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Abstract

In response to the COVID-19 pandemic, there have been various attempts to develop realistic
models to both predict the spread of the disease and evaluate policy measures aimed at mitiga-
tion. Different models that operate under different parameters and assumptions produce radi-
cally different predictions, creating confusion among policy-makers and the general population
and limiting the usefulness of the models. This newsletter article proposes a novel ensemble
modeling approach that uses representative clustering to identify where existing model predic-
tions of COVID-19 spread agree and unify these predictions into a smaller set of predictions.
The proposed ensemble prediction approach is composed of the following stages: (1) the selection
of the ensemble components, (2) the imputation of missing predictions for each component, and
(3) representative clustering in application to time-series data to determine the degree of agree-
ment between simulation predictions. The results of the proposed approach will produce a set of
ensemble model predictions that identify where simulation results converge so that policy-makers
and the general public are informed with more comprehensive predictions and the uncertainty
among them.

1 Introduction

SARS-CoV-2 is a highly contagious human respiratory coronavirus resulting in mortality across the
United States and worldwide [2]. Researchers have made considerable efforts to understand the virus’
infection dynamics and develop various models to shed light on the future. Forecasts obtained from the
models are used to predict the number of cases and deaths to support the development of effective policy
interventions and the public health response. However, the wide range of COVID-19 models employ
different parameter settings, are designed based on various assumptions, and are inherently uncertain.
As a result, existing models produce a range of radically different predictions making it difficult for
decision-makers and the broader public to understand, compare-between, and validate them, creating
barriers to their use. Therefore, there is an urgent need to cross-evaluate the wide-range of existing
COVID-19 models, find a consensus among their predictions, and increase the transparency of model
assumptions and their inherent uncertainty.

Ensemble modeling is a term that describes the wide range of approaches used to combine pre-
dictions from multiple models, also known as components [28]. Components can be mathematical,
curve-fitting, or agent-based models and typically operate under a range of different assumptions and
use different data sources. The ensemble components can be combined using various algorithms, one



of which is referred to as stacked generalization [39] or stacking. In this approach, a single ensemble is
generated by simply averaging predictions derived from equally weighted components. In variations of
this approach, ensemble components may be weighted based on whether they meet a specific condition.
These weights may be assigned statically or may change adaptively over time [22]. Aside from averag-
ing, some ensembles are generated using the median, the trimmed mean to exclude extreme predictions,
voting, Bayesian model averaging, multiple linear regression, and principal component regression [38].

Ensemble models often have been found to outperform any single model by offsetting component
biases [33, 41]. If the components are diverse and independent, ensemble approaches can generate
predictions with increased prediction accuracy and reduced error variance [17]. Thus, ensemble mod-
eling has been utilized extensively to make predictions about weather and climate [18, 21], hydrologic
processes [38], species distributions [10], and more recently infectious disease including influenza [31],
Ebola hemorrhagic fever [37], dengue [14, 40], and COVID-19 [1, 23, 30].

Traditionally, ensemble approaches summarize the various predictions between components into
one single prediction. However, the reliance on ensemble means without critical examination of the
ensemble components can be dangerous. Mackenzie [21] illustrates this concept using three models,
each of which indicates that a river is unsafe to cross at some point. Yet the average of the models
says otherwise. In other words, acknowledging the assumptions and the resulting variation and bias
among component predictions is important and can hold key information that explains future conditions
otherwise ignored by their ensembles.

Therefore, we propose the development and implementation of an ensemble approach using repre-
sentative clustering [32, 43] that is capable of exploring the various dimensions of agreement between
ensemble components and thus is not limited to combining the component predictions into a single
prediction. The novel representative clustering approach is proposed as follows: (1) selection of the
ensemble components, (2) imputation of the missing predictions for each model, and (3) application of
representative clustering to develop ensembles.

In this newsletter article, we begin by introducing the wide range of existing COVID-19 models
that are available as potential ensemble components, their predictions, and their uncertainty . Next,
we propose the novel ensemble prediction approach that will be used to unify selected components as
ensembles. Finally, we present some initial results before describing our next steps.

2 Ensemble Clustering Approach

This study proposes the development of a novel ensemble prediction approach (see Figure 1) that is
capable of exploring the various dimensions of agreement between ensemble components and thus is
not limited to combining the component predictions into a single prediction. The proposed ensemble
prediction approach is composed of the following stages: (1) the selection of the ensemble components,
(2) the imputation of missing predictions for each model, and (3) the application of representative
clustering so that it can be applied to time-series data and thus determine the degree of agreement
between simulation predictions. Model cross-comparison is a rare practice in the modeling community.
Therefore, our efforts to bring together different COVID-19 models and cross-compare them is also a
novel contribution.

2.1 Model Integration

Selection of Model Components and Parameters. With the rapid spread of SARS-CoV-2,
researchers have been designing simulation models to predict new cases and deaths as well as to under-
stand the impact of different mitigation measures such as social distancing and mandatory lockdowns.
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Figure 1: Ensemble clustering approach overview.

These models develop and implement approaches ranging from metapopulation, curve-fitting and sta-
tistical, as well as agent-based and in many cases the source code and the prediction data has been made
publicly available. For example, the Global Epidemic and Mobility Model (GLEaM) is a metapopula-
tion model that combines geographic mobility and population data with disease dynamics [36]. This
effort was adapted and calibrated to model many outbreaks, including most recently the COVID-19
pandemic [4]. Another team of experts from the Los Alamos National Laboratory utilized their exper-
tise in disease modeling and developed a statistical model to make new case and death predictions for
COVID-19. Predictions from this model are publicly available [5]. The Imperial College COVID-19
Response Team adapted an established agent-based epidemic model [8, 12] to COVID-19 as well as
developed a new mathematical model to estimate disease spread [7]. The Institute for Health Metrics
and Evaluation (IHME) has developed a curve-fitting type of statistical model to project new cases
and hospital beds needed [24], which is publicly available to use [13].

The models described above are just a few of the many that have been developed and implemented to
predict COVID-19 trajectories of spread (see also Table 1 for more examples). In general, the CDC splits
existing models into two categories [3]. One category includes models that make predictions under the
assumption of business as usual meaning that existing control methods will remain in place [29, 34, 35].
The other category includes models that make predictions under different possible scenarios, usually
with respect to testing the effect of different policy measures or the degree to which the population
follows these guidelines [6, 11, 25, 27].

In the model integration stage, we will select a number of models as ensemble components. Table 1
presents some examples of existing models with open and available data that can be used as potential



Table 1: Examples of potential ensemble components.
Team Name and Reference Model Name Model Type

Auquan Data Science [34] MLOptimized Modi-
fiedSEIR

Modified SEIR model with compartments
for reported and unreported infections.
Non-linear mixed effects curve-fitting

Carnegie Mellon Delphi Group
[9]

TimeSeries A basic AR-type time series model fit us-
ing case counts and deaths as features

Columbia University [27] Select County-level SEIR model

CovidAnalytics at MIT [20] DELPHI SEIR model

Discrete Dynamical Systems
[15]

Negative Binomial
Dynamical System

Jointly modeling daily deaths and cases
using a negative binomial distribution

GT [29] DeepCOVID Deep learning

Institute for Health Metrics and
Evaluation [25]

CurveFit Non-linear mixed effects curve-fitting

Los Alamos National Labs [26] GrowthRate Statistical dynamical growth model ac-
counting for population susceptibility

MOBS Lab at Northeastern [35] GLEAM COVID-19 Metapopulation,
age structured SLIR model

NotreDame-FRED [6] NotreDame-FRED Agent-based model developed for in-
fluenza with parameters modified to rep-
resent the natural history of COVID-19

Youyang Gu (YYG) [11] ParamSearch SEIR model with machine learning layer

ensemble components. The goal is to select models that employ a range of modeling approaches and
use a variety of assumptions. This is an important feature of the ensemble modeling approach, which
relies on the diversity and independence between the ensemble components. Based on our selection,
we will obtain each model’s prediction data, made open and available by the COVID-19 Forecast Hub
[30] as well as each model’s respective repository or web pages. Although it varies from model to
model, most model prediction data includes a start date, a prediction date, the predicted number of
cumulative cases, the predicted number of incident and cumulative deaths, the predicted number of
incident hospitalizations, the corresponding location for the prediction, and the confidence interval. We
consider each prediction to be a “Possible (future) World”, analogous to work in uncertain database
management [42, 44, 45]. The difference in uncertain database management is that current and past
data is uncertain, whereas for disease prediction, it is data from the future that is uncertain. But in
both cases, the challenge is to find a consensus among possible worlds (different database instances or
different predictions) and enrich this consensus with reliability information.

Imputation of Missing Predictions. Due to the nature of independence of each model’s de-
velopment, the temporal resolution of the prediction data that is available for each model may be
inconsistent and asynchronous. Imagine that two different models that make predictions starting from
May 1st and onward. Model X might estimate the number of deaths and cases each day for the next
four weeks. Model Y might estimate the number of deaths and cases each day for the next twenty
weeks. In another scenario, imagine that another model, Model Z begins making predictions that start
on May 5 and onward. Thus, there are no predictions available from Model Z from May 1st to May
4th. With the assumption that all of the models are calibrated to the most recent ground truth, the
more recent the date of the forecast is, the more accurate the model is.

The inconsistent temporal resolution of the prediction data presents a challenge for the inclusion of



important components into the ensemble. As a result, we propose the use of imputation algorithms to
fill the prediction gaps. In a sense, we aim here to predict the missing predictions of the models. We
represent predictions in a three-mode tensor Pi,j,m such that a cell pi,j,m corresponds to a prediction
made on Day i, made for Day j, by model m. For example, if one mode m predicts on Day i =
10/02/2020 that there will be 5000 deaths on Day j = 10/09/2020, then we will have pi,j,m = 5000.
This tensor is sparse, as existing models publish their predictions sparsely (often once per week),
and predictions are made only for a short time window (often 14 or 28 days). As part of the model
integration stage, we will test and evaluate various imputation algorithms and determine which are most
accurate in predicting the missing model predictions. Some of the imputation algorithms we aim to
test include linear interpolation, linear regression, non-negative matrix factorization [19] for individual
prediction models, and tensor factorization [16]. We hope that more complex imputation algorithms
are able to leverage collaborative filtering to fill missing model prediction by assessing that “other
models had relatively high predictions for this day” and “this model had relatively low predictions for
this day made on earlier days.”

2.2 Representative Clustering

Once we have imputed the data, we will have obtained a broad set of predictions, each corresponding to
different “possible worlds” generated from different models, different parameters, and under different
assumptions. Each possible world consists of time series data, corresponding to the predicted number
of incident and cumulative cases, the predicted number of incident and cumulative deaths, and the
predicted number of incident hospitalizations. We want to use an approach that has been published
for clustering of uncertain data [43] by mapping possible worlds into a reduced feature space then
clustering possible worlds (in our case predictions) as depicted on the bottom half of Figure 1. Each
cluster then corresponds to a set of mutually similar predictions which may stem from different models.
We will then select the median among these predictions (defined as the prediction that minimizes the
pairwise distance to other predictions in the same cluster) as a cluster representative. Assuming that
each model has the same likelihood to correctly capture the unknown future, we can apply inductive
statistics to estimate the probability that a cluster represents the unknown true future and provide an
error bound using the radius of the cluster (the maximum distance between the cluster representative
and other predictions in the same cluster). As the project continues, we will use supervised learning
to reinforce the weights of those models and parameters, yielding the most accurate predictions. Each
cluster representative can be considered an ensemble of models with a high degree of agreement between
predictions. These representative will then be visualized on a dashboard which, instead of exploring
the plethora of existing predictions, allows us to visually analyze a small number of representative
predictions together with their confidence values. For example, the user may be presented with Model
X and given the information that 40% of all predictions agree with this prediction up to an error which
will be visualized using error bounds. This condensed representation takes the burden from users to
interpret an overwhelming number of predictions and allows them to focus on only a small number of
representative predictions.

3 An Online Medium to Disseminate Our Results

It is a likely scenario that the COVID-19 health emergency will continue into the coming several
months and perhaps years. In a time of such uncertainty, policy-makers are right now relying on
existing COVID-19 models to anticipate future conditions. Leveraging simulation models’ predictive
capabilities is critical to rapidly inform the public about what’s likely to come and help policy-makers
plan for those conditions. Therefore, there is an urgent need to compare and synthesize the wide-range



of existing COVID-19 models and their resulting simulations, disseminate this information clearly,
and increase transparency about model assumptions and uncertainty. To address this need, we have
designed a COVID-19 Ensemble Dashboard as a medium for which the broader public, decision-makers,
the modeling community, and key organizations can explore and compare between existing models. The
prototype for our proposed dashboard is presented in Figure 2.

Figure 2: COVID-19 Ensemble Dashboard

Our dashboard aims at providing two main functionalities regarding the status of COVID-19 at the
US country-level and state-levels: (1) Giving users the option to examine dozens of existing COVID-19
models’ predictions and over time, including both weekly and daily predictions as well as incident
and cumulative metrics. Besides this, we provide a “stacked” time-series visualization to see all US
states in the same picture. Users can also display individual predictions plotted against the ground-
truth numbers, which facilitates examining model performance against real-world results; (2) Allowing
users to examine the results from our representative clustering approach, as outlined in section 2.
With this functionality, the users will be able to examine the agreement and disagreement between
various models periodically. This functionality is currently being implemented and will be integrated
as periodic reports into our dashboard. The dashboard will be updated as needed to incorporate new
data and models as they become available, facilitating the opportunity to rapidly cross-compare new
predictions and disseminate this information to the public.



4 Conclusion and Future Work

In this newsletter, we propose a novel ensemble modeling approach that leverages representative cluster-
ing to both examine the degree of agreement between models of COVID-19 spread and their predictions
as well unify predictions into a smaller subset. The novel ensemble clustering approach begins with
the process of data integration and thus the selection of ensemble components and the imputation
of each component’s missing predictions. Next, clustering is used to find a set of ensembles that are
representative of groups of models with predictions that have a high degree of agreement for the same
forecasting horizon. This research is still in early stages. Future steps include implementation and
testing of the proposed approach. The proposed approach has the advantage of not being limited to
the generation of one ensemble and thus acknowledges the unique assumptions of the components while
removing the burden from policy makers, the general public, as well as other researchers to interpret
an overwhelming number of COVID-19 model predictions.
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