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ABSTRACT

Fractured geologic media can yield anisotropies in solute and heat diffusion due to the formation of
changing fluid network connectivity in a rock matrix. In this paper we model Steady-state anisotropic
heat diffusion as an elliptic partial differential equation with a symmetric positive definite second rank
thermal conductivity tensor. We model diffusive flux as a non-diagonal symmetric tensor, which can po-
tentially have jump discontinuities that are not aligned with the coordinate axis. The presence of jump
discontinuities due to joints and faults in a rock matrix impose difficulties on existing, well-established
numerical schemes that model diffusive transport. In our scheme, we model diffusive flux using mimetic
finite difference operators, which are discrete analogs of the classical continuous differential operators.
We introduce a 2nd- and 4th-order mimetic formulation for computing anisotropic fluxes. Numerical
results demonstrate our formulation yields a substantial improvement compared to similar mimetic
schemes.

Anisotropic diffusion
Flux operator

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Classical numerical differentiation techniques start by discretiz-
ing, to some order of accuracy, a specific problem to solve, while
attempting to maintain numerical stability. Difficulties inherent
with discretization provide an inspiration for Mimetic (or com-
patible) numerical methods. Mimetic operators derive their name
due to their ability to discretely mimic, or preserve the proper-
ties of, continuous vector calculus operators. The resulting discrete
operators are then substituted into the system of partial differen-
tial equations. As part of the mimetic family of methods, Castillo-
Grone’s (CG) Mimetic Finite Differences have been broadly used in
many applications, some of which include: seismic studies, wave
propagation, image processing, electromagnetism and fluid dynam-
ics [1-5]. Developed in 2003 [2], one of the most prominent fea-
tures of CG Mimetic operators is that they mimic the symme-
try properties of the continuum differential operators [6], which
makes numerical schemes based on them more faithful to the
physics of the problem being solved [7]. Our mimetic methods
are less computationally expensive than Finite Elements and Dis-
continuous Galerkin ("DG”), and our methods are able to achieve
the same order of accuracy at the domain interior as well as the
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boundary which the Staggered Summation by Parts methods can-
not achieve.

Traditional finite difference methods are based on deriving
stencils for the derivative operators using a Taylor’s series ap-
proach. This approach has the advantage of being straightforward,
since one can easily implement matrices for the numerical deriva-
tives. However, the underlying Physics of the problem may not
be adequately represented in this discretization process. Mimetic
difference methods construct discrete difference operators Diver-
gence, D, and Gradient G, which satisfy a discrete extended Gauss
Divergence theorem. These methods are called Mimetic because the
discrete difference operators mimic the properties of the contin-
uum ones. Hence, numerical schemes using mimetic operators are
more faithful to the physics of the problem under investigation [8].
Well-posedness of the problem can then be guaranteed by imple-
menting the energy method, which ensures a decaying energy in
the system over time. A key component of the energy method is
integration by parts ("IBP”). A discrete analog of IBP is summation
by parts ("SBP”). Well-posedness of the PDE is guaranteed if we
can develop a discrete analog that satisfies IBP. The resulting oper-
ators are referred to as SBP operators. In the mimetic scheme, the
equivalent to IBP is the extended Gauss Divergence Theorem.

Capable of achieving a uniform high-order of accuracy in three
dimensional space, construction of CG operators relies on satisfying
the Extended Gauss Divergence theorem to achieve conservation.
By high-order, we mean a numerical scheme that yields an approx-
imation with an error proportional to h?t and thus achieves a bet-
ter than second order accurate approximation. The Castillo-Grone
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Nomenclature

o Thermal diffusivity tensor, m2s—!

i augmented identity matrix with first and last rows

m
all zero, € R(M+2)xm

i augmented identity matrix with first and last rows

n
all zero, € R(+2)xn

Dyy Corbino-Castillo 2D mimetic divergence operator, =
[R Ry ]

Dy Corbino-Castillo 1D mimetic divergence operator for
x-dimension, € R(M+2)x(m+1)

Dy Corbino-Castillo 1D mimetic divergence operator for
y-dimension, € R("+2)x(n+1)

D Corbino-Castillo 1D mimetic divergence operator,
RM+2)x (m+1)

Gyy Corbino-Castillo 2D mimetic gradient operator =

:Xi|’ < R@mn+mn)x[(m+2)(n+2)]
y

Gx Corbino-Castillo 1D mimetic gradient operator for
x-dimension, € R(M+1D)x(m+2)

Gy Corbino-Castillo 1D mimetic gradient operator for y-
dimension, ¢ R(M+1D)x(n+2)

G* Mimetic flux generating operator, €
RZmn+m+n><(m+2)(n+2)

Ix Interpolation matrix with respect to x-axis, €
R[(m+l)n]x[(n+l)m]

Iy Interpolation matrix with respect to y-axis, €

R[(n+l)m]><[(m+l)n]

=T ® Dy, € RM+DNx(m+2)(n+2)

— Dy ®imy c RHDmx(m+2)(n+2)

— irl; ® Gy, € R(m+1)nx(m+2)(n+2)

=Gy @11, e RI+Dmx(m+2)(n+2)

Generalized diffusion coefficient tensor, m2s~!

Molecular diffusivity tensor, m2s~!

Hydraulic conductivity tensor, ms™!

Number of cells in a staggered grid with respect to

the x—dimension.

Number of cells in a staggered grid with respect to

the y—dimension.

N number of cell centers (including boundaries) on
the staggered grid where scalar values are stored,
=(m+2)(n+2)

Ny number of vector components on the x-axis = (n +
1)m

Ny number of vector components on the y-axis = (m +
n

S"Om&Y AR

=

Mimetic Operators have a set of free parameters which need to be
selected. In 2018, Castillo and Corbino (CC) developed a different
and more intuitive approach for the construction of these operators
without the need for free parameters. This effort resulted in oper-
ators that have optimal bandwidth, and numerical results showed
that CC operators exhibit improvement, in terms of accuracy, when
compared to the CG counterparts [9]. Similar approaches along the
mimetic framework are being developed which are related to this
area of research such as the symmetry-preserving finite-difference
discretization by van‘t Hof and Vuik in [10], and Verstappen and
Veldman in [11]; the mimetic finite difference scheme by Feo et.
al. in [12]; and the mimetic finite difference method by Lipnikov,
Manzini, and Shashkov in [13]. Finally, of particular importance
due to similarities with the staggered grid formulation is the work
by Nordstrom, O’Reilly and Petersson in [14,15].

A process common to physical transport phenomena is
anisotropic diffusion. Steady-state heat- and species-diffusion pro-
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cesses are described by elliptic partial differential equations. Diffu-
sive flux operators are defined by a full tensor. However, models
often assume a diagonal tensor. Therefore, a suitable scheme must
be used to solve fully anisotropic diffusion. Consider the following
steady state diffusion equation:

_V.T'Vu=f, (1)

where T' is a symmetric and positive definite matrix that repre-
sents a diffusion or hydraulic conductivity tensor, f is a forcing
function, and u represents an unknown solution to be computed,
which can be pressure, temperature, or species concentration, for
example. We consider general Robin boundary conditions for this
problem.

We propose a new mimetic formulation for an anisotropic flux
generating tensor based on CC Mimetic Operators, while focus-
ing on characteristic problems of general anisotropic steady-state
equations (Eq. (1)). The organization of this paper is laid out as
follows. In the first section, we describe Mimetic Finite Differences,
their operators, the staggered grid on which mimetic operators are
defined, and a compact factorization for higher order accuracy. In
the second section, we introduce a mathematical model and for-
mulation for a mimetic flux generating operator. Finally, in the
third section we present numerical examples along with discussion
in order to illustrate the effectiveness of our method.

2. High order mimetic finite difference operators

Originally developed by Castillo and Grone, the one dimensional
mimetic finite difference operators for the gradient (G = V), diver-
gence (D = V - ), Laplacian (L = V2) and curl (C = V x ) operators,
are discrete representations of the classical continuous differential
operator counterparts. Represented by sparse matrices, the main
idea behind the construction of these operators is to find high-
order approximations that satisfy the Extended Gauss Divergence
theorem (Eq. (2)) in the discrete sense [2]:

/(V~17)fdv+/174(Vf)dV=/ (fv) - iids, 2)
Q Q Elo)

therefore, these operators satisfy [8]:

(D7, f)q + (Gf. V)p = (BU. f),. 3)

where B is a mimetic boundary operator, and the operators P, Q
and [ are self-adjoint. In particular, the Q inner product accounts
for the scalar inner product in cell centers, the P inner product
accounts for a vector-field inner product at the cell faces, and the
I inner product is at the boundaries. Weighted inner products are
defined in the standard form,

(x.y)a =y Ax. (4)
From Eq. (3) we obtain:

(QD7, f) + (PGf, V) = (B, f) (5)
(QDV + G'Py, f) = (BU, f) (6)
QD7 + G! P = B (7
QD +G'P=B. (8)

Note that matrix A in Eq. (4) must be symmetric and positive def-
inite, and therefore matrices P and Q in Eq. (3) and Egs. (5) to
(8) must also satisfy it.

As discrete counterparts, Mimetic Operators ‘mimic’ the follow-
ing vector calculus identities of their continuous analogs:

chonst = O, (9)
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Fig. 1. Two-dimensional, uniform staggered grid (m =4 and n = 3).
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Fig. 2. Three-dimensional, uniform staggered grid (m =4, n =3 and o = 2).
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Fig. 3. A Three-dimensional staggered grid cell.

Diconst = 0, (10)
CGf =0, (11)
DC? = 0, (12)
DGf =Lf. (13)

These one-dimensional mimetic operators are extended to second
and third dimensional space and the corresponding vector calculus
identities remain true.

2.1. Staggered grid (mesh)

A staggered grid is a spatial discretization data structure formed
by staggering several collocated grids, with each grid having its
own set of corresponding functions. Mimetic operators are defined
over staggered grids. In our case, scalar-valued functions are placed
at cell centers, whereas vector components are located on cell
edges or faces, for 2D or 3D, respectively.

Figs. 1 and 2 illustrate a 2D and 3D staggered grid, where m, n
and o represent the number of cells in the x-, y-, z-direction. Fig. 3
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depicts a 3D cell. In this case, u, v and w are vector components of
the corresponding direction. These figures were obtained from [9].

2.2. 1D Mimetic operators

Considering improvements with respect to the original Castillo-
Grone mimetic Operators in terms of accuracy and optimal band-
width, we follow the Castillo and Corbino [9] approach for the
construction of our operators. We illustrate the second-order one-
dimensional mimetic divergence (D) and gradient (G) operators,
which are the foundations of mimetic operators in higher dimen-
sions and higher order.

In our one-dimensional staggered grid discretization (depicted
in Fig. 4), the mimetic divergence operator acts on vector com-
ponents (v-values) defined at m+1 nodes, with x; =iAx, i=
0,1,...,m. These v-values are regarded as an (m + 1)-tuple. Con-
versely, the mimetic gradient operator acts on u-values defined
at both boundary nodes (x, on the left, and x;, on the right),
as well as the m cell-centers, x”% =(i+ %)Ax, i=0,1,....m-1.
Therefore, u-values are regarded as (m+ 2)-tuple. D is then an
(m+2) x (m+ 1) sparse matrix with first and last rows as zero
vectors (required since the divergence is calculated at cell-centers).
The gradient operator G is an (m+ 1) x (m + 2) matrix. The one-
dimensional mimetic divergence operator is given by:

0 o ... O
-1 1
p- L (14)
== . ,
-1 1
L 0 0 0 (m+42)x(m+1)
and the Mimetic Gradient
-8/3 3 -1/3
) -1 1
G= Ax ..
-1 1
L 173 =3 853 (m+1)x (m+2)
(15)

Note there is a minimum number of cells needed to construct
these mimetic operators. The gradient requires at least 2k cells,
whereas the divergence requires at least 2k + 1, where k as the
desired order of accuracy [9].

2.3. Compact operators

An important feature of mimetic operators is that they provide
a uniform order of accuracy up to the boundary [2]. We can fac-
tor the desired high-order operator using the original matrix (i.e.
the 2nd-order matrix). An advantage of this approach is to min-
imize the required computational stencil, while also avoiding the
need for solving a system of linear equations [16]. This compact
factorization was first presented in [17]. For example, a k-order
mimetic gradient operator can be constructed as

G = LGy, (16)

where L, represents the left factor matrix of k-order. Similarly,
for a k"-order mimetic divergence operator,

Dk = Dsz, (17)

where Ry is the right factor matrix of k-order. We can write the
kth-order mimetic Laplacian operator in compact form as

L, = DR,LGo. (18)
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Fig. 4. A one-dimensional staggered grid (m = 5).

2.4. Mimetic operators for higher dimensions

A compact way of representing mimetic operators in two-
dimensions with Kronecker products of block matrices [8] is pre-
sented. Let IT, be an augmented identity matrix (padded with first
and last rows as zero) of size (m + 2) x m. Note that m represents
the number of cells in the staggered grid. Consider Gy, Gy and G,
as the one-dimensional mimetic gradient operators for x-, y- and
z-directions, respectively. A two-dimensional mimetic gradient op-
erator is then defined as:

S
Gy = [Sﬂ (19)
with
Sy =L @GSy =Gy T, (21)

Assuming Dy and D, are one-dimensional mimetic divergence op-
erators for x- and y-directions, respectively, we can construct a
two-dimensional mimetic divergence operator as:

Dy = [Ry Ry ], (22)
where
Ry =11 @ DR, =D, 1L, (24)

Finally, these operators can also be extended to three-
dimensions as seen in [9].

3. Mimetic flux generating operator
3.1. Mathematical model

We introduce the construction of our mimetic flux generat-
ing operator and discuss operator accuracy by considering a two-
dimensional steady state diffusion example:

-V.IT'Vu=f (xy) e

where f = f(x,y) is a scalar forcing function, u=u(x,y) is the
unknown scalar function, and I' = I'(x,y) is a tensor that typi-
cally represents diffusivity, transmissivity, or hydraulic conductiv-
ity. General Robin conditions for Eq. (25) are

(x.y) € 0Q,

(25)

au+a-T'Vu=g, (26)

foraeR, g=g(x,y) € R, and 1 is an outward normal vector to the
boundary 9€2. In two-dimensions, I is represented by the follow-
ing rank-2 symmetric tensor:

Vex  Vxy

T= ,
|:)/yx Vyyi|

where Yxx, Yxy, Vyx Yyy # 0 and yxy = yyx. In the case that I' = kI,
with k e R, T is called isotropic. If T is a diagonal matrix with at
least two different entries, I is orthotropic. Finally, a full I" tensor
is described as anisotropic. Note that I' is symmetric and positive
definite. Researchers typically simplify models by assuming a diag-
onal T tensor. In order to solve more realistic problems, we con-
sider a fully anisotropic I in our numerical examples (including a
discontinuous case).

(27)

3.2. Second-order mimetic flux operator

For a diagonal tensor I, Eq. (25) can be approximated by sub-
stituting mimetic operators (D, G) to obtain:

DIGu-=f (28)

However, for an anisotropic I', a more suitable formulation is re-
quired. Our discretization scheme for the case of a general (not
necessarily diagonal) tensor proceeds as follows. We introduce
the mimetic flux generating operator G* as an approximation of
the product I'grad, based on the mimetic gradient operator and
some interpolation. Assuming a two dimensional problem, recall
the mimetic gradient operator Gyy:

S.
- [3]

Using a second order Gyy, the second order mimetic flux generating
operator G* is defined as:

(29)

I Y
G =TIGy = *| = TIgrad, 30
Xy |:rsy:| & (30)
where
I'Sx = YuSx + Yy ISy, (31)
I'Sy = vySy + VyulySx (32)

In the case where T is a diffusivity tensor with units m2s—!, the
gradient operator has units m~! and thus G* will have units m's~1.
When G* multiplies a dependent variable u that represents, for ex-
ample, species concentration with units of kglm=3, a diffusion flux
will be generated with units kg!m—2s-1.

The products ISy and IySx in Eqs. (31) and (32) approximate
tangential derivatives by way of interpolation. For instance, a first
order interpolation computed by ISy for the second-order approx-
imation of T'G is illustrated in Fig. 5. Here, LSy is the average of
the north and south face fluxes (depicted as cross marks in 5(a)).
This vector average is then assigned to the west face (depicted as a
circle in 5(a)). Note that this can be done anywhere in the domain
with the exception of the east domain boundary, in which we con-
sider the two closest vertical components on the left (north and
south components) as shown in Fig. 5(b).

3.2.1. Fourth-order mimetic flux operator

A fourth-order mimetic flux operator G* can be constructed
by using a fourth order mimetic Gy, while extending the inter-
polation stencil used for computing the products ISy, and IySy in
Egs. (31) and (32). Vertical fluxes in vertical faces in the interior
are now approximated by averages of the surrounding tangential
components, four in total: two on the left (NW and SW), and two
on the right (NE and SE), depicted as cross marks in Figure (6(a)).
Note that here VF (circle) depicts the vertical face where the in-
terpolation is calculated. Similarly, horizontal fluxes in horizontal
faces are approximated by taking two tangential components on
the bottom (SW and SE) and top (NW and NE), illustrated as a
cross mark in Figure (6(b)). Now, the circle HF depicts the hori-
zontal face where interpolation is performed.
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(b) Interpolation at the east domain boundary

Fig. 5. A first order interpolation computed by I,Sy for the second-order G*.
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(a) Interpolation stencil for IxSy
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(b) Interpolation stencil for I, Sx

Fig. 6. A second order interpolation computed by I,S, and IS, for the fourth-order G*.
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Fig. 7. A second order interpolation computed by ISy for the fourth-order G* at
the west domain boundary.

However, in order to improve accuracy at the boundary, some
special treatment is required. First, we increase the interpolation
stencil from four to six tangential components. Then, we apply La-
grangian extrapolation. An example of this can be seen in Figure
(7), which depicts computation of tangential vertical fluxes at the
west domain boundary (depicted as a circle in 7). Six vertical com-
ponents are taken on the right (depicted as cross marks in 7) as
reference data for the extrapolation. We take the tangential com-
ponents in the normal direction over the entire boundary. Notice
that the interpolation scheme now is second order accurate.

3.3. Flux interpolation treatment

In our staggered grid definition, the tensor I resides at the cen-
ter of each cell. However, in order to compute fluxes, information
given by this tensor has to be available at cell edges so that the
product T' grad can be performed. For this reason, we estimate
fluxes at the edges by way of harmonic averages using tensor data
from surrounding centers. The use of the harmonic mean over the
arithmetic mean to average diffusive coefficients was introduced by
Patankar [18] in 1980 and has become standard practice ever since,

although research by Kadioglu et al. [19] has shown both averages
yield identical accuracy as the mesh is refined. The harmonic aver-
age was shown, however, to give better accuracy on heterogeneous
(multi-material) domains when coarse meshes were used. Lipnikov
et al. [13] proposes a staggered discretization scheme of the diffu-
sion coefficient where they store one value per mesh cell and up to
two values per mesh face. For cases where the diffusion coefficient
tends to zero or the ratio of adjacent cell centered diffusion coef-
ficients grows very large, Lipnikov shows how using the harmonic
averaging of cell-centered diffusion coefficients leads to numerical
inaccuracies. Our approach is different, on the vertical edge (hori-
zontal component) we take:

21‘(x,.7%,yH%)l‘(xH%,yH%)

r(Xi,%vyH%) + I’(XH%,yH%)’

wherei=1,2,....,mand j=0,1,...,n— 1. Similarly, on the hori-

zontal edge (vertical component) we have:

_ ZF(XH%,J/,'_%)F(XH%,YH%)
F(x,q_%vy]'_l) + r(Xi+%’Yj+%)’

2

(33)

r(Xivyj+%) =

I‘(x,-+%,yj) (34)

wherei=0,1,...,m—1and j=1,2,...,n. An special case occurs
at the boundary in which corresponding tensor values are directly
assigned from their nearest neighbors, e.g., at left boundary we
have:

r(xlvy]+%)=r(xévy]+%)7 (35)

where j=1,2...,n.
4. Numerical examples and discussion

The discretization using the mimetic flux operator G* presented
in the previous section for Eq. (28) leads to an un-symmetric lin-
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Table 1
Numerical results for Problem 1: Fully anisotropic tensor (using max norm).

G*(2nd) G*(4th) Supp. Operator
h=Ax  Error Order  Error Order  Error Order
1/16 8.46E-04 1.86E-04 3.74E-03

1/32 2.29E-04 1.89
1/64 6.00E-05 1.93

2.80E-05 2.73
6.11E-06  2.20

9.66E-04  1.95
2.45E-04 198

ear system. This is true even though the continuous operator in
Eq. (25) is self-adjoint. Note that the constructed linear system is
largely sparse and can be solved using iterative or direct meth-
ods. In particular, the linear systems of the numerical examples
shown in this section are solved using an Unsymmetric Multi-
Frontal method [20], which is a direct method for solving large-
scale sparse and unsymmetric linear systems.

4.1. Numerical analysis of truncation errors

In general, the asymptotic truncation error E, on a grid of m +
1 nodes (m centers), h = Ax = 1/m (assuming a one-dimensional
domain of length 1), is estimated by:

E, = ch? + 0(h"*), (36)

where q is the order of the error, and c is the convergence-rate
constant (does not depend on m).

Assuming h; and h, as two different cell sizes, with h; > h,,
the order of convergence can be estimated as:

- log(Ey, /En,)
log(hy/hy) °
However, in two-dimensions the cell size h is taken as h=

max(Ax, Ay). We estimate convergence rate by using the mean-
square norm defined as

Ep, = |lu—-Ull,

2

(37)

N

m n 2
ZZ[U(XH-%JH%) *Ui+%,j+%j| VCi+%,j+% ’ (38)
i=1 j=1

and the maximum norm
m
Emax = |4 = U|max = 151?):(] |u(xi+%’yj+%) - Ui+%,j+% l. (39)

with the obvious extension to more dimensions. Where u(x, y)

is the exact solution, U;; is the numerical solution of the finite-

difference scheme, and VC; 1 il is the corresponding cell volume.
202

4.2. Problem 1: Fully anisotropic tensor

We consider the example described in [21]. For this problem,
we have an anisotropic tensor I' defined as:

2 1
with corresponding forcing function f as

fxy) = =21 +x% +xy +y*)e¥

on the unit square domain. The analytical solution and boundary
data for this problem is given by u(x,y) = e*¥. Numerical results
displayed in Table 1 show second order convergence for our 2nd
order G* and better than second-order convergence for our pro-
posed 4th order scheme. It is worth noting that while the Sup-
port Operator Method (SOM) from [22] converges to second order,
SOM is considerably less precise than results obtained using our

Computers and Fluids 213 (2020) 104746

Table 2
Numerical results for problem 2: Singular Exponential
Mobility using 4th order mimetic flux generating oper-

ator.
L, norm Max norm
h=Ax  Error Order  Error Order
1/10 9.68E-05 3.10E-04
1/20 1.62E-05  2.57 4.90E-05 2.64
1/40 2.86E-06 2.5 7.52E-06  2.72
1/80 5.55E-07 2.3 1.20E-06  2.64

mimetic operators (both versions). Figs. 8a and 8b depict the com-
puted solution using the 4th-order mimetic flux operator, as well
as the analytical solution for this problem. From the figures we can
say they are in good agreement.

4.3. Problem 2: singular exponential mobility

We now consider the Singular Exponential Mobility problem on
the unit square, taken from [23]. Here, I is defined as:

1 1/1
Lxy) = V(x,y)[l/lo /1 0],

Y (X, y) = exp(—A/TX +5Y)
, Where the true solution is given by:

exp(A/TX+Sy)(AJ/TXF+sy—1) +1
exp(A)(A—-1)+1 ’

with A constant. Even though solutions for this problem are
smooth, they become singular for large A [23]. Computed and an-
alytical solutions for A =30 are shown in Figs. 9a and 9b, respec-
tively, and they show good agreement. Moreover, numerical results
for this problem are displayed in Table 2 (for the mentioned choice
of A). Our results show a convergence rate of O(h>2).

ux.y) =

4.4. Problem 3: full and discontinuous tensor

Consider a full and discontinuous tensor on the two-
dimensional square domain 2 =[-1,1] x [-1,1]. Tensor I" has a
discontinuity at x = 0 and is defined as:

1 0
|:0 1i| x<0
o |:% ;i| x>0
with corresponding right hand side functions as:

—2siny — cosy)ax + siny,
f(x’y):{( y —cosy)ax +siny

=

)

x<0

—20 exp(x) cosy, x>0

and true solution as:

_ J@siny +cosy)ax +siny, x <0
ux.y) = {exp(x) cosy, x>0

with zero value Dirichlet boundary conditions and « = 1. This
problem was solved by the Support Operator method and the Vu-
Castillo-Grone Mimetic implementation in [22,24]. Tables 3 and 4
display their numerical results, as well as the results obtained by
our 4th-order method. Even though it can be seen that our method
yields a second order approximation, it offers significant improve-
ment with respect to the aforementioned methods. This improve-
ment increases with the number of cells, reaching two orders of
magnitude better for grid sizes of 64 cells (h = Ax = 1/32). Finally,
Fig. 10a and b show our numerical solution for this problem (com-
puted using a 4th order G*) along with its corresponding analytical
solution. From the figures we can see they are in good agreement.
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(a) Computed solution using a 4" order

mimetic flux operator G*.

(b) Analytical solution

Fig. 8. Solution for Problem 1.

Computed solution
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Fig. 9. Solution for Problem 2 (A = 30).

Table 3

Numerical results for problem 3: Full and discontinuous tensor, using 4th order mimetic flux gener-

ating operator.

G*(4th) Vu-Castillo

L, norm Max norm L, norm Max norm
h=Ax  Error Order  Error Order  Error Order  Error Order
1/8 1.53E-04 3.51E-04 4.00E-03 4.70E-03

1/16 3.46E-05 2.14 6.74E-05
1/32 8.75E-06  1.98 1.70E-05

2.38
1.99

9.75E-04  2.04 1.60E-03 1.55
2.39E-04  2.02 5.30E-04 1.60

4.5. Problem 4: Fully anisotropic tensor with distinct diagonal
coefficients

The fourth problem we present is taken from Arbogast et al.
[25], and is defined on the unit square with right high side:

fley) =—(22(y - y*) — 26(x — x*) + 18(1 = 2x) (1 — 2y)).
With T given by

1 9
r= [9 13}’

and zero value Dirichlet boundary conditions, the analytical so-
lution is: u(x,y) = (x — x2)(y —y2). Fig. 11 depicts the numerical
solution for this problem, computed using 4th order G*. Table 5
shows our computed results for the 2nd- and 4th-order mimetic
flux generating operators G*. As shown in this table, results con-
firm consistent numerical solutions that converge at second and
third order, respectively. Please note that the solution for this prob-
lem is a parabolic function, this could explain the better conver-
gence of our methods for smooth problems.
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(a) Computed solution using a 4°" order

mimetic flux operator G*.

(b) Analytical solution

Fig. 10. Solution for Problem 3: Full and discontinuous tensor.

Table 4

Numerical results for problem 3: Full
and discontinuous tensor for the sup-
port operator method.

Supp. Oper.

L, norm
h=Ax Error Order
colrule 1/8  7.06E-03
1/16 1.73E-03  2.03
1/32 3.96E-04 2.13

Computed solution

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

y

Fig. 11. Computed solution for Problem 4: Fully anisotropic tensor with distinct di-
agonal coefficients, using 4th order G*.

Table 5
Numerical results for Problem 4: Fully anisotropic ten-
sor with distinct diagonal coefficients, using L, norm.

G*(2nd) G*(4th)
h=Ax  Error Order  Error Order
1/16 1.75E-04 4.38E-05

1/32 4.70E-05  1.90
1/64 1.20E-05 1.97

6.31E-06  2.80
8.49E-07  2.89

5. Conclusions and future work

In this work we have introduced the formulation for the con-
struction of a mimetic flux operator based on Castillo-Corbino
mimetic operators in two dimensions. Numerical results obtained
for anisotropic elliptic (steady-state) equations show second-order
convergence for the 2nd-order operator while consistently achiev-
ing better than second order convergence for the 4th-order formu-
lation, with the exception of the discontinuous case. For the prob-
lems presented in this paper, our operators exhibit improvement
when compared to similar mimetic schemes ([22,24]) as shown in
Tables 1 through 4. Also, Table 5 indicates a closer convergence
in relation to the expected one of our operators for a smooth
problem. Our approach can be naturally extended to sixth order
mimetic finite difference operators or higher. A three-dimensional
mimetic flux operator is currently in development.
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