 3.6. Forall p > 2,

Z Boo(B)Pdiam(B) < length(7y).

Be%,

The implied constant depends only on p and the doubling constant of T'.

These two Propositions, along with Lemma 3.4, combine immediately to prove Theo-
rem A.
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4. Non-flat arcs and balls
In this section, we prove Proposition 3.5.
We begin with a few lemmas. Recall the definitions of 0; and 0 from subsection 2.3.

Lemma 4.1. Let T be an arc in some fﬁ}yi and let C(T) be the partition of T into its
children.

For each n € C(1) write a(n) and b(n) for the start and finish of n (in the domain of
T).

Let a,b, ¢ € Domain(r) be three points that are each a start or end of an element in
C(1) and such that a < b < ¢. Then

a1 (v(a),1(0):7(e) £ Y d(v(a(m), (b(m)) — d(v(al(r)), v(b(r)))-
neC(r)
Proof. This is a direct application of the triangle inequality. a

Now consider any ) € Qﬁ}“ and 7 = v|; € A(Q). If t; <ty < t3 are in I, then, by
shifting each point ¢, to an endpoint of the arc in C(7) containing it, we may find points
) <ty < t% such that

d(v(t:),7(t])) < 275 B (Q)*diam(Q) for i = 1,2, 3.

Therefore, if we write s(n) = (a(n)) and f(n) = ~v(b(n)) for the start and end of an arc
in the image, we have

A1 (v(t1), v(t2), 7 (t ))<81( (ti)m(té) V(t5)) + 6 - 275 B0 (Q)*diam(Q)
< Y d(s(n), f(n) = d(s(7), f(7)) 46 - 275 Boo (Q)*diam(Q).

nec(r)

Hence, we have proven the following lemma:
Lemma 4.2. For Q € 2§} ; and 7 € A(Q), we have

fBoo(7)?diam(r) < > dist(s () —dist(s(7), (7)) + 6275 B0 (Q)*diam(Q).
neC(r)

If moreover B(Q) € % (i.e., is non-flat) and T = 7, then

4.1) Boo (7)%diam(7) < 2 Z dist(s(n), f(n)) — dist(s(7), f(7))

neC(r)

Equation (4.1) follows from the fact that

625 5,0 (Q)*diam(Q) < %Bw (7)?diam(7)

if 7 = 7¢, by our choice of K relative to €g at the start of Section 2.3.
'Equation (4.1) will be useful for us as it telescopes well. We can now control the sum
of 5% (1g)diam(q) over a single family of non-flat cubes.
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Lemma 4.3. For each fixed M and i we have

Z BOO(TQ)2diam(TQ) < 2length(7).

5»P1
QE2r

B(Q)€%
Proof. Using Lemmas 3.3 and 4.2, we write
Z Boo(1q)*diam(7) = Z Boo (1) *diam(7)

p1 P1
QEZ N, Te(}l\/f i
B(Q)G‘ﬁl T=TQ, B(Q)E‘ql

<2 > > d(s(n), f(n) = d(s(7), (7))

q—e?Mll nec(r)

r=1q. B(Q)€¥

<2 3 |2 disto), £(m) — d(s(r), £(7)

TE?J}\?Z nec(r)

< 2length(vy)

as the last sum telescopes and the total length is controlled by the total length of the
maximal elements of .77 ;. which is bounded by the length of . O

We now prove Proposition 3.5.

Proof of Proposition 3.5. It suffices to show that

> Boo(B)Pdiam(B) < length(y)

Be%,

if p > 2, where the implied constant depends only on p, P, €3, and K.
We write, using the definition of ¢; and Lemma 4.3:

P oo KM
Y Bec(BYdiam(B) =) > > > fx(B)’diam(B)
Be¥%, pi1=1M=1 i=1 Q(;ii’;pl

M,i

< Y 2PKM2PTAUEDRGE S T f () diam(r)
M=1 Qeell .
B(Q)e%)

(oo}
< Y AP EM2 PN 2 ength(y)
M=1
< length(y),



SHARP NECESSARY CONDITION FOR RECTIFIABLE CURVES 19

5. Flat arcs and balls

In this section, we prove Proposition 3.6.

5.1. Statement of the key intermediate proposition

For now, fix p; € {1,...,P1}, M > 0,and i € {1,..., KM}. Consider the associated
collection of non-flat cubes

A=A ={Qe 2], BQ) €%}
Recall that these are cubes for which all arcs in A(Q) are flat.

In proving Proposition 3.6, the main step will be to show the following.

Proposition 5.1. There is an absolute constant ¢ > 0 with the following property. Let
B € % NGy} with Q = Q(B) the associated cube in A. Write

G.1) Q=RoulJ@’

where Q7 are maximal subcubes of Q in A and R, is the remainder.
Then

(5.2) length(Rq) +  _ diam(Q”) > (1 + cBw(B)?)diam(Q).

Here c is fixed after choosing €. The relationship between K and €g is also used.
Once we establish Proposition 5.1, Proposition 3.6 will follow by a martingale argu-
ment similar to those in [27, 29]. This will be done in subsection 5.3.

5.2. Proof of Proposition 5.1

We continue to use the same notation and assumptions as fixed at the start of subsection
51:Be% N9 ,.Q=Q(B) e A

Let¢ € A(B) be an arc passing through the center of B.

As in Proposition 5.1, we write

Q=RoulJ@’,

where ()7 are maximal subcubes of @ in A and R, is the remainder.
Our goal in this subsection is to prove Proposition 5.1 for B.
We will do this by way of the following two lemmas:

Lemma 5.2. Forall Cy > 1, if €5 satisfies eg~2 > 60C4, then the following holds:

(5.3) length(Ro \ &) + > diam(Q’) > C1ep°Boo(B) diam(Q).
7:QINE=0

Lemma 5.3. We have
(54)  length(Rgn&)+ Y diam(Q’) > (1 — e380(B))diam(Q),
J:QINEFD

where
€3 =16-275 4+ ¢5°.
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First we observe that Proposition 5.1 for B follows from these two lemmas:
Proof of Proposition 5.1. Lemmas 5.2 and 5.3 combine to show that (5.2) holds with
c= 01652 —16.-27K — 6[32.

We have chosen K such that 2~ MK < 2-K ~ 652, and C'; can be chosen such that C; >
20. This yields (5.2) for the ball B with ¢ > 4eg?, which suffices to prove Proposition
5.1. a

Now we work to prove Lemmas 5.2 and 5.3.

Proof of Lemma 5.2. To prove Lemma 5.2, it suffices to find a single point z € B such
that

(5.5) dist(z, &) > 3C1€5° Boo (B)*diam(Q).
Indeed, if z satisfies (5.5), then there is an arc 7 containing x of diameter at least
CresBoo(B)*diam(Q)
and whose distance from ¢ is at least
C1e5%Boo(B)2diam(Q) > 2 - 27 K diam(Q) > 2diam(Q?) for all 5.

It follows that (5.3) holds for B.
Suppose, therefore, that there was no such point z € B. In that case, for any points
x1, T2, T3 € B, we can find z}, 25, 25 € £ such that

d(z;, 7)) < 3C1€5B00(B)*diam(Q) fori = 1,2, 3.
Hence
O(x, vy, )
Boo(€)diam(€)

< 54C1€5° Boo (B)*diam(B) + 6€5” Boo (B)*diam(B)
< 6001 €5° Boo (B)*diam(B).

8(3(]1,.1?27.’173) < 901652600(B)Qdiam(Q) +
< 9C1€5%Boo(B)*diam(Q) +

Since z; were arbitrary in B, it follows that
Boo(B)*diam(B) < 60C1 €5 Boo (B)*diam(B),
which is a contradiction for e5? < 1/(60C}). O

Proof of Lemma 5.3. By assumption,

27 < %/300(3)2 <27M,



SHARP NECESSARY CONDITION FOR RECTIFIABLE CURVES 21

Recall that
diam(Q) < (1 +4-275M)diam(2B).

Write [a,c] = Domain(§), so that O; := ~(a) and Oz := v(c) are in JQ. (Note that
~ must both enter and exit @, since B(Q) ¢ %.) There is also b € (a,c) such that
O := ~(b) is the center of B.
Hence,
d(Ol, 02) = d(017 ) + d(O 02) o (a7 b, C)
> 2rad(2B) — foo (€)*diam(€)
> diam(Q) — 4 - 27 KM diam(Q) — ¢5%Bo0 (B)?diam(Q)
— (1-4-27KM 28 (B)?)diam(Q)
> (1— (8- 27F=DM 4 413 (B)?)diam(Q).

We may therefore set

€3=16-27K 4 g2 > 8. 27 (K=DMM 4 (.2

5.3. Proof of Proposition 3.6

All that remains to prove Theorem A is to prove Proposition 3.6.
We begin by summing over a fixed family A = A} ; as defined at the beginning of
this section.

Proposition 5.4. For each p > 2, we have

B:

Z PeclBY (B B) < 27 (5= lengih()
Q(B

where the implied constant depends only on p and the constant c from Proposition 5.1.

Proof. To begin, suppose that A is a finite collection of cubes. Let ¢ denote the measure
on I' given by pushing forward Lebesgue measure under the arc-length parametrization
~v: T —T.

For each cube ) € A, we will construct a weight wg : Q@ — [0, 00) satisfying three
conditions:

(i) fQ wodl > diam(Q)
(ii) for almostevery zg € I', Y wq(wg) < C2M,
QeA

where C is a positive constant depending only on ¢

(iii) supp(wq) € Q.
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We will construct w, as a martingale. We denote by wq(Z) := [, wqdl. Set
we(Q) = diam(Q).

Assume now that wg(Q') is defined. We define wg (Q'*) and wg(Rg), where
Q' = (UQ")URg.

is a decomposition as given by equation (5.1).

Take
wq(Rer) = %,Ql)length(f?@')
and
wa(@") = Y29 giam @)
where

s’ = length(Rey) + Y _ diam(Q").

This will give us wg. Note that 5" < length(I' N @Q’). Clearly (i) and (iii) are satisfied. To
see (ii):

wo(Q") _ wo(@)
diam(Q"*") s
_ wo(@) diam(@)
diam(Q") s

_ wo(@) diam(Q)
diam(Q") length(Rq) + > diam(Q")
wo(Q') 1

~ diam(Q') 1+ 2—M

for ¢’ depending only on ¢ (the ultimate inequality followed from Proposition 5.1.

And so, .
wo(@") _  wg(Q)
diam(Q"") — "diam(Q’)

Now, suppose that z € Qn C ... C (1. we get:

WQ, (QN) < W, (QN—l)
diam(Qy) — qdiam(QN_l)
<..

_1 wg, (Q1 _
Squ Q1 )Zqu.

dlam(Ql)
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Hence, we have wg, (z) < ¢ ~1. This will give us (ii) as a sum of a geometric series,

since ) )
n __ _ oM
Zq _17(1527”1_2 :

Now,

Z Boo(B)Pdiam(B) < 2~ (P/2M Z diam(B)

B:Q(B)eA B:Q(B)eA
< 2=(@/2M Z /wQ () (z)dl(z)
B:Q(B)eA
=9 (P/Q)M/ Z wQ(B)( )CM( )
B:Q(B)eA

< 2= /M / 2Mde(z)

< 2_(§_1)Mlength('y).

Finally, we complete the proof of Proposition 3.6 by summing over all p,, M, ¢:

Proof of Proposition 3.6. We have, for p > 2,

co KM

P,
> Boo(B)Pdiam(B Z_ > Boo(B)Pdiam(B)

BeY, 1 M=1i=1 B:Q(B eA;ﬁq

< Z PEM2- (57 )Mength(~)
M=1
< length(v),

where the implied constant depends only on p and the doubling constant of I".
To conclude, the case where A is infinite is obtained as a limit, as our bounds do not
depend on the cardinality of A. a

6. “Gromov-Hausdorff”’ 3 numbers

Recall the definition of « from subsection 1.2.1. In this section, we will relate « to B4
for metric curves, and obtain Corollary B as a corollary of Theorem A.

6.1. Orders and preliminary lemmas

To prove Corollary B, a useful notion is that of an order of a set in a metric space, as
defined by Hahlomaa in [12].
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Definition 6.1. Let E be a subset of a metric space M. An order on FE is an injective map
o : E — R such that

o(z) <o(y) <o(z) = d(x,z) > max{d(z,y),d(y, 2)}
forall x,y,z € E.
Note that if o is an order on E and z,y, z € E satisfy o(x) < o(y) < o(z), then
3(1’, Y, Z) - 81(1', Y, Z)

A key fact about orders is the following lemma of Hahlomaa.

Lemma 6.2 (Lemma 2.3 of [12]). Let K > 1 and ¢ > 0. Suppose that E is a metric
space such that

(i) d(z,y) < Kd(z,w) forall ,y, z,w € E with z # w,

(ii) d(x,z) > d(z,y)+ed(y, z) whenever x,y, z € E satisfy d(x, z) = diam({x, y, z}),

o 3 4K—1
(iii) €> > 4KH,and

(iv) HE # 4.
Then E has an order.

We will now use Lemma 6.2 to show that nets in balls with sufficiently small 5, can
be ordered. Two versions of this result will be useful.

Lemma 6.3. Let I" be a compact connected set in a metric space M, and let B = B(p, A-
27") be a ball centered on I". Assume that A > 10 and

Boo(B)? < (24A%(16A + 1))~ < 1/40.
(i) If E is a ndiam(B)-net for BNT, for n = 28+ (B), then E has an order.

(ii) If diam(B) < {5diam(T), X, 41 isa 2=V net for T, and N = X1 N B, then
N has an order.

Proof. We begin with (i). Let

n= 2500 (B)v
and let £ be a maximal ndiam(B)-net in B. We first work to show that F satisfies the
assumptions i, ii, iii, and iv of Lemma 6.2, with appropriate choice of K and e. We verify

these assumptions in equations (6.1), (6.2), (6.3), and (6.4) below.
It follows immediately from the definition of E that if we set K = 1/, then

6.1) d(z,y) < Kd(z,w) forall z,y, z,w € E with z # w.
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Moreover, if {z,y, z} C F is such that d(z, z) = diam{z, y, z}, then

d(Iv Z) - d($, y) + d(ya Z) - (91(33, Y, Z)
> d(x,y) + d(y, 2) — Poo(B)*diam(B)

= d(a,y) +dly,2) - (7 ) ndiam(B)
= d(a,y) +dly,2) = () d(y, 2)
> d(a,y) + (11— 1)d(y, 2)
Setting e = 1 — 7, we get
(6.2) d(z,z) > d(z,y) + ed(y, 2).
Note that

Lastly, since < 1/20, the number of points m in E must satisfy
1
§diam(B) <HL (B) <m-2ndiam(B) = m > 5.

(Here Héo denotes the Hausdorff content.) In other words,
(6.4) tE > 5.

The four equations (6.1), (6.2), (6.3), and (6.4) verify the assumptions of Lemma 6.2,
and hence there is an order on F.

The proof of statement (ii) in this lemma is quite similar:

As above, we first show that V satisfies the assumptions of Lemma 6.2, with appro-
priate choice of K and e. These assumptions are equations (6.5), (6.6), (6.7), and (6.8)
below.

If we set K = 4A, then

(6.5) d(z,y) < Kd(z,w) forall z,y, z,w € N with z # w.

Moreover, if {z,y, 2z} C N is such that d(z, z) = diam{z, y, z}, then

d(z,z) = d(z,y) +d(y,z) — 01 (x,y, 2)
> d(z,y) + d(y, z) — Boo(B)*diam(B)
— d(w,y) + d(y, 2) — 448w (B)2d(y, 2)
> d(z,y) + (1 — 446 (B)?)d(y, ).

Setting € = 1 — 4AS,.(B)?, we get

(6.6) d(x,z) > d(z,y) + ed(y, 2).
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Note that

4A 4K — 1
) 3>1-1248(B)?*>1— )
©7 c= Bl B) 2 1= oA+ 1) © Ak 11

Lastly, since A > 10 and B does not contain all of I, the number of points m in N
must satisfy

(6.8) A-27"<HL(B)<m- 27D = m > 24 > 5.

The four equations (6.5), (6.6), (6.7), and (6.8) verify the assumptions of Lemma 6.2,
and hence N has an order. O

6.2. Proof of Corollary B

We now relate our notions of B, and €(I):
Lemma 6.4. For any curve T" and any ball B = B(z,r) C T, there is a 1-Lipschitz
mapping I : B — (—r,r) such that
€(I) < CPoo(B)diam(B),
where C'is an absolute constant.

Proof. We may assume, by taking C sufficiently large, that B (B) < (24A2%(16A4 +
1)~

Let E be an ndiam(B)-net in B, where 7 = 28, (B). Lemma 6.3(i) grants us an
order o on E. We order the set F according to o and write

E={x1,x0,...,2,}

with o(z;) < o(z;) forall 1 <i < j <n.
Let f : B — R be the map
f(x) = d(zy, ).

Note that f is 1-Lipschitz and therefore maps B into a closed interval of length at most
2r.
We now claim that f satisfies the condition

(6.9) 1f(z) = f()| — d(z,y)| < Boo(B)*diam(B)
forall z,y € E. Since f is 1-Lipschitz,

On the other hand, consider x; and x; in E/ with ¢ < j. Using the order, we see immedi-
ately that f(x;) — f(«;) > 0. In addition,
f(xj) = f(xi) = d(z1,2;5) — d(21, 25)
= d(fﬂl, Ij) — 8(1’1, i, ZL']‘)
Z d(l’i,l’j) — 6w(B)2d1am(B)
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which completes the proof of (6.9).

Now consider arbitrary points z’,y’ € B, not necessarily in E. Let x and y be corre-
sponding points of £ within distance ndiam(B) of ’ and y/, respectively.

It follows that

1f(2") = f(¥)] = d(z',y)] < 4ndiam(B) + || f(z) — f(y)| — d(z,y)|
< 4ndiam(B) + Beo (B)*diam(B)
< 984 (B)diam(B).

Lastly, we may postcompose f with a translation so that the center of B maps to
0 € R. This yields a 1-Lipschitz map I : B — (—r,r) such that

e(I) < CPo(B)diam(B),
as desired. 0O

For the next lemma, we recall some of the notation used in the proof of Theorem
A. In particular, suppose we have a doubling curve I" and a 1-Lipschitz parametrization
v : T — T asin the start of subsection 2.2. We will use the notion of S, (7) for an arc 7 of
v defined in subsection 2.3. We will also use the “cube” decomposition and the division
of ¢ into families ¢%} , given in subsection 3.1, and the distinction between “non-flat”
balls ¢4, and “flat” balls %, given in subsection 3.4.

If B is a ball in T, we use the notation A.(B) to denote the connected components of
4~1(B) whose images contain the center of B.

Lemma 6.5. Let T be a curve in a metric space and B = B(z,1) € 4 \ % a ball in the
multiresolution family. Let
I:B—(—rr)

be the mapping provided by Lemma 6.4. Lastly, let T € A.(B).
Then

3(I) < C'(Boo (1)1 + B (B)1),

where C' is an absolute constant.

Proof. We parametrize I by + as in subsection 2.2.
We first argue, similarly to Lemma 5.3, that

(6.10) diam(7) > 2r — foo (7)r-

for some absolute constant ¢ > 0. Indeed, let 7 = 74 3], so that O; = 7y(a) and Oy = 7(b)
lie on OB. Let O = v(c) be the center of B, for some ¢ € (a, b).
Then

d(Ol, 02) =2r — 31 (01, O, 02)
> 21 — Boo(7)*diam(7),

which proves (6.10).
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It now follows from (6.10), and the properties of our chosen I, that I(7) C I(B) C
(—r,r) contains an interval of length at least

2 — Boo (7)1 — CBoso (B)r-
Hence 6(I) < Boo(7)%r 4+ CBoo(B)r. O
Proof of Corollary B. We have immediately from Lemmas 6.4 and 6.5 that
AUB)r S Boo(B)r + oo (7)?r

foreach B = B(z,r) € 9\ % and 7 € A.(B).
We therefore have, for p > 2, that

6.11)
Z a(B)Prad(B Z Boo(B)Pdiam(B) + Z Boo (T5)*diam(B),
Be¥9\¥Y, Befe\% Be9\%,

where B — 7p is any function that maps each ball B € 4 \ ¢, to an arc 7 € A.(B).
The first sum on the right hand side of (6.11) is bounded by length(~), up to a constant
depending only on p and the doubling constant of I', by Theorem A. It remains to bound
the second sum, which we do using Lemma 4.3, similarly to the proof of Proposition 3.5.
Recall the division of ¢ into families %ﬁi forp; € {1,...,P}, M € N, and
i € {1,..., KM}, and the construction of families of cubes 2, ;. For each choice
Ofpl7 M,i, let

g ={Be9y},: Boo(T) < Boo(B) forall 7 € Ac(B)},
guT ={Be9l},: Boo(T) > Boo(B) for some 7 = 75 € A(B)},

In that case, we control the third term in equation (6.11) as follows:

oo KM
Z Boo (T8)*Pdiam(B Z ZZ Z Boo (T5)*diam(B)
Be¥\% p1=1 M=1 i= 1Beg}€fll*
oo KM

+Z Z Z Boo (7p)*Pdiam(B)

p1=1M=1 i= IBGgf’l *x

Py KM
(6.12) Z > > Beolrp)*diam(B)
P

M=1i=1 BeglL"
1 oo KM

Z Y3 Y Bulrp)**diam(B)

L M=1i=1 Begl}

o0

We control the first main sum in (6.12) simply by Theorem A. For the second main sum
in (6.12), notice that each ball in B € E%’C},’i** is non-flat, i.e., in 4;. By Lemma 4.3, we
can therefore control each innermost sum in the second main sum of (6.12) by

> Beolrp)Pdiam(B) S Y Puo(rq)*diam(rq) < length(v),
Begy Qe2l};
B(Q)E‘!fl
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where 7 is an extension of 75 to an arc in A(Q).
Hence, the second main sum in (6.12) is controlled by

P oo KM

ZZZ Z BOC(TB)2pdiam(B)

p1=1M=1 i=1 Beg}{’/]lji**

< ZQleMQ*(QP*Q)(M*U/Q Z Bw(TQ)Zdiam(TQ)

=1 acapy

B(Q)eY

<Y K M2 Crm2 (M ength ()
M=1
< length(vy).

This completes the proof.

7. 3 numbers for nets in £,

Recall the notion of ﬁi’onet from subsection 1.2.2.

In the proof of Corollary C, we will use the following notation: We say that an n-tuple
of points (1, ...,%,) in £ is ordered if the map o(x;) = i is an order in the sense of
Hahlomaa. (See Definition 6.1.) In other words, the n-tuple is ordered when

llzi — zx|| > max{||z; — z;||,||z; — x|/} foreachi < j < k.
We say that the n-tuple is r-separated, for some r > 0, if ||z; — x| > r for each i, j.

Corollary C will follow from Lemma 7.1 below and our main result, Theorem A.

Lemma 7.1. Let (21,2, ...,%,) be an ordered n-tuple of r-separated points in .
Assume that

h= sup O1(zs,z;,zx) < 7/200.
i<j<k

Then there is a geodesic L C £, such that

sup dist(x;, L) < 15h.
1<i<n

Proof of Corollary C. As in the proof of Theorem A, we must first dispose of the balls
that are “too large”. Namely, let

% ={B € ¥ : diam(B) > %Odiam(F)}.

Let ng be the smallest integer such that A2—" > %diam(f‘). Then, as in Lemma 3.4,
we have that each B € ¥ is at scale 27" for some n < ng. By the doubling property of
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T, there are at most a fixed number D of balls B € ¥, at each such scale. Therefore

S 80 (B)rdiam(B) < 3 (dlam(m) diam(B)

Be%, Be%, rad(B)

< ) diam(n)r2ntp)
n=-—no

< diam(T)P2~"0(1=P)

< diam(T")

< length(v)

To complete the proof of Corollary C, it suffices to show that for each ball B € ¥\ %,
from the multiresolution family of T,

(7.1) By " (B) < Boo(B)?,

with an absolute implied constant, as we can then apply Theorem A.

By adjusting the implied constant in (7.1), we may assume that B, (B)? is small
enough so that Lemma 6.3 is applicable.

Given aball B € 4 \ %, write {x1,...,2n} = Xpnt1 N B, where X, 1 is the net at
scale 2-("+1) of T,

By Lemma 6.3(ii), we may re-number the points so that the n-tuple (z1,...,z,) is
ordered. Moreover, it is 7-separated for r = 2~ ("+1) > rad(B).
Let

h = sup 81(xi7$ja33k) < ﬁoo(B)zrad(B).
i<j<k

If h > /200, then (7.1) holds automatically, since r 2 rad(B).
Otherwise, Lemma 7.1 implies that

d

Remark 7.2. Lemma 7.1 is false in Euclidean space. For example, consider the three
1-separated points 21 = (0,0),z2 = (1,t), 23 = (2,0) in R2. In this case,

Sup al(l'i,$j7$k) S t2
i<j<k
but
sup dist(z;, L) 2> t.
i

for any geodesic (line) L in Euclidean space.

We now focus on building up some preliminary facts needed for the proof of Lemma

7.1. For a point x in £, we write © = (x")%_;.
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Lemma 7.3. Let S = (21,2, ..,%,) be an n-tuple of points in { .. Assume that
|21 — @] = |21 — -
(a) If
O (i, zj,2x) < h
foreachi < j <k, then
i — 24| < |2 — 5] +2h
foreachi,j.

(b) If (z1,...,xy) is ordered and

i — @5l = |zj — ;]

foreachi < j <k, then
al(xiaxjvxk) =0

foreachi < j <k.
Proof. We begin with (a). To the contrary, suppose we had ¢ < j such that
s — ]| > |} — ! +2h.
Then
o1 — 2| = [lz1 — @0l

= ller = @ill + Nz = 5l + lzj = @nll = 01 (21, 20, 20) = (i, 25, 20)
> |lzr = @il + |2 = 2] + [l — zall = 27
> [oy — 2] + | — @j] + |2 — 2y
2 |l‘i - xMa

which is a contradiction.
For (b), we use the order to write

O (wi,xj, ) = |75 — 5] + [|[7j — 2kl — |70 — 24|
= |z; — aj| + |z — x| — |o] — 2y
= 0(x}, ], x},)

=0.

Lemma 7.4. Let E C R be non-empty and let f : E — R satisfy

(7.2) [f(z) = f)l <[z —yl+1

forsomet > 0andall z,y € E.
Then there is a 1-Lipschitz g : R — R such that

lg(z) = f(2)| <t
forall z € E.
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Proof. Define
g(x) = inf{f(z) : f: R — R 1-Lipschitz, f(z) > f(z) forall z € E}.
Note that for any z, z € E, we have
fo@) = o — 2| + f(2) + £ 2 f(2)
and so this fz is admissible in the above infimum.

This shows, first of all, that g is finite on £ and hence a 1-Lipschitz function satisfying
g > fon E. (See, e.g., [15, Lemma 6.3].) Moreover, for each z € E, we have

9(2) = F(2)| = g(2) = f(2) < fo(2) = f(2) =1,

which completes the proof. O
Lemma 7.5. Let (z1,22,...,2,) be an ordered n-tuple of r-separated points in {o.
Assume that
r
O (x4, zj,x) <h < 10

foreachi < j <k.
Then there is an ordered n-tuple (z1,...,2,) of r/2-separated points in L, and a
coordinate iy € N such that
[z — @il < h

for each i and

|21 = 20| = [l21 = zn]-
Proof. We may find an iy € N such that
e e
We then increase or decrease xio by h so that
(7.3) oy — @3] = llzn = zal,
holds. We relabel the resulting point z7. Let z; = z; for¢ > 2.
Of course, we have ||z; — x;|| < h for each ¢, and so the {z;} have mutual distances at

least  — 2h > r/2. It remains only to show that (21, ..., 2,) is ordered.
Ifi < j <k, then

llzi — zill = llzi — 25l + ll25 — 2&ll — 01 (24, 25, 21) > max(||z; — 2|, [|25 — 2 ll),

using the fact that 91 (z;, z;, z) < 01 (x4, zj, k) + 6k < h + 6h < r — 2h.

Finally, we prove Lemma 7.1.
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Proof of Lemma 7.1. Let (x1,2,...,%,) be an ordered n-tuple of r-separated points in
{~. Assume that

r
al(xhxjamk) < h < 1000

foralli < j < k.

We would like to find a geodesic L in ¢, such that
dist(x;, L) < 15h

foreachi € {1,...,n}.
We begin by applying Lemma 7.5 to find an ordered n-tuple (z1,...,z2,) of r/2-
separated points in /., and a coordinate 7y € N such that

llzi = zil < h
for each 4 and } _
21" — 20| = [lz1 — 2.

Note that we have
al(Zi,Zj,Zk> < h+6h="Th

foreach i < j < k. Wesetr’ =r/2 and h’ = Th. Note that A’ < r'/20.

For the remainder of the proof, we will assume without loss of generality that ig = 1,
which we can achieve by reordering the coordinates.

Fix m > 2 for the moment. By Lemma 7.3(a), we have that

2" = 2| <l — 25 < |2f — 2} + 20

for all 4, 5.

Let E = {z],...,2}} C R and define f,, : E — R by fn(z}) = 2. The function
fm then satisfies the “coarse 1-Lipschitz” property (7.2), with ¢ = 2h’. By Lemma 7.4,
there is a 1-Lipschitz g,, : R — R satisfying

(7.4) lgm (i) = 27| = lgm (2i) = fm(2)] < 21

We now use each g,,, for m > 2, to define points y1,...,y, € fo. Fori €
{1,...,n},let
Yi = (27,1»92(23);93(211)3 e )

Because of (7.4) and the definition of f,,, we have
lys — 2l < 21

for each .
It follows, first of all, that (y1,...,y,) is ordered just as (21, ..., 2,) is. Indeed, if
1 < j <k, then

i — yrll = llyi = w5l + ly; — well = 01 (wi» w5, yr) > max(llys — v, 1y — yell)s

using the fact that 01 (v, ¥, yx) < 01(2i, 25, 2) + 6" < K/ +6h" < 1" — 4k,
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Furthermore, since each g,, is 1-Lipschitz, we have that
lvi =5l = |2t = 21 2 |9m(2) = gm ()| = |y = |
foreachi,j € {1,...,n} and m > 2, and so
lyi =il = lyi — ;]
foreachi,j € {1,...,n}.
Therefore, Lemma 7.3(b) implies that
(7.5) 01 (Yi,Yj>uk) =0

foralli < j < k.

It follows that the union of line segments [y1,y2] U [y2,y3] U - - U [Yn—1,yn] is a
geodesic segment passing within distance 2h’ of each z;. This segment can then be ex-
tended to a bi-infinite geodesic L C ¢4 with the same property.

Finally, since ||z; — x;|| < h for each i, we see that

dist(z;, L) < h+ 2h' = 15h

for each ¢, which completes the proof.

8. 3 numbers in uniformly convex Banach spaces

In this section, we prove the following:
Lemma 8.1. Let (X, ||-||) be a Banach space with modulus of convexity ¢ satisfying (1.11)
withc > 0and q > 2. Let I' C X be a compact, connected subset. Then

Bx"(B) 5 B’ (B)*

for each ball B in X with diam(B) < {sdiam(T’).

The implied constant depends only on c and q.
Using Theorem A, we will then obtain Corollary D.

Proof of Corollary D. Let X be a Banach space satisfying the assumptions of the corol-
lary and let I" be a doubling curve in X with a multiresolution family ¢.
Exactly as in the proof of Corollary C, it suffices to show that

Y. Bx'(B)Pdiam(B) S H'(D),
Be9\%,
where 1
% ={B € ¥ : diam(B) > Todiam(l“)}.
Using Lemma 8.1 and Theorem A, we get
Y. Bx'(B)Pdiam(B) S Y Bx'(B)*/4diam(B) S HY(T),
Be9\%, Be%\%

which completes the proof. a
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We now focus on proving Lemma 8.1.

Lemma 8.2. Let (X, ||||) be a Banach space with modulus of convexity § satisfying (1.11)
with ¢ > 0 and q > 2. Let x,y, z be three points in X with diam({x,y, z}) < r, and let
L denote the line through x and z. Then

. q
(dlSt(ry’L)> " SJ al(xvyvz)'

The implied constant depends only on c and q.

Proof. Assume that y ¢ L, otherwise the lemma is trivial.
Let yo denote a point on the segment [z, z] C L such that

llyo — || ly — ||

8.1) =
lyo — 2l +llyo — 2l lly =zl + lly — 2|l

Note that the quantity on the right side of (8.1) is in [0, 1], and the quantity on the left side
ranges continuously from 0 to 1 as yy moves from z to z in the segment [, z], so such a
yo exists. By simple algebra, this yq also satisfies

[lyo — =|I _ ly — =l
lyo =/l +llyo =2l lly ==l + ly — 2|

8.2)

It follows that

lvo — ] + lvo — 2|
83) Hm—$==w—wﬂ(
PECESrEE

~ly ol ()
FEEEArEE]

< lly -2l
and
lvo — all + llvo — |
(8.4) Hmzw2H<
vzl + v =
o — 2|
=|y—ﬂ<
Tyl + v~
<lly— =l

Lety' = Y5 and h = ||y — yoll = 2lly — /Il

Equation (8.3) implies that y and yg are in the closed ball B = B(z, ||z — yl|). We
now want to apply (1.10) to these points in B, which we may rescale and translate to the
unit ball. Doing so, we see that

|

o /le =yl <1 - =0
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or

h
8.5) |m—yw()<nx—w—wy—xw
=

Doing the same on the ball B(z, ||y — z||) (which contains y and yg by (8.4)), we see that
h /
(8.6) lz=yllo | 77— ) <Mz =yl = Iy — =l
Iz = yll
Using equations (8.5) and (8.6), we obtain that

h(z,y,2) =z =yl +llz—yll =z — 2|
Z e =yl + 1z =yl = llz =yl =l = /Il

h h
znm—mw()+wz—mw()
= =

2 Wl =yl =+ e =yl
> pipl=a,

Since yo € L, h is an upper bound for dist(y, L). Therefore,

<di8t(y’L)>qr < (h)qr S o,y 2),

r r
as the lemma states. O

Proof of Lemma 8.1. Fix a compact, connected set I' C X and a ball B = B(z, ) cen-
tered on I with diam(B) < ;diam(T"). Note that for such B, r ~ diam(B), so we may
freely interchange these at the cost of some absolute constant factors.

Write o and By for 8.1 and Bx', respectively. We may assume, by adjusting the
implied constant, that 3, (B) is small enough to apply Lemma 6.3.

By that lemma, we obtain a 2., (B)diam(B)-net N C B with an ordero : N — R
satisfying

(8.7) o(z) < oly) < o(z) = d(z,z) > max{d(z,y),d(y,2)}
for all z,y,z € N. Ordering N according to o, we write
N ={z1,29,...,2,}.

Let L be the line passing through z; and x,,. For each x; € N, we have

. ) q
(BB (21)  dhCon, i) = Do 1,22) < BB

by Lemma 8.2. Here the equality between 0, and O comes from the order property (8.7).
Therefore, for each z; € N we have

dist (5, L) < Boo(B)¥r.
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It follows that for each x € B, we have
dist(2, L) S Boo(B)* % 4 Boo(B)r < Boo(B)*/ 11,

where the second inequality follows from the fact that ¢ > 2.
It follows that

Bx(B) < Bse(B)*1,

as Lemma 8.1 states.

9. A comparison with the Heisenberg group

Fix an isometric embedding ¢: H — /... As a different choice of embedding ¢ will not
affect the results in this section, we suppress ¢ throughout and simply consider H C /..

Fix acurve ' C H C /., with multiresolution family ¢ having inflation factor
A = 10. Recall that we defined a measure on ¢ by setting

M) =Y BE(B) diam(B)
Be¥'

for49’ C 4 and r < 4.
Theorem 1.10 then implies that if » < 4 and I' is a rectifiable curve in the Heisenberg
group satisfying

©.1) HY(T) > 2C, diam(T"),
then
1
9.2 (G > ).
92) M) > 55 (T)
On the other hand, by Corollary C, we have for each p > 1, that
(9.3) > B " (B)Pdiam(B) < C,H' ().
Be9

Comparing these will yield Corollary E, which says that the set
Geq ={B €Y : 5, (B) > cB(B)"}
is small, measured by .#,..

Proof of Corollary E. Letp =r/q > 1.
Using (9.3), we have

> Bu(B)"diam(B) < c? > B, "(B)"diam(B)
Be%c,q BGgC,q
< ¢ PCHYTD)
< 2c7PC,C, Y | Bi(B) diam(B).
Be¥9
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If ¢ is chosen, depending on ¢, r, and 4, so that
2¢7PCyCy < 4,
then that completes the proof. o

In the next two remarks, we argue that Corollary E indicates some genuine difference
between Euclidean space and the the Heisenberg group, in the sense that the analogous
Euclidean statement is in some sense trivial while Corollary E is not.

Remark 9.1. Fix an isometric embedding of R" into ¢, and a compact subset K C R".
Given Theorem 1.1, the natural analog of Corollary E might be to show, for a suitable
choice of ¢ = ¢g, that

9.4) My ({B €9 : Bl (B) > cﬁgn(B)q}) < SHY(D).

However, while true, this statement is trivial in R™ for all ¢ < 2, because in fact one may
make the measured collection of balls not only small but empty by an appropriate choice
of c. (In particular, (9.4) holds for all sets in R", and not simply curves.) This is for the
following reason:

One may show that for any ball B in a multi-resolution family for K, we have
(9.5) B, "(B) < Bin(B)?,
with an absolute implied constant (once A = 10 is fixed). Indeed, consider a 2~ (nt1).
separated net N in K N B(z, A2™"), and let B = B, (B(A2™™)). As in the proof of
Corollary C, we may assume N is ordered and 5 < A/100 = 1/10. There is a line
L containing N in its 2/3 neighborhood. Standard computations with the Pythagorean
theorem show that the orthogonal projection 7 onto L satisfies

I7(y) = 7(2)| = ly — 2|| < B* forally, 2 € N.

(Note that it is important here that y, 2 € N are well-separated.) It follows that for any
ordered triple of points a,b,c € N,

dn(a,b,¢) £ D (m(a), w(b), m(c)) + 5° = 5.
Hence, Lemma 7.1 implies that
1(B) S 8%

proving (9.5).

In turn, (9.5) shows that, if ¢ < 2, the collection of balls summed over in (9.4) can
be made empty by choosing c sufficiently large, which justifies the statement made at the
beginning of this remark.

Remark 9.2. In the Heisenberg group, on the other hand, Corollary E is non-trivial in the
following sense: For each fixed ¢ € (2,4), one can construct a set X C H and a ball B
centered on K such that K et

0. (B)

i " (B)
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is arbitrarily large. Indeed, page 393 of [21] gives an example, for any p > 0, of a 1-
separated set K = {a, b, c} in B = B(a,2) C H such that

p>d(ab,c) 2 Bif (B)?,

with an absolute implied constant.

Since d(a, b, ¢) is easily seen to be a lower bound for @K’ "(B), we see that

Z;net(B) . 1
B (B)r ™ pr?

which can be made arbitrarily large.

In particular, given g € (2,4), there is no choice of ¢ = ¢, that makes ¢, , empty for

all sets in HI, as was the case for R™ in the previous remark.

Nonetheless, Corollary E shows that for curves in the Heisenberg group that are a

definite factor longer than their diameter, the collection ¢, , must be small (for ¢ < 4 and
appropriate ¢ = cg. ).
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