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Selective excitation of a diffusive system’s transmission eigenchannels enables manipulation of its
internal energy distribution. The fluctuations and correlations of the eigenchannel’s spatial profiles,
however, remain unexplored so far. Here we show that the depth profiles of high-transmission
eigenchannels exhibit low realization-to-realization fluctuations. Furthermore, our experimental and
numerical studies reveal the existence of interchannel correlations, which are significant for low-
transmission eigenchannels. Because high-transmission eigenchannels are robust and independent from
other eigenchannels, they can reliably deliver energy deep inside turbid media.
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In recent years, extensive studies of coherent wave
transport in multiple-scattering media have been conducted
with light, microwaves, and acoustic waves [1,2]. The
overarching goal of this research is overcoming the
limitations imposed by incoherent diffusion, thereby ena-
bling energy delivery deep inside a turbid medium. While
multiple scattering persistently randomizes waves traveling
in a linear system with static disorder, the coherent wave
transport is ultimately a deterministic process. Therefore, it
can be described by a field transmission matrix t, which
maps the incident waves to the transmitted waves [3]. The
eigenvectors of t†t provide the input wave fronts which
excite a set of disorder-specific wave functions spanning
the system known as the transmission eigenchannels. Any
incoming wave can be decomposed into a linear combi-
nation of eigenchannels, each propagating independently
through the system with a transmittance given by the
corresponding eigenvalue τ. One of the striking theoretical
predictions of diffusive systems is the bimodal distribution
of the transmission eigenvalues, with maxima at τ ¼ 0 and
τ ¼ 1 [4–8]. The corresponding eigenchannels are referred
to as closed and open channels.
Both the fluctuations of and the correlations between

transmission eigenvalues are intensely studied topics
[2,3,9,10]. This fundamental research area has provided
explanations for prominent physical phenomena like uni-
versal conductance fluctuations and quantum shot noise
[3,5,8,11–16]. However, the statistical properties of indi-
vidual eigenchannels, such as the fluctuations of eigen-
channel profiles and correlations between them, have not
been studied before. In electronic systems, this is because
input states cannot be easily controlled and therefore
systematically exciting individual eigenchannels is unfea-
sible. Thanks to the recent developments of optical wave
front shaping techniques, photonic systems offer a unique

opportunity for studying the second-order statistics of
transmission eigenchannels.
The ability to manipulate input states in optics and

acoustics has spurred a renewed interest in using trans-
mission eigenchannels for imaging and sensing applica-
tions [1,2,17,18]. Coupling waves into an open channel not
only enhances the transmitted power through a diffusive
system [19–25], but also enhances the energy density inside
the system [26–34]. The latter has a tremendous impact on
enhancing light-matter interactions and manipulating non-
linear processes in turbid media [35,36]. So far, however,
the potential energy density enhancement is only known
after ensemble averaging over many disorder realizations.
Thus, it is still an open question if coupling energy into an
open channel guarantees a significant enhancement of the
energy density inside a single diffusive sample.
Here, we experimentally and numerically investigate

both the fluctuations and correlations of transmission
eigenchannel depth profiles in optical diffusive systems.
We develop novel experimental techniques for measuring
the transmission matrix of an on-chip diffusive waveguide,
exciting its individual transmission eigenchannels, and
performing an interferometric measurement of the light
field everywhere inside the waveguide. High-transmission
eigenchannels exhibit small realization-to-realization fluc-
tuations in their depth profiles, demonstrating a robustness
when compared to either low-transmission eigenchannels
or random inputs. Furthermore, different eigenchannels are
correlated in their depth-profile fluctuations from realiza-
tion to realization. The correlations are weaker for higher-
transmission eigenchannels, indicating they are more in-
dependent than lower-transmission eigenchannels. Their
consistent depth profiles guarantee deep penetration of
energy into any diffusive system, which is promising for
applications in deep tissue imaging and light delivery.
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To directly observe the depth profiles of transmission
eigenchannels within a diffusive system, we fabricate two-
dimensional (2D) waveguide structures on a silicon-on-
insulator wafer with electron beam lithography and plasma
etching [37]. As shown in Fig. 1(a), 100-nm-diameter holes
are randomly etched into the waveguides, which have
photonic crystal sidewalls to reflect light [38]. At the
wavelength of our probe light, λ ¼ 1.55 μm, the transport
mean free path, lt ¼ 3.2 μm, is much shorter than the
disordered region length, L ¼ 50 μm, in each waveguide.
Therefore, the light undergoes multiple scattering and
diffusive transport through each waveguide [37]. Light
scatters out of plane from the random holes, providing a
direct probe of the light inside the disordered region. This
process can be modeled as an effective loss, and accounted
for in the diffusive dissipation length, ξa ¼ 28 μm. The
waveguides are each 15 μm wide, supporting N ¼ 55
propagating modes at λ ¼ 1.55 μm. Before entering one
of the diffusive waveguides, light is injected via the edge of
the wafer into a ridge waveguide. Because of the large
refractive index mismatch between silicon and air, only
low-order waveguide modes are excited at the interface.
Before the disordered region, the waveguide width is
tapered from 300 to 15 μm in order to convert the
lower-order modes to higher-order ones. The taper enables
us to access all waveguide modes incident on the disor-
dered region [32].
To measure the light field inside individual diffusive

waveguides, we use an interferometric setup, as sketched in
Fig. 1(b). In our setup, the monochromatic light from a
wavelength-tunable laser source is split into two beams.

One beam is modulated by a spatial light modulator (SLM)
and then injected into one of the waveguides via the edge of
the wafer. The other beam is used as a reference beam. It is
spatially overlapped with the out-of-plane scattered light
from the diffusive waveguide, on the CCD camera chip.
The CCD camera records the resulting interference pattern,
from which the complex field profile across the diffusive
waveguide is obtained, as shown in Ref. [37].
By sequentially applying an orthogonal set of phase

patterns to the 128 SLM macropixels, and measuring the
field within the sample, we acquire a matrix that maps the
field from the SLM to the field inside the disordered
waveguide tSLM→int. This matrix encompasses information
about the light transport inside the waveguide and the light
propagation from the SLM to the waveguide. To separate
these, we need access to the field incident on the disordered
region of the waveguide. We obtain this information by
adding an auxiliary weakly scattering region in front of the
diffusive region called the “buffer” region, as shown in
Fig. 1(a). From the light scattered out of plane from the
buffer, we recover the field right in front of the strongly
scattering region. The length of the buffer region is 25 μm,
which is shorter than its 32-μm-length transport mean free
path. Therefore, light only experiences single scattering in
the buffer, and as a result, the diffusive wave transport in the
original disordered region is not appreciably altered.
With access to the field inside the buffer, we can

construct the matrix relating the field on the SLM to the
buffer, tSLM→buff . From tSLM→int, we can also construct the
matrix tSLM→end, which maps the field from the SLM to a
region near the end of the diffusive waveguide. With these
we calculate the matrix which maps the field from the
buffer to the end, tbuff→end ¼ tSLM→endt−1SLM→buff , using
Moore-Penrose matrix inversion. Although tbuff→end is
not the field transmission matrix, t, the depth profiles of
its eigenchannels match those of transmission eigenchan-
nels in our numerical simulation (see Fig. 2 and discussion
below). Therefore, tbuff→end can be used as an experimental
proxy for the field transmission matrix t of the diffusive
waveguide.
To excite a single eigenchannel, we first perform a singular

value decomposition on tbuff→end to obtain the field distri-
bution in the buffer corresponding to one eigenchannel. Then
we multiply the field profile in the buffer with t−1SLM→buff to
calculate the SLM phase-modulation pattern. By displaying
this pattern on the SLM, we excite a single eigenchannel of
the diffusive waveguide. We record the spatial intensity
profile of each eigenchannel within the diffusive waveguide.
From this measurement, we obtain the eigenchannel depth
profile ĨðzÞ associated with each measurement by summing
the intensity over thewaveguide cross section. For eachdepth
profile, the measured intensity profile ĨðzÞ is normalized
to IðzÞ ¼ ĨðzÞ=½ð1=LÞ R L

0 Ĩðz0Þdz0�.
In Figs. 2(a) and 2(b), the experimentally measured

depth profiles of a high-transmission and a low-
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FIG. 1. Waveguide structure and optical setup. A composite
SEM image of a diffusive waveguide is shown in (a). The matrix
mapping the field in the buffer region to the end region, tbuff→end,
is related to the matrices tSLM→buff and tSLM→end. In (b) the
simplified sketch of the experimental setup illustrates how we
wave-front shaping a laser beam with a spatial light modulator
(SLM) while performing an interferometric measurement of the
light scattered out of the waveguide.
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transmission eigenchannel are juxtaposed. The high-trans-
mission eigenchannel in Fig. 2(a) has an arch-shaped
energy-density distribution which spans the depth of the
diffusive region. In Fig. 2(b), the energy-density distribu-
tion of the low-transmission eigenchannel rapidly decays
with depth. We numerically calculate the transmission
eigenchannels with the recursive Green’s function method
in the KWANT simulation package [37]. The experimentally
measured profiles match the corresponding depth profiles
generated from numerical simulations of both t and
tbuff→end, confirming that we excite individual eigenchan-
nels in our measurements. Furthermore, the agreement
between the eigenchannels of tbuff→end and t confirms that
the depth profiles of tbuff→end have a one-to-one correspon-
dence with the eigenchannels of t.

In total, we measure 50 eigenchannel profiles for a single
experimental system realization. Each profile matches one of
the ensemble-averaged profiles of tbuff→end generated
numerically without any fitting parameters [37]. Measure-
ment noise causes multiple experimental profiles to be
mapped to a single numerical profile, and this limits the
total number of recovered eigenchannels to 22. Figure 2(c)
shows the depth profiles for all 22 eigenchannels, which
agree well with the numerical simulations [37]. The

transmittance of the measured eigenchannels varies from
τ1 ≃ 0.43 to τ22 ≃ 7.9 × 10−4, with a mean value of
hταi ¼ 0.041.
Next, we study the realization-to-realization fluctuations

of eigenchannel profiles. From measurements of 13 system
realizations [37], we compute the mean depth profile of
each eigenchannel hIαðzÞi and the realization-specific
deviation δIαðzÞ ¼ IαðzÞ − hIαðzÞi. From this, the total
fluctuation of each eigenchannel profile is quantified
by C̃α ¼ ð1=LÞ R L

0 h½δIαðzÞ�2idz, where h� � �i represents
ensemble averaging. Figure 3(a) shows that the total
fluctuation of each eigenchannel profile increases mono-
tonically as a function of eigenchannel index. The uncer-
tainty of C̃α—due to the finite number of ensembles in our
experiment—is estimated from simulations to be�25% the
value of C̃α, which is smaller than the overall change of C̃α

22 eigenchannel profiles
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FIG. 2. Depth profiles of transmission eigenchanels. High
(α ¼ 1) and low (α ¼ 20) transmission eigenchannel profiles
are presented in (a) and (b) while the 22 measured eigenchannel
profiles are juxtaposed in (c). The experimentally measured
profiles (blue lines) agree well with the profiles calculated from
numerical simulations using the transmission matrix t (black
dashed lines) and the matrix tbuff→end (red lines).

Eigenchannel index 

0.04

0.8

0 10 20 30 40 50

Experiment

Depth z (�m)

5

10

15

20

E
ig

en
ch

an
ne

l i
nd

ex
 

-3
10

-2
10

-1
10

0
10

Simulation

0    10 20 30 40 50

5

10

15

20

E
ig

en
ch

an
ne

l i
nd

ex
 

Depth z (�m)

-3
10

-2
10

-1
10

0
10

Depth z ( m)

-3
10

-2
10

-1
10

0
10

0    10 20 30 40 50

(a)

 (b) (e)

 (d) Eigenchannel fluctuations

Depth-resolved fluctuations

0.12

 = 1

 = 20

4 8 12 16 20

Experiment

Simulation
Simulation

Simulation

0    10 20 30 40 50

5

10

15

20

E
ig

en
ch

an
ne

l i
nd

ex
 

Depth z ( m)

-3
10

-2
10

-1
10

0
10

 (c) (f)

0 10 20 30 40 50
Depth z ( m)

Relative variance

0.0

0.05

0.10

0.15

RRandom Inputs

C
va

r
va

r

 = 1

 = 20

FIG. 3. Eigenchannel fluctuations. In (a), the spatially averaged
depth-profile fluctuations of the eigenchannels, C̃α, increase
monotonically with the channel index α. The green dashed line
indicates the experimentally observed fluctuations for random
incident wave fronts: 0.59. In (b), experimentally observed depth-
resolved intensity fluctuations, var½IαðzÞ�, of high (α ¼ 1) and
low (α ¼ 20) transmission eigenchannels (circles) are closely
reproduced by the numerical simulations of transmission eigen-
channels from tbuff→end (solid lines) and t (dashed lines). In (c),
var½IαðzÞ� is divided by hIαðzÞi2 for the high- and low-trans-
mission eigenchannels of t. In (d) and (e), the experimentally
observed and numerically calculated depth-resolved intensity
fluctuations for individual eigenchannels show how var½IαðzÞ�
evolves with α.
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with α. Hence, the depth profiles of high-transmission
eigenchannels fluctuate less than the profiles generated by
random illumination patterns (indicated by the green
dashed line), while lower-transmission eigenchannels fluc-
tuate more.
Now we look into the position-dependent fluctuation of

individual eigenchannel profiles about their ensemble
average, var½IαðzÞ� ¼ h½δIαðzÞ�2i, as a function of depth
z. Figure 3(b) reveals distinct differences in the depth
dependence of high- and low-transmission eigenchannels.
While var½IαðzÞ� is nearly flat for the high-transmission
eigenchannel, it features a fast drop with z for the low-
transmission eigenchannel. Figures 3(d)–3(f) are 2D plots
of var½IαðzÞ� for all 22 eigenchannels, calculated using
experimental data, as well as simulations of tbuff→end, and t.
As the transmittance decreases, the maximum of var½IαðzÞ�
moves toward the front surface of the diffusive region. The
decrease in the variance with depth results from the decay
of the mean intensity with depth: hIαðzÞi. However, the
relative intensity fluctuation of the low-transmission eigen-
channels, characterized by var½IαðzÞ�=hIαðzÞi2, actually
increases with depth, as shown in Fig. 3(c) for α ¼ 20.
In contrast, the relative intensity fluctuation of high-trans-
mission eigenchannels is uniform with depth and small; for
example, var½I1ðzÞ�=hI1ðzÞi2 < 0.04 for all z. Moreover,
the fluctuation of a transmission eigenchannel’s intensity at
the sample output reflects the fluctuation of the corre-
sponding transmission eigenvalue. Therefore, the stronger
fluctuation of a low-transmission eigenchannel, relative to a
high-transmission eigenchannel, at the output end z ¼ L
indicates the fluctuation of its eigenvalue is similarly
higher. This result, which we confirmed in our numerical
simulations, is consistent with the theoretical prediction
in Ref. [9].
The experimentally observed fluctuations of individual

transmission eigenchannels are quantitatively reproduced
by the numerical simulations of tbuff→end and t in Figs. 3(a),
3(b), 3(d)–3(f). The excellent agreement between exper-
imental and numerical results confirms that eigenchannel
fluctuations depend on their transmittance. The higher the
transmittance, the lower the fluctuations. This means that
high-transmission eigenchannels have a robust and con-
sistent depth profile, irrespective of the disorder configu-
ration of a system.
Finally, we investigate the cross-correlations between

different transmission eigenchannels. For any given dis-
order realization, eigenchannels are an orthogonal set of
functions at the front and back surfaces of the medium.
While eigenchannels differ from realization to realization,
their orthogonality implies that the differences in their field
profiles must be correlated from realization to realization.
This does not mean, however, that the intensity fluctuations
of their profiles inside the sample should be correlated. To
study cross-correlations in the eigenchannels’ intensity
fluctuations across the sample, we introduce the covariance

C̃αβ ¼ hδIαðzÞδIβðzÞiz, where h� � �iz describes both ensem-
ble averaging and depth averaging. For α ¼ β, C̃αα reduces
to the variance C̃α, which describes the eigenchannel
fluctuations.
Figures 4(a)–4(c) show the experimental and numerical

results of C̃αβ for all α and β. The novanishing off-diagonal
elements of C̃αβ (α ≠ β) reveal coordinated changes in the
eigenchannels’ depth profiles. Between different pairings
of eigenchannels, the correlations differ. The larger the
difference in the transmittances of a pair, the weaker the
correlation of their depth-profile fluctuations. Furthermore,
lower-transmission eigenchannels tend to correlate more
with other low-transmission eigenchannels than higher-
transmission eigenchannels do with other high-transmis-
sion eigenchannels. Quantitatively we can describe the
correlation of a single eigenchannel to all others by the
cumulative covariance

P
β≠α C̃αβ. As shown in Fig. 4(d),

the cumulative covariance increases with α, indicating
higher-transmission eigenchannels are more independent
from other eigenchannels than lower-transmission eigen-
channels. Moreover, the cumulative covariance exceeds the
variance C̃αα ¼ C̃α by a factor of 2. Hence, the total cross-
correlation for a single eigenchannel is stronger than its
own fluctuation.
To provide a plausible explanation for the observed

phenomena, we resort to the modal description of trans-
mission eigenchannels [44]. A transmission eigenchannel
can be decomposed by the quasinormal modes of the
disordered system. Previous research [44] has revealed that
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The blue symbols represent experimental data and red lines
represent numerical simulations based on tbuff→end.
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high-transmission eigenchannels are composed of only a
few on-resonance modes, while low-transmission eigen-
channels are composed of many off-resonance modes that
destructively interfere. Since the destructive interference is
sensitive to changes in the scattering configuration, the
low-transmission eigenchannels exhibit strong fluctuations.
Moreover, because individual low-transmission eigenchan-
nels share many of the same off-resonant modes, their
fluctuations are correlated. Since high-transmission eigen-
channels are composed of a different set of modes than low-
transmission eigenchannels, the correlations between high-
and low-transmission eigenchannels are weak.
Our findings regarding the second-order statistical prop-

erties of transmission eigenchannels are general and appli-
cable to other types of waves such as microwaves, acoustic
waves, and matter waves. In practical applications, the
consistent and robust depth profiles of open channels
guarantee that they can deliver energy deep into any
diffusive system regardless of the disorder configuration.
Such reliable energy delivery has major implications in
applications ranging from multiphoton imaging to photo-
thermal therapy and shock wave treatment. Since our on-
chip experimental platform allows for both direct meas-
urement of the complex field inside a random structure and
near-complete control over the incident field, we can
investigate how to shape an incident wave front to control
the spatial distribution of light across the entire disordered
sample. Furthermore, this setup can be used to experimen-
tally study the spatial structure and statistics of the time-
delay eigenchannels of a diffusive system, as well as the
time-gated transmission and reflection eigenchannels of a
diffusive system.
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