
Computers and Fluids 213 (2020) 104746 

Contents lists available at ScienceDirect 

Computers and Fluids 

journal homepage: www.elsevier.com/locate/compfluid 

High-order mimetic finite differences for anisotropic elliptic equations 

Angel Boada 

1 , Christopher Paolini ∗, Jose E. Castillo 

Computational Science Research Center, San Diego State University, San Diego, 92182, CA, USA 

a r t i c l e i n f o 

Article history: 

Received 2 November 2019 

Revised 29 August 2020 

Accepted 3 September 2020 

Available online 2 October 2020 

Keywords: 

Mimetic 

Finite-difference 

Castillo-Grone method 

Differential operators 

High-order 

Anisotropic diffusion 

Flux operator 

a b s t r a c t 

Fractured geologic media can yield anisotropies in solute and heat diffusion due to the formation of 

changing fluid network connectivity in a rock matrix. In this paper we model Steady-state anisotropic 

heat diffusion as an elliptic partial differential equation with a symmetric positive definite second rank 

thermal conductivity tensor. We model diffusive flux as a non-diagonal symmetric tensor, which can po- 

tentially have jump discontinuities that are not aligned with the coordinate axis. The presence of jump 

discontinuities due to joints and faults in a rock matrix impose difficulties on existing, well-established 

numerical schemes that model diffusive transport. In our scheme, we model diffusive flux using mimetic 

finite difference operators, which are discrete analogs of the classical continuous differential operators. 

We introduce a 2 nd - and 4 th -order mimetic formulation for computing anisotropic fluxes. Numerical 

results demonstrate our formulation yields a substantial improvement compared to similar mimetic 

schemes. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Classical numerical differentiation techniques start by discretiz- 

ng, to some order of accuracy, a specific problem to solve, while 

ttempting to maintain numerical stability. Difficulties inherent 

ith discretization provide an inspiration for Mimetic (or com- 

atible) numerical methods. Mimetic operators derive their name 

ue to their ability to discretely mimic, or preserve the proper- 

ies of, continuous vector calculus operators. The resulting discrete 

perators are then substituted into the system of partial differen- 

ial equations. As part of the mimetic family of methods, Castillo- 

rone’s (CG) Mimetic Finite Differences have been broadly used in 

any applications, some of which include: seismic studies, wave 

ropagation, image processing, electromagnetism and fluid dynam- 

cs [1–5] . Developed in 2003 [2] , one of the most prominent fea-

ures of CG Mimetic operators is that they mimic the symme- 

ry properties of the continuum differential operators [6] , which 

akes numerical schemes based on them more faithful to the 

hysics of the problem being solved [7] . Our mimetic methods 

re less computationally expensive than Finite Elements and Dis- 

ontinuous Galerkin (”DG”), and our methods are able to achieve 

he same order of accuracy at the domain interior as well as the 
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oundary which the Staggered Summation by Parts methods can- 

ot achieve. 

Traditional finite difference methods are based on deriving 

tencils for the derivative operators using a Taylor’s series ap- 

roach. This approach has the advantage of being straightforward, 

ince one can easily implement matrices for the numerical deriva- 

ives. However, the underlying Physics of the problem may not 

e adequately represented in this discretization process. Mimetic 

ifference methods construct discrete difference operators Diver- 

ence, D , and Gradient G , which satisfy a discrete extended Gauss 

ivergence theorem. These methods are called Mimetic because the 

iscrete difference operators mimic the properties of the contin- 

um ones. Hence, numerical schemes using mimetic operators are 

ore faithful to the physics of the problem under investigation [8] . 

ell-posedness of the problem can then be guaranteed by imple- 

enting the energy method, which ensures a decaying energy in 

he system over time. A key component of the energy method is 

ntegration by parts (”IBP”). A discrete analog of IBP is summation 

y parts (”SBP”). Well-posedness of the PDE is guaranteed if we 

an develop a discrete analog that satisfies IBP. The resulting oper- 

tors are referred to as SBP operators. In the mimetic scheme, the 

quivalent to IBP is the extended Gauss Divergence Theorem. 

Capable of achieving a uniform high-order of accuracy in three 

imensional space, construction of CG operators relies on satisfying 

he Extended Gauss Divergence theorem to achieve conservation. 

y high-order , we mean a numerical scheme that yields an approx- 

mation with an error proportional to h 2+ and thus achieves a bet- 

er than second order accurate approximation. The Castillo-Grone 
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http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2020.104746&domain=pdf
mailto:aboadavelazco@sdsu.edu
mailto:paolini@engineering.sdsu.edu
mailto:jcastillo@sdsu.edu
https://doi.org/10.1016/j.compfluid.2020.104746


A. Boada, C. Paolini and J.E. Castillo Computers and Fluids 213 (2020) 104746 

M

s

a

w

a

t

c

m

a

d

V

a

M

d

b

a

c

s

o

b

s

−
w

s

f

w

e

p

g

i

e

f

t

d

t

m

t

i

2

m

g  

a

o

i

o

t∫
t

〈  

w

a

f

a

I

d

〈
F

〈  

〈  

Q

Q

N

i  

(

i

G

Nomenclature 

α Thermal diffusivity tensor, m 

2 s −1 

ˆ I T m 

augmented identity matrix with first and last rows 

all zero, ∈ R 

(m +2) ×m 

ˆ I T n augmented identity matrix with first and last rows 

all zero, ∈ R 

(n +2) ×n 

D xy Corbino-Castillo 2D mimetic divergence operator, = [
R x R y 

]
D x Corbino-Castillo 1D mimetic divergence operator for 

x-dimension, ∈ R 

(m +2) ×(m +1) 

D y Corbino-Castillo 1D mimetic divergence operator for 

y-dimension, ∈ R 

(n +2) ×(n +1) 

D Corbino-Castillo 1D mimetic divergence operator, ∈ 

R 

(m +2) ×(m +1) 

G xy Corbino-Castillo 2D mimetic gradient operator = [
S x 
S y 

]
, ∈ R 

(2 mn + m + n ) ×[(m +2)(n +2)] 

G x Corbino-Castillo 1D mimetic gradient operator for 

x-dimension, ∈ R 

(m +1) ×(m +2) 

G y Corbino-Castillo 1D mimetic gradient operator for y- 

dimension, ∈ R 

(n +1) ×(n +2) 

G 

� Mimetic flux generating operator, ∈ 

R 

2 mn + m + n ×(m +2)(n +2) 

I x Interpolation matrix with respect to x-axis, ∈ 

R 

[(m +1) n ] ×[(n +1) m ] 

I y Interpolation matrix with respect to y-axis, ∈ 

R 

[(n +1) m ] ×[(m +1) n ] 

R x = ̂

 I n � D x , ∈ R 

(m +1) n ×(m +2)(n +2) 

R y = D y � ˆ I m 

, ∈ R 

(n +1) m ×(m +2)(n +2) 

S x = ̂

 I T n � G x , ∈ R 

(m +1) n ×(m +2)(n +2) 

S y = G y � ˆ I T m 

, ∈ R 

(n +1) m ×(m +2)(n +2) 

� Generalized diffusion coefficient tensor, m 

2 s −1 

D Molecular diffusivity tensor, m 

2 s −1 

K Hydraulic conductivity tensor, ms −1 

m Number of cells in a staggered grid with respect to 

the x −dimension. 

n Number of cells in a staggered grid with respect to 

the y −dimension. 

N c number of cell centers (including boundaries) on 

the staggered grid where scalar values are stored, 

= (m + 2)(n + 2) 

N x number of vector components on the x -axis = (n + 

1) m 

N y number of vector components on the y -axis = (m + 

1) n 

imetic Operators have a set of free parameters which need to be 

elected. In 2018, Castillo and Corbino (CC) developed a different 

nd more intuitive approach for the construction of these operators 

ithout the need for free parameters. This effort resulted in oper- 

tors that have optimal bandwidth, and numerical results showed 

hat CC operators exhibit improvement, in terms of accuracy, when 

ompared to the CG counterparts [9] . Similar approaches along the 

imetic framework are being developed which are related to this 

rea of research such as the symmetry-preserving finite-difference 

iscretization by van‘t Hof and Vuik in [10] , and Verstappen and 

eldman in [11] ; the mimetic finite difference scheme by Feo et. 

l. in [12] ; and the mimetic finite difference method by Lipnikov, 

anzini, and Shashkov in [13] . Finally, of particular importance 

ue to similarities with the staggered grid formulation is the work 

y Nordstrom, O’Reilly and Petersson in [14,15] . 

A process common to physical transport phenomena is 

nisotropic diffusion. Steady-state heat- and species-diffusion pro- 
2 
esses are described by elliptic partial differential equations. Diffu- 

ive flux operators are defined by a full tensor. However, models 

ften assume a diagonal tensor. Therefore, a suitable scheme must 

e used to solve fully anisotropic diffusion. Consider the following 

teady state diffusion equation: 

∇ · �∇u = f, (1) 

here � is a symmetric and positive definite matrix that repre- 

ents a diffusion or hydraulic conductivity tensor, f is a forcing 

unction, and u represents an unknown solution to be computed, 

hich can be pressure, temperature, or species concentration, for 

xample. We consider general Robin boundary conditions for this 

roblem. 

We propose a new mimetic formulation for an anisotropic flux 

enerating tensor based on CC Mimetic Operators, while focus- 

ng on characteristic problems of general anisotropic steady-state 

quations ( Eq. (1) ). The organization of this paper is laid out as 

ollows. In the first section, we describe Mimetic Finite Differences, 

heir operators, the staggered grid on which mimetic operators are 

efined, and a compact factorization for higher order accuracy. In 

he second section, we introduce a mathematical model and for- 

ulation for a mimetic flux generating operator. Finally, in the 

hird section we present numerical examples along with discussion 

n order to illustrate the effectiveness of our method. 

. High order mimetic finite difference operators 

Originally developed by Castillo and Grone, the one dimensional 

imetic finite difference operators for the gradient ( G ≡ ∇), diver- 

ence ( D ≡ ∇ · ), Laplacian ( L ≡ ∇ 

2 ) and curl ( C ≡ ∇ × ) operators,

re discrete representations of the classical continuous differential 

perator counterparts. Represented by sparse matrices, the main 

dea behind the construction of these operators is to find high- 

rder approximations that satisfy the Extended Gauss Divergence 

heorem ( Eq. (2) ) in the discrete sense [2] : 
 

�
( ∇ · � v ) f d V + 

∫ 
�

�
 v · ( ∇ f ) d V = 

∫ 
∂�

( f � v ) · �
 n d S, (2) 

herefore, these operators satisfy [8] : 

 D 

�
 v , f 〉 Q + 〈 G f, � v 〉 P = 〈 B 

�
 v , f 〉 I , (3)

here B is a mimetic boundary operator, and the operators P, Q 

nd I are self-adjoint. In particular, the Q inner product accounts 

or the scalar inner product in cell centers, the P inner product 

ccounts for a vector-field inner product at the cell faces, and the 

 inner product is at the boundaries. Weighted inner products are 

efined in the standard form, 

 x, y 〉 A = y T Ax. (4) 

rom Eq. (3) we obtain: 

 QD 

�
 v , f 〉 + 〈 P G f, � v 〉 = 〈 B 

�
 v , f 〉 (5)

 QD 

�
 v + G 

T P v , f 〉 = 〈 B 

�
 v , f 〉 (6)

D 

�
 v + G 

T P � v = B 

�
 v (7) 

D + G 

T P = B . (8) 

ote that matrix A in Eq. (4) must be symmetric and positive def- 

nite, and therefore matrices P and Q in Eq. (3) and Eqs. (5) to

8) must also satisfy it. 

As discrete counterparts, Mimetic Operators ‘ mimic ’ the follow- 

ng vector calculus identities of their continuous analogs: 

 f const = 0 , (9) 
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Fig. 1. Two-dimensional, uniform staggered grid ( m = 4 and n = 3 ). 

Fig. 2. Three-dimensional, uniform staggered grid ( m = 4 , n = 3 and o = 2 ). 

Fig. 3. A Three-dimensional staggered grid cell. 
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L = D 2 R L G 2 . (18) 
 

�
 v const = 0 , (10) 

G f = 0 , (11) 

C 

�
 v = 0 , (12) 

G f = L f . (13) 

hese one-dimensional mimetic operators are extended to second 

nd third dimensional space and the corresponding vector calculus 

dentities remain true. 

.1. Staggered grid (mesh) 

A staggered grid is a spatial discretization data structure formed 

y staggering several collocated grids, with each grid having its 

wn set of corresponding functions. Mimetic operators are defined 

ver staggered grids. In our case, scalar-valued functions are placed 

t cell centers, whereas vector components are located on cell 

dges or faces, for 2D or 3D, respectively. 

Figs. 1 and 2 illustrate a 2D and 3D staggered grid, where m, n

nd o represent the number of cells in the x -, y -, z -direction. Fig. 3
3 
epicts a 3D cell. In this case, u, v and w are vector components of

he corresponding direction. These figures were obtained from [9] . 

.2. 1D Mimetic operators 

Considering improvements with respect to the original Castillo- 

rone mimetic Operators in terms of accuracy and optimal band- 

idth, we follow the Castillo and Corbino [9] approach for the 

onstruction of our operators. We illustrate the second-order one- 

imensional mimetic divergence ( D ) and gradient ( G ) operators, 

hich are the foundations of mimetic operators in higher dimen- 

ions and higher order. 

In our one-dimensional staggered grid discretization (depicted 

n Fig. 4 ), the mimetic divergence operator acts on vector com- 

onents ( v -values) defined at m + 1 nodes, with x i = i �x, i =
 , 1 , . . . , m . These v -values are regarded as an (m + 1) -tuple. Con-

ersely, the mimetic gradient operator acts on u -values defined 

t both boundary nodes ( x 0 on the left, and x m 

on the right),

s well as the m cell-centers, x 
i + 1 

2 
= (i + 

1 
2 )�x, i = 0 , 1 , . . . , m − 1 .

herefore, u -values are regarded as (m + 2) -tuple. D is then an 

m + 2) × (m + 1) sparse matrix with first and last rows as zero

ectors (required since the divergence is calculated at cell-centers). 

he gradient operator G is an (m + 1) × (m + 2) matrix. The one-

imensional mimetic divergence operator is given by: 

 = 

1 

�x 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

0 0 . . . 0 

−1 1 

. . . 
. . . 

−1 1 

0 0 . . . 0 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(m +2) ×(m +1) 

, (14) 

nd the Mimetic Gradient 

 = 

1 

�x 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−8 / 3 3 −1 / 3 

−1 1 

. . . 
. . . 

−1 1 

1 / 3 −3 8 / 3 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(m +1) ×(m +2) 

. 

(15) 

Note there is a minimum number of cells needed to construct 

hese mimetic operators. The gradient requires at least 2 k cells, 

hereas the divergence requires at least 2 k + 1 , where k as the

esired order of accuracy [9] . 

.3. Compact operators 

An important feature of mimetic operators is that they provide 

 uniform order of accuracy up to the boundary [2] . We can fac-

or the desired high-order operator using the original matrix (i.e. 

he 2 nd -order matrix). An advantage of this approach is to min- 

mize the required computational stencil, while also avoiding the 

eed for solving a system of linear equations [16] . This compact 

actorization was first presented in [17] . For example, a k th -order 

imetic gradient operator can be constructed as 

 k = L k G 2 , (16) 

here L k represents the left factor matrix of k th -order. Similarly, 

or a k th -order mimetic divergence operator, 

 k = D 2 R k , (17) 

here R k is the right factor matrix of k th -order. We can write the 

 

th -order mimetic Laplacian operator in compact form as 
k k k 
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Fig. 4. A one-dimensional staggered grid (m = 5) . 
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.4. Mimetic operators for higher dimensions 

A compact way of representing mimetic operators in two- 

imensions with Kronecker products of block matrices [8] is pre- 

ented. Let ̂  I T m 

be an augmented identity matrix (padded with first 

nd last rows as zero) of size (m + 2) × m . Note that m represents

he number of cells in the staggered grid. Consider G x , G y and G z 

s the one-dimensional mimetic gradient operators for x -, y - and 

 -directions, respectively. A two-dimensional mimetic gradient op- 

rator is then defined as: 

 xy = 

[
S x 
S y 

]
, (19) 

ith 

 x = ̂

 I T n � G x S y = G y � ˆ I T m 

(21) 

ssuming D x and D y are one-dimensional mimetic divergence op- 

rators for x - and y -directions, respectively, we can construct a 

wo-dimensional mimetic divergence operator as: 

 xy = 

[
R x R y 

]
, (22) 

here 

 x = ̂

 I T n � D x R y = D y � ˆ I T m 

. (24) 

Finally, these operators can also be extended to three- 

imensions as seen in [9] . 

. Mimetic flux generating operator 

.1. Mathematical model 

We introduce the construction of our mimetic flux generat- 

ng operator and discuss operator accuracy by considering a two- 

imensional steady state diffusion example: 

∇ · �∇u = f, (x, y ) ∈ � (25) 

here f = f (x, y ) is a scalar forcing function, u = u (x, y ) is the

nknown scalar function, and � = �(x, y ) is a tensor that typi- 

ally represents diffusivity, transmissivity, or hydraulic conductiv- 

ty. General Robin conditions for Eq. (25) are 

u + 

�
 n · �∇u = g, (x, y ) ∈ ∂�, (26) 

or a ∈ R , g = g(x, y ) ∈ R , and 

�
 n is an outward normal vector to the

oundary ∂�. In two-dimensions, � is represented by the follow- 

ng rank-2 symmetric tensor: 

= 

[
γxx γxy 

γyx γyy 

]
, (27) 

here γ xx , γ xy , γ yx , γ yy � = 0 and γxy = γyx . In the case that � = kI,

ith k ∈ R , � is called isotropic. If � is a diagonal matrix with at

east two different entries, � is orthotropic. Finally, a full � tensor 

s described as anisotropic. Note that � is symmetric and positive 

efinite. Researchers typically simplify models by assuming a diag- 

nal � tensor. In order to solve more realistic problems, we con- 

ider a fully anisotropic � in our numerical examples (including a 

iscontinuous case). 
4 
.2. Second-order mimetic flux operator 

For a diagonal tensor �, Eq. (25) can be approximated by sub- 

tituting mimetic operators ( D, G ) to obtain: 

D �G u = f (28) 

owever, for an anisotropic �, a more suitable formulation is re- 

uired. Our discretization scheme for the case of a general (not 

ecessarily diagonal) tensor proceeds as follows. We introduce 

he mimetic flux generating operator G 

� as an approximation of 

he product �grad , based on the mimetic gradient operator and 

ome interpolation. Assuming a two dimensional problem, recall 

he mimetic gradient operator G xy : 

 xy = 

[
S x 
S y 

]
. (29) 

sing a second order G xy , the second order mimetic flux generating 

perator G 

� is defined as: 

 

� = �G xy = 

[
�S x 
�S y 

]
∼= 

�grad , (30) 

here 

S x = γxx S x + γxy I x S y , (31) 

S y = γyy S y + γyx I y S x (32) 

n the case where � is a diffusivity tensor with units m 

2 s −1 , the

radient operator has units m 

−1 and thus G 

� will have units m 

1 s −1 .

hen G 

� multiplies a dependent variable u that represents, for ex- 

mple, species concentration with units of kg 1 m 

−3 , a diffusion flux 

ill be generated with units kg 1 m 

−2 s −1 . 

The products I x S y and I y S x in Eqs. (31) and (32) approximate 

angential derivatives by way of interpolation. For instance, a first 

rder interpolation computed by I x S y for the second-order approx- 

mation of �G is illustrated in Fig. 5 . Here, I x S y is the average of

he north and south face fluxes (depicted as cross marks in 5 (a)). 

his vector average is then assigned to the west face (depicted as a 

ircle in 5 (a)). Note that this can be done anywhere in the domain 

ith the exception of the east domain boundary, in which we con- 

ider the two closest vertical components on the left (north and 

outh components) as shown in Fig. 5 (b). 

.2.1. Fourth-order mimetic flux operator 

A fourth-order mimetic flux operator G 

∗ can be constructed 

y using a fourth order mimetic G xy while extending the inter- 

olation stencil used for computing the products I x S y and I y S x in 

qs. (31) and (32) . Vertical fluxes in vertical faces in the interior 

re now approximated by averages of the surrounding tangential 

omponents, four in total: two on the left (NW and SW), and two 

n the right (NE and SE), depicted as cross marks in Figure ( 6 (a)).

ote that here VF (circle) depicts the vertical face where the in- 

erpolation is calculated. Similarly, horizontal fluxes in horizontal 

aces are approximated by taking two tangential components on 

he bottom (SW and SE) and top (NW and NE), illustrated as a 

ross mark in Figure ( 6 (b)). Now, the circle HF depicts the hori- 

ontal face where interpolation is performed. 
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Fig. 5. A first order interpolation computed by I x S y for the second-order G ∗ . 

Fig. 6. A second order interpolation computed by I x S y and I y S x for the fourth-order G ∗ . 

Fig. 7. A second order interpolation computed by I x S y for the fourth-order G ∗ at 

the west domain boundary. 
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However, in order to improve accuracy at the boundary, some 

pecial treatment is required. First, we increase the interpolation 

tencil from four to six tangential components. Then, we apply La- 

rangian extrapolation. An example of this can be seen in Figure 

 7 ), which depicts computation of tangential vertical fluxes at the 

est domain boundary (depicted as a circle in 7 ). Six vertical com- 

onents are taken on the right (depicted as cross marks in 7 ) as

eference data for the extrapolation. We take the tangential com- 

onents in the normal direction over the entire boundary. Notice 

hat the interpolation scheme now is second order accurate. 

.3. Flux interpolation treatment 

In our staggered grid definition, the tensor � resides at the cen- 

er of each cell. However, in order to compute fluxes, information 

iven by this tensor has to be available at cell edges so that the 

roduct � grad can be performed. For this reason, we estimate 

uxes at the edges by way of harmonic averages using tensor data 

rom surrounding centers. The use of the harmonic mean over the 

rithmetic mean to average diffusive coefficients was introduced by 

atankar [18] in 1980 and has become standard practice ever since, 
5 
lthough research by Kadioglu et al. [19] has shown both averages 

ield identical accuracy as the mesh is refined. The harmonic aver- 

ge was shown, however, to give better accuracy on heterogeneous 

multi-material) domains when coarse meshes were used. Lipnikov 

t al. [13] proposes a staggered discretization scheme of the diffu- 

ion coefficient where they store one value per mesh cell and up to 

wo values per mesh face. For cases where the diffusion coefficient 

ends to zero or the ratio of adjacent cell centered diffusion coef- 

cients grows very large, Lipnikov shows how using the harmonic 

veraging of cell-centered diffusion coefficients leads to numerical 

naccuracies. Our approach is different, on the vertical edge (hori- 

ontal component) we take: 

(x i , y j+ 1 2 
) = 

2 �(x i − 1 
2 
, y j+ 1 2 

) �(x i + 1 2 
, y j+ 1 2 

) 

�(x i − 1 
2 
, y j+ 1 2 

) + �(x i + 1 2 
, y j+ 1 2 

) 
, (33) 

here i = 1 , 2 , . . . , m and j = 0 , 1 , . . . , n − 1 . Similarly, on the hori-

ontal edge (vertical component) we have: 

(x i + 1 2 
, y j ) = 

2 �(x i + 1 2 
, y j− 1 

2 
) �(x i + 1 2 

, y j+ 1 2 
) 

�(x i + 1 2 
, y j− 1 

2 
) + �(x i + 1 2 

, y j+ 1 2 
) 
, (34) 

here i = 0 , 1 , . . . , m − 1 and j = 1 , 2 , . . . , n . An special case occurs

t the boundary in which corresponding tensor values are directly 

ssigned from their nearest neighbors, e.g., at left boundary we 

ave: 

(x 1 , y j+ 1 2 
) = �(x 1 

2 
, y j+ 1 2 

) , (35) 

here j = 1 , 2 . . . , n . 

. Numerical examples and discussion 

The discretization using the mimetic flux operator G 

∗ presented 

n the previous section for Eq. (28) leads to an un-symmetric lin- 
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Table 1 

Numerical results for Problem 1: Fully anisotropic tensor (using max norm). 

G ∗(2 nd ) G ∗(4 th ) Supp. Operator 

h = �x Error Order Error Order Error Order 

1/16 8.46E-04 1.86E-04 3.74E-03 

1/32 2.29E-04 1.89 2.80E-05 2.73 9.66E-04 1.95 

1/64 6.00E-05 1.93 6.11E-06 2.20 2.45E-04 1.98 
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Table 2 

Numerical results for problem 2: Singular Exponential 

Mobility using 4 th order mimetic flux generating oper- 

ator. 

L 2 norm Max norm 

h = �x Error Order Error Order 

1/10 9.68E-05 3.10E-04 

1/20 1.62E-05 2.57 4.90E-05 2.64 

1/40 2.86E-06 2.5 7.52E-06 2.72 

1/80 5.55E-07 2.3 1.20E-06 2.64 

m

p

a

s

4

t
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γ
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w

s
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w
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o

y

m

m

m  
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p

s

ar system. This is true even though the continuous operator in 

q. (25) is self-adjoint. Note that the constructed linear system is 

argely sparse and can be solved using iterative or direct meth- 

ds. In particular, the linear systems of the numerical examples 

hown in this section are solved using an Unsymmetric Multi- 

rontal method [20] , which is a direct method for solving large- 

cale sparse and unsymmetric linear systems. 

.1. Numerical analysis of truncation errors 

In general, the asymptotic truncation error E h on a grid of m + 

 nodes ( m centers), h = �x = 1 /m (assuming a one-dimensional

omain of length 1), is estimated by: 

 h = ch 

q + O (h 

q +1 ) , (36) 

here q is the order of the error, and c is the convergence-rate 

onstant (does not depend on m ). 

Assuming h 1 and h 2 as two different cell sizes, with h 1 > h 2 ,

he order of convergence can be estimated as: 

 ≈ log(E h 1 /E h 2 ) 

log(h 1 /h 2 ) 
, (37) 

owever, in two-dimensions the cell size h is taken as h = 

ax (�x, �y ) . We estimate convergence rate by using the mean- 

quare norm defined as 

 L 2 = || u − U|| L 2 

= 

( 

m ∑ 

i =1 

n ∑ 

j=1 

[ 
u (x i + 1 2 

, y j+ 1 2 
) − U i + 1 2 , j+ 1 2 

] 2 
V C i + 1 2 , j+ 1 2 

) 

1 
2 

, (38) 

nd the maximum norm 

 max = || u − U|| max = 

m 

max 
i =1 , j=1 

| u (x i + 1 2 
, y j+ 1 2 

) − U i + 1 2 , j+ 1 2 
| , (39)

ith the obvious extension to more dimensions. Where u ( x, y ) 

s the exact solution, U i,j is the numerical solution of the finite- 

ifference scheme, and V C 
i + 1 

2 
, j+ 1 

2 
is the corresponding cell volume. 

.2. Problem 1: Fully anisotropic tensor 

We consider the example described in [21] . For this problem, 

e have an anisotropic tensor � defined as: 

= 

[
2 1 

1 2 

]
, 

ith corresponding forcing function f as 

f (x, y ) = −2(1 + x 2 + xy + y 2 ) e xy 

n the unit square domain. The analytical solution and boundary 

ata for this problem is given by u (x, y ) = e xy . Numerical results

isplayed in Table 1 show second order convergence for our 2 nd 

rder G 

∗ and better than second-order convergence for our pro- 

osed 4 th order scheme. It is worth noting that while the Sup- 

ort Operator Method (SOM) from [22] converges to second order, 

OM is considerably less precise than results obtained using our 
6 
imetic operators (both versions). Figs. 8 a and 8 b depict the com- 

uted solution using the 4 th -order mimetic flux operator, as well 

s the analytical solution for this problem. From the figures we can 

ay they are in good agreement. 

.3. Problem 2: singular exponential mobility 

We now consider the Singular Exponential Mobility problem on 

he unit square, taken from [23] . Here, � is defined as: 

(x, y ) = γ (x, y ) 

[
1 1 / 10 

1 / 10 1 

]
, 

(x, y ) = exp (−λ
√ 

rx + sy ) 

 where the true solution is given by: 

 (x, y ) = 

exp (λ
√ 

rx + sy )( λ
√ 

rx + sy − 1) + 1 

exp ( λ)( λ − 1) + 1 

, 

ith λ constant. Even though solutions for this problem are 

mooth, they become singular for large λ [23] . Computed and an- 

lytical solutions for λ = 30 are shown in Figs. 9 a and 9 b, respec-

ively, and they show good agreement. Moreover, numerical results 

or this problem are displayed in Table 2 (for the mentioned choice 

f λ). Our results show a convergence rate of O ( h 5/2 ). 

.4. Problem 3: full and discontinuous tensor 

Consider a full and discontinuous tensor on the two- 

imensional square domain � = [ −1 , 1] × [ −1 , 1] . Tensor � has a

iscontinuity at x = 0 and is defined as: 

= 

⎧ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎩ 

[
1 0 

0 1 

]
x < 0 

α

[
2 1 

1 2 

]
x > 0 

, 

ith corresponding right hand side functions as: 

f (x, y ) = 

{
(−2 sin y − cos y ) αx + sin y, x < 0 

−2 α exp (x ) cos y, x > 0 

, 

nd true solution as: 

 (x, y ) = 

{
(2 sin y + cos y ) αx + sin y, x < 0 

exp (x ) cos y, x > 0 

, 

ith zero value Dirichlet boundary conditions and α = 1 . This 

roblem was solved by the Support Operator method and the Vu- 

astillo-Grone Mimetic implementation in [22,24] . Tables 3 and 4 

isplay their numerical results, as well as the results obtained by 

ur 4 th -order method. Even though it can be seen that our method 

ields a second order approximation, it offers significant improve- 

ent with respect to the aforementioned methods. This improve- 

ent increases with the number of cells, reaching two orders of 

agnitude better for grid sizes of 64 cells ( h = �x = 1 / 32 ). Finally,

ig. 10 a and b show our numerical solution for this problem (com- 

uted using a 4 th order G 

∗) along with its corresponding analytical 

olution. From the figures we can see they are in good agreement. 
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Fig. 8. Solution for Problem 1. 

Fig. 9. Solution for Problem 2 ( λ = 30 ). 

Table 3 

Numerical results for problem 3: Full and discontinuous tensor, using 4 th order mimetic flux gener- 

ating operator. 

G ∗(4 th ) Vu-Castillo 

L 2 norm Max norm L 2 norm Max norm 

h = �x Error Order Error Order Error Order Error Order 

1/8 1.53E-04 3.51E-04 4.00E-03 4.70E-03 

1/16 3.46E-05 2.14 6.74E-05 2.38 9.75E-04 2.04 1.60E-03 1.55 

1/32 8.75E-06 1.98 1.70E-05 1.99 2.39E-04 2.02 5.30E-04 1.60 

4

c

[

W

�

a

l  

s

s

fl

fi

t

l

g

.5. Problem 4: Fully anisotropic tensor with distinct diagonal 

oefficients 

The fourth problem we present is taken from Arbogast et al. 

25] , and is defined on the unit square with right high side: 

f (x, y ) = −
(
22(y − y 2 ) − 26(x − x 2 ) + 18(1 − 2 x )(1 − 2 y ) 

)
. 

ith � given by 

= 

[
11 9 

9 13 

]
, 
7 
nd zero value Dirichlet boundary conditions, the analytical so- 

ution is: u (x, y ) = (x − x 2 )(y − y 2 ) . Fig. 11 depicts the numerical

olution for this problem, computed using 4 th order G 

∗. Table 5 

hows our computed results for the 2 nd - and 4 th -order mimetic 

ux generating operators G 

∗. As shown in this table, results con- 

rm consistent numerical solutions that converge at second and 

hird order, respectively. Please note that the solution for this prob- 

em is a parabolic function, this could explain the better conver- 

ence of our methods for smooth problems. 
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Fig. 10. Solution for Problem 3: Full and discontinuous tensor. 

Table 4 

Numerical results for problem 3: Full 

and discontinuous tensor for the sup- 

port operator method. 

Supp. Oper. 

L 2 norm 

h = �x Error Order 

colrule 1/8 7.06E-03 

1/16 1.73E-03 2.03 

1/32 3.96E-04 2.13 

Fig. 11. Computed solution for Problem 4: Fully anisotropic tensor with distinct di- 

agonal coefficients, using 4 th order G ∗ . 

Table 5 

Numerical results for Problem 4: Fully anisotropic ten- 

sor with distinct diagonal coefficients, using L 2 norm. 

G ∗(2 nd ) G ∗(4 th ) 

h = �x Error Order Error Order 

1/16 1.75E-04 4.38E-05 

1/32 4.70E-05 1.90 6.31E-06 2.80 

1/64 1.20E-05 1.97 8.49E-07 2.89 
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8 
. Conclusions and future work 

In this work we have introduced the formulation for the con- 

truction of a mimetic flux operator based on Castillo-Corbino 

imetic operators in two dimensions. Numerical results obtained 

or anisotropic elliptic (steady-state) equations show second-order 

onvergence for the 2 nd -order operator while consistently achiev- 

ng better than second order convergence for the 4 th -order formu- 

ation, with the exception of the discontinuous case. For the prob- 

ems presented in this paper, our operators exhibit improvement 

hen compared to similar mimetic schemes ( [22,24] ) as shown in 

ables 1 through 4 . Also, Table 5 indicates a closer convergence 

n relation to the expected one of our operators for a smooth 

roblem. Our approach can be naturally extended to sixth order 

imetic finite difference operators or higher. A three-dimensional 

imetic flux operator is currently in development. 
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