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Abstract—In the geriatric population, physical injuries sus-
tained by an unintentional or an unpredictable fall on a hard
surface is the leading cause of injury related morbidity and
sometimes mortality. Each year, close to 30% of adults around
the age group of 65 fall down at least once. In the year 2015, close
to 2.9 million falls were reported, resulting in 33,000 deaths. As
much as 61% of elderly nursing home residents fell at some point
during their first year of residence.These falls may aggravate the
situation leading to bone fracture, concussion, internal bleeding
or traumatic brain injury when immediate medical attention is
not offered to the person. Delay in course of the event may
sometimes lead to death as well. Recently, many studies have
come up with wearable devices. These devices that are now com-
mercially available in the market are small, compact, wireless,
battery operated and power efficient. This study discusses the
findings that the optimal location for a Fall Detection Sensor on
the human body is in front of the Shin bone. This is based on
the 183 features collected from Inertial Measurement Unit (IMU)
sensors placed on 16 human body locations and trained-tested
using Convolutional Neural Networks (CNN) machine learning
paradigm. The ultimate goal is to develop a mobile, wireless,
wearable, low-power medical device that uses a small Lattice
iCE40 Field Programmable Gate Array (FPGA) integrated with
gyro and accelerometer sensors which detects whether the device
wearer has fallen or not. This FPGA is capable of realizing the
Neural Network model implemented in it. This Insitu or Edge
inferencing wearable device is capable of providing real-time
classifications without any Transmitting or Receiving capabilities
over a wireless communication channel.

Index Terms—fall detection sensor, FDS, edge inferencing,
machine learning, neural networks, FPGA

I. INTRODUCTION

The leading cause of fall is invariably proportional to the
age and physical fitness of the person. As a consequence of
fall, significant trauma, disability, and dizziness are caused
[1]. Falls are next to automobile or motorcycle injuries in
terms of economic concern [2]. On an average, close to 36.8
per 100,000 people over the age of 65 in the United States,
die only due to fall [3] as shown in the Fig. 1. Studies reveal
that nearly 40% of falls require medical attention or lead to
restriction of activity or worsening of health conditions. The
frequency is higher in the assisted living centers compared to
people living in residential homes [4]. Based on these reports,
instant aid needs to be offered to prevent a fatal fall situation.
Under such circumstances, a Fall Detection Sensor (FDS) or
an equivalent device is required to alert the care-giver or an

immediate family member [5].

In Low or middle income countries like Thailand, Vietnam,
Indonesia, Cambodia, Malaysia and other South-East Asian
countries report fall data in limited studies. Thus, the fall
percentage is low in the range of 14-34% leading to limited
quality in the research pertaining to fall prevention [6]. In sub-
Saharan African countries, fall is not at all considered as a risk
factor leading to injuries [7].

Fig. 1. Fall Deathrates in the US [3]

These Fall Detection Sensors (FDS) are usually small
and worn around the neck as a pendant or around the
wrist like a watch or carried as mobile phones equipped
with accelerometer inside the pant pockets to sense and
detect fall events. The makers advertise with a disclaimer
stating that ”The device may not sense 100% falls. During
emergency, press the HELP button”. It is highly difficult
or impossible for the device wearer to do so when he/she
goes into an unconscious state following a fatal fall [8].
Although many types and variants of these Fall detectors are
commercially available, it is still not clear as to which is the
best or the optimal location on the human body to place a FDS.

In this study, sixteen Inertial Measurement Unit (IMU)
Sensors are placed at different locations of the human body
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which captures up to 183 features. The values recorded are
trained and tested using different Machine Learning models
to classify an event as a fall or no-fall. Based on these results,
it is evident that the Shin bone (below the knee) is the right
location to place the sensor on, for maximum accuracy in
fall detection. A suitable Neural Network model in Caffe
framework, is later implemented on a Lattice iCE40 Ultraplus
Breakout board. The board has a FPGA that provides flexible
intellectual property (IP) cores that implements Convolutional
Neural Networks (CNNs) which computes fall classification
in real time, on real time data.

II. APPROACH AND DATA SET

Experiments on human subjects were carried out in
different research labs differently to detect falls. In spite of
the fact that all these experiments give details about fall data
implementation, the methods followed to record a fall or
how it takes place is not mentioned clearly [5]. Although the
details of the human subjects involved are disclosed in few
research works, the cause for a fall or the measures taken to
create a fall is still a mystery [9]. Some studies have used
cameras to record videos of fall and use those as input data
to train neural network models. Privacy of the subject is
compromised in this case.

In our study, the fall experiments were performed at the
Neuromechanics and Neuroplasticity Lab of San Diego State
University in the Department of Exercise and Nutritional
Science (ENS). The lab was setup with Wireless 3D Motion
capture cameras which records the human subject movements.
As shown in Fig. 2, the Noraxon myoMotion Research Iner-
tial Measurement Unit(IMU) sensors measure the Orientation
angles, Anatomical(Joint) Angles and Linear acceleration of
the subject’s motion [10].

Fig. 2. Noraxon myoMotion IMU Sensors and Receiver [11]

A. Fall Experiment

As stated before, 183 features were recorded based on the
IMU’s placed at 16 different body locations. The different
locations on the upper body consist of: head, upper spine,

lower spine, pelvis, upper arms, forearms and hands as shown
in Fig. 3. The locations on the lower body consist of the thighs,
the shanks and the feet as shown in Fig. 4.

Fig. 3. Upper Body IMU placement [11]

Fig. 4. Lower Body IMU placement [11]

The human subjects involved in fall data collection process
were mostly graduate students or faculty members, since
since we did not have IRB approval to test on the geriatric
population in the first phase of our lab experiments. Upon
strapping these sixteen IMU’s, information regarding the
height, weight, gender and age of the human subject was
recorded for calibration purposes. The calibration of the
sensors involved stretching of arms, legs, moving back and
forth to see if the recordings displayed on the Noraxon
MR3 Suite Software were accurately captured on screen.
Calibration was an important step in this experiment before
every fall trial. Incorrect calibration would impact the
measurements of inertial motion extensively.

After carefully calibrating the IMUs, the subject was given
a Virtual Reality (VR) headset to ensure that the participant
was transported into a virtual world of maybe a walk along
a beautiful river bank. Thus the subject was ”removed” from
the lab setting and was unaware of when a fall could be
”attempted” on her. The participant was made to walk on a
straight path (back and forth) about 7feet long in the lab.
The path was covered with a lightweight rug that could be
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tugged at manually to initiate a fall when the subject was
walking on it. The path was surrounded by thick mattresses as
precautionary measures to avoid injuries in case of a fall event.

When the subject looked comfortable in the virtual environ-
ment (brought about by the VR headset) and seemed to enjoy
the ”stroll along the river bed”, a tug at the rug (on which
the subject was walking) was initiated manually (by student
volunteers) thus inducing a fall or a no fall (stumble or slip).
In case of a fall, the subject landed safely on the soft rug or on
the mattress surrounding the path which eliminated any harsh
impact due to the fall on the subject. After a fall was induced,
the sensors were checked for any dislocation and re-calibrated
before moving on with the next fall trial. The fall was recorded
from the point the subject started walking forward leading to
a fall, till the subject was back on his feet following a fall or
a stumble.

B. Dataset and Features

The 183 kinematic features determined by the Noraxon
IMU’s are displayed on the Noraxon myoRESEARCH
Software suite (MR3) which includes the orientation angles,
anatomical angles and linear acceleration measured at a
sampling rate of 200 Hz. The course, pitch and roll (in
degrees) are recorded on the sensors placed on the head,
upper thoracic, lower thoracic, pelvic, right and left arms,
forearms, hands, thighs, shanks (shin bone) and feet. Also,
the acceleration (in milligal or 1 cm s−2) and rotation (in
degrees) along X-,Y-, and Z-axis are recorded as well. These
sensor measurements are merged together to compute flexion,
abduction and rotation of the right and left shoulders and hips.
While the flexion is computed for the left and right knees and
elbows, the flexion, lateral and axial readings are computed
for cevical, lumbar and thoracic regions. The wrist gives the
measurements of extension, radial and supination features.
These constitute the 183 feature set that was collected and
read as a graph and/or tiny wave forms on the Noraxon
MR3 software display tool. Fig. 5 showcases such a feature
set for one particular individual who participated in our
”fall-experiment”.

These values were stored as Comma-Separated Value (CSV)
files which were accessed using the Noraxon MR3 Software
or exported to the computer which has Microsoft Excel or
similar CSV file readers installed. The Noraxon MR3 software
records and displays the changes in orientation angles and
acceleration. With the replay feature, each subject’s visual
recordings are played back to identify and label that particular
recording as a fall or no fall [9]. In each test case, a clean fall
is considered as a complete toppling of the individual on the
floor/mattresses and the event was labelled with a binary value
’1’. While, merely stumbling or losing balance followed by a
quick recovery were considered as ”non-fall” events and were
labeled with a ’0’. These CSV files of different human subjects

Fig. 5. IMU Measurements on Noraxon Software Suite MR3 [11]

were used as training and testing dataset for four different
Machine Learning models discussed in the following section.
The 183 feature datasets are available for download at the ’San
Diego State University Internet of Things Laboratory’ under
the Research section (URL: http://iotlab.sdsu.edu/).

III. MACHINE LEARNING MODELS

Machine learning, as the name suggests, aims to teach
the computers how to learn and act without being explicitly
programmed. ”Supervised learning” is a widely adopted and
the most empirical form of machine learning techniques,
which uses a known set of data as input and known responses
as output [12]. The model is capable of learning from
the observations of known training dataset fed in as input
and classifies the test dataset as a fall or non-fall event
based on its observations and prior training [13]. Several
machine learning approaches exist and can be used to solve
a variety of problems. In this research work, we have used
four different machine learning techniques on our dataset to
obtain the optimal location of strapping a wearable sensor
to best detect a fall. For those willing to understand more
about the concept of Machine Learning, please refer the
book ”Deep Learning (Adaptive Computation and Machine
Learning series) by Ian Goodfellow, Yoshua Bengio and
Aaron Courville” available in HTML online for free (URL:
https://github.com/janishar/mit-deep-learning-book-pdf).

The input data has variable time length segments. The input
vectors for walking motion leading to a fall was arbitrarily
chosen to exist in the range of 1.5s to 7s with an average time
of 3s. On the other hand, in case of the walking motion of
non-fall events, the range was chosen to be between 1.5s to
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13s with an average time of 7s. In general, the overall mean
time for all types of walking was observed to be 5s.

A. Long Short Term Memory-Recurrent Neural Network
(LSTM-RNN) Model

The Recurrent Neural Networks have the ability to
characterize temporal behavior of a signal as they have loops
in their architecture. But these networks experience vanishing
gradients problems. LSTM-RNNs comprise of a memory
cell to overcome this issue and Gating functions into their
state dynamics [14]. A segment of time preceding a fall was
trained with RNN using Keras framework running on top
of Tensorflow. Tensorflow is created by Google for deep
learning purposes and Keras is a higher level API used for
BNN, RNN models with faster computations.

The LSTM-RNN model is made of two LSTM layers
followed by a Dense layer [15]. While the LSTM layers
have dimensions of 183x25 and 25x20, the Dense layer has
a dimension of 20x1. The Dense layer does the following
operation on the input data:
output = activation(dot(input, kernel) + bias) where, kernel
represents the weighted data and dot represents the dot
product of all the input data and their corresponding weights
[16]. Sigmoid is used as the Activation function in this model.

As stated before, the model was trained on a non-uniform
time segment data wherein the time segments comprise of
leading up to, and including, a fall. The variable time segment
data fed into the model for training goes through one iteration,
where one iteration consists of one forward pass and one
backward pass of each batch size. The results of LSTM-
RNN model after training and testing is plotted as a Receiver
Operating Characteristic (ROC) curve for each of the IMU
sensors [15].

B. Gradient Boosted Decision Tree (GBT) Model

Gradient Boosting Decision Tree algorithm comprises of
multiple iterative decision trees and is an additive algorithm
[17]. The results of all the trees are added together and the
cumulative value obtained is the final classification result.
A collection of GBTs were trained with the recorded fall
data using XGBoost shallow learning, scalable tree boosting
framework [18]. For example, the final prediction for a
given example is the sum of predictions from each tree as
represented in the Tree Ensemble model shown in Fig. 6.

The common notion behind GBT model is to split branches,
which yields y’[i] a group of predictions, and then compute
an error y[i] - y’[i]. GBT as a binary classifier is considered to
be the cutting edge model for classification of non-perceptual
data like sensor measurements. A logistic function L(x) is
used to map the prediction y’[i] to a range [0,1], for a binary
classifier which classifies an input data as a fall or no fall. A
Mean Squared Error (MSE) function J = (y[i] − y′[i])2 and

Fig. 6. Gradient Boosted Tree - Example Tree Ensemble Model [18]

a loss function f [i] = J is devised, in order to minimize J
where y’[i] = y’[i] - α f[i], for some α. The algorithm is then
reiterated for accuracy. The GBT approach, models ”loss” as
a function of the number of epoch cycles it records [15]. An
Epoch is defined as the number of times the entire data set
passes through the model.

An average of the ensemble of all trees yields a final clas-
sification (Fall or No Fall). Area Under Curve (AUC) under
the ROC is chosen as the evaluation metric for validation. The
optimal cutoff is the False Positive Rate (FPR) that yields the
greatest J = Sensitivity + Specificity - 1 where, J is the Youden
Statistic [15].

C. Random Forest Model

Random Decision Forest, comprises of many individual
decision trees that operate together as a whole (ensemble
learning). The individual class prediction from each of these
trees in a random forest is collectively compared and based on
the maximum number of votes for a class, the final prediction
of the model is made as the result of model’s classification
[19]. Fig. 7 is an example of how a forest of individual trees
outputs a class prediction and the class with the majority
value is finalised as the model’s output. In this case, there are
six 1’s and three 0’s and the ultimate prediction is 1.

In this approach, from Scikit-Learn’s sklearn.ensemble
library, RandomForestClassifier( ) model was used [15]. While
the Gradient Boosted Tree model reduced Mean Square Error
function J (during each iteration) by training the input data
sequentially, the Random Forests model performs training
in parallel mode. In this approach, we employ a set of 10
independent trees (n estimators=10) where each tree is trained
in parallel and an unified classification result is obtained as
an outcome of aggregated solution from the ensemble of trees.
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Fig. 7. Visualization of a Random Forest Model making a Prediction [19]

The ’tree’ is trained with evaluated Gini impurity indices
in Random Forest model. The Gini impurity is seen in every
node of the tree which gives the probability of an incorrect
classification of a randomly selected test datum from the
labelled fall dataset given the selected test datum was either
labelled as fall or no-fall randomly [20].

D. Binarized Neural Network Model

The fourth model in this study is a Binarized Neural
Network model that functions with binary weights and
activations during run-time. These are dedicated to evaluate
the parameters gradients [21]. During forward process, both
memory size and speed are reduced abruptly compared to
the Convolutional Neural Network (CNN) model, where the
gradients are not binary during backward propagation. The
weights and the activations are constrained to +1 or -1 during
run-time [22].

BNN uses Multiply-Accumulate (MAC) operations that
are low-level linear algebra operations in deep learning like
vector dot product. Because the weights are constrained to
+1 and -1, 32-bit floating point MACs are taken over by 1-
bit XNOR-popcount operations. A popcount is defined as a
binary operation of a 32-bit input word and the output is
the word having number of set bits as 1. Thus a standard
vector dot product function is compensated by a binraized
variant executed by a XNOR-popcount function. This causes
the BNN method to provide higher power efficiency during
a forward pass. They also demand 32 times fewer memory
accesses with a 32 times smaller memory capacity than a 32-
bit Deep Neural Network (DNNs) [22]. The BNN model is
trained using Keras framework running over Tensorflow. The
model comprises of four BinaryDense layers in Keras along
with Dropout and Batch Normalization layers [15].

IV. CAFFE MODEL AND IMPLEMENTATION

From the above Machine Learning model results, it was
observed that the Left Shank sensor gave the best Area
Under Curve (AUC) which means that if a sensor is placed
at the Shin bone, the accuracy at which a device can predict
a fall is much higher than other locations on the human
body. Since BNN, Gradient Boosted Trees and Random
Forests consider single point in time for training while
RNN takes into consideration a segment of time, RNN
model outperforms other models and displays higher AUC.
Although this is true with regards to the results obtained, in
terms of implementation on a hardware, as stated earlier the
Binarized Neural Network is much faster than a DNN [22].
Convolutional Neural Network (CNN) is one computationally
effective architecture similar to that of the BNN that can
be implemented on a Lattice FPGA developed by Lattice
Semiconductors.

Fig. 8. Convolutional Neural Network
model with CBSR layers

Considering these fac-
tors, small form-factor FP-
GAs are now commer-
cially available and one
such FPGA is found in
the Lattice iCE40 Ultra-
plus Breakout board [23].
The FPGA supports imple-
mentation of Convolutional
Neural Network to perform
analysis, simulation and as
a result, it is able to predict
an event as a fall or no-
fall in real time. The Caffe
model was implemented on
a local computer, which
consists of eight NVIDIA
Tesla V100 PCle 16GB
GPUs. The model is ex-
ecuted on a Supermicro
SuperServer SYS-4028GR-
TR [24]. A Caffe is actually
a Deep Learning frame-
work created by Berkeley
AI Research (BAIR) simi-
lar to other Machine Learn-
ing frameworks. Because
of properties like speed and
extensible code for active
development, Caffe is best
suited for research deploy-
ment purposes [25].

A. The Caffe Module

The Convolutional Neural Network Caffe model for fall
detection and classification purpose was implemented similar
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to that of the BNN model in Tensorflow as seen in Fig. 8.
While the Caffe model is a hard coded framework, it needs
to be written on a text editor and saved as a Proto (.prototxt)
file. On top of the existing layers prescribed by BAIR’s Caffe
framework, Lattice Semiconductors generated an exclusive
set of layers for CNN implementations which can be accessed
using CaffeLatticeModule [26]. For implementation in Caffe,
the input data format accepted is a HDF5 (Hierarchical Data)
file format. The HDF5 file format uses these data stored
in the form of arrays and is equivalent to a Numpy array
[27]. For training-testing purposes using Caffe framework, 3
different architectures compatible with Convolution Neural
Network mode of Lattice FPGA is considered.

The first architecture under consideration was the
Covolution-BatchNorm-Scaling-ReLU model shortly called as
CBSR model. The Dense layers of Keras-Tensorflow are
replaced by Inner Product/ Fully connected layer at the end.
It mainly calculates the inner product for a binary network.
Similarly, Convolutional 2D layer using weights and activation
are also used at the top of the Caffe model. The same
parameters used in Keras are retained and implemented here.
The model also consists of a Batch Normalization layer, which
accelerates the training process of the model and is always
followed by a scaling layer since droputs are not supported
in this framework. The Caffe model Prototxt file along with
the the Solver Prototxt file, generates a ’.caffemodel’ file for
every step size interval given, till it reaches the maximum value
of iteration. The Solver Prototxt holds the hyper parameters
like base learning rate, momentum, iteration cycle, gamma
etc. The other two architectures that we considered were
fully connected layer architectures with one-dimensional input
data (of size 1x9). This is similar to the CBSR model with
the binary convolutional layer instead of the standard two-
dimensional convolutional layer with two-dimensional input
data.

B. Lattice Implementation

It was imperative that we tested our machine learning
model on a hardware to understand the time that would be
required to compute a decision as ”fall” or ”no fall” based on
real time inputs of the sensor that would detect movement.
This method of assigning the heavy duty computation to the
edge device of the network is called ”Edge Inferencing”.
We used an FPGA [28] to test our model. Edge inferencing
also means that the sensor recordings are computed at the
FPGA device without the need to transmit to a central server,
train-test and evaluate there and send the result back to the
device via a wireless connection. As shown in Fig. 9, the
Lattice iCE40 Ultraplus breakout board FPGA is such a
device that offers adaptable or soft intellectual property (IP)
device cores that implement Convolutional Neural Networks
(CNNs) that can perform continous fall classification and

detection at very low power of 1mW (milliWatt) range [23].

Fig. 9. Lattice iCE40 UltraPlus Breakout Board with FPGA

Fig. 10. Receiver Operating Characteristic (ROC) of Convolutional Neural
Network model for Fall Detection using Caffe Framework. Highest Area
Under Curve (AUC) of 79% for Shank Sensor

In order to implement CNN on this FPGA, Lattice provides
a Lattice SenseAI Neural Network Compiler. The compiler
is capable of converting the Caffe CNN model into FPGA
compatible format by rendering the bitstream (.bin) files which
is flashed on to the FPGA. The SenseAI compiler in CNN
mode requires the NeuralNet Proto file, the Caffemodel file
and a sample input data (two-dimensional array in this case)
to analyse, simulate and compile to render the final bitsream
file. With the help of Lattice Diamond software, the file is
flashed on to the FPGA to perform real time computations
based on the sensor input values on the go.

C. Results

The Receiver Operating Characteristic (ROC) curve
combined with AUC (Area Under Curve), is used to evaluate
a learning algorithm for classification problems. The ROC
is obtained as a plot of Sensitivity (True Positive Rate) and
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Fig. 11. Loss curve for Shank Sensor as a function of Number of Iterations
for Convolutional Neural Network model

1-Specificity (False Positive Rate = 1 - True Negative Rate)
is plotted for all the four machine learning models discussed
in section III. We have used the Caffe and the Tensorflow
framework. For the LSTM-RNN model, the highest AUC
is achieved by the Shank sensor (AUC=0.92) placed on
the Shinbone, while the left and right wrist locations have
an AUC value of 0.91 and 0.86 respectively [15]. The
Gradient Boosted Tree model exhibits an AUC of 0.90
for the Shank sensor at the optimal cutoff for FPR (False
Positive Rate). Yet again, the Shank sensor on the Left
Shin bone offers the highest AUC of 0.85 for the Random
Forest model while the Binarized Neural Network (BNN)
model also displays an AUC of 0.82 for the Left Shank sensor.

The Convolutional Neural Network designed using Caffe
framework was exclusively trained for the left shank sensor
readings with 3x3 two-dimensional data as input. The Caffe
model generated a Receiver Operating Characteristic (ROC)
curve with Area Under Curve (AUC) value of 0.79 as shown
in Fig. 10. Also the loss value of 0.18 (training and testing)
for the left shank sensor alone as a function of number of
iterations when it reaches a minima is shown in Fig. 11.

V. CONCLUSION

Technological advances are now enabling us to make
predictions and classifications in real time in medical devices
using in-situ machine learning methods. When a fall occurs,
the time it takes to receive attention from a caregiver can
worsen the injury resulting in traumatic brain injury, fracture,
concussion and bleeding [29]. A leading cause of death
among old aged people is because of unforeseen injuries, out
of which two-thirds are a result of fall. Since most of the falls
take place in assisted living facilities more than residential
communities, a Fall Detection System (FDS) should be worn

by the elderly persons who are vulnerable to fall.

Datasets on Activities of Daily Life (ADL) and fall events
have been published by many Europeon Universities with
test case subjects wearing sensors or FDS at different parts
of the body like the chest and the thighs, as mobile phones
in trouser pockets, as watches on the wrist and as belts
along the waist with relatively lesser accuracy in each case.
Such devices allow recording of only the linear acceleration,
though in reality, the human body has other postures and
orientations which are not recorded by these infrastructures.
Also, edge computing is not available and uses external
memory for computation. From the results, it is evident that
all the Machine Learning models in this study exhibit more
than 80% classification accuracy with the sensor placed on the
shank. The finalised model, that is the Convolutional Neural
Network model achieves close to 80% accuracy with Caffe
framework and an average of 85% accuracy in Tensorflow
framework implemented models. The Tensorflow framework
offers higher accuracy when a time series input data is fed
into the network. However, the hardware supports the Caffe
framework with greater ease and simplicity [30]. The most
impactful take-away from our research work is that, future
wearable fall detection sensors should be designed to be
placed on the human shin bone. Also, these sensors should be
designed to such that they are enabled with edge inferencing
capabilities so that the computation can be done on-board
(for example, on a Lattice like FPGA) with minimal delay
and power requirements.

The machine learning models presented in this paper
executes the prediction and classification of large amounts of
fall data in minimal time (in milliseconds). The FPGA used
for the implementation consumes very low power to execute
the detection and classification algorithms (in the order of 1
mWatt). The form factor of the FPGA is tiny enough to be
embedded in a wearable device. Edge inferencing eliminates
the cost of maintaining a cloud infrastructure along with
cutting down on the delay involved in transferring data back
and forth to the Cloud. The solution that we propose in this
paper on a iCE40 FPGA along with the sensors should cost
no more than $20-30 when commercially deployed making it
a very feasible, low cost and real time solution.

In the future, FDS devices should have a gyroscope and
accelerometer to record data and predict whether the patient
has fallen. In addition to these features, the FDS can have a
GPS (or an indoor trilateration system) inbuilt to inform the
care giver with the exact physical location of where the fall
has taken place in an assisted living facility [31]. Since RNN
has the highest AUC among all the other models because it
observes a time segment instead of a single instance of time,
implementation on a hardware in real time that supports RNN
on a small device with low power requirement needs to be

2020 IEEE Global Humanitarian Technology Conference (GHTC)

Authorized licensed use limited to: San Diego State University. Downloaded on April 18,2021 at 06:00:15 UTC from IEEE Xplore.  Restrictions apply. 



assessed. We plan to extend this project by building our own
accelerometer and gyroscope sensors coupled with FPGA
on a single device with indoor trilateration system (GPS
tracking) and experimenting on more than 100 distinguished
human subjects.
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