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ABSTRACT

Software configurability opens the door to misconfiguration vul-

nerabilities, invalid settings that expose software weaknesses. Mis-

configuration is one the top ten most critical security risks and

the most common. This paper envisions a world without miscon-

figuration vulnerabilities through the use of automated reasoning

techniques to infer and secure software configurations. Real-world

software, however, often lacks an explicit specification of secure

configurations, relying on hand-validation by users. Real-world

systems comprise many individual highly-configurable software

components, making the space of possible configurations for the

whole system enormous. To realize our vision and overcome these

challenges, we aim to create a rigorous definition of configura-

tion specifications, use formal methods to mechanize the inference

and generation of valid configurations, and develop algorithms to

automatically secure against misconfiguration.
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1 INTRODUCTION

Highly-configurable software forms the basis of much of our com-

puting infrastructure, because configurability enables reuse. Virtu-
ally endless variations of the software are possible with little or no
modification to the source code. The Linux kernel and the Apache
webserver are examples of highly-configurable software, which
have thousands of configuration options. The Linux kernel is used
by about 70% of mobile devices [26], by 70% of IoT developers [10],
and over 40% of servers [28]. The Apache webserver is used by
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nearly 40% of web servers [27]. These alone are used in billions

of computing devices. Their extreme configurability makes this

widespread use possible.

Configurability opens the door tomisconfiguration vulnerabilities

that expose software bugs [1, 9, 18, 19] and security holes [21, 22, 30].

In fact, security misconfigurations are number six in the OWASP

top ten list of the most critical security risks [23] and are the most

common risk [22]. Misconfiguration is possible, because only cer-

tain configuration settings are valid: the misconfiguration bug or

insecurity would not exist if the configuration settings were used

correctly. Current recommendations for preventing misconfigu-

rations include finding a hardened, or łlocked-downž configura-

tion and using it on all deployments, preferably automatically [23].

Hardening is typically done manually by system administrations

following hardening guides [29], using detectors for known miscon-

figurations [7], or cloning a known secure configuration. Existing

hardening practices are untenable, because they are subject to hu-

man error [8, 21, 24, 30], they are time-consuming and inflexible,

and guides go out-of-date as software changes [29].

Program analysis and verification have had much success catch-

ing vulnerabilities caused by software weaknesses introduced dur-

ing development. But misconfiguration vulnerabilities fall outside

the scope of traditional program analysis, which focuses on source

or object code. Misconfiguration vulnerabilities, in contrast, are

rooted in software configuration management rather than the pro-

gramming language. Software configuration management, in a nut-

shell, is the control of change to a software system [14]. While in

general it includes change at every phase of the life cycle, miscon-

figuration vulnerabilities arise from the ability to change software

after development. Developers include machinery to automate such

post-development changes so that users and system administrators

can tailor software without additional programming effort. But the

virtually endless combinations of configuration settings within and

across software systems make misconfiguration all but a certainty.

Our vision is a world without misconfiguration vulnera-

bilities, made possible with automated reasoning that pro-

duces reliable and secure software configurations. Automa-

tion both reduces the risk of misconfiguration and eases the burden

of configuration management on developers, system administra-

tors, and users. The key to this vision is the use of formal logic:

by modeling the configuration specifications in formal logic, the

validity of a configuration is equivalent to Boolean satisfiability. Auto-

mated reasoning tools such as Satisfiability Modulo Theories (SMT)

solvers can then be used to both enforce correct usage and help

discover desirable configurations. While formal logic has been used

for software configuration in prior work [2, 11], there remain two

key challenges standing in the way of our vision.
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1 <Limit PUT DELTE BIND>

2 </Limit>

(a) The .htaccess file.

1 ./configure --enable-dav

(b) The build option that compiles the WebDAV module.

1 a2enmod dav

(c) The tool that enables the WebDAV module.

Figure 1: The three separate configuration mechanisms in-

volved in Optionsbleed. Unless both (b) and (c) are config-

ured, (a)’s use of BIND will expose Optionsbleed.

The first challenge is that real-world software systems do not

have complete, explicit configuration specifications defining what

configurations are valid [4, 11, 25]Ðone reason for hardening guides.

The second challenge is that the space of possible configurations is

enormous [11, 20]. For instance, v4.19.50 of the x86 Linux kernel has

13,381 build-time options. With most being Boolean options, that is

2
13,381 configurations, more than the estimated number of atoms

in the universe! With the kernel being only one component of a

complete software system. Scaling to massive systems is critical for

the adoption of formal reasoning.

To realize our vision, we aim to (1) create a rigorous definition of

configuration specifications, (2) use formal methods to mechanize

the generation of valid configurations, and (3) develop algorithms

to automatically secure against misconfiguration. This effort bene-

fits all users of computing infrastructure, because the most critical

software is some of the most configurable. System developers and

administrators will benefit by being able to securely configure their

infrastructure more accurately and quickly. Security misconfigura-

tions are already the most common security risk, and as our world

increasingly depends on infrastructure that combines more and

more configurable software, this risk will only continue to increase.

2 MOTIVATING EXAMPLE: OPTIONSBLEED

The Optionsbleed vulnerability illustrates how a lack of explicit

specification of what configurations are valid leads to a silent secu-

rity misconfiguration. Optionsbleed was an exploit in the Apache

webserver that łbleedsž arbitrary memory contents to a remote at-

tacker [6] due to a use-after-free bug in its HTTP method handling

code. It manifests only if a user has written an invalid configuration

file, which is possible because of the lack of automatic validation

of configuration file usage before execution.

Optionsbleed involves the misconfiguration of configuration op-

tions that span the Apache webserver’s many configuration mech-

anisms. The first is the user-specified, and attacker-controllable,

.htaccess file, shown in Figure 1a. The Limit directive restricts

permissions to the specified HTTP methods, a useful setting for

securing a server. But an invalid HTTP method name exposes

the Optionsbleed vulnerability. For instance, while PUT is a valid

method, DELTE is a misspelling of DELETE, which triggers the bleed.

limit.method = PUT or limit.method = DELETE

or (build.enable-dav = True and module.dav = True

and limit.method = BIND)

Figure 2: Formalized constraints that prevent Optionsbleed.

While string matching can prevent a misspelling, i.e., input val-

idation, Optionsbleed misconfigurations are more subtle due to

interactions between configuration mechanisms. BIND in Figure 1a

is only a valid HTTP method for the WebDAV extension, which

adds filesystem-like methods to HTTP. The inclusion of WebDAV

support in the webserver is configurable, which means that the

use of BIND is only a misconfiguration under certain conditions,

i.e., when WebDAV has not been enabled. This shows that there

are global constraints on valid uses of the Limit directive that are

outside the control of .htaccess. Two more configuration mecha-

nisms affect the WebDAV extension, adding further constraints on

the valid usage of Limit. A configure script (Figure 1b) controls

compilation of the extension and a runtime module system controls

its inclusion in the webserver at runtime (Figure 1c).

Since many other server extensions add new HTTP methods,

trying to prevent such misconfiguration by only detecting known

ones leaves openings for the same misconfiguration vulnerability.

Ironically, security best practices recommend disabling unneeded

features to reduce the attack surface [23], which in this case in-

creases the opportunities to trigger Optionsbleed. Validating the

.htaccess file is impossible without considering all configuration

specifications. These specifications are fragmented across multiple

configuration mechanisms, yet there are implicit, global constraints

among them that no individual mechanism validates alone.

3 SOLUTION APPROACH

Automatically validating a configuration requires a unified, global

view of all configuration specifications for a system. Intuitively,

a configuration option is a long-lived value, global to an entire

software system and (typically) only set once at the beginning of

execution. In this sense, an option is effectively a program variable,

with two important distinctions. First, configurations options are

defined outside any particular program and exist across potentially

all programs comprising a system. Second, they typically do not

change during program execution except perhaps via a clearly de-

lineated settings menu. Given the configuration options available

for software system, we can formalize a specification of valid con-

figurations as a set of logical constraints among options, so that the

validity of a configuration is equivalent to Boolean satisfiability.

For example, Figure 2 shows the constraints relevant to Options-

bleed, where the options from all three configuration mechanisms

are represented with a name: build for the configure script, module

for the module loader, and limit for the .htaccess file’s Limit di-

rective. The logical connectives represent the global constraints on

these options. The satisfying assignments of these options are the

valid configurations that prevent triggering Optionsbleed. Using

formal logic not only makes the notion of a valid configuration

rigorous, but it enables automatic inference and generation of con-

figurations for use in testing and security. We propose four initial
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1 namespace limit {

2 config method : string

3 constraint method="GET"

4 or method="POST"

5 or method="DELETE"

6 or method="BIND" and build.dav

7 }

8 namespace build {

9 config dav : bool

10 config dav_fs : bool

11 constraint dav <-> dav_fs

12 }

Figure 3: An example of intermediate configuration lan-

guage relevant to Optionsbleed

tasks to realize our vision. Evaluating these tasks involves taking

multiple large, prevalent, highly-configurable open-source code-

bases to determine whether the formalization of configurability and

the proposed solution approach can successfully infer and generate

valid configurations correctly and efficiently at scale.

3.1 An Intermediate Configuration Language

We propose creating an intermediate configuration specification

language to serve as both a target language for extracting specifi-

cations from configuration mechanisms and a source language for

generating logical formulas. Figure 3 is a preliminary example of

such a language. It describes valid Apachewebserver configurations,

which prevents the Optionsbleed vulnerability. Lines 2, 9, and 10

declare configuration options. Namespaces delineate configuration

mechanisms, e.g., method describes the Limit directive while the

WebDAV options are in build. Boolean expressions define the con-

straints on the Limit directive (lines 3ś6), which eliminates the

misspelling misconfiguration. Line 6 makes explicit the interaction

between the WebDAV extension and parameters to Limit, ensuring

Optionsbleed is not part of any valid configuration.

While these specifications could be written by hand, we propose

bootstrapping their creation by automatically extracting or łdecom-

pilingž them from build system code. We have demonstrated such

extraction directly to formal logic on Linux’s Kbuild [11, 20] and

plan to retarget the extraction to the intermediate language. When

software has no explicit description of valid configurations, we can

infer implicit specifications from configurations that łworkž, i.e.,

those that build and run without breaking the software.

3.2 Formal Modeling and Analysis

In order to automatically reason about configurations, we can de-

fine the semantics of the intermediate language in terms of formal

logic, then automatically compile the language to logical formulas.

Enforcement of valid configurations is then equivalent to satisfi-

ability, with satisfiability checks discharged to existing SAT and

SMT solvers. Both static and dynamic analyses of the configuration

constraints are useful for optimizing the compilation as well as

supporting the testing and security of configuration specifications.

For instance, namespacing in our intermediate language provides

a priori information for opportunistic partitioning, which helps

make SMT solving faster [15].

Sampling configurations [5, 13, 16], i.e., generating valid con-

crete configurations from logical constraints, supports securing

configurations automatically. Real-world configuration specifica-

tions, however, are large, and constrained sampling remains an

open problem [17]. To improve over existing sampling techniques,

we propose using information from the intermediate configura-

tion specification to help direct the sampling effort and scale to

large configuration specifications. For instance, each configuration

mechanism defines many configuration options that only have

constraints among its own options, rather than across other config-

uration mechanisms. It is likely that only a fraction of configuration

options are constrained with other parts of the system-wide spec-

ification. In the Linux kernel, for example, configuration options

are often tied to a specific kernel subsystem, where a large portion

of options are used only within their own subdirectory. We can use

such information to reduce the burden on solvers and samplers.

3.3 Testing and Bug-Finding

Misconfiguration vulnerabilities fall into two categories. The first

are invalid configurations that expose a defect. The Optionsbleed

vulnerability described in Section 2 is an example. The second are

valid configurations that result in undesirable security properties,

which will be addressed in Section 3.4. We propose tackling the

first kind of misconfiguration by both testing software across many

configurations to find invalid configurations, i.e., those that ex-

pose software bugs, and combining logical constraints with static

analyses for static bug-finding.

A fundamental challenge to fixing bugs is localizing the cause of

the failure. It is not feasible to create a single test suite that exercises

all possible configurations, but new defects may appear in untested

configurations. The problem of localizing configurations [12] is to

find what configurations affect each specific part of the software.

Optionsbleed, for instance, was caused by a use-after-free. Once

the bug is found, a configuration localization algorithm would de-

termine what configuration settings lead to it. The formalization

described in Section 3.2 can be used to statically localize configura-

tions by combining constraints from the configuration specification

with configuration options that control relevant portions of source

code. Armed with these constraints, we can also use configuration

sampling techniques to search the constrained space of configura-

tions for software defects and use localization to focus testing on

only relevant configurations.

3.4 Security and Prevention

Security misconfigurations are a broad category of security risks

that have a wide variety of attack models, ranging from software

bugs like the Optionsbleed’s use-after-free, to insecure settings like

default passwords and open permissions. Confidentiality, integrity,

and availability can all be affected, because misconfigurations are

not one particular software weakness but a vehicle for exposing

weaknesses. A misconfiguration attack occurs when an existing

configuration leads to exploitable software or an attacker can influ-

ence the choice of configuration. Because misconfigurations expose
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weaknesses indirectly, a misconfiguration vulnerability inserted by

an insider may provide plausible deniability compared to imple-

menting a backdoor in a well-audited source code repository.

While an invalid configuration can reveal a software defect, a

valid configuration is not necessarily secure. For example, web-

servers can be configured to log user interactions. While innocuous

in some use-cases, e.g., a personal webserver, such logging needs

careful hardening for third-party services. Millions of user’s pass-

words have been leaked due to such misconfiguration [21, 30].

Secure configuration policies can be expressed in the configuration

specification intermediate language to restrict valid configurations

to those that meet the policy. The analysis algorithms from Sec-

tion 3.2 can also help automatically create secure configuration

policies. For instance, if the security policy can be checked via a

test, automation can build, run, and check the software to discover

the range of secure configurations.

4 RELATED WORK

Our work draws inspiration from the use of propositional logic

for feature modeling [3] in the feature-oriented software design

(FOSD) paradigm. Feature modeling defines software as combina-

tions of software components. Most open-source system software,

however, does not follow the FOSD paradigm and often has no

explicit definition of valid configurations. Our goal is to model and

infer configurability beyond software components alone, includ-

ing password policies, logging, permissions, etc, while employing

the same spirit of applying formal logic to software to tackle the

challenges of producing safe and secure software configurations.
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