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Abstract

Under Poincaré-type conditions, upper bounds are explored for the Kolmogorov
distance between the distributions of weighted sums of dependent summands and
the normal law. Based on improved concentration inequalities on high-dimensional
Euclidean spheres, the results extend and refine previous results to non-symmetric
models.

Keywords: typical distributions; normal approximation; central limit theorem.
MSC2020 subject classifications: 60E; 60FEJP.
Submitted to EJP on February 12, 2020, final version accepted on November 11, 2020.

1 Introduction

Let X = (X1, . . . , Xn) be an isotropic random vector in Rn (n ≥ 2), meaning that
EXiXj = δij for all i, j ≤ n, where δij is the Kronecker symbol. Define the weighted
sums

Sθ = θ1X1 + · · ·+ θnXn, θ = (θ1, . . . , θn), θ2
1 + · · ·+ θ2

n = 1,

with coefficients from the unit sphere Sn−1 in Rn. We are looking for natural general
conditions on Xk which guarantee that the distribution functions Fθ(x) = P{Sθ ≤ x} are
well approximated for most of θ ∈ Sn−1 by the standard normal distribution function

Φ(x) =
1√
2π

ˆ x

−∞
e−y

2/2 dy, x ∈ R.

Of special interest is the question of possible rates in the Kolmogorov distance

ρ(Fθ,Φ) = sup
x
|Fθ(x)− Φ(x)|.
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Normal approximation

In this problem, going back to the seminal work of Sudakov [35], the well studied
classical case of independent components may serve as a basic example for comparison
with various models or dependencies. Let us recall that, if Xk are independent and have
finite 4-th moments (with mean zero and variance one), there is an upper bound on
average

cEθ ρ(Fθ,Φ) ≤ 1

n
β̄4, β̄4 =

1

n

n∑
k=1

EX4
k , (1.1)

where c > 0 is an absolute constant, and where we use Eθ to denote the integral over
the uniform probability measure sn−1 on the unit sphere. Moreover, for any r > 0,

sn−1

{
c ρ(Fθ,Φ) ≥ 1

n
β̄4 r

}
≤ 2 e−

√
r. (1.2)

This non-trivial phenomenon was observed by Klartag and Sodin [26]. It shows that when
β̄4 is bounded like in the i.i.d. situation, the distances ρ(Fθ,Φ) turn out to be typically
of order at most 1/n. This is in contrast to the case of equal coefficients leading to the
unimprovable standard 1√

n
-rate (in general, including independent Bernoulli summands

Xk). Moreover, in the i.i.d. situation with finite moment β5 = E |X1|5 and symmetric
underlying distributions, the typical rate of normal approximation for Fθ may further be
improved to β5 n

−3/2 up to a constant (which is best possible as long as EX4
1 6= 3, cf. [8]).

As for more general models with not necessarily independent components Xk, the
study of this high-dimensional phenomenon has a long history, and we refer an interested
reader to the book [15] and a recent paper [13] for an account of various results in this
direction. Let us only mention [2], [5], [6], [34], [23], [24], [18], where one can find
quantitative variants of Sudakov’s theorem on the concentration of Fθ about the typical
(average) distribution F = EθF and/or about the normal law Φ for different metrics
and under certain assumptions (of convexity-type, for example). Some papers provide
Berry-Esseen-type estimates on the closeness of Fθ to Φ explicitly in terms of θ assuming
that the distribution of the random vector X is “sufficiently” symmetric, cf. [29], [30],
[19], [25], [21].

Whether or not F itself is close to the standard normal law represents a thin-shell
problem on the concentration of the values of the square of the Euclidean norm |X| about
its mean E |X|2 = n (or, in essence, on the concentration of |X| about

√
n). The rate of

concentration may be controlled in terms of the functional σ2
4 = 1

n Var(|X|2) which is often
of order 1 (including the i.i.d. situation). Once it is the case, one can obtain a standard
rate of concentration of Fθ around Φ on average under mild moment assumptions. For
example, it is known that, if E |X|2 = n (without the isotropy hypothesis), then

Eθ ρ(Fθ,Φ) ≤ c
(
M3

3 + σ
3/2
4

) 1√
n
,

up to an absolute constant c > 0, where M3
3 = supθ E |Sθ|3 (cf. [12]).

In order to reach better rates, one has to involve stronger assumptions or functionals
such as Λ = Λ(X) defined as an optimal constant in the inequality

Var

( n∑
i,j=1

aijXiXj

)
≤ Λ

n∑
i,j=1

a2
ij (aij ∈ R), (1.3)

which may be referred to as a second order correlation condition. In terms of Λ, the
bound (1.1) has been extended in [13] modulo a logarithmic factor: If additionally to the
isotropy assumption the distribution of X is symmetric around the origin, it was shown
that

cEθ ρ(Fθ,Φ) ≤ log n

n
Λ. (1.4)
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Normal approximation

The optimal value Λ = Λ(X) in (1.3) is finite as long as |X| has a finite 4-th moment.
It represents the maximal eigenvalue of the covariance matrix associated to the n2-
dimensional random vector (XiXj − EXiXj)

n
i,j=1. This parameter may be effectively

estimated in many examples and is related to other standard characteristics. For example,
Λ(X) ≤ 2 maxk EX

4
k , if Xk are independent. If X is isotropic, and its distribution admits

a Poincaré-type inequality

λ1 Var(u(X)) ≤ E |∇u(X)|2 (1.5)

with a positive (optimal) constant λ1 = λ1(X) for all smooth functions u on Rn, then we
have Λ(X) ≤ 4/λ1(X).

The aim of these notes is to sharpen (1.4) via a large deviation bound in analogy
with (1.2). This turns out to be possible as long as all linear forms Sθ have finite
exponential moments. To avoid technical discussions, we restrict ourselves to the case
where λ1 > 0, which at the same time allows to drop the symmetry assumption.

Theorem 1.1. Let X be an isotropic random vector in Rn with mean zero and a positive
Poincaré constant λ1. Then with some absolute constant c > 0

cEθ ρ(Fθ,Φ) ≤ log n

n
λ−1

1 . (1.6)

Moreover, for all r > 0,

sn−1

{
c ρ(Fθ,Φ) ≥ log n

n
λ−1

1 r
}
≤ 2 e−

√
r. (1.7)

Being restricted to isotropic log-concave distributions, an interesting feature of the
bound (1.4) is its connection with certain open problems in Asymptotic Convex Geometry
such as the K-L-S and thin-shell conjectures. Namely, modulo n-dependent logarithmic
factors, the following three assertions are equivalent up to positive constants c and β
(perhaps different in different places) for the entire class of isotropic random vectors X
in Rn having symmetric log-concave distributions (cf. [13]):

(i) supX λ
−1
1 (X) ≤ c (log n)β;

(ii) supX Var(|X|) ≤ c (log n)β;

(iii) supX Eθ ρ(Fθ,Φ) ≤ c
n (log n)β .

In this connection, let us also mention a recent paper by Jiang, Lee and Vempala [22],
which provides a reformulation of (i)-(ii) as a central limit theorem for random variables
of the form 〈X,Y 〉, where Y is an independent copy of X.

Note that the implication (i) ⇒ (ii) is immediate when applying (1.5) to u(x) = |x|,
while the reverse statement is a deep theorem due to Eldan [17]. By (1.4), we also have
(i)⇒ (iii). As for the implication (iii)⇒ (ii), it holds true in view of a general relation

cVar(|X|) ≤ n (log n)4 Eθ ρ(Fθ,Φ) + 1

(which only requires that all Sθ have a finite and bounded exponential moment).
The symmetry assumption is irrelevant both in (i) and (ii). However, this is not so

obvious concerning (iii). Indeed, one may try to use a symmetrization argument by
applying (1.4) to the random vector X ′ = (X − Y )/

√
2. But then we need a quantitative

form of a particular variant of Cramer’s theorem: If η is an independent copy of a random
variable ξ with mean zero and variance one, and if ξ′ = (ξ − η)/

√
2 is almost standard

normal, then so is ξ. The best result in this direction is the following theorem due to
Sapogov [33]: Given that ρ(Fξ′ ,Φ) ≤ ε ≤ 1/e, we have

ρ(Fξ,Φ) ≤ C
(

log(1/ε)
)−1/2
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up to some absolute constant C, where Fξ and Fξ′ denote the distribution functions of ξ
and ξ′. Moreover, the dependence in ε on the right-hand side cannot be improved, as was
shown in [16] (cf. also [9] for a related model). Thus, the resulting bound on Eθ ρ(Fθ,Φ)

which can be derived this way on the basis of X ′ cannot yield even a standard rate.
Here, we choose a different route. As we will see, it is possible to remove the

symmetry hypothesis, by adding to the right-hand side of (1.4) an additional term
responsible for higher order correlations between Xk. More precisely, as a preliminary
bound which is based on the Λ-functional only, it will be shown that

cEθ ρ(Fθ,Φ) ≤ log n

n
Λ +

( log n

n

)1/4
(
E

〈X,Y 〉√
|X|2 + |Y |2

)1/2

(1.8)

(cf. Proposition 10.1 below). The last expectation is vanishing for symmetric distributions,
or, for example, if |X| =

√
n a.s. together with EX = 0. As another scenario, the

second term in (1.8) is of a smaller order in comparison with logn
n λ−1

1 when (1.5) holds.
Nevertheless, in contrast to the bound (1.4), the derivation of (1.8) turns out to be
tedious, since it involves a careful analysis of projections of the characteristic functions
fθ(t) of Sθ as functions of θ onto the subspace of all linear functions in the Hilbert space
L2(Rn, sn−1).

The paper is organized as follows. We start with the study of densities of linear
functionals on the sphere Sn−1 viewed as random variables with respect to the normalized
Lebesgue measure sn−1. Here, the aim will be to refine the asymptotic normality of these
distributions in analogy with Edgeworth expansions in the central limit theorem (which
we consider up to order 2, Sections 2–3). Then we turn to the problem of deviations of
general smooth functions on Sn−1 in terms of their Hessians, recalling and extending
several results in this direction (Section 4). These results are applied in Sections 5 to
characteristic functions fθ(t), with a separate treatment of their linear parts in L2(sn−1)

in the next Section 6. In Section 7, we adapt basic Fourier analytic tools in the form
of Berry-Esseen-type bounds to the scheme of weighted sums. Deviations of involved
integrals as functions on the sphere are discussed separately in Section 8. Section 9
collects several general facts about Poincaré-type inequalities that will be needed for
the proof of Theorem 1.1, while final steps of the proof are deferred to the remaining
Sections 10–12.

As usual, the Euclidean space Rn is endowed with the canonical norm | · | and the
inner product 〈·, ·〉. We denote by c a positive absolute constant which may vary from
place to place (if not stated explicitly that c depends on some parameter).

2 Distribution of linear functionals on the sphere

By the rotational invariance of sn−1, all linear functionals u(θ) = 〈θ, v〉 with |v| = 1

have equal distributions. Hence, it is sufficient to focus just on the first coordinate θ1 of
the vector θ ∈ Sn−1 viewed as a random variable on the probability space (Sn−1, sn−1). It
is well-known that this random variable has density

cn
(
1− x2

)n−3
2

+
, x ∈ R, cn =

Γ(n2 )
√
π Γ(n−1

2 )
,

with respect to the Lebesgue measure on the real line, where cn is a normalizing constant.
We denote by ϕn the density of the normalized first coordinate

√
n θ1, i.e.,

ϕn(x) = c′n

(
1− x2

n

)n−3
2

+

, c′n =
cn√
n
.

EJP 25 (2020), paper 155.
Page 4/31

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP549
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Normal approximation

Clearly,

ϕn(x)→ ϕ(x) =
1√
2π

e−x
2/2, c′n →

1√
2π

= 0.399...

as n→∞, and one can also show that c′n <
1√
2π

for all n.

Deviations for ϕn(x) from ϕ(x) have been considered in [12]. In particular, if n ≥ 3,
then for all x ∈ R,

|ϕn(x)− ϕ(x)| ≤ c

n
e−x

2/4. (2.1)

We need to sharpen this bound by obtaining an approximation for ϕn(x) with an error of
order 1/n2 by means of a suitable modification of the standard normal density. Denote
by H4(x) = x4 − 6x2 + 3 the 4-th Chebyshev-Hermite polynomial.

Proposition 2.1. For all x ∈ R and n ≥ 3,∣∣∣ϕn(x)− ϕ(x)
(

1− H4(x)

4n

)∣∣∣ ≤ c

n2
e−x

2/4. (2.2)

Proof. In the interval |x| ≤ 1
2

√
n, consider the function pn(x) = (1− x2

n )
n−3
2

+ . Using the
Taylor expansion for the logarithmic function near zero, one may write

− log pn(x) = −n− 3

2
log

(
1− x2

n

)
=

n− 3

2

(
x2

n
+

x4

2n2
+

(
x2

n

)3 ∞∑
k=3

1

k

(
x2

n

)k−3
)

=
x2

2
+ δ.

The remainder term has the form

δ = −3x2

2n
+
x4

4n
− 1

n2

(3

4
x4 − n− 3

3n
x6ε
)

with some 0 ≤ ε ≤ 1. By the assumption that x2 ≤ 1
4 n, it satisfies

δ ≥ −3x2

2n
+
x4

4n
− 3x4

4n2
≥ −27x2

16n
+
x4

4n
> −27

64
.

Hence

|e−δ − 1 + δ| ≤ δ2

2
e27/64 ≤ δ2.

Moreover, using once more x2 ≤ 1
4 n, we get

|δ| ≤ 3x2

2n
+
x4

4n
+

1

n2

(
3

4
x4 +

1

3
x6

)
≤ x2

n

(
27

16
+

1

3
x2

)
,

which implies

δ2 ≤ x4

n2

(
6 +

2

9
x4

)
.

Hence, with some |ε1| ≤ 1,

ex
2/2 pn(x) = e−δ = 1− δ + ε1δ

2 = 1 +
3x2

2n
− x4

4n
+
A

n2
,

where

|A| ≤
∣∣∣∣ 3

4
x4 − n− 3

3n
x6ε

∣∣∣∣+ x4

(
6 +

2

9
x4

)
≤ 3

4
x4 +

1

3
x6 + x4

(
6 +

2

9
x4

)
≤ 8x4 + x8.
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As a result,

pn(x) = e−x
2/2

[
1 +

6x2 − x4

4n
+

ε

n2

(
8x4 + x8

)]
, |ε| ≤ 1. (2.3)

To derive a similar expansion for ϕn(x), denote by Z a standard normal random
variable. From (2.3) we obtain that

1√
2π

ˆ ∞
−∞

pn(x) dx = 1 +
1

4n

(
6EZ2 − EZ4

)
+O

( 1

n2

)
= 1 +

3

4n
+O

( 1

n2

)
.

Here we used the property that pn(x) has a sufficiently fast decay for |x| ≥ 1
2

√
n, as

indicated in (2.1). Since ϕn(x) = c′n pn(x) is a density, we conclude that

1 = c′n
√

2π

(
1 +

3

4n
+O

( 1

n2

))
, c′n

√
2π = 1− 3

4n
+O

( 1

n2

)
.

Hence

√
2π ex

2/2 ϕn(x) =

(
1− 3

4n
+O

( 1

n2

))[
1 +

6x2 − x4

4n
+

ε

n2

(
8x4 + x8

)]
= 1 +

6x2 − x4

4n
− 3

4n
+O

(
1 + x8

n2

)
.

Thus, in the interval |x| ≤ 1
2

√
n,

ϕn(x) = ϕ(x)

[
1− H4(x)

4n
+Qn(x)

1 + x8

n2

]
with a quantity Qn(x) bounded by a universal constant in absolute value. In view of (2.1),
the bound (2.2) follows immediately.

3 Characteristic function of linear functionals

In the sequel, we denote by Jn = Jn(t) the characteristic function of the first coor-
dinate θ1 of a random vector θ = (θ1, . . . , θn) which is uniformly distributed on the unit
sphere Sn−1. In a more explicit form, for any t ∈ R,

Jn(t) = cn

ˆ ∞
−∞

eitx (1− x2)
n−3
2

+ dx = c′n

ˆ ∞
−∞

eitx/
√
n
(

1− x2

n

)n−3
2

+
dx.

This is just a multiple of the Bessel function of the first kind with index ν = n
2 − 1 ([3], p.

81).
Thus, the characteristic function of the normalized first coordinate θ1

√
n is given by

ϕ̂n(t) = Jn
(
t
√
n
)

=

ˆ ∞
−∞

eitxϕn(x) dx,

which is the Fourier transform of the probability density ϕn. Proposition 2.1 can be used
to compare ϕ̂n(t) with the Fourier transform of the “corrected Gaussian measure”, as
well as to compare the derivatives of these transforms.

Proposition 3.1. For all t ∈ R,∣∣∣∣Jn(t√n)− (1− t4

4n

)
e−t

2/2

∣∣∣∣ ≤ c

n2
.
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Moreover, for any k = 1, 2, . . . ,∣∣∣∣ dkdtk Jn(t√n)− dk

dtk

((
1− t4

4n

)
e−t

2/2

)∣∣∣∣ ≤ (ck)k/2

n2
.

Taking k = 1, we have∣∣∣∣(Jn(t√n))′ − ( t54n
− t3

n
− t
)
e−t

2/2

∣∣∣∣ ≤ c

n2
.

One may also add a t-depending factor on the right-hand side. For t of order 1, this can
be done just by virtue of Taylor’s formula. Indeed, the functions

fn(t) = Jn
(
t
√
n) = Eθ e

itθ1
√
n, gn(t) =

(
1− t4

4n

)
e−t

2/2

have equal first three derivatives at zero. Since, by Proposition 3.1, |f (4)
n (t)−g(4)

n (t)| ≤ c
n2 ,

Taylor’s formula refines this proposition for the interval |t| ≤ 1.

Corollary 3.2. For all t ∈ R,∣∣∣Jn(t√n)− (1− t4

4n

)
e−t

2/2
∣∣∣ ≤ c

n2
min{1, t4},∣∣∣(Jn(t√n))′ + t

(
1 +

4t2 − t4

4n

)
e−t

2/2
∣∣∣ ≤ c

n2
min{1, |t|3}.

These approximations may be complemented by a Gaussian decay bound∣∣Jn(t√n)∣∣ ≤ 5 e−t
2/2 + 4 e−n/12, t ∈ R (3.1)

(cf. [12], Proposition 3.3).

Proof of Proposition 3.1. In general, given two integrable functions on the real line, say,
p and q, their Fourier transforms

p̂(t) =

ˆ ∞
−∞

eitxp(x) dx, q̂(t) =

ˆ ∞
−∞

eitxq(x) dx

satisfy, for all t ∈ R,

|p̂(t)− q̂(t)| ≤
ˆ ∞
−∞
|p(x)− q(x)| dx.

Moreover, one may differentiate these transforms k times to get

dk

dtk
p̂(t) =

ˆ ∞
−∞

(ix)k eitx p(x) dx,
dk

dtk
q̂(t) =

ˆ ∞
−∞

(ix)k eitx q(x) dx,

as long as the integrands are integrable, which also yields the relation∣∣∣ dk
dtk

p̂(t)− dk

dtk
q̂(t)

∣∣∣ ≤ ˆ ∞
−∞
|x|k |p(x)− q(x)| dx.

This applies in particular to the functions p(x) = ϕn(x) and q(x) = ϕ(x) (1 − 1
4n H4(x))

whose Fourier transform is described as

q̂(t) = e−t
2/2
(

1− t4

4n

)
.

Since (by Stirling’s formula)ˆ ∞
−∞
|x|k e−x

2/4 dx = 2k+1 Γ
(k + 1

2

)
≤ (ck)k/2,

it remains to apply (2.2).
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4 Deviations of smooth functions on the sphere

Smooth functions u on the unit n-sphere with sn−1-mean zero are known to have
fluctuations of order at most 1/

√
n (which is the case for all linear functions). This may

be seen from the Poincaré inequality
ˆ
|u|2 dsn−1 ≤

1

n− 1

ˆ
|∇u|2 dsn−1. (4.1)

Moreover, when u is Lipschitz, that is, |∇u(θ)| ≤ 1 for all θ ∈ Sn−1, there is a subgaussian
exponential bound on the Laplace transform (cf. [28])

ˆ
exp

{√
n− 1 ru

}
dsn−1 ≤ er

2/2, r ∈ R. (4.2)

This spherical concentration phenomenon may be strengthened with respect to the
dimension n for a wide subclass of smooth functions. We denote by ∇2u(x) the Hessian,
that is, the n× n matrix of second order partial derivative ∂iju(x), and by In the identity
n× n matrix. Given a symmetric matrix A = (aij)

n
i,j=1 with real or complex entries, the

associated Hilbert-Schmidt and operator norms are defined by

‖A‖HS =

( n∑
i,j=1

|aij |2
)1/2

, ‖A‖ = max
|θ|=1

| 〈Aθ, θ〉 |.

The next proposition summarizes several results from [13] employing a second order
concentration on the sphere, a property developed in [10].

Proposition 4.1. Suppose that a real-valued function u is defined and C2-smooth in
some neighborhood of Sn−1. If u is orthogonal to all affine functions in L2(sn−1), then

ˆ
|u|2 dsn−1 ≤

5

(n− 1)2

ˆ
‖∇2u− a In‖2HS dsn−1 (4.3)

for any a ∈ R. Moreover, if ‖∇2u− a In‖ ≤ 1 on Sn−1 and the second integral in (4.3) is
bounded by b, then ˆ

exp
{ n− 1

2(1 + 4b)
|u|
}
dsn−1 ≤ 2. (4.4)

By Markov’s inequality, (4.4) yields a corresponding large deviation bound, which
may be stated informally as a subexponential stochastic dominance |u| ≤ cb ( 1√

n
Z)2 with

Z ∼ N(0, 1). Thus, the deviations of u are of order at most 1/n.
We will need the following generalization of Proposition 4.1 which is more flexible in

applications. Given a function u in the (complex) Hilbert space L2 = L2(Rn, sn−1), we
consider its orthogonal projection

l = ProjHu

onto the linear space H in L2 generated by the constant and linear functions on Rn. Let
us call l an affine part of u.

Proposition 4.2. Suppose that a complex-valued function u is C2-smooth in some neigh-
borhood of Sn−1 and has sn−1-mean zero. For any a ∈ C,

ˆ
|u|2 dsn−1 ≤

5

(n− 1)2

ˆ
‖∇2u− a In‖2HS dsn−1 + ‖l‖2L2 , (4.5)

where l is the affine part of u. Moreover, if ‖∇2u− a In‖ ≤ 1 on Sn−1, then

‖u‖ψ1 ≤
4

n− 1
+

16

n− 1

ˆ
‖∇2u− a In‖2HS dsn−1 + 6 ‖l‖L2 . (4.6)
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Here we used a standard notation

‖u‖ψ1 = inf
{
λ > 0 : Eθ e

|u|/λ ≤ 2
}

for the Orlicz norm on the probability space (Sn−1, sn−1) generated by the Young function
ψ1(r) = e|r| − 1 (r ∈ R).

Proof of Proposition 4.2. The Poincaré-type inequalities (4.1) and (4.3) continue to hold
in the class of all complex-valued functions u with sn−1-mean zero, while (4.2) and (4.4)
require slight modifications. Indeed, (4.4) may be applied separately to the real part
u0 = Re(u) and to the imaginary part u1 = Re(u) of u, which results in

ˆ
exp

{ n− 1

2(1 + 4bk)
|uk|

}
dsn−1 ≤ 2, bk =

ˆ
‖∇2uk − ak In‖2HS dsn−1, (4.7)

for k = 0 and k = 1, assuming that the following conditions are fulfilled:

a) u0 and u1 (that is, u) are C2-smooth and orthogonal to all affine functions in
L2(sn−1);

b) ‖∇2uk − ak In‖ ≤ 1 on Sn−1 with a0 = Re(a) and a1 = Im(a).

The latter requirement is met as long as

‖∇2u− a In‖ ≡ max
|θ|=1

|
〈
(∇2u− a In)θ, θ

〉
| ≤ 1. (4.8)

As for the exponential bounds in (4.7), they may equivalently be written in terms of the
Orlicz ψ1-norm as

‖uk‖ψ1
≤ 2

n− 1
+

8bk
n− 1

, k = 0, 1.

Applying the triangle inequality ‖u‖ψ1
≤ ‖u0‖ψ1

+ ‖u1‖ψ1
in the Orlicz space and noting

that b0 + b1 is just the integral on the right-hand side in (4.5)–(4.6), we conclude that

‖u‖ψ1
≤ 4

n− 1
+

16

n− 1

ˆ
‖∇2u− aIn‖2HS dsn−1. (4.9)

This is a “complex” variant of the inequality (4.4), which holds for all a ∈ C under the
assumption that u is C2-smooth in some neighbourhood of Sn−1, is orthogonal to all
affine functions in L2(sn−1), and satisfies (4.8).

One may now start with an arbitrary C2-smooth function u with mean zero, but apply
these hypotheses and the conclusions to the projection Tu of u onto the orthogonal
complement of the space H of all linear functions in L2(sn−1). This space has dimension
n, and one may choose for the orthonormal basis in H the canonical functions

lk(θ) =
√
n θk, k = 1, . . . , n, θ = (θ1, . . . , θn) ∈ Sn−1.

Therefore, the “linear” part l = Tu− u of u is described as the orthogonal projection in
L2(sn−1) onto H, namely

l(θ) =
n∑
k=1

〈u, lk〉L2 lk(θ) =
n∑
k=1

(ˆ
u(x)lk(x) dsn−1(x)

)
lk(θ)

= n

ˆ (
u(x)

n∑
k=1

xkθk

)
dsn−1(x).

In other words,

l(θ) = 〈v, θ〉 with v = n

ˆ
xu(x) dsn−1(x),
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which implies, in particular, that

‖l‖2L2 =
1

n
|v|2 = n

¨
〈x, y〉u(x)ū(y) dsn−1(x)dsn−1(y). (4.10)

The functions Tu and u have identical Euclidean second derivatives. Hence, (4.5)
follows from (4.3) when the latter is applied to Tu, since Tu and l are orthogonal in L2.
Applying (4.9) with Tu in place of u, we similarly have

‖Tu‖ψ1
≤ 4

n− 1
+

16

n− 1

ˆ
‖∇2u− a In‖2HS dsn−1, (4.11)

provided that ‖∇2Tu− a In‖ = ‖∇2u− a In‖ ≤ 1 on Sn−1 as in (4.8).
To derive (4.6), it remains to use the fact that the linear functions on the sphere

behave like Gaussian random variables. This can be seen from (4.2), which may be
applied with r = 1 to the real and imaginary parts of l/‖l‖Lip. Then it gives

ˆ
exp

{√
n− 1 |l|/4 ‖l‖Lip

}
dsn−1 ≤ 2,

so that

‖l‖ψ1 ≤
4√
n− 1

‖l‖Lip =
4
√
n√

n− 1
‖l‖L2 ≤ 6 ‖l‖L2 .

The latter should be combined with (4.11), and we arrive at (4.6) due to the triangle
inequality ‖u‖ψ1

≤ ‖Tu‖ψ1
+ ‖l‖ψ1

.

5 Concentration of characteristic functions

Given a random vector X = (X1, . . . , Xn) in Rn, we consider the smooth functions

ut(θ) = fθ(t) = E eit〈X,θ〉, θ ∈ Rn, (5.1)

where t ∈ R serves as a parameter. For any fixed θ ∈ Rn, t → fθ(t) represents the
characteristic function of the weighted sum Sθ = 〈X, θ〉 with distribution function Fθ,
while the sn−1-mean

f(t) = Eθfθ(t) = Eθ E e
it〈X,θ〉

is the characteristic function of the average distribution function F (x) = Eθ P{Sθ ≤ x},
x ∈ R. Recall that we use Eθ to denote integrals with respect to the uniform measure
sn−1.

In order to control deviations of ut from f(t) on Sn−1 at the standard rate, the
spherical concentration inequalities (4.1)–(4.2) are sufficient. Indeed, the function ut
has a gradient described in the vector form as

〈∇ut(θ), w〉 = itE 〈X,w〉 eit〈X,θ〉, w ∈ Cn.

Hence, under the isotropy assumption, writing w = w0 + iw1 (w0, w1 ∈ Rn), we have

| 〈∇ut(θ), w〉 |2 ≤ E | 〈X,w〉 |2

= E 〈X,w0〉2 + E 〈X,w1〉2 = |w0|2 + |w1|2 = |w|2,

that is, | 〈∇ut(θ), w〉 | ≤ |t| |w| for all w ∈ Cn. This gives a uniform bound |∇ut(θ)| ≤ |t|,
so that, by the spherical Poincaré inequality (4.1),

Eθ |fθ(t)− f(t)|2 ≤ t2

n− 1
. (5.2)
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A similar inequality is also true for the Orlicz ψ2-norm of fθ(t)− f(t) generated by the
Young function ψ2(r) = er

2 − 1.
As it turns out, this rate of concentration may be improved under a second order

correlation condition (1.3) at least for values of t which are not too large, by involving
the characteristic Λ = Λ(X). In the isotropic case, this condition is described as the
relation

E

∣∣∣ n∑
j,k=1

zjk (XjXk − δjk)
∣∣∣2 ≤ Λ

n∑
j,k=1

|zjk|2, zjk ∈ C. (5.3)

Here, Λ is necessarily bounded away from zero. Indeed, (5.3) includes EX2
jX

2
k − δjk ≤ Λ

as partial cases. Summing this over all j, k = 1, . . . , n leads to E |X|4 − n ≤ n2Λ. But
E |X|4 ≥ (E |X|2)2 = n2 implying that

Λ ≥ n− 1

n
≥ 1

2
.

As was proved in [13] on the basis of Proposition 4.1, if the distribution of X is
isotropic and symmetric about the origin, the characteristic functions fθ(t) satisfy in the
interval |t| ≤ An1/5

cEθ |fθ(t)− f(t)|2 ≤ Λt4

n2
, (5.4)

where the constant c > 0 depends on the parameter A ≥ 1 only. Moreover,

Eθ exp
{ cn

Λt2
|fθ(t)− f(t)|

}
≤ 2. (5.5)

Note that, in the symmetric case, the functions θ → fθ(t) are even, so, all ut have
zero linear parts when projecting them onto the subspace H of all linear functions in
L2(Rn, sn−1).

To drop the symmetry assumption, consider an orthogonal decomposition

ut(θ) = f(t) + lt(θ) + vt(θ), (5.6)

where
lt(θ) = c1(t) θ1 + · · ·+ cn(t) θn, θ = (θ1, . . . , θn) ∈ Rn,

is the orthogonal projection of ut − f(t) onto H (the linear part) and where vt(θ) =

ut(θ)− f(t)− lt(θ) is the non-linear part of ut. By the orthogonality,

Eθ |fθ(t)− f(t)|2 = Eθ |lt(θ)|2 + Eθ |vt(θ)|2. (5.7)

With these notations, the bounds (5.4)–(5.5) should be properly modified.

Proposition 5.1. Given an isotropic random vector X in Rn, in the interval |t| ≤ An1/5,

cEθ |fθ(t)− f(t)|2 ≤ ‖lt‖2L2 +
Λt4

n2
(5.8)

with some constant c > 0 depending on the parameter A > 0. Here, lt is the linear part of
fθ(t) in L2(Rn, sn−1) from the orthogonal decomposition (5.6). Moreover, if |t| ≤ An1/6,
then

c ‖fθ(t)− f(t)‖ψ1 ≤ ‖lt‖L2 +
Λt2

n
. (5.9)

If the distribution of X is symmetric about the origin, then lt(θ) = 0, and we return
in (5.8)–(5.9) to (5.4)–(5.5). The linear part lt is also vanishing, when X has mean zero
and a constant Euclidean norm, i.e. when |X| =

√
n a.s. (this will be clarified in the next

section).
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Proof. To employ Propositions 4.1–4.2, we need to choose a suitable value a ∈ C and
estimate the operator norm ‖∇2ut− a In‖ and the Hilbert-Schmidt norm ‖∇2ut− a In‖HS.
First note that, by differentiation of (5.1), for any fixed t ∈ R,

[
∇2ut(θ)

]
jk

=
∂2

∂θj∂θk
fθ(t) = −t2EXjXk e

it〈X,θ〉.

Hence, a good choice is a = −t2f(t) in order to balance the diagonal elements in the
matrix of second derivatives of ut. For any vector w ∈ Cn, using the canonical inner
product in the complex n-space, we have〈

∇2ut(θ)w,w
〉

= −t2E | 〈X,w〉 |2 eit〈X,θ〉.

Hence, by the isotropy assumption,∣∣ 〈(∇2ut(θ)− a In)w,w
〉 ∣∣ ≤ t2E | 〈X,w〉 |2 + |a| |w|2 ≤ 2t2, |w| = 1.

In terms of the norm defined as in (4.8), this bound insures that

‖∇2ut(θ)− a In‖ ≤ 2t2. (5.10)

In addition, putting a(θ) = −t2fθ(t), we have

∥∥∇2ut(θ)− a(θ) In
∥∥2

HS
=

n∑
j,k=1

∣∣∇2ut(θ)jk − a(θ) δjk
∣∣2

= sup

∣∣∣∣ n∑
j,k=1

zjk
(
∇2ut(θ)jk − a(θ) δjk

)∣∣∣∣2

≤ t4 sup E

∣∣∣∣ n∑
j,k=1

zjk (XjXk − δjk)

∣∣∣∣2,
where the supremum is running over all complex numbers zjk such that

∑n
j,k=1 |zjk|2 = 1.

But, under this constraint, due to the second order correlation condition, the last
expectation is bounded by Λ. Since ut and vt have equal Hessians, we conclude that∥∥∇2vt(θ)− a(θ) In

∥∥2

HS
≤ Λt4 (5.11)

for all θ. On the other hand, by (5.2),

Eθ
∥∥(a(θ)− a) In

∥∥2

HS
= nt4Eθ |fθ(t)− f(t)|2 ≤ 2t6. (5.12)

The two last bounds give

Eθ
∥∥∇2vt(θ)− a In

∥∥2

HS
≤ 2Λt4 + 4t6,

which, by Proposition 4.1, yields

Eθ |vt(θ)|2 ≤
5

(n− 1)2
(2Λt4 + 4t6).

One can sharpen this bound for the range |t| ≤ An1/5. Applying it in (5.7), we get

Eθ |fθ(t)− f(t)|2 ≤ Eθ |lt(θ)|2 +
5

(n− 1)2
(2Λt4 + 4t6),
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which, according to the identity in (5.12), gives

Eθ‖(a(θ)− a) In‖2HS ≤ nt4Eθ |lt(θ)|2 +
5n

(n− 1)2
(2Λt8 + 4t10).

Combining this with (5.11), we get

Eθ‖∇2vt(θ)− a In‖2HS ≤ 2nt4Eθ |lt(θ)|2 + 2Λt4 +
10n

(n− 1)2
(2Λt8 + 4t10).

Hence, by Proposition 4.1 once more,

Eθ |vt(θ)|2 ≤
10nt4

(n− 1)2
Eθ |lt(θ)|2 +

10

(n− 1)2
Λt4 +

50n

(n− 1)4
(Λt8 + 2t10),

so that, by (5.7),

Eθ |fθ(t)− f(t)|2 ≤
(

1 +
10nt4

(n− 1)2

)
Eθ |lt(θ)|2

+
10

(n− 1)2
Λt4 +

50n

(n− 1)4
(Λt8 + 2t10).

According to the identity in (5.12), this gives

Eθ‖(a(θ)− a) In‖2HS ≤ nt4
(

1 +
10nt4

(n− 1)2

)
Eθ |lt(θ)|2

+
10n

(n− 1)2
Λt8 +

50n2

(n− 1)4
(Λt12 + 2t14).

One can combine this with (5.11) to obtain that

Eθ ‖∇2vt(θ)− a In‖2HS ≤ 2nt4
(

1 +
10nt4

(n− 1)2

)
Eθ |lt(θ)|2

+ 2Λt4 +
20n

(n− 1)2
Λt8 +

100n2

(n− 1)4
(Λt12 + 2t14).

Now, if |t| ≤ An1/5, the coefficient in front of Eθ |lt(θ)|2 does not exceed a multiple of
nt4. Similarly, in this region the last three terms can be bounded by Λt4 up to a numerical
factor (since Λ ≥ 1

2 ). Hence the above bound is simplified to

cEθ ‖∇2vt(θ)− a In‖2HS ≤ nt4 ‖lt‖2L2 + Λt4 (5.13)

with some constant c depending A. Since nt4 < A4n2, by Proposition 4.1, we get

cEθ |vt(θ)|2 ≤ Eθ |lt(θ)|2 +
5

(n− 1)2
Λt4.

In view of (5.7), this proves the inequality (5.8).
To get a bound for the ψ1-norm, note that, by (5.10), the conditions of Proposition 4.2

(in its second part) are fulfilled with − 1
2 f(t) in place of a for the function

u(θ) =
1

2t2
(fθ(t)− f(t)), θ ∈ Rn, t 6= 0.

Since (5.13) holds for ut as well (provided that |t| ≤ An1/5), this inequality may be
rewritten as

cEθ

∥∥∥∇2u(θ) +
1

2
f(t) In

∥∥∥2

HS
≤ n ‖lt‖2L2 + Λ.
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The linear part of u is given by lt/(2t2). Hence, the inequality (4.6) of Proposition 4.2
yields

c
∥∥∥ 1

2t2
(fθ(t)− f(t))

∥∥∥
ψ1

≤ 1 + Λ

n
+ ‖lt‖2L2 +

1

2t2
‖lt‖L2 .

Using once more Λ ≥ 1
2 , the above is simplified to

c ‖fθ(t)− f(t)‖ψ1 ≤
Λt2

n
+ ‖lt‖L2 + ‖lt‖2L2 t2. (5.14)

Here, the last term on the right-hand side is dominated by the second last term in
the smaller interval |t| ≤ An1/6. Indeed, according to the concentration inequality (5.2),

‖lt‖L2 t2 ≤ ‖fθ(t)− f(t)‖L2 t2 ≤ |t|3√
n− 1

≤ 2A3.

Hence ‖lt‖2L2 t2 ≤ 2A3 ‖lt‖L2 . As a result, (5.14) leads to the required form (5.9).

6 Linear part of characteristic functions

In order to make the bounds (5.8)–(5.9) effective, we need to properly estimate
the L2-norm of the linear part lt(θ) of fθ(t) in L2(Rn, sn−1). According to (4.10), it is
described as

I(t) = ‖lt‖2L2 = nEθ Eθ′ 〈θ, θ′〉 fθ(t)f̄θ′(t). (6.1)

Let us find an asymptotically explicit expression for this function.

Proposition 6.1. Let X be a random vector in Rn such that E |X|2 = n. For any t ∈ R,
the characteristic function fθ(t) = E eit〈X,θ〉 as a function of θ on the sphere has a linear
part, whose squared L2(sn−1)-norm may be represented as

I(t) =
t2

n
E 〈X,Y 〉

(
1− (U2 + V 2) t4 − 8R2t2

4n

)
e−R

2t2 +O(t2n−2), (6.2)

where Y is an independent copy of X, and

R2 =
1

2n
(|X|2 + |Y |2), U =

1

n
|X|2, V =

1

n
|Y |2.

The remainder term may be improved to O(t2n−5/2), if X is isotropic.

Proof. Using an independent copy Y of X, one may rewrite (6.1) equivalently as

I(t) = n

n∑
k=1

|Eθ θkfθ(t)|2 = n

n∑
k=1

E Eθ Eθ′
[
θkθ
′
k e

it〈X,θ〉−it〈Y,θ′〉
]
.

To compute the inner expectations, introduce the function

Kn(t) = Jn
(√
tn
)
, t ≥ 0,

where, as before, Jn denotes the characteristic function of the first coordinate of a point
on the unit sphere Sn−1 under the normalized Lebesgue measure sn−1. By the definition,

Eθ e
i〈v,θ〉 = Jn(|v|) = Kn

( |v|2
n

)
, v = (v1, . . . , vn) ∈ Rn.

Differentiating this equality with respect to the variable vk, we obtain that

iEθ θke
i〈v,θ〉 =

2vk
n

K ′n

( |v|2
n

)
.
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Let us multiply this by a similar equality

−iEθ θke−i〈w,θ〉 =
2wk
n

K ′n

( |w|2
n

)
,

to get that, for all v, w ∈ Rn,

Eθ Eθ′
[
θkθ
′
k e

i〈v,θ〉−i〈w,θ′〉
]

=
4vkwk
n2

K ′n

( |v|2
n

)
K ′n

( |w|2
n

)
.

Hence, summing over all k ≤ n, we get

n∑
k=1

Eθ Eθ′
[
θkθ
′
k e

i〈v,θ〉−i〈w,θ′〉
]

=
4 〈v, w〉
n2

K ′n

( |v|2
n

)
K ′n

( |w|2
n

)
.

It remains to make the substitution v = tX, w = tY and to take the expectation over
(X,Y ). Then we arrive at the following expression

I(t) =
4t2

n
E 〈X,Y 〉K ′n

( t2|X|2
n

)
K ′n

( t2|Y |2
n

)
. (6.3)

In particular, if |X| =
√
n a.s., then

I(t) =
4t2

n
K ′ 2n (t2)E 〈X,Y 〉 ,

which is vanishing, as soon as X has mean zero. In fact, the property I(t) = 0 re-
mains valid for more general random vectors. In particular, this is the case, where the
conditional distribution of X given that |X| = r has mean zero for any r > 0.

Now, let us derive an asymptotic formula for the function Kn and its derivative. We
know from Corollary 3.2 that

d

dt
Jn(t
√
n) = −t

(
1− t4 − 4t2

4n

)
e−t

2/2 +O
(
n−2 min(1, |t|3)

)
.

Since Jn(t
√
n) = Kn(t2), after differentiation we find that

2tK ′n(t2) =
d

dt
Kn(t2) = −t

(
1− t4 − 4t2

4n

)
e−t

2/2 +O
(
n−2 min(1, |t|3)

)
.

Changing the variable, we arrive at

K ′n(t) = −1

2

(
1− t2 − 4t

4n

)
e−t/2 +O

(
n−2 min(1, t)

)
, t ≥ 0.

From this,

K ′n(t)K ′n(s) =
1

4

(
1− (t2 + s2)− 4(t+ s)

4n

)
e−(t+s)/2 +O

(
n−2

)
uniformly over all t, s ≥ 0, so,

4K ′n

( t2|X|2
n

)
K ′n

( t2|Y |2
n

)
=

(
1−

t4 ( |X|
4

n2 + |Y |4
n2 )− 4t2 ( |X|

2

n + |Y |2
n )

4n

)
e−

t2(|X|2+|Y |2)
2n + ε

=
(

1− (U2 + V 2) t4 − 8R2t2

4n

)
e−R

2t2 + ε

with a remainder term satisfying |ε| ≤ c
n2 up to some absolute constant c. The latter

yields
t2

n
E | 〈X,Y 〉 | |ε| ≤ ct2

n2
E
|X|2 + |Y |2

2n
=

ct2

n2
,

assuming that E |X|2 = n. Hence, recalling (6.3), we obtain (6.2).
In the isotropic case, we have E | 〈X,Y 〉 | ≤

√
n, which leads to the corresponding

improvement of the remainder term.
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7 Berry-Esseen bounds

The Kolmogorov distances between the distribution functions Fθ of the weighted
sums Sθ = 〈X, θ〉 and the standard normal distribution function Φ can be explored by
means of the Berry-Esseen-type bounds. They involve the characteristic functions

fθ(t) = E eitSθ =

ˆ ∞
−∞

eitx dFθ(x), f(t) = Eθfθ(t) =

ˆ ∞
−∞

eitx dF (x) (7.1)

associated to Fθ(x) and the average distribution function F (x) = EθF (x). Using the
Λ-functional, let us state a few preliminary relations.

Lemma 7.1. Given a random vector X in Rn such that E |X|2 = n, we have, for all
T ≥ T0 ≥ 1 and θ ∈ Sn−1,

c ρ(Fθ,Φ) ≤
ˆ T0

0

|fθ(t)− f(t)|
t

dt

+

ˆ T

T0

|fθ(t)|
t

dt+
Λ

n

(
1 + log

T

T0

)
+

1

T
+ e−T

2
0 /4. (7.2)

The idea to involve two parameters T and T0 stems upon the observation that the
first integrand in (7.2) is small on a relatively moderate sized interval [0, T0] only, due to
the concentration property of fθ(t) about f(t) as a function of θ (as discussed in Section
5). On the other hand, for T0 ≤ t ≤ T with a sufficiently large T , one may hope that both
fθ(t) and f(t) will be just small in absolute value (in analogy with the case of independent
components).

Proof. One can apply a general Berry-Esseen-type bound

c ρ(U, V ) ≤
ˆ T

0

|Û(t)− V̂ (t)|
t

dt+
1

T

ˆ T

0

|V̂ (t)| dt (T > 0),

where U and V are arbitrary distribution functions with characteristic functions Û and
V̂ , respectively (cf. e.g. [7], [31], [32]). In particular, for all θ ∈ Sn−1,

c ρ(Fθ, F ) ≤
ˆ T

0

|fθ(t)− f(t)|
t

dt+
1

T

ˆ T

0

|f(t)| dt.

Splitting the integration in the first integral to the subintervals [0, T0] and [T0, T ], T ≥
T0 > 0, we then have

c ρ(Fθ, F ) ≤
ˆ T0

0

|fθ(t)− f(t)|
t

dt

+

ˆ T

T0

|fθ(t)|
t

dt+

ˆ T

T0

|f(t)|
t

dt+
1

T

ˆ T

0

|f(t)| dt. (7.3)

The decay of the characteristic function f(t) for large t can be controlled in terms of
the variance-type functional σ2

4 = 1
n Var(|X|2), which in turn satisfies σ2

4 ≤ Λ according
to the inequality (1.3) applied with coefficients aij = 1. Namely, write the definition (7.1)
as

f(t) = E Jn(t|X|), t ∈ R.

Here, one may split the expectation into the event A = {|X|2 ≤ 1
2 n} and its complement

B. By the upper bound (3.1),

E |Jn(t|X|)| 1B ≤ E
(

5 e−t
2|X|2/2n + 4 e−n/12

)
1B ≤ 5 e−t

2/4 + 4 e−n/12.
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On the other hand, by Chebyshev’s inequality,

P(A) = P
{
n− |X|2 ≥ 1

2
n
}
≤ Var(|X|2)

( 1
2 n)2

=
4σ2

4

n
≤ 4Λ

n
. (7.4)

Since |Jn(s)| ≤ 1 for all s ∈ R, we get

E |Jn(t|X|)| 1A ≤
4Λ

n
,

thus implying that c |f(t)| ≤ e−t2/4 + Λ
n for all t ∈ R, and therefore

c

T

ˆ T

0

|f(t)| dt ≤ Λ

n
+

1

T
. (7.5)

If T0 ≥ 1, then also

c

ˆ T

T0

|f(t)|
t

dt ≤ e−T
2
0 /4 +

Λ

n
log(T/T0). (7.6)

Using these bounds in the inequality (7.3), it is simplified to

c ρ(Fθ, F ) ≤
ˆ T0

0

|fθ(t)− f(t)|
t

dt

+

ˆ T

T0

|fθ(t)|
t

dt+
Λ

n

(
1 + log

T

T0

)
+

1

T
+ e−T

2
0 /4.

The variance functional may also be used to quantify closeness of F to the standard
normal distribution function via the inequality (cf. [11])

c ρ(F,Φ) ≤ 1

n
(1 + σ2

4).

Since σ2
4 ≤ Λ, (7.2) immediately follows in view of the triangle inequality for the Kol-

mogorov metric.

Lemma 7.1 may be used to derive the following upper bound on average which
represents a generalization of the inequality (1.4).

Lemma 7.2. Given an isotropic random vector X in Rn, with T0 = 4
√

log n we have

cEθ ρ(Fθ,Φ) ≤ log n

n
Λ +

ˆ T0

0

√
I(t)

t
dt, (7.7)

where I(t) denotes the squared L2-norm of the linear part of fθ(t) in L2(sn−1).

Proof. When bounding ρ(Fθ,Φ) on average with respect to sn−1, the inequality (7.6) is
actually not needed. Using Jensen’s inequality |f(t)| ≤ Eθ |fθ(t)|, from (7.3) and (7.5) we
obtain that, for all T ≥ T0 ≥ 1,

cEθ ρ(Fθ, F ) ≤
ˆ T0

0

Eθ |fθ(t)− f(t)|
t

dt+

ˆ T

T0

Eθ |fθ(t)|
t

dt+
1

T
+

Λ

n
. (7.8)

Now, as was shown in [12] (Lemma 5.2 specialized to the parameter p = 2), for all
t ∈ R,

cEθ |fθ(t)| ≤
m2

4 + σ2
4

n
+ e−t

2/16, m4 =
1√
n

(
E 〈X,Y 〉4

)1/4
, (7.9)
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where Y is an independent copy of X. Using a simple relation m4 ≤M2
4 (Corollary 2.3 in

[12]), one may also involve the functional

M4 = sup
θ∈Sn−1

(E 〈X, θ〉4)1/4.

It may be bounded in terms of Λ as well as σ2
4 . Indeed, applying (1.3) with aij = θiθj , we

get

Var(〈X, θ〉2) ≤ Λ, θ ∈ Sn−1,

which implies M4
4 ≤ 1 + Λ ≤ 3Λ in the isotropic case. This allows us to replace (7.9) with

cEθ |fθ(t)| ≤
Λ

n
+ e−t

2/16.

Applying the latter in (7.8), this inequality is simplified to

cE ρ(Fθ,Φ) ≤
ˆ T0

0

E |fθ(t)− f(t)|
t

dt+
Λ

n

(
1 + log

T

T0

)
+

1

T
+ e−T

2
0 /16. (7.10)

Here, the integral can be bounded by virtue of the L2-bound (5.8) which yields

cEθ |fθ(t)− f(t)| ≤
√
I(t) +

t2

n

√
Λ

for |t| ≤ An1/5 with a prescribed constant A > 0. This gives

c

ˆ T0

0

E |fθ(t)− f(t)|
t

dt ≤
ˆ T0

0

√
I(t)

t
dt+

T 2
0

2n

√
Λ,

as long as T0 ≤ An1/5. Applying this in (7.10), we arrive at

cEθ ρ(Fθ,Φ) ≤
ˆ T0

0

√
I(t)

t
dt+

Λ

n

(
1 + log

T

T0

)
+

1

T
+
T 2

0

n

√
Λ + e−T

2
0 /16.

Finally, choosing T = 4n, T0 = 4
√

log n, we obtain (7.7).

8 Large deviations related to moderate sized and long intervals

A similar argument can be used when bounding the ψ1-Orlicz norm of ρ(Fθ,Φ). As a
preliminary step, let us start with the first integral in (7.2) over the moderate interval.
Applying now the inequality (5.9), we have

c

∥∥∥∥ˆ T0

0

|fθ(t)− f(t)| dt
t

∥∥∥∥
ψ1

≤ c

ˆ T0

0

‖fθ(t)− f(t)‖ψ1

dt

t

≤
ˆ T0

0

(√
I(t) +

Λt2

n

) dt
t

=
Λ

2n
T 2

0 +

ˆ T0

0

√
I(t)

t
dt,

which is used with the same parameter T0 as in Lemma 7.2. In general, by Markov’s
inequality,

sn−1

{
|ξ| ≥ r‖ξ‖ψ1

}
≤ 2 e−r, r > 0.

Hence, we get:
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Lemma 8.1. Let X be an isotropic random vector in Rn. For all r > 0, with T0 = 4
√

log n,

sn−1

{
c

ˆ T0

0

|fθ(t)− f(t)|
t

dt ≥ Λ log n

n
r + r

ˆ T0

0

√
I(t)

t
dt

}
≤ 2 e−r.

Outside the moderate sized interval, that is, on the long interval [T0, T ], both |f(t)|
and |fθ(t)| are expected to be small for most of θ. To study this property, let us consider
the growth of the moments of the integral

L(θ) =

ˆ T

T0

|fθ(t)|
t

dt. (8.1)

Lemma 8.2. Let X(k), Y (k) (k = 1, . . . , p) be independent copies of a random vector X
in Rn. For the integral in (8.1) with parameters T0 = 4

√
log n and T = T0n, we have

Eθ L(θ)2p ≤ (c log n)2p
(
p2p n−2p + P(A)

)
, (8.2)

where

A =
{
|Σp|2 ≤

np

2

}
, Σp =

p∑
k=1

(X(k) − Y (k)).

Proof. By Hölder’s inequality,

L(θ)2p ≤ log2p−1
( T
T0

) ˆ T

T0

|fθ(t)|2p

t
dt,

so that

Eθ L(θ)2p ≤ log2p−1
( T
T0

) ˆ T

T0

Eθ |fθ(t)|2p

t
dt.

Since |fθ(t)|2p = E eit〈Σp,θ〉, we may write

Eθ |fθ(t)|2p = EJn(t |Σp|).

Thus,

Eθ L(θ)2p ≤ log2p−1
( T
T0

) ˆ T

T0

EJn(t |Σp|)
dt

t
.

Next, we split the expectation to the event A and its complement B =
{
|Σp|2 > np

2

}
.

Applying the upper bound (3.1), we get

ˆ T

T0

EJn(t |Σp|) 1B
dt

t
≤
ˆ T

T0

5 e−pt
2/4 + 4 e−n/12

t
dt

≤ (5 e−pT
2
0 /4 + 4 e−n/12) log

( T
T0

)
,

while ˆ T

T0

EJn(t|Σp|) 1A
dt

t
≤ P(A) log

( T
T0

)
(since |J(s)| ≤ 1 for all s ∈ R). Hence,

Eθ L(θ)2p ≤ c log2p
( T
T0

)(
e−pT

2
0 /4 + e−n/12 + P(A)

)
.

For the choice T0 = 4
√

log n, T = T0n, this leads to

Eθ L(θ)2p ≤ c (log n)2p
(
n−4p + e−n/12 + P(A)

)
.

Using the inequality x2p e−x ≤ p2p (x ≥ 0), we have e−n/12 ≤ (12 p)2p n−2p, and the above
bound is simplified to (8.2).
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9 Concentration in presence of Poincaré-type inequalities

In order to simplify the bounds in Lemma 7.2 and Lemmas 8.1–8.2, we need more
information about the distribution of X, which would allow us to say more on the involved
function I(t) and the probability of the event A as in Lemma 8.2. To this aim, our starting
hypothesis will be described by Poincaré-type inequalities.

Let us first recall several concentration results, assuming that the random vector
X = (X1, . . . , Xn) in Rn admits the Poincaré-type inequality

λ1 Var(u(X)) ≤ E |∇u(X)|2 (9.1)

for all smooth functions u on Rn with a positive constant λ1. As was discovered by
Gromov and Milman [20] and by Borovkov and Utev [14], deviations of random variables
u(X) from their means are subexponential, as long as u is a Lipschitz function on Rn

(cf. also [1], [28]). In a somewhat optimal way, worst possible deviations of u(X) are
described in the following assertion proved in [4].

Proposition 9.1. If the function u : Rn → R has a Lipschitz semi-norm ‖u‖Lip ≤ 1, then,
for any r ≥ 0,

P
{
u(X)− Eu(X) ≥ r

}
≤ 3 e−2

√
λ1r. (9.2)

Using a smoothing argument, the inequality (9.1) may be extended to all locally
Lipschitz functions, in which case the modulus of the gradient may be understood as an
upper semi-continuous function

|∇u(x)| = lim sup
y1,y2→x

|u(y1)− u(y2)|
|y1 − y2|

, x ∈ R.

In terms of partial derivatives, it leads to the usual expression
(∑n

k=1(∂xku(x))2
)1/2

assuming that u is differentiable at the point x.
If the function u is not Lipschitz (for example, a polynomial), the bound (9.2) is

no longer true, and a more general variant of Proposition 9.1 is needed, which would
allow us to control probabilities of large deviations. To this aim, proper bounds on the
Lp-norms of u in terms of the Lp-norms of the modulus of the gradient are useful.

Proposition 9.2. Given a locally Lipschitz function u on Rn, suppose that the moment
E |∇u(X)|p is finite for p ≥ 2. Then, u(X) has finite absolute moments up to order p, and

E |u(X)− Eu(X)|p ≤
( p√

2λ1

)p
E |∇u(X)|p. (9.3)

Proof. Let us include a simple argument, assuming that the function u is C1-smooth.
By the subadditivity property of the variance functional (cf. [27]), the Poincaré-type
inequality (9.1) for the distribution µ of X on Rn is extended to the same relation on
Rn ×Rn

λ1Varµ⊗µ(f) ≤
¨
|∇f(x, y)|2 dµ(x)dµ(y) (9.4)

with respect to the product measure µ2 = µ ⊗ µ. Here, for any C1-smooth function
f = f(x, y), the modulus of the gradient is given by

|∇f(x, y)|2 = |∇xf(x, y)|2 + |∇yf(x, y)|2.

Let us apply this 2n-dimensional Poincaré-type inequality to the function

f(x, y) = |u(x)− u(y)|
p
2 sign(u(x)− u(y)),
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which is C1-smooth in the case p > 2. Its modulus of the gradient is given by

|∇f(x, y)| =
p

2
|u(x)− u(y)|

p
2−1
√
|∇u(x)|2 + |∇u(y)|2.

Since f has a symmetric distribution under µ2, applying (9.4) together with Hölder’s
inequality, we conclude that

λ1

¨
|u(x)− u(y)|p dµ2(x, y)

≤ p2

4

¨
|u(x)− u(y)|p−2

(
|∇u(x)|2 + |∇u(y)|2

)
dµ2(x, y)

≤ p2

4

(¨
|u(x)− u(y)|p dµ2(x, y)

) p−2
p
(¨ (

|∇u(x)|2 + |∇u(y)|2
) p

2

dµ2(x, y)

) 2
p

.

By Jensen’s inequality, the last double integral does not exceed

2
p
2−1

¨ (
|∇u(x)|p + |∇u(y)|p

)
dµ2(x, y) = 2

p
2

ˆ
|∇u|p dµ,

and hence

λ1

(¨
|u(x)− u(y)|p dµ2(x, y)

) 2
p

≤ p2

2

(ˆ
|∇u|p dµ

) 2
p

.

Equivalently, ¨
|u(x)− u(y)|p dµ2(x, y) ≤

( p√
2λ1

)p ˆ
|∇u|p dµ.

If the right integral is finite, so is the left one, thus u is integrable. Moreover, the left
integral is greater than or equal to

´
|u(x)− Eu(X)|p dµ(x) (by Jensen’s inequality).

Let us now connect the Poincaré constant with small ball probabilities.

Corollary 9.3. If E |X|2 = n, then

P
{
|X|2 ≤ 1

4
n
}
≤ 3 e−

1
2

√
λ1n. (9.5)

Proof. Applying (9.2) to the function u(x) = −|x|, we have

P
{
|X| − E |X| ≤ −r

}
≤ 3 e−2

√
λ1r, r ≥ 0. (9.6)

One can bound E |X| from below by virtue of the Poincaré-type inequality (9.1) which
gives

n− (E |X|)2 = Var(|X|) ≤ 1

λ1
.

In the case λ1n ≥ 4
3 , this implies E |X| ≥

√
n− 1

λ1
≥ 1

2

√
n. Hence, applying (9.6) with

r = E |X| − 1
2

√
n, we get

P
{
|X| ≤ 1

2

√
n
}
≤ 3 e−2

√
λ1 r.

Here r ≥
√
n− 1

λ1
− 1

2

√
n ≥ 1

4

√
n under a stronger assumption λ1n ≥ 16

7 , in which case

the above bound yields the desired inequality (9.5).
It remains to note that (9.5) is fulfilled automatically when λ1n <

16
7 , since then the

right-hand side is greater than 1.
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Let us give another version of this statement for convolutions, namely, for sums

Σp =

p∑
k=1

(X(k) − Y (k)),

where X(k), Y (k) (1 ≤ k ≤ p) are independent copies of X.

Corollary 9.4. If X has mean zero, and E |X|2 = n, then

P
{
|Σp|2 ≤

np

2

}
≤ 3 e−

1
3

√
λ1n.

Proof. One may use the property that the product measure µ⊗2p on (Rn)2p = R2pn has
the same Poincaré constant λ1 as the distribution µ of X. The function

u(x1, . . . , xp, y1, . . . , yp) = −
∣∣∣ p∑
k=1

(xk − yk)
∣∣∣, xk, yk ∈ Rn,

has Lipschitz semi-norm
√

2p with respect to the Euclidean distance on R2pn. Therefore,
according to Proposition 9.1, it admits an exponential inequality

µ⊗2p{u−m ≥ r} ≤ 3e−2
√
λ1 r/

√
2p (r > 0),

where m is the µ⊗2p-mean of u. That is,

P
{
|Σp| − E |Σp| ≤ −r

}
≤ 3e−2

√
λ1 r/

√
2p. (9.7)

By the Poincaré-type inequality on the product space, and using E |Σp|2 = 2pn, we
have

2pn− (E |Σp|)2 ≤ 2p

λ1
≤ pn,

where the last inequality holds true when λ1n ≥ 2. In this case, E |Σp| ≥
√
pn, and

applying (9.7) with r = (1− 1√
2
)
√
pn, we obtain that

P
{
|Σp| ≤

1√
2

√
np
}
≤ 3 e−(

√
2−1)

√
λ1n < 3 e−

1
3

√
λ1n.

In the case λ1n ≤ 2, the inequality of the corollary is fulfilled automatically.

Remark 9.5. If the random vector X in Rn (n ≥ 2) is isotropic, then necessarily λ1 ≤ 1.
Indeed, applying (9.1) with linear functions u(x) = 〈x, θ〉, we get

λ1

(
1− 〈a, θ〉2

)
≤ 1, θ ∈ Sn−1,

where a = EX. Since one may choose θ to be orthogonal to the vector a, the conclusion
follows. The upper bound λ1 ≤ 1 is also valid in dimension n = 1, as long as EX = 0

(however, we only have λ1 ≤ 1/Var(X) without the mean zero assumption).

10 The case of non-symmetric distributions

In order to extend the bound

Eθ ρ(Fθ,Φ) ≤ c log n

n
Λ (10.1)

to the case where the distribution of X is not necessarily symmetric about the origin,
we need to employ more sophisticated results reflecting the size of the linear part of
the characteristic functions fθ(t) in L2(sn−1) with respect to the variable θ. This may be
achieved at the expense of a certain term that has to be added to the right-hand side in
(10.1). More precisely, we derive the following:
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Proposition 10.1. Given an isotropic random vector X = (X1, . . . , Xn) in Rn,

cEθ ρ(Fθ,Φ) ≤ log n

n
Λ +

( log n

n

)1/4
(
E

〈X,Y 〉√
|X|2 + |Y |2

)1/2

, (10.2)

where Y is an independent copy of X.

The ratio 〈X,Y 〉 /
√
|X|2 + |Y |2 is understood to be zero in the case X = Y = 0. Note

that the last expectation in (10.2) is non-negative which follows from the representation

E
〈X,Y 〉√
|X|2 + |Y |2

=
2√
π

ˆ ∞
0

n∑
k=1

(
EXk e

−|X|2r2
)2

dr.

If the distribution of X is symmetric, this expectation is vanishing, and in (10.2) we
return to (10.1).

Returning to Proposition 6.1, define the random variables

R2 =
|X|2 + |Y |2

2n
(R ≥ 0), U =

|X|2

n
, V =

|Y |2

n
,

and recall that in the isotropic case the squared L2-norm of the linear part of the charac-
teristic function fθ(t) of the weighted sums 〈X, θ〉 admits an asymptotic representation

I(t) =
t2

n
E 〈X,Y 〉

(
1− (U2 + V 2) t4 − 8R2t2

4n

)
e−R

2t2 +O(t2n−5/2). (10.3)

Lemma 10.2. If X is isotropic, then, putting T0 = 4
√

log n, we have

ˆ T0

0

I(t)

t2
dt ≤ c

n
E
〈X,Y 〉
R

+O
(
Λ2n−2

)
. (10.4)

Proof. Introduce the events A = {R ≤ 1
2} and B = {R > 1

2}. Starting from (10.3), we
have

ˆ T0

0

I(t)

t2
dt =

1

n
E 〈X,Y 〉

ˆ T0

0

e−R
2t2 dt

+
2

n2
E 〈X,Y 〉

ˆ T0

0

R2t2e−R
2t2 dt

− 1

4n2
E 〈X,Y 〉

ˆ T0

0

(U2 + V 2) t4e−R
2t2 dt+O(n−2).

After the change of the variable Rt = s (assuming without loss of generality that R > 0)
and putting T1 = RT0, the above is simplified to

ˆ T0

0

I(t)

t2
dt =

1

n
E
〈X,Y 〉
R

ˆ T1

0

e−s
2

ds

+
2

n2
E
〈X,Y 〉
R

ˆ T1

0

s2e−s
2

ds

− 1

4n2
E
〈X,Y 〉
R

U2 + V 2

R4

ˆ T1

0

s4e−s
2

ds+O(n−2).

At the expense of a small error, integration here may be extended from the interval
[0, T1] to the whole half-axis (0,∞). To see this, one can use the estimates

ˆ ∞
T1

e−s
2

ds <

ˆ ∞
T1

s2 e−s
2

ds <

ˆ ∞
T1

s4e−s
2

ds < c e−T
2
1 /2 (T1 > 1),
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together with ∣∣∣ 〈X,Y 〉
R

∣∣∣ ≤ |X| |Y |
R

≤ |X|
2 + |Y |2

2R
= Rn. (10.5)

As was already noted in (7.4),

P(A) = P
{
|X|2 + |Y |2 ≤ n

2

}
≤ P

{
|X|2 ≤ n

2

}
P
{
|Y |2 ≤ n

2

}
≤ 16Λ2

n2
. (10.6)

Since on the set B, we have T 2
1 = 16R2 log n > 4 log n, and due to ER2 = 1, it follows that

ERe−T
2
1 /2 = ERe−T

2
1 /2 1A + ERe−T

2
1 /2 1B

≤ 1

2
P(A) +

1

n2
ER ≤ cΛ2

n2
,

where we used the lower bound Λ ≥ 1
2 . Hence

E
| 〈X,Y 〉 |

R

ˆ ∞
T1

e−s
2

ds ≤ nERe−T
2
1 /2 ≤ cΛ2

n
.

By a similar argument,

E
| 〈X,Y 〉 |

R

ˆ ∞
T1

s2e−s
2

ds ≤ cnERe−T
2
1 /2 ≤ cΛ2

n
.

Using
U2 + V 2

R4
=

4 (U2 + V 2)

(U + V )2
≤ 4,

we also have

E
| 〈X,Y 〉 |

R

U2 + V 2

R4

ˆ ∞
T1

s4e−s
2

ds ≤ cnERe−T
2
1 /2 ≤ cΛ2

n
.

Thus, extending the integration to the positive half-axis, we get
ˆ T0

0

I(t)

t2
dt =

c1
n
E
〈X,Y 〉
R

+
c2
n2
E
〈X,Y 〉
R

− c3
n2
E
〈X,Y 〉
R

U2 + V 2

R4
+O

(
Λ2n−2

)
with some absolute constants cj > 0. Moreover, using the identity

U2 + V 2

R4
= 2 +

(U − V )2

2R4
= 2 + 2

(U − V )2

(U + V )2

and recalling that E 〈X,Y 〉R ≥ 0, it follows that, with some other positive absolute constants

ˆ T0

0

I(t)

t2
dt ≤ c1

n
E
〈X,Y 〉
R

− c2
n2
E
〈X,Y 〉
R

(U − V )2

(U + V )2
+O

(
Λ2n−2

)
. (10.7)

To get rid of the last expectation (by showing that it is bounded by a dimension free
quantity), first note that, by (10.5), the expression under this expectation is bounded
in absolute value by Rn. Hence, applying Cauchy’s inequality and using ER2 = 1,
from (10.6) we obtain that

E

∣∣∣ 〈X,Y 〉
R

∣∣∣ (U − V )2

(U + V )2
1A ≤ E

∣∣∣ 〈X,Y 〉
R

∣∣∣ 1A
≤ nER 1A ≤ n

√
P(A) ≤ 4Λ. (10.8)
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Turning to the complementary set, note that on B, we have | 〈X,Y 〉R | ≤ 2 | 〈X,Y 〉 |, while

(U − V )2

(U + V )2
≤ |U − V |

U + V
=
|U − V |

2R2
≤ 2 |U − V |.

Hence, by Cauchy’s inequality, and using E 〈X,Y 〉2 = n, we get

E

∣∣∣ 〈X,Y 〉
R

∣∣∣ (U − V )2

(U + V )2
1B ≤ 4E | 〈X,Y 〉 | |U − V |

≤ 4
√
n
√
E (U − V )2 = 4

√
2σ4 ≤ 4

√
2Λ.

Combining this bound with (10.8), we finally obtain that

E

∣∣∣ 〈X,Y 〉
R

∣∣∣ (U − V )2

(U + V )2
≤ cΛ.

As a result, we arrive in (10.7) at the bound (10.4).

Proof of Proposition 10.1. We employ the bound (7.7) of Lemma 7.2 which was stated
with T0 = 4

√
log n. Using Cauchy’s inequality and applying (10.4), it gives

cEθ ρ(Fθ,Φ) ≤ log n

n
Λ +

ˆ T0

0

√
I(t)

t
dt

≤ log n

n
Λ +

√
T0

(ˆ T0

0

I(t)

t2
dt

)1/2

≤ log n

n
Λ + c′

√
T0

(
1

n
E
〈X,Y 〉
R

+
Λ2

n2

)1/2

.

Simplifying the expression on the right-hand side, we arrive at (10.2).

11 The estimate on average

Let us rewrite the bound (10.2) as

cEθ ρ(Fθ,Φ) ≤ log n

n
Λ +

(log n)1/4

√
n

(
E
〈X,Y 〉
R

)1/2

, (11.1)

where R2 = 1
2n (|X|2 + |Y |2), R ≥ 0, and where Y is an independent copy of X. In the

next step, we are going to simplify the last expectation in terms of λ1. Note that, under
our standard assumptions as in Proposition 10.1,

ER2 = 1, Var(R2) =
σ2

4

2n
≤ Λ

2n
.

Hence, with high probability the ratio 〈X,Y 〉R is almost 〈X,Y 〉 which in turn has zero
expectation, as long as X has mean zero. However, in general it is not clear whether
or not this approximation is sufficient to make further simplification. Nevertheless, the
approximation R2 ∼ 1 is indeed sufficiently strong, for example, in the case where the
distribution µ of X satisfies the Poincaré-type inequality (1.5).

Lemma 11.1. Let X be an isotropic random vector in Rn with mean zero and a positive
Poincaré constant λ1, and let Y be an independent copy of X. Then

E
〈X,Y 〉
R

≤ c

λ2
1 n

. (11.2)
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Applying (11.2) in (11.1) and using Λ ≤ 4/λ1 (cf. [13], Proposition 3.4), we get an
estimate on average

cEθ ρ(Fθ,Φ) ≤ log n

n

1

λ1
+

(log n)1/4

√
n

1

λ1
√
n
,

thus proving the relation (1.6).

Proof of Lemma 11.1. Without loss of generality, assume that R > 0 a.s. Put δn = 1
λ1n

.
We apply the Poincaré-type inequality for the product measure µ⊗ µ,

¨
|u(x, y)|2 dµ(x) dµ(y) ≤ 1

λ1

¨
|∇u(x, y)|2 dµ(x) dµ(y), (11.3)

which holds true for any smooth function u on Rn×Rn with (µ⊗µ)-mean zero. Moreover,
according to the inequality (9.3), for any p ≥ 2,

¨
|u(x, y)|p dµ(x) dµ(y) ≤ pp

(2λ1)p/2

¨
|∇u(x, y)|p dµ(x) dµ(y). (11.4)

By Corollary 9.3 applied in R2n to the random vector (X,Y ), it also follows that the event
A = {R ≤ 1

2} has probability

P(A) ≤ 3e−
√
λ1n/2.

Using
| 〈X,Y 〉 | ≤ R2n, (11.5)

cf. (10.5), we have

E
| 〈X,Y 〉 |

R
1A ≤ nER 1A ≤

n

2
P(A) ≤ 3n

2
e−
√
λ1n/2 ≤ c

λ2
1 n

. (11.6)

Similarly,

E | 〈X,Y 〉 | 1A ≤
n

4
P(A) ≤ c

λ2
1 n

,

and since X has mean zero, for the complementary set B = {R > 1
2} we have the same

bound ∣∣E 〈X,Y 〉 1B∣∣ ≤ c

λ2
1 n

.

Using once more (11.5), on the set A we also have

E | 〈X,Y 〉 |R2 1A ≤
n

4
P(A) ≤ c

λ2
1n

and
E | 〈X,Y 〉 |R4 1A ≤

n

16
P(A) ≤ c

λ2
1 n

.

Now, consider the function w(ε) = (1 + ε)−1/2 on the half-axis ε ≥ − 3
4 . By Taylor’s

formula, for some point ε1 between − 3
4 and ε,

w(ε) = 1− 1

2
ε+

3

8
ε2 − 5

16
(1 + ε1)−7/2 ε3 = 1− 1

2
ε+

3

8
ε2 − βε3

with some 0 ≤ β ≤ 40. Putting ε = R2 − 1, we then get on the set B

〈X,Y 〉
R

= 〈X,Y 〉 − 1

2
〈X,Y 〉 (R2 − 1) +

3

8
〈X,Y 〉 (R2 − 1)2 − β 〈X,Y 〉 (R2 − 1)3

=
15

8
〈X,Y 〉 − 5

4
〈X,Y 〉R2 +

3

8
〈X,Y 〉R4 − β 〈X,Y 〉 (R2 − 1)3.
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By the independence of X and Y , and due to the mean zero assumption, E 〈X,Y 〉 =

E 〈X,Y 〉R2 = 0. Hence, writing 1B = 1− 1A, we have

E
〈X,Y 〉
R

1B = −15

8
E 〈X,Y 〉 1A +

5

4
E 〈X,Y 〉R2 1A −

3

8
E 〈X,Y 〉R4 1A

+
3

8
E 〈X,Y 〉R4 − βE 〈X,Y 〉 (R2 − 1)3 1B .

Here, the first three expectations on the right-hand side do not exceed in absolute value
a multiple of 1

λ2
1n

. Hence, using the previous bound (11.6), we get

E
〈X,Y 〉
R

=
c1
λ2

1 n
+

3

8
E 〈X,Y 〉R4 + c2E | 〈X,Y 〉 | |R2 − 1|3, (11.7)

where the quantities c1 and c2 are bounded by an absolute constant.
By Cauchy’s inequality, the square of the last expectation does not exceed,

E 〈X,Y 〉2 E (R2 − 1)6 = nE (R2 − 1)6.

In turn, the latter expectation may be bounded by virtue of the inequality (11.4) applied
with p = 6 to the function u(x, y) = 1

2n (|x|2 + |y|2)− 1. Since

|∇u(x, y)|2 = |∇xu(x, y)|2 + |∇yu(x, y)|2 =
|x|2 + |y|2

n2
,

it gives

E (R2 − 1)6 ≤ c

λ3
1 n

3
ER6. (11.8)

On the other hand, the Poincaré-type inequality easily yields the bound ER6 ≤ c/λ3
1.

However, in this step a more accurate estimation is required. Write

R6 = (R2 − 1)3 + 3 (R2 − 1)2 + 3 (R2 − 1) + 1,

so that
ER6 = E (R2 − 1)3 + 3E (R2 − 1)2 + 1. (11.9)

By (11.3) with the same function u, we have

E (R2 − 1)2 ≤ 2

λ1n
ER2 = 2δn,

while (11.4) with p = 3 gives

E |R2 − 1|3 ≤ 27 δ3/2
n E |R|3.

Putting x2 = ER6 (x > 0) and using E |R|3 ≤ x, we therefore get from (11.9) that

x2 ≤ 27 δ3/2
n x+ 6δn + 1.

This quadratic inequality is easily solved to yield x2 ≤ c (δn + 1)3. One can now apply this
bound in (11.8) to conclude that

E (R2 − 1)6 ≤ c

λ3
1 n

3
(δn + 1)3.

This implies

E 〈X,Y 〉2 E (R2 − 1)6 ≤ c

λ3
1 n

2
(δn + 1)3,
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which allows us to simplify the representation (11.7) to the form

E
〈X,Y 〉
R

=
c1
λ2

1 n
+

c2

λ
3/2
1 n

(δn + 1)3/2 +
3

8
E 〈X,Y 〉R4, (11.10)

where the new quantity c2 is bounded by an absolute constant.
We are left with the estimation of E 〈X,Y 〉R4. Since E 〈X,Y 〉 |X|4 = E 〈X,Y 〉 |Y |4 = 0,

it follows that

E 〈X,Y 〉R4 =
1

2n2
E 〈X,Y 〉 |X|2 |Y |2 =

1

2n2

∣∣E |X|2X ∣∣2.
The latter expectation is understood in the usual vector sense. That is, in terms of the
components in X = (X1, . . . , Xn) defined on a probability space (Ω,P), we have

E |X|2X = (a1, . . . , an), ak = E |X|2Xk = E (|X|2 − n)Xk.

Since the collection {X1, . . . , Xn} appears as an orthonormal system in the Hilbert space
L2(Ω,P), the numbers ak represent the (Fourier) coefficients for the projection of the
random variable |X|2 − n onto the span of Xk’s. Hence, by Bessel’s inequality,

∣∣E |X|2X ∣∣2 =
n∑
k=1

a2
k ≤

∥∥ |X|2 − n∥∥2

L2(Ω,P)
= Var(|X|2) = nσ2

4(X) ≤ 4n

λ1
,

so that

E 〈X,Y 〉R4 ≤ 2

λ1n

In view of the upper bound λ1 ≤ 1 (Remark 9.5), the expectation in (11.10) is thus
dominated by the first term, and we arrive at

E
〈X,Y 〉
R

≤ c

λ2
1 n

+
c

λ
3/2
1 n

( 1

λ1n
+ 1
)3/2

.

If λ1 ≥ n−1, the first term on the right-hand side dominates the second one, and
we arrive at the desired inequality (11.2). In the other case, we have 1

λ2
1 n
≥ n, and

then (11.2) holds true as well, by (11.5), since ER ≤ 1.

12 Proof of Theorem 1.1

Let us now derive the stronger inequality (1.7). With parameters T0 = 4
√

log n and
T = T0n, the bound (7.2) of Lemma 7.1 is simplified to

c ρ(Fθ,Φ) ≤
ˆ T0

0

|fθ(t)− f(t)|
t

dt+ L(θ) +
log n

n
Λ, (12.1)

where L(θ) =
´ T
T0

|fθ(t)|
t dt. Combining Corollary 9.4 with Lemma 8.2, we obtain that

Eθ L(θ)2p ≤ (c log n)2p
(
p2p n−2p + e−

1
3

√
λ1n
)

for any integer p ≥ 1. One can simplify this bound, by using the inequality e−x ≤ ( 4p
ex )4p

(x > 0). Since λ1 ≤ 1 (as was explained above), it follows that

(
Eθ L(θ)2p

)1/2p ≤ c log n

n
λ−1

1 p2.
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This inequality is readily extended to all real p ≥ 1/2. Replacing here 2p with p, we get a
similar bound (

Eθ L(θ)p
)1/p ≤ c log n

n
λ−1

1 p2,

which holds for all real p ≥ 1. Now, by Markov’s inequality,

sn−1

{
L(θ) ≥ ce log n

n
λ−1

1 r
}
≤ p2p

(er)p
, r ≥ 1.

Choosing p =
√
r, we thus have

sn−1

{
L(θ) ≥ ce log n

n
λ−1

1 r
}
≤ e−

√
r. (12.2)

It is time to involve Lemma 8.1. First, from Lemmas 10.2 and 11.1, it follows that

ˆ T0

0

√
I(t)

t
dt ≤

√
T0

(ˆ T0

0

I(t)

t2
dt

)1/2

≤ c
√
T0

(
1

n
E
〈X,Y 〉
R

+
Λ2

n2

)1/2

≤ c′

λ1n
(log n)1/4,

where on the last step we used Λ ≤ 4
λ1

. Hence, by Lemma 8.1,

sn−1

{ ˆ T0

0

|fθ(t)− f(t)|
t

dt ≥ c log n

λ1n
r

}
≤ 2 e−r.

Being combined with (12.2) and applied in (12.1), this bound leads to the desired
inequality

sn−1

{
ρ(Fθ,Φ) ≥ c log n

n
λ−1

1 r
}
≤ 3 e−

√
r, (12.3)

which also holds for r < 1 (when the right-hand side is greater than 1). Here, the constant
3 may be replaced with 2 by rescaling the variable r, and then we arrive at (1.7).

Corollary 12.1. Let X be an isotropic random vector in Rn with mean zero and a
positive Poincaré constant λ1. For any β > 0, with sn−1-probability at most 3n−β we have

ρ(Fθ,Φ) ≤ cβ2 (log n)3

n
λ−1

1 .

Proof. Indeed, although the estimate (1.7) implies the bound on average (1.6), it is only
effective for r ≥ (log n)2. For the values r = (β log n)2, (12.3) provides a polynomial
bound

sn−1

{
ρ(Fθ,Φ) ≥ cβ2 (log n)3

n
λ−1

1

}
≤ 3n−β .

In other words, for a sufficiently large number A, with high sn−1-probability

ρ(Fθ,Φ) ≤ A (log n)3

n
λ−1

1 .
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