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Abstract A theorem of Kuranishi (Ann Math 75(2):536-577, 1962) tells us that
the moduli space of complex structures on any smooth compact manifold is always
locally a finite-dimensional space. Globally, however, this is simply not true; we
display examples in which the moduli space contains a sequence of regions for
which the local dimension tends to infinity. These examples naturally arise from the
twistor theory of hyper-Kihler manifolds.
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If Y is a smooth compact manifold, the moduli space 91(Y) of complex structures
on Y is defined to be the quotient of the set of all smooth integrable almost-complex
structure J on Y, equipped with the topology it inherits from the space of almost-
complex structures, modulo the action of the group of self-diffeomorphisms of Y.
When we focus only on complex structures near some given Jy, an elaboration of
Kodaira-Spencer theory [3] due to Kuranishi [4] shows that the moduli space is
locally finite dimensional. Indeed, if ® denotes the sheaf of holomorphic vector
fields on (Y,Jy), Kuranishi shows that there is a family of complex structures
parameterized by an analytic subvariety of the unit ball in H'(Y, ®) which, up to
biholomorphism, sweeps out every complex structure near Jy. This subvariety of
H'(Y, ®) is defined by equations taking values in H?(Y, ®), and one must then also
divide by the group of complex automorphisms of (Y, J), which is a Lie group with
Lie algebra H°(Y, ®). But, in any case, near a given complex structure, this says
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that the moduli space is a finite-dimensional object, with dimension bounded above
by Al(Y, ®).

What we will observe here, however, is that this local finite-dimensionality can
completely break down in the large:

Theorem A Let X* be a smooth simply connected compact manifold that admits a
hyper-Kéihler metric. Then the moduli space I of complex structures on S* x X
is infinite dimensional, in the following sense: for every N € Z7T, there are
holomorphic embeddings DV — 9 of the N-complex-dimensional unit polydisk
DV :=Dx---x D C CV into the moduli space.

In fact, for every natural number N, we will construct proper holomorphic
submersions ) — D" with fibers diffeomorphic to X x S such that no two fibers are
biholomorphically equivalent. Focusing on this concrete assertion should help avoid
confusing the phenomenon under study with other possible structural pathologies of
the moduli space 1.

Before proceeding further, it might help to clarify how our construction dif-
fers from various off-the-shelf examples where Kodaira-Spencer theory produces
mirages of moduli that should not be mistaken for the real thing. Consider the
Hirzebruch surfaces Fy = P(O & O(f)) — CP;. These are all diffeomorphic
to S% x §2 or CP#CP,, depending on whether £ is even or odd. For £ > 0,
h'(F¢,®¢) = (L — 1) - oo and h*(F;,®;) = 0, so it might appear that the
dimension of the moduli space is growing without bound. However, when these
infinitesimal deformations are realized by a versal family, most of the fibers always
turn out to be mutually biholomorphic, because ho(Fe, ©¢) = (£ + 5) = o0, too,
and a cancellation arises from the action of the automorphisms of the central fiber
on the versal deformation. In fact, the F, represent all the complex structures on
52 x §? and CP,#CIP,; thus, while the corresponding moduli spaces are highly non-
Hausdorff, they are in fact just O-dimensional. Similar phenomena also arise from
projectivizations of higher-rank vector bundles over CP;; even though it is easy to
construct examples with 4!(®) — oo in this context, the piece of the moduli space
one constructs in this way is once again non-Hausdorff and 0-dimensional.

Let us now recall that a smooth compact Riemannian manifold (X*, g) is said to
be hyper-Kdhler if its holonomy is a subgroup of Sp(k). One then says that a hyper-
Kihler manifold is irreducible if its holonomy is exactly Sp(k). This in particular
implies [1] that X is simply connected. Conversely, any simply connected compact
hyper-Kéhler manifold is a Cartesian product of irreducible ones, since its deRham
decomposition [2] cannot involve any flat factors. In order to prove Theorem A, one
therefore might as well assume that (X, g) is irreducible, since any hyper-Kihler
manifold admits complex structures, and S2 x (X x X) = (52 x X) x X. Note that
examples of irreducible hyper-Kihler (4k)-manifolds are in fact known [1, 6] for
every k > 1. When k£ = 1, the unique choice for X is K3. For k > 2, the smooth
manifold X is no longer uniquely determined by k, but the the Hilbert scheme of k
points on a K3 surface always provides one simple and elegant example.

The construction we will use to prove Theorem A crucially involves the use of
twistor spaces [2, 7]. Recall that the standard representation of Sp(k) on R* = HF
commutes with every almost-complex structure arising from a quaternionic scalar in
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§? € ImH, and that every hyper-Kihler manifold is therefore Kihler with respect
to a 2-sphere’s worth of parallel almost-complex structures. Concretely, if we let J,
J», and J3 denote the complex structures corresponding to the quaternions i, j, and k,
then the integrable complex structures in question are those given by aJ; +bJ, +cJ3
for any (a, b, ¢) € R? with a®> 4+ b*> 4+ ¢> = 1. We can then assemble these to form
an integrable almost-complex structure on X x S? by using the round metric and
standard orientation on S? to make it into a CP;, and then giving the X the integrable
complex structure aJ; + bJ, + c¢J3 determined by (a, b, c) € S2. For each x € X,
the stereographic coordinate { = (b + ic)/(a + 1) on {x} x S? is thus a compatible
complex coordinate system on the so-called real twistor line CIPy C Z near the point
(1,0, 0) representing J;|,. We will make considerable use of the fact that the factor
projection X x §? — S? now becomes a holomorphic submersion @ : Z - CP; with
respect to the twistor complex structure, so that @ can therefore be thought of as a
family of complex structures on X.

Lemma 1 Let (X*,g), k > 1, be a hyper-Kihler manifold, and let Z be its twistor
space. Consider the holomorphic submersion w : Z — CP; as a family of compact
complex manifolds, and set X; := w~'({) for any { € CPy. Then the Kodaira-

Spencer map T;(;O(C]P’l - H'(Xg,, O(T'X)) is non-zero at every ¢, € CP;.

Proof Since we can always change our basis for the parallel complex structures on
(X, g) by the action of SO(3), we may assume that the value {y of { € CP; at
which we wish to check the claim represents the complex structure on X we have
temporarily chosen to call J;. Observe that the 2-forms w, = g(Jy-,-), @ = 1,2, 3,
are all parallel. Moreover, notice that, with respect to Ji, the 2-form w; is just the
Kahler form of g, while w, + iwj; is a non-degenerate holomorphic (2, 0)-form.

By abuse of notation, we will now also use ¢ to denote a local complex coordinate
on CPy, with { = 0 representing the complex structure J; of interest. Now recall
that the Kodaira-Spencer map sends d/d¢ to an element of H'(X, Oy, (T}I’OX))
that literally encodes the derivative of the complex structure J; with respect to .
Indeed, since we already have chosen a differentiable trivialization of our family,
this element is represented in Dolbeault cohomology by the (0, 1)-form ¢ with
values in 7" given by

d 1,0
J{(vo,l)}

p(v) := [d§

¢=0

where the decomposition TcX = T'* @ T%! used here is understood to be the
one determined by J;. Now taking ¢ to specifically be the stereographic coordinate
¢{ =€+ in, where £ = b/(1 + a) and n = ¢/(1 + a), we then have

d d
]{‘ =]2 and Jg‘ =J3,
d§ "= dn " li=o
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and hence

J. __1(J iJ5)
d = (=il
d¢ ‘ =0 2

Since T%! is the (—i)-eigenspace of J;, we therefore have

p(v) = ; [(J2 — iJ3)UO’1]LO

; [(/2+ iszl)UO’l]l’O

= [Jz(vo’l)]l’o
= S (")

where the last step uses the fact that J, anti-commutes with Jj, and therefore
interchanges the (&i)-eigenspaces 7' and T%! of J;.

On the other hand, since w; + iws3 is a non-degenerate holomorphic 2-form on
(X, J1), contraction with this form induces a holomorphic isomorphism 7!? = A1,
and hence an isomorphism H'(X, O(T'?)) = H'(X,Q"). In Dolbeault terms, the
Kodaira-Spencer class [¢] is thus mapped by this isomorphism to the element of
H%Jll (X) = H'(X, Q") represented by the contraction ¢_(w, + iw3). Since

[o(v")]a(w2 + iw3) = g2 + iT3lp(""). )
= g([a + i1 2] (™), )
= g(—[1 + inp*'.)
= 2iw; (",

= 2iw; (-, v"),

the Kodaira-Spencer class is therefore mapped to 2i[w;] € H%’l (X). However, since
1

[w1]%* pairs with fundamental cycle [X] to yield (2k)! times the total volume of
(X, g), 2i [w] is certainly non-zero in deRham cohomology, and is therefore non-
zero in Dolbeault cohomology, too. The Kodaira-Spencer map of such a twistor
family is thus everywhere non-zero, as claimed.

We next define many new complex structures on X x S? by generalizing a
construction [5] originally introduced in the k = 1 case to solve a different problem.
Letf : CPP; - CP; be a holomorphic map of arbitrary degree £. We then define a
holomorphic family f* @ over CIP; by pulling @ back via f:

rz Loz

ffo w |
cr, L cp,.
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In other words, if I' C CIP; x CP is the graph of f, then f*Z is the inverse image of

I" under ZxCP; 7] CP; xCP,. Since w is differentiably trivial, so is @ := f*w
and Z := f*Z may therefore be viewed as X x S? equipped with some new complex
structure J;.

Lemma2 Let Z = f*Z be the complex (2k + 1)-manifold associated with a
holomorphic map f : CPy — CP; of degree {, and let @ = f*w be the
associated holomorphic submersion w = f*w. Then the canonical line bundle
K is isomorphic to @w* O(=2k{ — 2) as a holomorphic line bundle.

Proof The twistor space of any hyper-Kéhler manifold (X‘”‘, g) satisfies K; =
@ *O(—2k — 2). On the other hand, the branch locus B of f Z — Z is the inverse
image via @ of 2¢ — 2 points in CIP;. Thus

. = [B] ® f*Ky =~ &*[0Q2L — 2) @ O(U(=2k — 2))] = &*O(—2k( — 2),

as claimed.
This now provides one cornerstone of our argument:

Proposition 1 If Z = f*Z is the complex (2k + 1)-manifold arising from
a simply connected hyper-Kdihler manifold (X*,g) and a holomorphic map
f : CPy — CP, of degree £, then there is a unique holomorphic line bundle
K=V CKE2) \whose (2 + 2kL)th tensor power is isomorphic to the anti-canonical
line bundle. Moreover, h°(Z, O(K~Y/C*+2)Y) = 2, and the pencil of sections of
this line bundle exactly reproduces the holomorphic map @ Z — CP,. Thus
the holomorphic submersion @ is an intrinsic property of the compact complex
manifold Z= (XxS2, Jr), and is uniquely determined, up to Mbius transformation,
by the complex structure J.

Proof Because Z ~ X x S2 is simply connected, H'(Z, Zo4+2) = 0, and the long
exact sequence induced by the short exact sequence of sheaves

0 = Zoggq2 > O > O0* >0

therefore guarantees that there can be at most one holomorphic line bundle
K~1/K+2) whose (2 + 2k{)th tensor power is the anti-canonical line bundle K*.
Since Lemma 2 guarantees that w*O(1) is one candidate for this root of K*, it
is therefore the unique such root. On the other hand, since @w*O(1) is trivial on
the compact fibers of @, any holomorphic section of this line bundle on Z is
fiber-wise constant, and is therefore the pull-back of a section of O(1) on CP;.
Thus #°(Z, O(K~V/@+2))) = pO(CP;, O(1)) = 2, and the pencil of sections of
K~/ @K+2) thys exactly reproduces @ : Z — CPy.

Here, the role of the Mobius transformations is of course unavoidable. After all,
preceding f by a Mobius transformation will certainly result in a biholomorphic
manifold!
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Since @ is intrinsically determined by the complex structure of Z, its complex
structure also completely determines those elements of CPP; at which the Kodaira-
Spencer map of the family @ : 7 — CP, vanishes; this is the same as asking
for fibers for which there is a transverse holomorphic foliation of the first formal
neighborhood. Similarly, one can ask whether there are elements of CP; at which
the Kodaira-Spencer map vanishes to order m; this is the same as asking for fibers
for which there is a transverse holomorphic foliation of the (m + 1)% formal
neighborhood.

Proposition 2 The critical points of f : CP; — CPy, along with their multiplici-
ties, can be reconstructed from the submersion f*w : f*Z — CPy.

Proof The Kodaira-Spencer map is functorial, and transforms with respect to
pull-backs like a bundle-valued 1-form. Since the Kodaira-Spencer map of @ is
everywhere non-zero by Lemma 1, the points at which the Kodaira-Spencer map of
@ = f*w vanishes to order m are exactly those points at which the derivative of
f: CP; - CP; has a critical point of order m.

Taken together, Propositions 1 and 2 thus imply the following:

Theorem B Modulo Mobius transformations, the configuration of critical points
of f : CPy — CPy, along with their multiplicities, is an intrinsic invariant of the
compact complex manifold 7= f*z

By displaying suitable families of holomorphic maps CP; — CP;, we will now
use Theorem B prove Theorem A. Indeed, for any (ay, ..., ay) € CN with |a;—2j| <
1,1let P, .. 4y (&) be the polynomial of degree N 4-6 in the complex variable { defined
by

and let f;, 4, : CP; — CP; be the self-map of CP; = C U {oo} obtained by

extending P,, 4, : C = C via oo = oo; in other words,
fal ..... ﬂN([é‘l’ 62]) = [Pal ..... ay (Clv CZ)s éév+6]s
where Py, .. 4y (¢1, $2) is the homogeneous polynomial formally defined by

Since the constraints we have imposed on our auxiliary parameters force the
complex numbers 0, 1,ay,...,ay to all be distinct, the critical points of f5, . 4y :
CP; —» CP, are justthe ay, ..., ay, each with multiplicity 1, along with 0, 1, and oo,
which are individually distinguishable by their respective multiplicities of 2, 3, and
N + 5. Since any Mobius transformation that fixes 0, 1, and oo must be the identity,
Theorem B implies that different values of the parameters (ay, ..., ay), subject the
constraints |a;—2j| < 1, will always result in non-biholomorphic complex manifolds
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Zayooay = ayZ- Thus, pulling back @ : Z — CP, via the holomorphic map

®: DV x CP, — CP,
Uty ot [81,82)) = a2, an+2n ([S15 82])

now produces a family ®*w : ®*Z — DV of mutually non-biholomorphic
complex manifolds over the unit polydisk DV C CV. Since these manifolds are all
diffeomorphic to X x §2, and since this works for any positive integer N, Theorem A
is therefore an immediate consequence.

Of course, the above proof is set in the world of general compact complex
manifolds, and so has little to say about conditions prevailing in the tidier realm of,
say, complex algebraic varieties. In fact, one should probably expect the examples
described in this article to never be of Kihler type, since there are results in this
direction [5] when k = 1. It would certainly be interesting to see this definitively
established for general k.

On the other hand, the feature of the k = 1 case highlighted in [5] readily
generalizes to higher dimensions; namely, the Chern numbers of the complex
structures J; change as we vary the degree of f. Indeed, notice the tangent bundle of
X x §? is stably isomorphic to the pull-back of the tangent bundle of X, and that TX
has some non-trivial Pontrjagin numbers; for example, if we assume for simplicity
that X is irreducible, we then have A(X) = k + 1. Since the fibers of f*@ are
Poincaré dual to ¢;(f*Z)/(2k€l + 2), we have (c;A)(f*Z) = 2k + 1)(k + 1),
and a certain combination of the Chern numbers of f*(Z) therefore grows linearly
in £ = degf. Consequently, as N — oo, the families of complex structures we
have constructed skip through infinitely many connected components of the moduli
space M (X x S?). Is this necessary for a complex moduli space to fail to be finite-
dimensional?

Finally, notice that the dimension of each exhibited component of the moduli
space M(X x S§?) is higher than what might be inferred from our construction.
Indeed, we have only made use of a single hyper-Kahler metric g on X, whereas
these in practice always come in large families. Hyper-Kihler twistor spaces
also carry a tautological anti-holomorphic involution, whereas their generic small
deformations generally will not. In short, these moduli spaces are still largely ferra
incognita. Perhaps some interested reader will take up the challenge, and tell us
much more about them!
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