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SUMMARY

Composite likelihood functions are often used for inference in applications where the data
have complex structure. While inference based on the composite likelihood can be more robust
than inference based on the full likelihood, the inference is not valid if the associated conditional
or marginal models are misspecified. In this paper, we propose a general class of specification
tests for composite likelihood inference. The test statistics are motivated by the fact that the sec-
ond Bartlett identity holds for each component of the composite likelihood function when these
components are correctly specified. We construct the test statistics based on the discrepancy be-
tween the so-called composite information matrix and the sensitivity matrix. As an illustration,
we study three important cases of the proposed tests and establish their limiting distributions un-
der both null and local alternative hypotheses. Finally, we evaluate the finite sample performance
of the proposed tests in several examples.

Some key words: Bartlett identity; information matrix; misspecification tests; model specification.

1. INTRODUCTION

The composite likelihood function (Besag, 1974; Lindsay, 1988; Cox & Reid, 2004) is an in-
ference function constructed as the product of a set of conditional or marginal density functions,
whether or not the events defined in each component are mutually independent. It has been used
in longitudinal studies (Molenberghs & Verbeke, 2005; Chandler & Bate, 2007), for the anal-
ysis of panel data (Wellner & Zhang, 2007), with spatial modelling (Heagerty & Lele, 1998;
Guan, 2006), with missing data (He & Yi, 2011), with graphical models (Xue et al., 2012; Chen
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et al., 2015; Yang et al., 2015), with change point detection in multivariate time series (Ma &
Yau, 2016), among many other settings. One of the main reasons for its widespread applica-
tion is that only part of data generating mechanism needs to be specified, which can reduce the
computational cost and provide some robustness to model misspecification. For a comprehen-
sive discussion of composite likelihood and its applications, see the review paper by Varin et al.
(2011).

Although inference based on the composite likelihood has been well developed (Lindsay,
1988; Kent, 1982; Pagui et al., 2014), a corresponding specification test does not seem to ex-
ist. Aside from technical difficulties, on which we will elaborate later, the lack of development
in this area may be due to the perception that composite likelihood inference is robust to par-
tial model misspecification (Xu & Reid, 2011). However, composite likelihood inference still
requires the specification of a set of lower dimensional conditional or marginal models, and the
corresponding results can be misleading, if these are misspecified. For instance, Ogden (2016)
showed that the maximum composite likelihood estimator is inconsistent in a generalized linear
mixed model with a misspecified random effect distribution, and the misspecification bias of the
maximum composite likelihood estimator is significantly larger than the misspecification bias in
the maximum likelihood estimator.

In this paper, we propose a class of specification tests for composite likelihood functions. A
general test for model specification with ordinary likelihood functions is the information matrix
test proposed by White (1982). This relies on the second Bartlett identity, which holds when
the model is correctly specified: it compares the variability matrix to the sensitivity matrix, both
defined in §2 below. A Wald type test statistic is constructed from the difference between these
two matrices. Presnell & Boos (2004) proposed an “in-and-out sample” likelihood ratio test,
which is asymptotically equivalent to a multiplicative contrast between the sensitivity matrix
and the variability matrix. More recently, Zhou et al. (2012) developed an information ratio test
which can effectively test the specifications of variance and covariance functions in generalized
estimating equations (Liang & Zeger, 1986).

These specification tests rely on the fact that the second Bartlett identity holds under the correct
model. For a composite likelihood, the second Bartlett identity does not hold, even when the
component densities are correctly specified (Varin et al., 2011). Thus, direct application of the
information matrix based tests is invalid. To circumvent this difficulty, we define the composite
information matrix, and show that this can recover a counterpart of the second Bartlett identity.
We propose a general class of specification tests for composite likelihood inference based on the
discrepancy between the composite information matrix and the sensitivity matrix. We illustrate
the usefulness of the proposed class of tests with three important special cases: the composite
information matrix test, composite information ratio test and composite information max test. We
establish their asymptotic distributions under the null hypothesis, and asymptotic power under
local alternatives.

2.  SPECIFICATION TESTS FOR COMPOSITE LIKELIHOOD FUNCTIONS
2-1.  Composite information matrix and the Bartlett identity
Let f(y;0) be the joint probability density function of a multidimensional random vec-
tor Y, indexed by a p-dimensional parameter 6 = (61, ...,0,) in the parameter space ). Let

{1 (y), ..., 7Kk (y)} denote a sequence of sets. The log probability of the event {Y € «7.(y)}
is 0(0;y) = log fueﬂk(y) f(u;0)du, where k = 1,2, ..., K and K is the total number of events.
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Assume that n independently and identically distributed random variables Y7, ..., Y}, are observed
from the model f(y; ). A composite log likelihood function based on this sequence of events is

n K
cl() =n"t Z sz‘kfk(e; Yi),

1=1 k=1

where wjy, is a nonnegative weight associated with the event {Y; € <% (y;)}. The variability and
sensitivity matrices associated with c/() are

K a ®2 K 62
J(O)=F {;Wikaegkw;yi)} , H(O)=-FE {;wikwfk(e;yi)} .

Since defining a composite likelihood only requires models for the events {Y € 7 (y)} for
1 < k < K, specification tests should be tailored to the modeling of {Y" € <%, (y)}. For instance,
in the analysis of clustered data, the independence likelihood in Chandler & Bate (2007) only
involves modeling the conditional mean function. Thus, the corresponding specification tests
should be to verify the validity of the conditional mean model rather than, for example, the
correlation structure of the full model.

Formally, the null hypothesis for a specification test of the composite likelihood can be for-
mulated as

Hy : there exists a 6 € Q, such that pr{Y € @, (y)} x exp{¢i(0;y)}, forall k=1,..., K.

As noted in §1, the second Bartlett identity, which is the basis for all existing information
based specification tests, does not hold for the composite likelihood even when the assumed
model is correct. This statement is illustrated by an example of multivariate normal model in the
Supplementary Material. To develop specification tests, we construct a new identity by defining
the composite information matrix .(6), as follows

kZKlWik {;Ekw; yi)}®2] :

When each log likelihood function ¢4 (0;y) is correctly specified, under mild regularity condi-
tions, we have

I.(0)=E

1.(6) — H(6) = 0. (1)

Based on this identity, we propose a general class of specification tests for the composite likeli-
hood.

2-2. A general class of specification tests for the composite likelihood

Define the maximum composite likelihood estimator as 6,, = argmaxy.cf(6), and the ob-
served composite information matrix and sensitivity matrix as

. 1 n K 9 . ®2 o 1 n K 82 .
IC(Hn) = E ;;wzk {89€k (enéyz’)} ) H<9n) = _E ;;Wikmek (enéyz) .

Our family of specification tests is constructed by comparing I.(6,,) and H(6,). Specifically,
we consider a discrepancy function d : RP*P x RP*P — [0, co), which satisfies d(M, M3) > 0
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and d(Mj, M;) = 0 for any My, My € RP*P_ Tt is seen that d is a premetric, more general than
a standard metric in the sense that we do not require the symmetry or subadditivity of d. As will
be seen later, some special cases of d are indeed only a premetric. Given a discrepancy function
d, we consider the corresponding test statistic

which measures the distance between the observed composite information matrix and sensitivity
matrix. Under Hy, equation (1) holds and therefore d{.(0), H(0)} = 0. Under mild regularity
conditions, the composite information matrix and the sensitivity matrix I.(0) and H(6) can be
consistently estimated by I,.(6,,) and H (f,,) respectively. Thus, we expect Q to be small when
the composite likelihood is correctly specified. On the other hand, a large value of ) implies
the potential misspecification of the composite likelihood. In the following, we consider three
special cases of d and study their asymptotic null distributions and local asymptotic powers.

2-3.  Special case 1: Composite information matrix test

In this subsection, we take d as a scaled Lo metric, which leads to a composite information
matrix test. Since I.(6,,) and H(f,) are symmetric matrices, we only need to consider their
upper triangular entries when constructing (). That is

d(My, Ma) = (mq — ma) "W (m1 — ma), (3)

where m; and my are p(p + 1)/2 dimensional vectors obtained by vectorizing the upper triangu-
lar elements of the matrices M7 and M>, and W is a positive definite matrix used to standardize
the test statistic. In this case, d is indeed a metric. When ¢/(6) corresponds to the log likeli-
hood of the full model, the test statistic ) in (2) with the metric d defined in (3) reduces to the
information matrix test in White (1982). R R

Formally, consider the p(p + 1)/2 upper triangular elements of I.(6,) — H(6,,), and denote
the contribution of the ith observation to the (7, ) element (1 < j < t < p) of the matrix I.(f) —
H(0) by

2

0 0
ejt y’LJ Zwlk {89 9 yz)ae e (07 yz) + mglﬂ(eu yz)} )

where 6; and 0, are the j-th and ¢-th elements of 6. With ¢ = p(p + 1) /2, we stack the ¢ elements
ejt(yi,0) for1 < j <t < ptoobtainag x 1 vector e(y;, ). Define Trs(0) =n=1 3" | e(y;, 0)
and

Var(0) = E

®2
e(yi, 0) + E{Z?G (i, 0 } szk k(0 yz)] )

By Taylor expansion and the properties of influence functions, V;(6) is the asymptotic variance
matrix of n'/2Ty;(6,,) under Hy, and it can be consistently estimated by

®2
v - o I
12{ (i) + 200G, zwzk n,y,>} .
The proposed composite information matrix test Q™ is defined as

Qmatrix _ nTﬁ(én)Vj\ZlTM(én)a
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where we set W = Vz\jll in (3) to construct an asymptotic x? test of Wald type. Throughout
the paper, we consider the scenario that the sample size n increases with the total number of
events K fixed. The following theorem states the asymptotic distribution of Q™" under the
null hypothesis.

THEOREM 1. Given regularity conditions RI-R7 in the Supplementary Material, as n in-
creases the composite information matrix test statistic Q™™ converges in distribution to Xg
under Hy.

The above theorem suggests the use of (1 — «) quantile of the xi distribution as the cutoff
value for the test QM"*, Since the degrees of freedom ¢ increase as a quadratic function of
the number of parameters in the composite likelihood and the composite information matrix test
aims to pick up a wide range of deviations from the null, this test may have low power when p is
relatively large. This phenomenon is also confirmed in our simulation studies. In the following
subsections, we propose alternative choices of the discrepancy function d, which attempts to
address this issue.

2-4.  Special case 2: Composite information ratio test

Instead of using the L9 metric in (3), we consider a discrepancy function which takes a ratio
contrast between two matrices, defined as

d(My, My) = {te(M M) — p}? /W, @)

where W is a positive number used to standardize the test statistic. It can be shown that d in (4)
is a premetric rather than a metric. Motivated by (4), we can construct a parsimonious summary
statistic by comparing the trace of I.(6,,)H ' (6,) to p. This type of test was proposed by Zhou
et al. (2012) for the quasi-likelihood function with application to the selection of the covariance
structure in generalized estimating equations. Unlike quasi-likelihood where the second Bartlett
identity holds, the construction of this test is built on the identity in (1). Inspired by Zhou et al.
(2012), we call this the composite information ratio test.
The test statistic is

Qo = [n/2 {Tu(0) ~ p}]" Vi,

where Tx(6,,) = tr {fc(én)f[ ~1(6,,) }, and Vp is the estimated asymptotic variance of T (6,,).
In the Supplementary Material, we derive the estimator

A _ T L . a R
! ; lzwzk {89 myz)} H 1(9n)%€k(0myz)

0
+ 89TR( szk nayz)

2
0? - ~ 1A
THEOREM 2. Given regularity conditions RI-R7 in the Supplementary Material, the compos-

ite information ratio test statistic Q™ converges in distribution to X% under H.

In the simulation studies, the composite information ratio test tends to yield more accurate
Type I errors than the composite information matrix test.
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2-5.  Special case 3: Composite information max test

In this subsection, we propose another test by considering the maximum discrepancy of the
diagonal elements of the linear contrast between the observed composite information matrix and
sensitivity matrix. We call this test the composite information max test. This corresponds to the
general test statistic () in (2) with

d(My, M) = |[W(mq —m3)|[max;, )

where W is a p X p positive definite matrix used to standardize the test statistic, and m] =
{(M1)117 ey (Ml)pp}T isap x 1 vector.

Denote the diagonal elements of the linear contrast, contributed by the ith observation,
by ejj(yi,0), 7 =1,...,p, and let e*(y;,0) = {e11(v:,0), ..., epp(¥i,0)}". Define T,(6,) =

—1S° e*(yi, 0,). Denote by V;(0) the asymptotic variance matrix of n'/2T%,(6,,) and by
VM its empirical counterpart. Define S = n'/ 2U YAy (é )s where S; is the jth element of S,
j=1,...,p,and U A/ 18 @ p X p matrix such that U T* M= V* . Our asymptotic results hold
for any choice of U 17~ The composite information max test is given by

A% = max |9}
@ C1<<p 191
The following theorem establishes the asymptotic distribution of composite information max test
under the null hypothesis.

THEOREM 3. Given regularity conditions RI-R7 in the Supplementary Material, we have

max N N
O e 1N
in distribution under Hy, where N1, ..., N, are independent and identically distributed standard
normal variables. In other words, for any t > 0, lim,_,o [pr(Q™* < t) — F(t)P| = 0, where
F(-) is the cumulative distribution function of the folded standard normal distribution.

By Theorem 3, we reject the null hypothesis at level o if Q™ > F~1{(1 — a)'/?}, where
F~1(.) is the inverse function of F'(-) defined in Theorem 3, as N; and N are independent
standard normal random variables for any j # k. In the construction of .S, we transform T]@(én)
by the matrix Uy, so that the elements of S are de-correlated.

The main difference among Q™2*, QM3X and Q™"° lies in how the individual statistics con-
structed from some components of the matrix equation (1) are combined. Specifically, the test
statistic Q™3* combines individual statistics by searching for their maximum across the diagonal,
whereas QM™% and Q"U° exploit different quadratic forms of individual statistics. In the Supple-
mentary Material, we investigate the asymptotic local power of the three composite information
tests under a sequence of locally misspecified models (Copas & Eguchi, 2005).

3. EXAMPLE
3-1. Extended Mantel-Haenszel method for stratified case-control studies

The Mantel-Haenszel estimator is widely used to estimate the common odds ratio in a series
of 2x2 tables in epidemiological studies. Liang (1987) extended the Mantel-Haenszel approach
to logistic regression models for stratified case-control studies, to allow simultaneous estimation
of effect sizes of multivariate risk factors.

Consider a stratified case-control study, where z;1, ..., z;4, denote the p x 1 vectors of poten-
tial risk factors of d; cases, and let ;4,1 1, ..., z;,, denote the potential risk factors of m; controls
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in the ith stratum with m; = h; — d;, and ¢ = 1, ..., n. A logistic regression model allowing for
stratum-specific effects is

logit pr(yi; = 1|zij) = oy + B 35, i=1,..,n, (6)

where the coefficient 3 quantifies the effects of risk factors x;; on the disease status ;.

Liang (1987) proposed a composite likelihood method where the nuisance parameters o;’s
are eliminated by conditioning. Specifically, for the (j,1) case-control pair of subjects in the
ith stratum (j = 1,...,d;; 1 = d; + 1, ..., h;), the conditional probability that z;; is from the case
given that x;; and x;; are observed is

eﬁTmﬁ
pr(yi; = 1,ya = Olyij + ya = 1, @5, za; o4, B) = BT | Bl

Thus a composite likelihood can be formulated by considering all d;m; pairs in the ith stratum

xu
H H eﬂ Lij _|-e»3T il

Jj=11l=d;+1

A weighted composite log likelihood function for 3 using the combining data from all n strata
for (3 is then constructed as

n n di hi eBTxij
= 7' Y wilog {Li(B)} =n' 3wy 3 log (w) |
i=1 i=1  j=11=d;+1

We consider the weights w; = h;" 1. with this choice the maximum composite likelihood estima-
tor reduces to the Mantel-Haenszel estimator when only a binary covariate is considered (Liang,
1987). The composite information matrix and the sensitivity matrix are

I.(8) =E hz_li i { A sz‘jexp(ﬁ%j)+fvizexp(ﬁTwu)}®2 ,

G=11=d;+1 eXp(BTxij) + exp(BTzy)

}®2

H(B) =E h; 1 {951] exp(B” x”) + xy exp(BTxy)
jz;l ;1 {exp(BTx;) + exp(BTzi)}

{x”xfj exp(fTxij) + xax) exp(ﬁTxil)}
exp(BTx;j) + exp(BTxq)

The proposed composite information tests can be constructed to test the specification of the
model. The empirical performance of these tests is evaluated in §4.

3-2.  Undirected graphical model

The undirected graphical model has been widely used to describe the dependence structures
of multivariate variables. For simplicity, most literature only assumes the pairwise interaction in
the joint distribution of the multivariate variables (Chen et al., 2015; Yang et al., 2015). Assume
that there are p random variables Y7, ..., Y), represented as nodes of the graph G = (V, E), with
the vertex set V = {1,...,p} and the edge set E € VV x V. An edge between vertexes i and
J indicates that Y; and Y; are conditionally dependent given the remaining variables. The joint
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distribution of a pairwise graphical model corresponding to the graph G = (V, E) takes the form

pr(y) =expq > folysios) +1/2 > Oaysyr — 2(0,0) » (7)

seV (s,t)eE
where y = (y1,...,9p)", © = (0st)pxp is @ symmetric square matrix of parameters associated
with edges, with the diagonal elements equal zero, & = (aq, ..., ;) is a matrix of parameters

with the s-th column «; involved in the node potential function f5(ys; as), and (O, «) is the log
partition function. In many examples of exponential family graphical models, the log partition
function is intractable. To circumvent this challenge, a composite likelihood function constructed
by combining conditional likelihoods has been proposed by Xue et al. (2012), Chen et al. (2015),
Yang et al. (2015), among others. Specifically, denote y_s = (y1,...,Ys—1, Ys+1,---,Yp) - The

conditional distribution is pr(ys|y—s) = exp {fs(ys; as) + Zt# Ostysyr — Ds(ns)}, where 7
is a function of ay, y_s, and O, O, is the s-th column of © without the diagonal element, and
Dy (+) is a function whose form depends on the conditional distribution.

As a concrete example, consider the following Ising graphical model. Let Y be a vector of
binary variables, taking values {—1,1}. Assume that Y satisfies the joint distribution (7) with
fs(ys; as) = a15ys. Given n independent and identically distributed copies Y@ of Y, the com-

posite log likelihood function is cf(©,a) =n~"1 >0 S°P_ | K@(@, «), where

Zgi)(@, o) = alsygi) + Z estygi)yt(i) — Dy | a1+ Z estyzgi) ) ®)
ts t#s

with  Ds(n) = log{exp(n) + exp(—n)}. The composite information and sensi-
. ®2
tivity —matrices are [.(0,a)=>"_|E {86(;)(@, a)/0(0, a)} and H(O,a)=

P LE {—8%@ (©,0)/0(0,a)? } The proposed composite information tests can be
used to test the specification of the composite likelihood for the Ising model.

4. SIMULATION

We consider the example in §3-1 with two scenarios: when the specified composite likelihood
model correctly includes all the predictors, and when a predictor is falsely excluded.

We simulate data using equation (6), with three continuous predictors, x1, x2, and x3. The first
predictor z; is generated from uniform distribution from 0 to 5. The second and third predictors,
z9 and x3, are the quadratic and cubic terms of xi, i.e., g = a:% and z3 = ;U:f, respectively.
We set 81 and (5 at 2 and —0-5, respectively, and let the magnitude of S5 decrease from 0 to
—0-5 to evaluate the size and power of the proposed tests. The stratum-specific intercepts «; are
generated from a uniform distribution from —2-5 to —2. We calculate the individual probability
of Y;; = 1 using equation (6) and generate the binary response from the corresponding Bernoulli
distribution. We randomly sample 5 cases (y = 1) and 5 controls (y = 0) from each stratum.
Assume that only two predictors x1 and x2 are available and included in the composite likelihood
method described in §3-1. We apply the proposed tests of model specification for the composite
likelihood with only z; and 3. In practice, we cannot use the classical composite likelihood
based tests for 3 = 0, since we assume the value of x3 is unobserved. For each of the scenarios,
we consider n = 200, 400 and 600 strata.
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Table 1 summarizes the empirical Type I error and power of the proposed tests at nominal
levels of 5% and 10% based on 5,000 replicates. The composite information ratio test controls
Type I error reasonably well at both nominal levels. The composite information max test is
slightly liberal at the 5% nominal level when n is small but the Type I error tends to be more
accurate as n increases. The composite information matrix test is relatively conservative which
agrees with the literature on standard information matrix test.

As the magnitude of (3 decreases from 0 to —0-5, all three tests show increasing power. The
composite information max test has largest power among the three tests. This gain in power
may be due to the fact that it detects model misspecification by searching for the maximum
discrepancy between the two matrices, and is more sensitive than the other two tests, which
average the discrepancies. In our simulations, the composite information ratio test has relatively
less power than the other two tests.

In the Supplementary Material, we conduct additional simulation studies in four different sce-
narios, including the Ising model described in §3.2, the independence likelihood for correlated
data and the pairwise likelihood for multivariate outcomes. We find that the empirical Type I
error rates of the proposed composite information tests are effectively controlled below the nom-
inal levels and all three tests have good power for detecting model misspecifications. The matrix
and max tests perform similarly in all examples, and their empirical Type I error rates converge
to the nominal level more slowly than the ratio test, especially in the Ising model example. We
find that the power of the three tests depends on the underlying data generating process. The
information ratio test has relatively higher statistical power in two of the four scenarios. We refer
to the Supplementary Material for further discussion on the choice of the tests.

Table 1. Empirical rejection rates (%) in 5,000 simulations of three proposed tests for Hy, under
varying numbers of strata n = 200, 400, 600, and log odds ratios 1 = 2, B2 =—0-5, and B3
varying from 0 to —0-5.

Rejection (%) at o =0-05 Rejection (%) at o« =0-10
n (3 Matrix test Ratio test Max test Matrix test Ratio test Max test
200 0-00 3-6 4-9 7-8 5-8 9.7 114
—0-10 19-2 16-6 279 25-6 24-1 355
—0-25 29-2 24-2 39-8 37-3 320 47-6
—0-50 33-6 27-1 43-8 41.7 359 51-4
400 0-00 34 4-6 6-9 53 9-5 10-3
—0-10 29-8 21-5 41-3 38-1 30-3 50-0
—0-25 47-5 32-3 589 56-2 41-1 67-0
—0-50 53-9 37-5 63-8 61-9 46-9 71-2
600 0-00 4-1 5-2 6-4 6-5 10-2 9-9
—0-10 434 286 55-4 52-2 37-7 63-8
—0-25 62-9 40-5 73-6 71-3 50-5 80-9
—0-50 69-5 47-2 78-9 77-0 57-1 84-8

5. DISCUSSION

In applications with time series, data are no longer independent and our results do not apply.
Davis & Yau (2011) proposed a pairwise likelihood approach for a broad class of linear time
series models. A future research direction is to generalize the proposed tests to evaluate the
specification of a composite likelihood with dependent data.

We considered in this paper that the total number of events K was fixed and the sample size
n increased. Although the constructions of the new composite information matrix and the new
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identity in (1) do not require such an assumption, derivations of the limiting distributions of the
three proposed tests do assume that the maximum composite likelihood estimator 6,, is a con-
sistent estimator of # with n'/2 convergence rate under the null hypothesis. Such an assumption
may not hold in some scenarios that the number of components also increases as the number of
independent replicates grows. For example, Cox & Reid (2004) discussed the situation where
a small number of individually large sequences is available for pairwise likelihood, the maxi-
mum composite likelihood estimator may not be consistent or the convergence rate may be very
slow as the number of components increases, depending on the internal correlation among the
components. In such scenarios, the limiting distribution of the proposed test needs to be derived
differently.

The validity of inference based on composite likelihoods usually requires both the correct
specification of lower-dimensional conditional or marginal models and the existence of a joint
model corresponding to the assumed composite likelihood. The latter is known as the compati-
bility of composite likelihoods; see Yi (2014) for further discussion. The proposed tests aim to
investigate the specification of lower-dimensional models in composite likelihoods assuming the
compatibility condition holds.

The information test (White, 1982) can be viewed as an omnibus test, whereas the proposed
tests are tailored for the model specification required in the composite likelihood function. Thus,
our tests can be more powerful than the existing information test based on the full likelihood,
when the composite likelihood function is misspecified. If our tests indicate misspecification, it
would be of interest to understand what modeling assumptions are violated. A future research
direction is to design goodness-of-fit tests to detect specific departures from the assumed com-
posite likelihood.
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SUPPLEMENTARY MATERIAL

Supplementary material available at Biometrika online includes regularity conditions, proof
of Theorems 1-3, analysis of local asymptotic power and three additional simulation studies, in-
cluding the Ising model described in §3-2, inference using independent likelihood for dependent
data, and inference using pairwise likelihood for multivariate outcomes.
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