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We explore an asymptotic behavior of entropies for sums of independent random

variables that are convolved with a small continuous noise.

1 Introduction

Let (X,,),,~; be independent, identically distributed (i.i.d.) random vectors in R< with an
isotropic distribution, that is, with mean zero and an identity covariance matrix. By the
central limit theorem (CLT), given a random vector X in R4, independent of all X,,’s, the

normalized sums

1
Zn:ﬁ(X+X1+~-~+Xn) (1)

are convergent weakly in distribution as n — oo to the standard normal random vector

Z with density

px) = e X2, x € R%, (2)

1
(2m)d/2
Suppose that X has a finite 2nd moment and an absolutely continuous distribution, so

that Z,, have some densities p,,. A natural question of interest is whether or not this
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8058 S. G. Bobkov and A. Marsiglietti

property (i.e., the weak CLT) may be strengthened as convergence of entropies
hz,) = _/]Rd P, logp, (x)dx

to the entropy of the Gaussian limit Z. The usual entropic CLT corresponds to the i.i.d.
case with X = 0. Then, this CLT is known to hold, if and only if Z, have densities p,,
with finite h(Z,)) for some or equivalently all n large enough [2] (see also [1, 5, 14, 17—
19, 27]). What also seems remarkable, the presence of a small non-zero noise X/4/n in
(1) may potentially enlarge the range of applicability of the entropic CLT. Here is one

observation in this direction in terms of the characteristic function
ft) =E&%  teRe
Theorem 1.1. If f is compactly supported, and X; has a non-lattice distribution, then
h(Z,) — h(Z) asn — oc. (3)

This convergence also holds for lattice distributions, if f is supported on the ball |t| < T
for some T > 0 depending on the distribution of X;. One may take T = 1/8;, assuming

that the 3rd absolute moment
B3 = sup E|(X,,06)[°
161=1
is finite.

The assumption of compactness on the support of the characteristic function
of X requires its density p to be the restriction to R? of an entire function on C% of
exponential type by Paley-Wiener theorems (cf., e.g., [29]).

The entropic CLT (3) may equivalently be stated as the convergence

b4
D(Zn||Z)=/ P, 1logP2 d4x & 0 (> o)
R4 P(x)
for the Kullback-Leibler distance (also called relative entropy or an informational
divergence). It belongs to the family of so-called strong (informational) distances, which
dominate many other metrics that are used in usual CLT's about the weak convergence of

probability distributions. As was mentioned to us by one of the referees, one immediate
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Entropic CLT for smoothed convolutions and associated entropy bounds 8059

consequence from (3) is the CLT for non-smoothed normalized sums with respect to the
Kantorovich transport distance W, (cf. Remark 4.4 for details).

In general, the hypothesis on the support of f in Theorem 1.1 cannot be
removed, but may be weakened by involving more delicate properties related to the
location of zeros of the characteristic function. This may be seen from the following

characterization in one important example under mild regularity assumptions on f.

Theorem 1.2. Suppose that X; has a uniform distribution on the discrete cube {—1,1 }d,
that is, with independent Bernoulli coordinates. Let the characteristic function f of X

satisfy

@I
/Rdl'f(t)|dt<00’ /RdHt”Tdt<OO, (4)

where [|t|| denotes the distance from the point ¢ to the lattice 7Z<. Then, the entropic
CLT (3) holds true, if and only if

frk)y=0 forall ke z? k+0. (5)

The 2nd moment assumption on X guarantees that f has a bounded continuous
derivative f'(t) = Vf(t) with its Euclidean length |f'(t)|. The assumption of integrability
of f in (4) requires the density of X to be continuous on R?. In dimension d = 1,
the condition (4) is fulfilled, as long as both f and f’ are in L!. If d > 2, (4) is more

complicated, but is fulfilled, for example, under decay assumptions such as

C
+ 1t D (1 (g’

C
+ 1t D (1 g’

' 6
fF@l = « @l < « (6)

holding forall t = (t;,...,ty) € R4 with some constants « > 1 and ¢ > 0.

Although an information-theoretic meaning of the property (5) is not clear, it
is indeed connected with the entropy functional h(X). Namely, under the conditions
(4)-(5), it turns out that the entropy has to be non-negative. This is emphasized in the
next statement, where we drop the isotropy condition and extend the Bernoulli case to
arbitrary integer valued random vectors. As before, we assume that X is a continuous

random vector in R? with finite 2nd moment, which is independent of all X,,'s.

1202 YOJBI\| 0 UO JOSN SaIO UIM L - BJOSSUUIIA JO ANSISAIUN AQ Z0Z12.G//G08/1.2/020Z/310Ie/uiljwod°dnoolwapese)/:sdjy Woly pepeojumod



8060 S. G. Bobkov and A. Marsiglietti

Theorem 1.3. Let (X,),.; be a sequence of independent, integer valued random

vectors, whose components have variance one. Then

limsup h(Z,) < h(X)+ h(2).

n—oo

In particular, if h(Z,)) — h(Z) as n — oo, then necessarily h(X) > 0.

Actually, the independence assumption may further be weakened to the uncor-
relatedness (as explained in Theorem 5.3 at the end of these notes).

We do not discuss here possible applications of the last conclusion in
Theorem 1.3. Let us, however, stress that obtaining lower and upper bounds for the
differential entropy, under various hypotheses or for different classes of probability
distributions on the Euclidean space R4, is in itself an important and self-sufficient
direction in information theory, which is motivated by many problems and is connected
with other areas. For example, applications of lower bounds to rate-distortion theory
and channel capacity were put forward in [23] (see also [12, 16, 22]). Let us also
mention Bourgain's slicing problem in asymptotic geometric analysis, cf. [9]. As a
main conjecture, it states that for any convex body K in R¢ there is a hyperplane H
such that the (d — 1)-dimensional volume of the slice H N K is bounded away from zero
by a universal positive constant. It was shown in [6] that the latter may equivalently
be formulated as the property that if X is a random vector in R? with an isotropic

log-concave distribution, then
h(X) > —cd

with some universal constant ¢ > 0. Besides this conjecture, the past few years have
seen a growing interest in the study of entropic inequalities as they shed new lights
on fundamental problems in convex geometry (cf., e.g., [7, 10, 11]). We refer to the
survey paper [21] for further details on the connections between entropic inequalities
and geometric and functional inequalities.

The paper is organized as follows. We start in Section 2 with general upper and

lower bounds on the Kullback-Leibler distance

D(X||1Z) = / p(x) logp(—X) (7)
Rd p(x)
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Entropic CLT for smoothed convolutions and associated entropy bounds 8061

from the distribution of X to the standard normal law in terms of the L2-distance
1/2
A=lp—gl,= (/Rd(p()o — p(x))” dx) . ®)

Throughout, Z denotes a standard normal random vector in R%, thus with density ¢ as

in (2) and with characteristic function
g(t) = Eelt4 = / eltX) px)dx = e 117/2, ¢ e R
R4

As usual, the Euclidean space R? is endowed with the canonical inner product (-,-) and
the norm | - |. These bounds are applied in Section 3 to express the entropic CLT as
convergence of densities in L?. Theorems 1.1 and 1.2 (in a somewhat refined form) are
proved in Section 4. Using Proposition 3.1, the proofs employ recent results obtained in
[8] on local limit theorems with respect to the L? and L>-norms. Theorem 1.3 is proved
in Section 5, where we also discuss the connection between entropy bounds and the

entropic CLT.

2 General Bounds on Relative Entropy

Throughout this section, let X be a random vector in R? with density p, and let A be
defined according to (8).

Proposition 2.1. Suppose that E [X|?> = d. If A < 1/e, then
d+a
DX|1Z) < ¢y Alog % (1/A) (9)

with some constant ¢; > 0 depending on d only. Moreover, if sup, p(x) < M for some
constant M > (27)~ %2, then

1
DX|1Z) > — A% 10
Xl12) = oM (10)
First we collect a few elementary large deviation bounds.

Lemma 2.2, Forany T > 1,

(@) [fysr @ dx < 2d 7d—2 o~ T2/2,
) fiyor X2p@) dx < 2dTe T2,
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Proof. Clearly, (a) follows from (b). To derive the 2nd bound, write

E1Z" 1z2m) = / X g dx = 220 / et ar, (11)
= Ix|>T (2m)4/2 Jp

where w; denotes the volume of the unit ball in R4, Given ¢ > 1, consider the function
o0
u(T) = / rdtl /2 4y _ crd o= T%/2,
T
We have u(oo) = 0 and
U(T) = ((c— 1) T? —cd) T e /2,

Thus, u(T) is decreasing in some interval 0 < T < T, and is increasing in T > T,.
Therefore, u(T) <0 forall T > 1, if u(1) = 0, that is, for

o d Py
c:\/E/ rd+l o=r"/2 qp,
1

Using (11), we obtain

(zn)d/z
E|ZI* 1721 < Ve .

d/2
o \/E (2m)

SO

dw ) .
2 — _%ad d _—T2/2 4122
/|X|>T x| p(x)dx = 272 (u(T)+cT e ) < JedT%e )

To get the upper bound (9), we also need to control the weighted quadratic tails

in terms of the L%-distance A.

Lemma 2.3. IfE|X|?=d, thenforall T > 1,

/ Ix|2p(x)dx < 2T A +2d T4 e T°/2,
|x|=T
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Proof. We have
/ xI°px)dx = d- Ix|*p(x) dx
|x|=T |x|<T

_ /|| S <<p(x>—p(x))dx+/ %12 p(x) dx

|x|=T

IA

/ %1% Ip(x) — (0] dx + / %1% ¢ (x) dx.
lx|<T Ix|=T

The last integral is bounded by 2d T9 e~T°/2. Also, by the Cauchy inequality,

2
( / 1x|% |p(x) —(p(X)|dX) < / |x|* dx / P(x) —px)?dx = A4 para
|x|<T |x|<T Rd

d+4

where w, is the volume of the unit ball in R%. Here, g—_‘ii < 4.

Lemma 2.4. ForallT>1,

DX||2) < 2dT2e T2 em¥? [ (p@) - p@)? /2 dx
Ix|<T
2d — 1
+ / 1x|% p(x) dx + / plog pdx.
2 Jixizr X|>T

8063

2

(12)

Proof. 1In definition (8), we split the integration into the two regions. Using the

inequality tlogt < (t — 1) + (t — 1)?, t > 0, and applying the 1st bound of Lemma 2.2, we

have
2
/ I—Jlogl—gcpdx < / (B—l)wdx—i—/ (I—)—l) pdx
x|<T ¢ @ |x|<T ‘@ |x|<T ‘¢
N2
= / (¢ —p)dx + udx
|x|>T |x|<T [
< 27 - / pdx+@n¥ [ (px) —px)? e/ dx.

|x|=T |x|<T

For the 2nd region |x| > T, just write

d 1
/ plogl—JdX = / plogpdx+ — log(2n) pdx+ —/ x| p(x) dx.
Ix|>T 2 x> 2 Ix|>T

|x|>T 2
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Combining these relations and noting that log(27) < 2, we thus get

DX||Z) < 2dT%%e T2 4 (2m)%2 (P& — p(x))? /2 dx
T

Ix|<

1
+(d—1)/ p(x)dx + 5/ IXlzp(X)dX+/ plogpdx.
|x|>T |x|>T

|x|=T
|
As a consequence, we obtain the following:
Lemma 2.5. ForallT>1,
DX|Z) < 2d+ 1) T e T2 4 (2m)¥? +1)eT /2 A% +d r %2 p(x) dx.
x|>
Proof. We use the notation a™ = max(a,0). Subtracting ¢(x) from p(x) and then

adding, one can write

IA

/|| Tplogpdx /| Tp(x)log+(p(x))dx

IA

/ _,1P00 001 Tog" (px) ax + / o) log* (p(x)) dx.

|x|=T

Next, let us apply Cauchy’s inequality together with the bound (log™(¢))? < 4e 2t so

that to estimate the last integral from above by

1/2 ) 1/2 2 1/2
( / so(x)zdx) ( / (log* (px))) dx) < —( / o(x)? dx) .
x|>T |x|>T € \Jix|>T

Here, using the 1st bound of Lemma 2.2, we have

1
2dx = —/ d
/|X>T¢(X) (47)@/2 Iy\zTﬁ(p(Y) y

(TN/2)32 e T < i1 T,

IA

(47T)d/2

Therefore,

/ plogpdx < / P(x) — ()| log* (p(x)) dx + 77 & 772,
|x|=T

|x|=T
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To simplify, the last integrand may be bounded by

1
(Px) — p(x)* + 2P,

N =~

1 1
7 PO —9()* + 7 (log" (p(x))” <

So,

1 1 _
/ plogpdx < —A2+_/ P(X)dx—l—T%e_Tz/z.
IX|=T 2 2 Jix=T

Using this estimate in (12) together with e**/2 < eT*/2 for |x| < T, we get

DX|1Z) < 2dT% e T°/2 4 (27)d/2 oT/2 (P(x) — p(x))? dx

|x|<T

2d — 1 ) . )
" / *pGo) dx + 2 A%+ —/ px) dx + TT e T°/2,
2 |x|=T 2 2 Jixi>T

|
Proof. of Proposition 2.1 Combining Lemma 2.5 with Lemma 2.3, we immediately get
D(X|12) < (2d2 +2d+ 1) T2 e T2 4+ ((2m)¥2 +1) €12 A2 + 2d TZ" A,

To get (9), it remains to take here

d
T = \/2 log(1/A) + 7 loglog(1/A).

For the lower bound (10), let us recall that D(X||Z) = h(Z) — h(X). By Taylor's expansion,

forall t > 0 and ¢, > O, there is a point ¢; between t and ¢, such that

(t—ty)?

tlogt =tylogty+ (logty + 1)(t —ty) + %
1

Inserting t = p(x), t; = ¢(x), we obtain a measurable function ¢, (x) with values between

p(x) and ¢(x), satisfying

(px) — go(x))z.

px)logp(x) = ¢(x)loge(x) + (logex) + 1) (p(x) — ¢(x)) + 2
1(X)

Let us integrate this equality over x and use E |X|?> = d to get

_ 2
“h(X) = —h@) + - P = ¢x)” o
2 Jrd 1, (x)
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Hence,

P —pe)?

1
bxlie) =7 ™t

It remains to use the assumptions p(x) < M and ¢(x) < M, so that t;(x) <M as well. B

3 Topological Properties of Relative Entropy

Applying Proposition 2.1 to a sequence of random vectors, we arrive at necessary and
sufficient conditions for the convergence in the Kullback-Leibler distance D in terms of

the L2-distances

1/2
An =Dy —¢llp = (/Rd@noo —go(x))zdx) :

More precisely, we have the following:

Proposition 3.1. Let (Z,),-; be a sequence of random vectors in R9 with densities p,,.
Suppose that as n — oo

(@ E|Z,?— d;

(b) A, — 0.
Then D(Z,||Z) — O or equivalently h(Z,) — h(Z) as n — oo. Conversely, if p, are
uniformly bounded, then the conditions (a)-(b) are also necessary for the convergence in
D.

Before turning to the proof, let us recall a basic abstract definition of the
Kullback-Leibler distance (i.e., relative entropy). Let X and Y be random elements
in a measurable space Q2 with distributions u and v, respectively. If u is absolutely
continuous with respect to v and has density h = du/dv, the relative entropy of u with

respect to v is defined as
D(X||Y) = D(ul|v) = / hloghdy = /p 10g§dk,
Q

where in the last equality we assume that x4 and v have densities p and q with respect
to the dominating measure A on 2, so that h = p/q (which is well-defined A-almost
everywhere). This definition does not depend on the choice of A, and one may always
take A = p + v, for example. If u is not absolutely continuous with respect to v, one puts

D(X||Y) = D(u||lv) = oo. For basic properties of this functional, we refer an interested
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reader to [15], and here only mention one well-known relation:

/gdu < D(u||v)+log/ ed dv.
Q Q

It holds for any measurable function g on @ for which the right-hand side is finite (this
relation easily follows from the elementary inequality xy < xlogx—x+e¥, x>0,y € R).
In the case where Q = R? with Lebesgue measure A, and choosing g(x) = ¢ |x2,

& > 0, we have in particular
eE X2 < DX||Y) + log Eet YV,

If Y has a normal distribution, the last expectation is finite for some ¢ > 0. Therefore,
finiteness of D(X||Y) forces the random vector X in R? to have a finite 2nd moment. One

can now introduce an affine invariant functional
DX) = irl}f normal D(X||Y),

where the infimum is running over all absolutely continuous normal distributions on
R%. Thus, D(X) represents the Kullback-Leibler distance from the distribution of X to the
class of all non-degenerate Gaussian measures on R%. It is finite, only if the distribution
of X is absolutely continuous and has a finite 2nd moment, and then this infimum is
attained on the normal distribution with the same mean a = EX and covariance matrix
V as for X (cf., e.g., [3, Section 10.7]).

Our next step is to quantify the properties (a)—(b) from Proposition 3.1 in terms
of D(X||Z), where Z is a standard normal random vector in R%. Denote by ¢, i the density

of the normal law with these parameters, that is, let Y have density

_ 1 1/ 4 d
gOa,V(X) = mexp[—§<V (X—a),X—a>], x € R%,

so that D(X) = D(X]||Y). By the definition, if X has density p, we have

p(x)
(pa,V(X)

_ pPX) . _
DX||z) = /de(X)log (p(X)dX = /de(x)log

1 1 1 1 2
— 7 log det(V)—§E<V (X—a),X—a>+§IE|X| .
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Simplifying, we obtain an explicit formula

D(X||Z)

DX) + 1 lal? + 1 (10 L(V) + Tr(V) — d)
2 2 8 det

d
1, 1 1,

i=1 1

2
1
hand side are non-negative. This allows us to control the 1st two moments of X in terms
of D(X||Z). In particular, |a|®> < 2D(X||Z), so that the closeness of X to Z in relative

where o are eigenvalues of the matrix V (o; > 0). Note that all the terms on the right-

entropy implies the closeness of the means. To come to a similar conclusion about the

covariance matrices, consider the non-negative convex function
1
W(t)zlog?—i—t—l, t> 0.

We have ¥(1) = ¥/(1) = 0 and ¥ (t) = tlz If |t — 1| < 1, by Taylor's formula about the

point t; = 1 with some point ¢; between ¢ and 1,

Y@ =y +y'DE - D+ ¢ ()

(t—1)2 - (t—1>2'
2 - 8

For the values t > 2, we have a linear bound log% +t—1>c(t— 1) with some constant
0 < ¢ < 1. Namely, write the latter inequality as logt < (1 — ¢)(t — 1), that is, u(s) =
w <1 —cfors > 1. As easy to check, the function u(s) is decreasing on the whole
positive axis, so u(s) < log2 in s > 1. Hence, one may take c = 1 —log2 > %, and thus

¥ (t) = 551, The two bounds yield
1 ,
v(t) > 3 min{|¢ — 1], [¢ -1/}, t>0.

Let us summarize.

Lemma 3.2. Given a random vector X with mean a and covariance matrix V with

eigenvalues aiz, we have

d
1 2 1 . 2 2 2
D(X||Z) > D(X) + 2 la|? + 6 Z‘mm{wi — 1], (c? — D?}.
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In particular, putting D = D(X||Z), we have
(a) |al® < 2D;
(b) Jo? —1| <4v/D+16D foralli<d;
(c) |E|X|?2—d|<4dvD+ 16dD.

Here, the closeness of all aiz to 1 may also be stated as closeness of V to the
identity d xd matrix I, in the (squared) Hilbert-Schmidt norm || V—I;||%5 = >4, (c?—1)2.
These bounds have an application in the problem where one needs to determine whether

or not there is convergence in relative entropy for a sequence of random vectors.

Corollary 3.3. Given a sequence of random vectors Z, in R? with means a, and
covariance matrices V,,, the property D(Z,||Z) — 0 as n — oo is equivalent to the next

three conditions:

DZ,)—- 0, a,—0, V,—1I;.

Proof. of Proposition 3.1 First recall that
d 1 d d
D(Z,||12) = —h(Z,) + 2 log(27) + 2 E 1Z,12, h@) = > log(2m) + 5

Hence, if E |Zn|2 — d like in (a), then D(Z,,||Z) — 0 < h(Z,) — h(Z). To show that the
conditions (a)-(b) are sufficient for the convergence in D, denote by f,, the characteristic

functions of Z,,. By the assumption and applying the Plancherel theorem,

A, = 20) Y2 |f, —gl, — 0O

as n — oc. Define the random vectors Z, = b, Z,, where b2 = d/E|Z,|? (b, > 0), so that

E |2n|2 = d. They have densities p,,(x) = é pn(%) with characteristic functions

7o) = gl fobyt),  teR4

Using b,, — 1 and applying the Plancherel theorem once more together with the triangle

inequality in L?, we then get

A, = @n)" Y2 |f, —gl,

1
(@b a2 £ (® —g@/byll,

IA

Ifn® —g@®ll2 + lg(t/by) —g@®ll2

1
(27b,,)d/2 (27b,,)d/2

1
— A — 5 t/b,) —g®)ll,-
pdZ + @b, )72 19(t/by) — g(@®)l2
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Here, the last norm tends to zero, so, An — 0. We are in position to apply the upper
bound (9) of Proposition 2.1 to X = an which yields D(Zn||Z) — 0 and thus

5 d
D(Z,||Z) = D(Z,||Z) — dlogb,, + ) (b3 —1) — 0. (14)

Conversely, assuming that D(Z,,||Z) — 0 and applying Corollary 3.3, we get the property
(a). Hence, bfl =d/E |Zn|2 — 1, and D(2n||Z) — 0 according to the formula (14). By the
assumption, p,, are uniformly bounded, that is, p,,(x) < M with some constant M. We

are in position to apply the lower bound (10), which yields An — 0 and therefore

An = b3% @)Y F (1) = gbyt)llp = b2 Ay + 572 @m) "V lg(t) — 9B, — 0. g

4 Proof of Theorems 1.1-1.2

From now on, let the random vectors Z,, be defined as the normalized sums according

to (1). The proof of Theorem 1.1 is based on the following statement obtained in [8].

Lemma 4.1. ([8, Theorem 1.3]) There exists T > 0 depending on the distribution of
X, with the following property. If f is supported on the ball |¢| < T, then the random

vectors Z,, have continuous densities p,, such that
Ipn, — ¢l = sup |p,(x) —¢x)| >0 as n— oo. (15)
X
If B4 is finite, one may take T = 1/8;. If X, has a non-lattice distribution, T may be

arbitrary.

Recall that, in Theorems 1.1-1.2 we assume that E|X|? < oo, which implies
E|Z,? = LEIX|? +d — d as n — oo. In addition, the uniform convergence (15) is

stronger than
lp, —¢ll, > 0 as n— oo, (16)

since

D, —0lZ = /Rd(pnoo — o) dx
< Dy — ol /R ) — () dx < 211D, — ¢l

By Proposition 3.1, both properties ensure that D(Z,||[Z) — 0, and we obtain

Theorem 1.1.

1202 YOJBI\| 0 UO JOSN SaIO UIM L - BJOSSUUIIA JO ANSISAIUN AQ Z0Z12.G//G08/1.2/020Z/310Ie/uiljwod°dnoolwapese)/:sdjy Woly pepeojumod



Entropic CLT for smoothed convolutions and associated entropy bounds 8071

Now, let us turn to the Bernoulli case, that is, when X; has a uniform distribution
on the discrete cube {—1,1}¢. Theorem 1.2 may slightly be refined in one direction by
weakening the condition (4). As before, ||t|| denotes the distance from the point ¢ € R to
the lattice #Z2,

Theorem 4.2. Suppose that the characteristic function of X satisfies

f(rky=0 forall ke Z% k+0, (17)
together with
/A
Fowr o, a8
rd 2]l

Then we have the entropic CLT, that is, D(Z,||[Z) — 0 as n — oo. Conversely, if the
entropic CLT holds together with

If" (@]
/Rd I_f(t)|dt<00, /Rd”t”?dt<00, (19)

then f satisfies (17). In this case the uniform local limit theorem (15) takes place.

The point of the refinement is that (18) is weaker than (19), which is exactly the
condition (4) in Theorem 1.2. In dimension d = 1, (18) is fulfilled whenever f and f’
are in L? (by Cauchy’s inequality), that is, when the density p of the random variable X

satisfies
o0
/ 1 +x*)px)?dx <
—0o0

(which holds automatically, if p is bounded). If d > 2, (18) is fulfilled under the decay
assumptions (6) with a weaker parameter constraint o > % This is the case, for example,
where X is uniformly distributed in the (solid) cube [-1, 114, while (19) does not hold. In
[8], it was shown that the properties (17)-(18) imply the L?-convergence of densities (16),
while (17) together with a stronger assumption (19) leads to the uniform convergence
(15). Hence, we can apply Proposition 3.1 to conclude that D(Z,||Z) — 0. It was also
shown there that the property (17) is fulfilled under the L?-convergence (16). In order
to arrive at a similar conclusion under an apriori weaker entropic CLT, we involve the

assumption (19) and prove here:

Lemma 4.3. Suppose that X; has a uniform distribution on the discrete cube {—1, 1}9.

If the condition (19) is fulfilled, then Z,, have uniformly bounded densities p,,.
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Having this assertion, we therefore complete the proof of Theorem 4.2 and of

Theorem 1.2 by appealing to Proposition 3.1 once more.

Proof. of Lemma 4.3 Put v(f) = cos(t;)...cos(ty) for t = (¢;,...,tg) € R%. By the

assumption (19), the characteristic functions

t t
t = _— Vn _—
ho= () (55)
are integrable. Hence, Z, have continuous densities given by the Fourier inversion

formula

1 .
- - —1(t,x)
Dp(x) = e /Rde £, (t) dt. (20)

Let us partition R? into the cubes Q, =Q+7k,Q=I[-%, %]d, k € 74, so that ||t = |t—7k]|

for t € Q. Splitting the integration in (20), we can write

_ _ ,,d/2 —i(t,x)/n n
P = o )d S L@, L =n /a K Fov @ dt.

kezd

Putting wy (t) = f(wk + t) and using the periodicity of the cosine function together with

the bound 0 < cos(u) < e */? for |u| < Z, we have
GOl < Y20 T = / jw (£)] e /2 dt,
o)
By Taylor’s formula,

1
frk+t) —fxk)| < Itl/ If'(mk + &) &, te R (21)
0

Hence, changing the variable ét = s, we get

1
[ rak+o - faionde < [ ok eoriear
Q o Ja
’(nk+s)|
- ffrmeonf, Eoswf T
with some constant c; depending on d only, where |s||,, = max; |s;| for s = (s;,...,84) €

R4, Hence,

7? wi(0)] = 7% |f(wk)| < / lf(t)ldt+0d/ %dt
ax ay lItll
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The next summation over all k leads to

~ 1 ca [ IF @)
> w @] = > Ifrk)l < ﬂ—d/Rd Forde+ G [ qgar at <o (22

kezd kezd

where we applied the assumption (19). Put
jn,k = /(|Wk(t)| — Wi (0)]) e nIt?/2 ¢,
Q

By (21),

1
[wy (D] < IWk(0)|+ItI/O (wi(§0)| dé.

Hence, again changing the variable £t = s, and then &€ = /n |s| %, we get

1
/ / It [wi (5 t)| e ™1/ dt dg
QJo

jhk =
1 d 2 2
= /IWL(S)IISI / gmd-1 g7nIsP/287 g | ds
o) Zislleo
o0
< 092 [ wes @ [ [ ut e‘”z/zdu:| s
o} Islv/n
<

_ (W ()] _ o2
cgn d/z/ —’;_1 e slI/2 g
a sl

with some constant c; depending on the dimension, only. Performing summation over

all k, we get

’ /
n¥? " < Cd/ Ol iz g < Cd/ UEGI

= ra 6191 ra 16171

Due to (22), with some other d-dependent constants

I @)
n/2 ZJ”'k < Cd/Rd [f(t)|dt+cd/Rd”{”Tdt < 09,

kezd

and thus > 4 za |I, x(x)| is bounded by a constant that does not depend on x. |

Remark 4.4. To better realize the meaning of Theorem 1.1, let us also comment on the

relationship between the entropic and transport CLTs. Given two random vectors X and
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Y in R¢ with distributions x and v, respectively, the (quadratic) Kantorovich distance is

defined as

1/2
Wz(M,V)sz(X,Y)Zinf(/ / |x—y|2dx(x,y>) ,
A RA JRd

where the infimum is running over all (Borel) probability measures A on R% x R¢ with
marginals 1 and v. It represents a metric in the space M, (R%) of all probability measures
on R? with finite 2nd moment, which is closely related to the weak topology. More
precisely, given a sequence u,, and a “point” v in M,(R?), the convergence W,(u,,,v) — 0

holds true as n — oo if and only if u,, are weakly convergent to v, that is,
/ u(x) dp, (x) - / u(x) dv(x)
Rd Rd

for any bounded continuous function u on R, and fRd |x|? du, (x) — fRd 1x|2 dv(x) (cf.,
e.g., [31, p. 212]).
When v is the standard Gaussian measure on R?, the relationship of W, with

relative entropy was emphasized by Talagrand [30] who showed that
W3 (X,Z) < 2D(X||Z)

holding for any random vector X in R? with Z a standard normal random vector.

Returning to the setting of Theorem 1.1, define the normalized sums

7 =zn-%x= %(X1+-~-+Xn).
By the classical CLT, the distributions u/, of Z; are weakly convergent to the Gaussian
limit v. Since also E |Zn|2 = E|Z|*> = d, the above characterization of the convergence
in the space Mz(Rd) ensures that W,(u,,v) — 0, which is a transport CLT. A similar
conclusion can also be made on the basis of Theorem 1.1. Indeed, choose for f a
characteristic function supported on a suitable small ball |¢t| < T, so that D(Z,,||Z) — O,

by (3). Applying the Talagrand transport-entropy inequality, we get
2o 2 2 2 2 2
w5 (Z,,Z) < 2W2(Zn,Z)+EE|X| < 4D(Zn||Z)—|—EE|X| — 0.

A similar approach was used in [4] to study the rate of convergence in the one-

dimensional transport CLT under the 4th moment assumption.
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5 Entropy Bounds

Let (X,),>; be a sequence of integer valued random vectors in RY, and let X be a
continuous random vector in R? with finite 2nd moment, independent of this sequence.

As before, we define the normalized sums

1
Z, = ﬁ(X—i—Xl X))

As is well known, when the 2nd moment E |U|? of a continuous random vector U in R? is
fixed, its entropy is maximized on the normal distribution with the same 2nd moment
(cf., e.g., [13]). In the case of independent and isotropic X,,'s, we have E |Z,,|> = L E |X|2 +
d — d asn — oo. Hence, limsup,,_, ., h(Z,)) < h(Z), where Z is a standard normal random
vector in R%. The argument to derive a similar bound lim sup,,_, ., h(Z,,) < h(Z2) + h(X) is

based on two elementary lemmas, which involve the discrete Shannon entropy

k

Here, Y is a discrete random vector taking at most countably many values, say y;, with

probabilities py, respectively.

Lemma 5.1. Let X be a continuous random vector, and let Y be a discrete random

vector independent of X, both with values in the Euclidean space R4, Then
h(X+Y)<hX)+H).

Lemma 5.1 can be derived implicitly from the ideas of [28] about the entropy of
mixtures of discrete and continuous random variables. An explicit statement appears

in [32, Lemma 11.2] (see also [26]). We include a proof for completeness:

Proof. Denote by p the density of X and let p;, = P{Y = y;} for some finite or infinite
sequence y;. Since X and Y are independent, X 4+ Y has density

q(z) = D pep(z — yp).
k
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We use the convention ulog(u) = 0 if u = 0. Note that, if p(z — y;) = 0, then

pip(z — yp) log > p;p(z — y;) = 0 = pp(z — y}) log(pip(z — v3)),

1

while in the case p(z — y;) > 0, we have

pkp(z —yi)log D pip(z —y;)

1

= prp(z — yy) log (pkp(z — ¥ + D pipz— yi))
ik

2k PiP(Z — Yi))}

_ 1 — +1 1+
prp(z Yk)[ 08(PkP(Z ~ i) Og( PPz — 70)

v

PP (Z — yi) log(prp(z — yi).

Hence, for all z,

pkp(z —yy) log > pip(z—y,) > ppp(z —yy) log(prp(z — yy)).
i
We may therefore conclude that

hX+Y) = _/]Rd q(z)logq(z) dz

= —Z/Rd prp(z — yi) log ZPiP(Z—Yi) dz
k i

IA

-> /R PPz = ;) 10g(Prp(z — y) dz
k

= - Zpk (/ p(z —yy) logpy dZ+/ p(z—yp) logp(z —yy) dz)
p Rd Rd

h(X)+ H(Y).
|

Let us note that a recent sharpening of Lemma 5.1 appears in [25, Theorem III.1],

where it is shown that
h(X+Y) < hX|Y) + TH(Y),

where h(X|Y) is the conditional entropy, reducing to A(X) on independence, and T is
the supremum of the total variation of the conditional densities from their “mixture

complements”, necessarily T < 1.
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The following lemma is standard and has been used in several applications
(see [24]):

Lemma 5.2. For any integer valued random variable ¥ with finite 2nd moment,

H(Y) < %1og (2ne(Var(Y) n %)) 23)

The proof of Lemma 5.2, that we include for completeness, also combines both
discrete and differential entropy:
Proof. Putp, =P{Y =k}, k € Z. Consider a continuous random variable Y with density
q defined to be
q(x) =px if x e (k— %,k-ﬁ- %)
In other words,

a0 =D Pl 1py®), xR
k

Note that
_ k+5 D 1.2 1,2
sV=3p | xax= 35 ((k+5) - (k- 5)) = Ehwe=rr
k T2 k k
and similarly
EY? =Zp /k+éXZdX=IEY2~|—L
P’ k k-1 12°
Hence, Var(Y) = Var(Y) + % Also,
o0
h(v) = —/wzpkkk#m%)(x) log >_pjl} ) dx
—o0 T r

k+3
—Zpk/k . logp, dx = H(Y).
k

2

Now, since Gaussian distributions maximize the differential entropy for a fixed vari-

ance, we conclude that

1 _ 1 1
H(Y) = h(¥) = ; log (2reVar(¥)) = ;log (Zne(Var(Y) n E))
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We are now prepared to establish Theorem 1.3, in fact under somewhat weaker

assumptions.

Theorem 5.3. Given a sequence X, = (X, ,...,X, 4) of random vectors with values
in 74, independent of X, assume that for each k < d, the components X,k > 1, are

uncorrelated and have variance one. Then,

limsup h(Z,) < h(X) + h(2).

n—oo
Proof. Putting S,, = X; +--- + X,, and applying Lemma 5.1, we get

X—i—Sn)

nz,) = h( 7

= hX+S,)— glogn

IA

hX)+H(S,) - glog n.

Note that
Snz(Snyl,...,Sn’d), Sn,k =X1,k+'”+Xn,k (1 Skfd)

By the well-known subadditivity of entropy along components of a random vector (an
abstract property on product spaces that is irrelevant to the independence assumption,

cf., e.g., [20]), we have
H(S,) = H(S, ) + -+ H(Sp, g)-

Here, the entropy functional on the left is applied to the d-dimensional random vector,
while on the right-hand side of this inequality we deal with one-dimensional entropies.
For each k < d, the k-th component S,, ; of the random vector S,, represents the sum of n
uncorrelated integer valued random variables with variance one, so that Var(S,, ;) = n.

Hence, by (23) applied to Y = S,, ;, we have

H(S <11 2 L —11 2 o(1
( n'k) =3 og( ne(n—i—ﬁ)) =3 og(2rmen) + O(1/n),

and therefore
H(S,) < glog(Znen) +0(1/n).

We conclude that

limsup h(Z,) < h(X) + glog(Zne) = h(X) + h(2).

n—oo
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