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Abstract— With increasing urban population, there is global
interest in Urban Air Mobility (UAM), where hundreds of
autonomous Unmanned Aircraft Systems (UAS) execute mis-
sions in the airspace above cities. Unlike traditional human-in-
the-loop air traffic management, UAM requires decentralized
autonomous approaches that scale for an order of magnitude
higher aircraft densities and are applicable to urban settings.
We present Learning-to-Fly (L2F), a decentralized on-demand
airborne collision avoidance framework for multiple UAS that
allows them to independently plan and safely execute missions
with spatial, temporal and reactive objectives expressed using
Signal Temporal Logic. We formulate the problem of predic-
tively avoiding collisions between two UAS without violating
mission objectives as a Mixed Integer Linear Program (MILP).
This however is intractable to solve online. Instead, we develop
L2F, a two-stage collision avoidance method that consists of: 1)
a learning-based decision-making scheme and 2) a distributed,
linear programming-based UAS control algorithm. Through
extensive simulations, we show the real-time applicability of
our method which is ~6000x faster than the MILP approach
and can resolve 100% of collisions when there is ample room
to maneuver, and shows graceful degradation in performance
otherwise. We also compare L2F to two other methods and
demonstrate an implementation on quad-rotor robots.

I. INTRODUCTION

The development of safe and reliable UAS Traffic Man-
agement (UTM) is necessary to enable Urban Air Mobility
(UAM) [1]. The two fundamental issues here are: a) mission
planning for UAS fleets with guarantees on safety and
performance, and b) real-time airborne collision avoidance
(CA) methods so UAS run by different operators can share
the airspace without a priori approval of all flight plans.
Tackling the planning and inter-UAS collision avoidance
jointly yields a computationally intractable problem as the
number of UAS in the airspace increase [2], [3]. So we
separate these two aspects in a manner where individual UAS
(or those in the same fleet) plan independently, which in turn
requires an approach for runtime collision avoidance. The
scalability of this will be essential in UAM applications as
there will be no central authority to monitor and enforce UAS
safety for hundreds of drones per square mile. This stands
in contrast to the existing Air-Traffic Control and collision
avoidance methods for commercial aviation, like TCAS-II,
which was designed to operate in traffic densities of up to
0.3 aircraft per square nautical mile (nmi), i.e., 24 aircraft
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Fig. 1: Two UAS communicating their planned trajectories, and
cooperatively maneuvering within their robustness tubes to avoid a
potential collision in the future.

within a 5 nautical mile radius, which was the highest traffic
density envisioned over the next 20 years [4].

Airborne collision avoidance however is a complex prob-
lem. With high-speed UAS operating at low altitudes in
cluttered urban airspace, decisions for collision avoidance
need to be made within fractions of a second. The CA system
must also be able to take into account the environment (e.g.
buildings and other infrastructure, altitude limits, geofenced
areas etc.) around it, making the problem harder than simply
avoiding inter-UAS collisions.

To overcome the limitations outlined above, we aim to
solve the following problems:

Problem I1: Independent trajectory planning for an in-
dividual UAS (or fleets run by the same operator) to satisfy
spatial, temporal and reactive mission objectives specified
using Signal Temporal Logic (STL), independently of other
UAS that could be in the airspace.

Problem 2: Real-time pairwise predictive airborne col-
lision avoidance such that UAS mission requirements sat-
isfied by the trajectories obtained by solving problem 1 are
not violated, e.g. UAS make it to their destinations in time
while avoiding collisions with each other.

The airborne collision avoidance (Problem 2) poses a
larger challenge, and is the primary focus here.

A. Contributions of this work

Our main contribution is Learning-to-Fly (L2F)!, a scheme
for real-time, on-the-fly collision avoidance between two
UAS whose main features are:

1) Systematic composition of machine learning and con-

trol theory: We combine learning-based decision-
making, and linear programming-based control to solve

Videos of the simulations and demonstrations in this paper can be viewed
at https://tinyurl.com/vvvuukh
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Fig. 2: Step-wise explanation and visualization of the framework. Each UAS generates its own trajectories to satisfy a mission expressed
as a Signal Temporal Logic (STL) specification, e.g. regions in green are regions of interest for the UAS to visit, and the obstacle
corresponds to infrastructure that all the UAS must avoid. When executing these trajectories, UAS communicate their trajectories to others
in range to detect any collisions that may happen in the near future. If a collision is detected, the two UAS execute a conflict resolution
scheme that generates a set of additional constraints that the UAS must satisfy in order to avoid the collision. A co-operative CA-MPC
controls the UAS in order to best satisfy these constraints while ensuring each UAS’s STL specification is still satisfied. This results in
new trajectories (in solid blue and pink) that will avoid the conflict and still stay within the pre-defined robustness tubes.

the problem in a decentralized manner. Unlike many
other ad-hoc Machine Learning-based solutions, we
provide a sound theoretical justification for our ap-
proach in Theorem 5.2. We also provide a sufficient
condition for the scheme to work successfully (Theo-
rem 5.1).

2) A notion of priority among the UAS can be encoded
naturally in L2F, where the UAS with higher priority
does not have to deviate from its originally planned
trajectory until absolutely necessary.

3) Computationally lightweight enough for real-time im-
plementation: Experimental results show that L2F, with
a computation time in milliseconds can be used in a
real-time implementation at a high-rate (10 Hz).

4) High performance: In the best case, L2F successfully
results in 2-UAS collision avoidance 100% of the
test cases, gracefully degrading to 90% for the worst
case. Comparisons with other methods also show the
superior performance of L2F.

5) Enabling fast, independent planning for UAS with tem-
poral logic objectives, as individual UAS, or fleets of
UAS run by the same operator, can plan for themselves
without considering other UAS in the airspace while
calling upon L2F for on-the-fly collision avoidance.
For a 4-UAS case study, we demonstrate a speed up
of 3.5x over the centralized planning method of [2].

6) Proof-of-concept demonstration on Crazyflie quad-
rotor robots to show feasibility on real UAS.

B. Overview of approach and paper outline

In this paper, we aim to develop a framework for UAS
traffic management (UTM) that solves problems 1 and 2.
Figure 2 depicts the proposed planning and control process
and indicates the relevant sections in the paper.

1) Trajectory planning with Signal Temporal Logic (STL)
specifications: Each UAS, j, given the mission as
an STL specification ¢;, generates a trajectory that
robustly satisfies ¢ ;. The robustness value p,,, associ-

ated with this trajectory, corresponds to the maximum
deviation from the planned trajectory such that the
UAS j still satisfies its mission ;.

Two UAS within communication range share a look-ahead
of planned trajectories and if a future collision is detected,
new trajectories are needed that still satisfy their original
mission specifications. For this, we develop our decentralized
approach L2F, which consists of two stages:

2) Collision detection and Conflict resolution: When a
potential collision is detected, a supervised-learning
based conflict resolution policy (CR-S), with pre-
defined priority among the two UAS, generates a
sequence of discrete decisions corresponding to ma-
neuvers to avoid the collision.

3) Distributed and co-operative Collision Avoidance
MPC (CA-MPC): The CA-MPC for each UAS takes
as input the conflicting trajectories and the output of
the conflict resolution policy, and controls the UAS to
avoid collision.

In Section VI we evaluate our framework for 2 UAS colli-
sion avoidance through extensive simulations and compare its
performance to other approaches. Section VII demonstrates
a particular UTM framework case study. Finally, in Section
VIII we discuss potential future directions.

C. Related work

1) UTM and Automatic Collision Avoidance approaches:
The UAS Traffic Management (UTM) problem has been
studied in various contexts. In the NASA/FAA Concept
of Operations document [5], an airspace allocation scheme
is outlined where individual UAS reserve airspace in the
form of 4D polygons (space and time), and the polygons
of different UAS are not allowed to overlap. Similarly, [6]
presents a voxel-based airspace allocation approach. Our
approach is less restrictive and allows overlaps in the 4D
polygons, but performs maneuvers for collision avoidance
when two UAS are on track to a collision (see Fig. 1).
TCAS [4] and ACAS [7] systems for collision avoidance in



commercial aircrafts rely on transponders in the two aircrafts
to communicate information for the collision avoidance
modules. These generate recommendations for the pilots to
follow and create vertical separation between aircrafts [8].
In the context of UAS, [9] uses vehicle-to-vehicle commu-
nication and tree-search based planning to achieve collision
avoidance. ACAS-Xu [10], an automatic collision avoidance
scheme for UAS relies on a look-up table to provide high-
level recommendations to two UAS that have potentially
colliding trajectories. It restricts desired maneuvers for CA
to the vertical axis for cooperative traffic, and the horizontal
axis for uncooperative traffic. While we consider only the
cooperative case in this work, our method does not restrict
CA maneuvers to any single axis of motion. Finally, in its
current form, ACAS-Xu also does not take into account any
higher-level mission objectives, unlike our approach. This
excludes its application to low-level flights in urban settings,
e.g. it can result in situations where ACAS-Xu recommends
an action that avoids a nearby UAS but results in the primary
UAS going close to a static obstacle. Our method avoids
this as CA maneuvers are restricted to keeping UAS inside
robustness tubes (see Fig. 2) such that mission requirements
are not violated. For this reason, ACAS-Xu is currently only
being explored for large, high-flying UAS [10] and is not
directly applicable to the problem we study here.

2) Multi-agent planning with temporal logic objectives:
Many approaches exist for the problem of planning for mul-
tiple robotic agents with temporal logic specifications. Most
rely on abstract grid-based representations of the workspace
[3], [11], or abstract dynamics of the agents [12], [13]. [14]
combines a discrete planner with a continuous trajectory
generator. Some methods [15], [16], [17] work for subsets of
Linear Temporal Logic (LTL) that do not allow for explicit
timing bounds on the mission requirements. While [3] uses
a subset of LTL, safe-LTL; that allows them to express
reach-avoid specifications with explicit timing constraints.
However, in addition to a discretization of the workspace,
they also restrict motion to a simple, discrete set of motion
primitives. The predictive control method of [18] allows for
using the expressiveness of the complete grammar STL for
mission specifications. It handles a continuous workspace
and linear dynamics of robots, however its reliance on
mixed-integer encoding (similar to [19], [20]) for the STL
specification limit use in planning/control for multiple agents
in 3D workspaces as seen in [21]. The approach of [2]
instead relies on optimizing a smooth (non-convex) function
for generating trajectories for fleets of multi-rotor UAS with
STL specifications. In our framework, we use the planning
method of [2], but we let each UAS plan independently of
each other. We ensure the safe operation of all UAS in the
airspace through the use of our predictive collision avoidance
scheme.

II. PRELIMINARIES

We use Signal Temporal Logic (STL) to specify the
mission objectives that the UAS need to satisfy (Problem
1). This section provides a brief introduction to STL and the
trajectory generation approach.

A. Introduction to Signal Temporal Logic

Signal Temporal Logic (STL) [22] is a behavioral spec-
ification language that can be used to encode requirements
on signals. The grammar of STL [18] allows for capturing a
rich set of behavioral requirements using temporal operators,
such as Always () and Eventually ({), as well as logical
operators like And (A\), Or (V), and negation (—). With these
operators, an STL specification ¢ is defined over a signal,
e.g. over the trajectories of quad-rotor robots, and evaluates
to either True or False. The following example demonstrates
STL to capture operational requirements for two UAS:

Example 1: (A two UAS timed reach-avoid problem) Two
quad-rotor UAS are tasked with a mission with spatial and
temporal requirements in the workspace shown in Fig. 3:

1) The two UAS have to reach a Goal set (shown in
green), or a region of interest, within a time of 6
seconds after starting. UAS j (where j € {1,2}),
with position denoted by p;, has to satisfy: @,cqcn,; =
Or0,6)(p; € Goal). The Eventually operator over the
time interval [0, 6] requires UAS j to be inside the set
Goal at some point within 6 seconds.

2) In addition, the two UAS also have an Unsafe (in red)
set to avoid, e.g. a no-fly zone. For each UAS j, this
is encoded with Always and Negation operators:
Pavoid,j = D[(),G]ﬁ(pj € Unsafe)

3) Finally, the two UAS should also be separated by at
least & meters along every axis of motion:

Pseparation = D[O,G]le - p2||oo >0
The 2-UAS timed reach-avoid specification is thus:

Preach-avoid = A?:l(@reach,j A @avoid,j) A Pseparation (1)

In order to satisfy ¢, a planning method generates trajec-
tories p; and po of a duration at least hrz(yp) = 6s, where
hrz(yp) is the time horizon of . If the trajectories satisfy
the specification, i.e. (p1, p2) = ¢, then the specification ¢
evaluates to True, otherwise it is False. In general, an upper
bound for the time horizon can be computed as shown in
[18]. In this work, we consider specifications such that the
horizon is bounded. More details on STL can be found in
[22] or [18]. In this paper, we consider discrete-time STL
semantics which are defined over discrete-time trajectories.

B. Robustness of STL specifications

For a time domain T = [0, 7] with sampling time dt, the
signal space X" is the set of all signals x : T — X. The
Robustness value [23] p,, of an STL formula ¢, with respect
to the signal x that it is defined over, is a real-valued function
of x that has the important following property:

Theorem 2.1: [23] For any x € XT and STL formula ¢,

if p,(x) < 0 then x violates ¢, and if p,(x) > 0 then x
satisfies . The case p,,(x) = 0 is inconclusive.
Intuitively, the degree of satisfaction or violation of a specifi-
cation is indicated by the robustness value. For simplicity, the
distances are defined in the inf-norm sense. This, combined
with Theorem 2.1 gives us the following result:

Corollary 1.1: Given a discrete-time trajectory x such that
x = ¢ with robustness value p > 0, then any trajectory x’
that is within p of x at each time step, i.e. ||z; — 7}||cc <
pVt € T, is such that x" |= ¢ (also satisfies ).



C. UAS planning with STL specifications

Fly-by-logic [2] generates trajectories by centrally plan
ning for fleets of UAS with STL specifications, e.g. th
specification (reach-avoid Of €xample 1. It maximizes a smootl
approximation p,, of the robustness function [21] by pickiny
waypoints (connected via jerk-minimzing splines [24]) fo
all UAS through a centralized, non-convex optimization.

While successful in planning for multiple multi-rotor UAS
performance degrades as the number of UAS being planne:
for increases. The non-convex optimization involving th
variables of all the UAS becomes harder as the number o
variables increase [2] in particular because for J UAS, (‘2]}
terms for pair-wise separation between the UAS are needed.
Taking this into account, we use the underlying optimiza-
tion of [2] to generate trajectories, but ignore the mutual
separation requirement, allowing each UAS to independently
(and in parallel) solve for their own STL specification. For
the timed reach-avoid specification (1) in example 1, this
is equivalent to each UAS generating its own trajectory to
satisfy ©; = Yreach,j A Pavoid,j> independently of the other
UAS. Associated with these trajectories, x; is a robustness
values p,,. Ignoring the collision avoidance requirement
(¢separation) 1n the planning stage allows for the specification
of (1) to be decoupled across UAS, but now requires online
pairwise UAS collision avoidance if the planned trajectories
are in conflict. This is covered in the following section.

Note: In the following sections, x will refer to a full-
state (discrete-time, finite duration) trajectory for a UAS. We
will also use p to refer to the position components in that
trajectory, the position trajectory. z; (and py) refer to the
components of the trajectory at time step k.

III. PROBLEM FORMULATION: COLLISION AVOIDANCE

While flying their planned trajectories (from the previous
section), two UAS that are within communication range share
a look-ahead of their trajectories and check for a potential
collision at any time step k in this look-ahead horizon of N
time steps. We assume the UAS can communicate with each
other in a manner that allows for enough advance notice for
avoiding collisions, e.g. using 5G technology. The details of
this are beyond the scope of this paper.

Definition 1: 2-UAS Conflict: Two UAS, with discrete-
time positions p; and ps are said to be in conflict at time step
k if ||p1,k — p2.k|lco < J, where ¢ is a predefined minimum
separation distance’. Here, pj k. Tepresents the position of
UAS j at time step k.

Definition 2: Robustness tube: Given an STL formula ¢
and a discrete-time position trajectory p; that satisfies ¢
(with associated robustness p), the (discrete) robustness tube
around p; is given by P; = p; ©B, . We say the radius of
this tube is p (in the inf-norm sense). Here B, is a 3D cube
with sides 2p and @ is the Minkowski sum operation.

See an example of the robustness tube in Figure 3.

Note: As long as a UAS stays within its robustness tube,
it will satisfy the STL specification ¢ for the which the
trajectory was generated for (see Corollary 1.1).

2A more general polyhedral constraint of the form H(py  —p2.x) < g
can be used for defining the conflict without loss of generality.

Robustness as bounds for trajectory tracking
el

Fig. 3: Discrete time trajectories of two UAS, and their associated
robustness tubes (see def. 2) in gray and purple. The trajectories
satisfy a reach-avoid specification, see example 1. Unsafe set is in
red and the Goal set is in green.

The following assumption now relates the minimum al-
lowable radius p of the robustness tube to the minimum
allowable separation J between two UAS.

Assumption 1: For each of the two UAS in conflict,

the radius of the robustness tube is greater than /2, i.e.
min(py, p2) > 6/2 where p; and py are the robustness of
UAS 1 and 2, respectively.
This assumption defines the case where the radius of the
robustness tube is just wide enough to have two UAS placed
along opposing edges (of a cube at the same time step)
and still achieve the minimum separation between them. We
assume that all the trajectories generated by the independent
planning have sufficient robustness to satisfy this assumption
(see Sec. II-C). Now we define the problem of collision
avoidance with satisfaction of STL specifications:

Problem 3: Given two planned N-step UAS trajectories
p: and po that have a conflict, the collision avoidance
problem is to find a new sequence of positions p} and p}
that meet the following conditions:

1Pk = Posll = 6k =0,.... N (2a)

p;7k€PjVj:1,2,Vk:0,...,N (2b)

This implies that we need a new trajectory for each UAS such

that they achieve minimum separation distance and also stay

within the robustness tube around their originally planned
trajectories (see Corollary 1.1).

A. Convex constraints for collision avoidance

Let zj, be the difference in UAS positions at time step k.
For two UAS not to be in conflict, we need

2y = pre — P2,k € BsVk 3)

This is a non-convex constraint. For a computationally
tractable controller formulation which solves problem 3, we
define convex constraints that when satisfied imply eq. (3).

The 3D cube Bs can be defined by a set of linear inequality
constraints of the form H'z < g'Vi = 1,...,6.Eq. (3) is
satisfied when 3i |[H'2 > g;. Let H = —H and g = —,
then for any 7 € {1,...,6},

H'(prk — p2k) < 9' = (P1.k — P2k) & Bs )

Intuitively, picking one ¢ at time step k results in a config-
uration (in position space) where the two UAS are separated



in one of two ways along one of three axis of moti0n3, e.g.
at a time step k if we select i|H" = [O 0 1] , 9" = —4, it
implies than UAS 2 flies over UAS 1 by é m, and so on.

IV. CENTRALIZED SOLUTION: MILP FORMULATION

Let the dynamics of either UAS* be of the form 3, =
Azxy, + Buy,. The states x;, € RS here are the positions and
velocities in the 3D space, or x), = [pg, vi]? (here p and v
are the positions and velocities in the 3D space). The inputs
ur € R3 are the thrust, roll and pitch of the UAS. The
matrices A and B can be obtained through linearization of
the UAS dynamics around hover and discretization in time
[25]. Let C' be the observation matrix such that pr, = Cxy.

For N steps into the future with a conflict, solving the
following receding horizon MILP over the variables of the
two UAS would result in new trajectories p’, p5 that satisfy
the minimum separation requirement (3). Let x; € RO(V+1)
be the pre-planned full state trajectories, x’j € RO(N+D
the new full state trajectories and u;- e R3N the new
controls to be computed for the two UAS (j = 1, 2). Let
b € {0,1}5(V+1) be binary decision variables, and M is a
large positive number, then the MILP problem is defined as:

min
uf, uf, blxi, x2

CL;U =ux,0Vj €{1,2}
@ g1 = Al + Buj, V€ {0,...,N =1}, Vj € {1,2}
Oz € P Vk €{0,...,N}, Vj e {1,2}
HC(#h ) < i+ M(1—b; ) Vk € {0,.. ., N},Vie {1,....6} (5)

L, w0, ), )

6

> b > 1Vk €{0,..., N}

i=1
wy, € UVk €{0,..., N}, Vj € {1,2}
¥hp € XVk€{0,...,N+1},Vj € {1,2}

Here b}'C encodes action ¢ = 1,...,6 taken for avoiding a
collision at time step k which corresponds to a particular
side of the cube Bs. A solution (when it exists) to this
MILP results in new trajectories that avoid collisions and
stay within their respective robustness tubes of the original
trajectories. However, this method relies on solving for a pair
of UAS in a centralized manner. Also, it introduces 6 times
as many variables (and constraints) as the time horizon of the
optimization, which could make the MILP computationally
intractable for a real-time implementation. Therefore, we
develop a decentralized approach in the following sections.

V. DECENTRALIZED SOLUTION: LEARNING-TO-FLY

The distributed and co-operative collision avoidance MPC
scheme of Section V-A with the conflict resolution algorithm
described in Section V-B form the online collision avoidance
scheme, Learning-to-Fly (L2F), our main contribution.

We assume that the two UAS can communicate their pre-
planned N-step trajectories pi, p2 to each other (refer to
Sec. II-C). Instead of solving the centralized MILP, we want
to solve problem 3 by following these steps:

1) Conflict resolution: UAS 1 and 2 make a sequence of
decisions, d = (dg, ...,dy) to avoid collision. Each

3Two ways along one of three axis defines 6 options, i € {1,...,6}.
“4For simplicity we assume both UAS have identical dynamics associated
with multi-rotor robots, however our approach would work otherwise.

dr € {1,... 6} represents a particular choice of H and
g at time step k, see eq. 4. Section V-B describes our
proposed learning-based method for conflict resolution.

2) UAS 1 CA-MPC: UAS 1 takes the conflict resolution
sequence d from step 1 and solves a convex opti-
mization to try to deconflict while assuming UAS 2
maintains its original trajectory. After the optimization
the new trajectory for UAS 1 is sent to UAS 2.

3) UAS 2 CA-MPC: (If needed) UAS 2 takes the same
conflict resolution sequence d from step 1 and solves
a convex optimization to try to avoid UAS 1’s new
trajectory. Section V-A provides more details on CA-
MPC steps 2 and 3.

The overall algorithm is shown in Alg. 1. The visualization
of the above steps is presented in Fig. 2. Such decentralized
approach differs from the centralized MILP approach, where
both the binary decision variables and continuous control
variables for each UAS are decided concurrently.

A. Distributed and co-operative collision avoidance MPC

Each UAS j € {1,2} solves the following Collision
Avoidance MPC optimization®:
CA-MPC;(x;, Xquvoid, Pj, d, prty;):

D ik
k

min
) Aj[%5 Xavoid

T = Tj0
o 1 = Al + Bul VE={0,...,N — 1}
Cayy, € Py Vk = {0,...,N} (6)

prty]-'Hd"C(xm,oid.k— x;k) < gd"+)\],k vk =10,...,N}
Ajk > 0VE={0,...,N}
), €UVE={0,...,N}
x), € XVke{0,...,N+1}

where, x; is the pre-planned trajectory of UAS j, Xavoid
is the pre-planned trajectory from which UAS j must attain
a minimum separation, prty; € {—1,+1} is the priority of
UAS j w.r.t the other UAS in conflict. The decision sequence
d is represented as H%, g% . This MPC optimization tries
to find a new trajectory x} for the UAS j that minimizes
the slack variables A;j that correspond to violations in the
minimum separation constraint (4) w.r.t the pre-planned tra-
jectory Xau0iq Of the UAS in conflict. The constraints in (6)
ensure that UAS j respects its dynamics, input constraints,
and state constraints to stay inside the robustness tube. An
objective of 0 implies that UAS j’s new trajectory satisfies
the minimum separation between the two UAS, see eq. (4).

CA-MPC optimization for UAS 1: UAS 1, with lower
priority, prty; = —1, first attempts to resolve the conflict
for the given sequence of decisions d. An objective of 0
implies that UAS 1 alone can satisfy the minimum separation
between the two UAS. Otherwise, UAS 1 alone could not
create separation and UAS 2 now needs to maneuver as well.

SEnforcing the separation constraint at each time step can lead to a
restrictive formulation, especially in cases where the two UAS are only
briefly close to each other. This does however give us an optimization
with a structure that does not change over time, and can avoid collisions
in cases where the UAS could run across each other more than once in
quick succession (e.g. https://tinyurl.com/uex7722), which is
something ACAS-Xu was not designed for.
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CA-MPC optimization for UAS 2: If UAS 1
successful at collision avoidance, UAS 1 communica
current revised trajectory x} to UAS 2, with prtys -
UAS 2 then creates a new trajectory x5 (w.r.t the
decision sequence d).

Alg. 1 is designed to be computationally lighter th:
MILP approach (see Section IV), but unlike the MIL
not complete. In Section VI, through extensive simul
we show that the L2F approach demonstrates a sign
improvement in runtime while maintaining comparabl
formance in terms of separation.

Algorithm 1 Learning-to-Fly: Decentralized and coop
collision avoidance for two UAS. Also see fig. 2.

Data: Pre-planned trajectories, robustness tubes
Result: Sequence of control signals uj, u) for the twc
Get d from conflict resolution
UAS 1 solves CA-MPC optimization (6):
(Xllﬂ 'llll7 )\1) = CA-MPCl(Xl, X9, Pl, d, 71)
if >, A1 x =0 then
\ Done: UAS 1 alone has created separation; Set u), = us
else

UAS 1 transmits solution to UAS 2
UAS 2 solves CA-MPC optimization (6):
(XIQ7 11/2, )\2) = CA-MPCQ(XQ, Xll, PQ, d, +1)
if >, A2 = 0 then
| Done: UAS 2 has created separation
else
if lel,k _p/2,k|| > OVk = 07 s >N then
| Done: UAS 1 and UAS 2 created separation
else
| Not done: UAS still violate eq. 2a
end
end

end
Apply control signals u}, u} if Done; else Fail.

The solution of CA-MPC can be defined as follows:

Definition 5.1 (Zero-slack solution): The solution of the
CA-MPC optimization (6), is called the zero-slack solution
if for a given decision sequence d either

1) there exists an optimal solution of (6) such that
> A =0or

2) problem (6) is feasible with Zk A1, > 0 and there
exists an optimal solution of (6) such that ), Az = 0.

The two following theorems make important connections
between feasible solutions for MILP and CA-MPC formula-
tions. They are the consequence of the construction of CA-
MPC optimizations. We omit the proofs for brevity.

Theorem 5.1 (Sufficient condition for CA): Zero-slack
solution of (6) implies that the resulting trajectories for two
UAS are non-conflicting and within the robustness tubes of

the initial trajectories®.

%Theorem 5.1 formulates a conservative result as (4) is a convex under
approximation of the originally non-convex collision avoidance constraint
(3). Indeed, non-zero slack 3k|Aa ; > 0 does not necessarily imply the
violation of the mutual separation requirement (2a). The control signals
u’,u}, computed by alg. 1 can therefore in some instances still create
separation between drones even when the conditions of Theorem 5.1 are
not satisfied.

1 Input h LSTM Layers 1" Time Distributed 1
I I I' SoftMaxOutput |
| I I I, !
— [ ) |
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Fig. 4: Proposed LSTM model architecture for CR-S. LSTM layers
are shown unrolled over N time steps. The inputs are z; which are
the differences between the planned UAS positions, and the outputs
are decisions dj for conflict resolution at each time & in the horizon.

Theorem 5.2 (Existence of the zero-slack solution):
Feasibility of the MILP problem (5) implies the existence
of the zero-slack solution of CA-MPC optimization (6).

The Theorem 5.2 states that the binary decision variables
bt selected by the feasible solution of the MILP problem (5),
when used to select the constraints (defined by H, g) for the
CA-MPC formulations for UAS 1 and 2, imply the existence
of a zero-slack solution of (6).

B. Learning-based conflict resolution

Motivated by Theorem 5.2, we propose to learn the conflict
resolution policy from the MILP solutions. To do so, we use
a Long Short-Term Memory (LSTM) [26] recurrent neural
network augmented with fully-connected layers. LSTMs
perform better than traditional recurrent neural networks on
sequential prediction tasks [27].

The network is trained to map a difference trajectory
z = X1 —X> (as in eq. (3)) to a decision sequence d that de-
conflicts pre-planned trajectories x; and x,. For creating the
training set, d is produced by solving the MILP problem 5,
i.e. obtaining a sequence of binary decision variables b €
{0,1}5(N+1) and translating it into the decision sequence
de{1,...,6}V+L

The proposed architecture is presented in Figure 4. The
input layer is connected to the block of three stacked LSTM
layers. The output layer is a time distributed dense layer
with a softmax activation function such that each value is a
decision d, k ={0,...,N}.

VI. EXPERIMENTAL EVALUATION
A. Experimental setup

All the simulations were performed on a computer with
an AMD Ryzen 7 2700 8-core processor and 16GB RAM,
running Ubuntu 18.04. The MILP formulation was imple-
mented in MATLAB using Yalmip [28] with MOSEK v8 as
the solver. The learning-based approach was implemented in
Python 3 with Tensorflow 1.14 and Keras API and Casadi
with QPOASES as the solver. We implemented the CA-MPC
using CVXGEN for a measurement of computation times and
real-time implementation for experiments of actual hardware.

For the experiments, we set minimum separation to § =
0.1m. The learning-based CR scheme was trained for p =
0.055 which is close to the lower bound in assumption 1.

We have generated the data set of 14K training and 10K
test conflicting trajectories using the minimum-jerk trajectory
generation algorithm from [2]. The time horizon was set to
T = 4s and dt = 0.1s. The initial and final waypoints were
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Fig. 5: Model sensitivity analysis with respect to variations
fraction p/d, which connects the minimum allowable robustness
tube radius p to the minimum allowable separation between two
UAS 6, see Assumption 1. A higher p/d implies there is more
room within the robustness tubes to maneuver within for CA.

sampled uniformly at random from two 3D cubes close to
the fixed collision point, initial velocities were set to zero.

We have trained and ran experiments for various network
configurations. For each model, the number of training
epochs was set to 2K with a batch size of 2K. Each network
was trained to minimize categorical cross-entropy loss using
Adam optimizer with training rate of 0.001. The model with
3 LSTM layers with 128 neurons each has been chosen as
the default learning-based CR model.

B. Results and comparison to other methods

We analyzed three other methods alongside the proposed
learning-based approach for L2F.

1) A random decision approach which outputs a se-
quence sampled from the discrete uniform distribution.

2) A greedy approach that selects the discrete decisions
for which the most distance between the two UAS
available at each time step.

3) A centralized MILP solution that picks a decision
corresponding to a binary decision variable in (5).

For the evaluation, we measured and compared the sep-
aration rate and the computation time over 10K test
trajectories. Separation rate defines the fraction of given
initially conflicting trajectories for which UAS managed to
achieve minimum separation.

Figure 5 shows the trade-off between performance in
terms of separation rate and p/J fraction, which defines the
connection between the robustness tube p and the minimum
separation ¢. Higher p/é implies wider robustness tubes for
the UAS to maneuver within, which should make the CA task
easier. In the case of p/d = 0.5, where the robustness tubes
are just wide enough to fit two UAS (see assumption 1), we
see the L2F significantly outperforms the methods (excluding
the MILP). As the ratio grows, the performance of all
methods improve with L2F still outperforming the others,
topping out to achieve a best case separation of 1. The worst-
case performance for L2F is 0.9 which is again significantly
better than the other approaches.

Table I shows the separation rates for three different p/d
values as well as the computation times for conflict resolution
schemes plus the CA-MPC optimizations. In terms of sep-
aration rate, L2F outperformed the random and the greedy
approaches. The centralized MILP outperformed the L2F,
however, the computation time for the centralized approach
was orders of magnitude higher than L2F. These shows the

=== UAS 1: planned

= UAS 1: after L2F bs
0 —-- UAS 2: planned

05 e UAS 2: after L2F
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Fig. 6: Trajectories for 2 UAS from different angles. The dashed
(planned) trajectories have a collision at the halfway point. The
solid ones, generated through L2F method, avoid the collision while
remaining within the robustness tube of the original trajectories.
Initial UAS positions marked as stars. Playback of the scenario is
at https://tinyurl.com/y8cmé5ya.

benefits of L2F compared to other approaches, especially
when considering the success-computation time trade-off.

CA Scheme Separation Rate Computation time
p/5 =05[p/6 =0.95][p/6 = 1.15|| Mean |  Std
Random 0.311 0.609 0.661 2.02ms| 0.17ms
Greedy 0.529 0.836 0.994 3.82ms| 0.25ms
L2F 0.901 0.999 1 9.36ms| 1.75ms
MILP 1 1 1 68.5s 87.3s

TABLE I: Separation rates and computation times (mean and stan-
dard deviation) comparison of different CA schemes. Separation
rate is the fraction of conflicting trajectories for which separation
requirement (2a) is satisfied after CA.

Figure 6 shows an example of two UAS trajectories
before and after collision avoidance through L2F method.
In addition, in order to evaluate the feasibility of the de-
conflicted trajectories, we have also ran experiments using
two Crazyflie quad-rotor robots. Video recordings of the
actual flights and additional simulations can be found at
https://tinyurl.com/yxttg715.

VII. CASE STUDY: INDEPENDENT PLANNING AND L2F
FOR A 4-UAS EXAMPLE

Figure 7 depicts a UAS case-study with a reach-avoid
mission. Scenario consists of four UAS which must reach
desired goal states within 4 seconds while avoiding the
wall obstacle and each other. Each UAS j € {1,...,4}
specification can be defined as:

©j = Oo,41(pj € Goal) A O g—(p; € Wall) — (7)

A pairwise separations requirement of 0.1 meters is enforced
for all UAS, therefore, the overall mission specification is:
4
Pmission = /\ w; A /\ 5[0,4]Hpj - pj/|| >0.1 (8)
Jj=1 J#3’

First, we solved the planning problem for all four UAS
in a centralized manner following approach from [2] Next,
we solved the planning problem for each UAS j and its
specification ¢; independently, with calling L2F on-the-fly,
after planning is complete. This way, independent planning
with the online collision avoidance scheme guarantees the
satisfaction of the overall mission specification (8).

Simulation results. We have simulated the scenario for
100 different initial conditions. The average computation
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Fig. 7: Workspace for the case study scenario. Trajectories for 4
UAS (magenta stars) reaching their goal sets (green boxes) within
4 seconds, while not crashing into the vertical wall (in red). A
pairwise separation requirement of 0.1m is enforced. Simulations
are available at https://tinyurl.com/t8bwwgk.

time to generate trajectories in a centralized manner was
0.35 seconds. The average time per UAS when planning
independently (and in parallel) was 0.1 seconds. These
results demonstrate a speed up of 3.5x for the individual
UAS planning versus centralized [2].

VIII. CONCLUSION

Summary. We developed Learning-to-Fly (L2F), a two-
stage, on-the-fly and predictive collision avoidance approach
that combines learning-based decision-making for conflict
resolution with decentralized linear programming-based UAS
control. Through extensive simulations and demonstrations
on real quadrotor drones we show that L2F, with a run-time
< 10ms is computationally fast enough for real-time imple-
mentation. It is successful in resolving 100% of collisions
in most cases, with a graceful degradation to the worst-case
performance of 90% when there is little room for the UAS
to maneuver. L2F also enables independent UAS planning,
speeding up the process compared to centrally planning for
all the UAS in the airspace. A 4-UAS case study shows that
the independent planning is 3.5x-faster.

Limitations and Future Work. While pairwise collision
avoidance is sufficient when the airspace density is low, in
the future we will extend the approach to cases where more
than two UAS could be in conflict with each other. As L2F
does not always succeed, we plan to investigate this further
and use the failure cases as counterexamples to make the
learning-based models better. In general, we expect L2F to
be realized within a larger UTM system with additional con-
tingencies (e.g. FAA Lost Link procedures [29]), including
the possibility of online re-planning of missions when L2F
cannot guarantee collision avoidance.
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