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Abstract A theorem of Kuranishi (Ann Math 75(2):536–577, 1962) tells us that
the moduli space of complex structures on any smooth compact manifold is always
locally a finite-dimensional space. Globally, however, this is simply not true; we
display examples in which the moduli space contains a sequence of regions for
which the local dimension tends to infinity. These examples naturally arise from the
twistor theory of hyper-Kähler manifolds.
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If Y is a smooth compact manifold, the moduli space M.Y/ of complex structures
on Y is defined to be the quotient of the set of all smooth integrable almost-complex
structure J on Y, equipped with the topology it inherits from the space of almost-
complex structures, modulo the action of the group of self-diffeomorphisms of Y.
When we focus only on complex structures near some given J0, an elaboration of
Kodaira-Spencer theory [3] due to Kuranishi [4] shows that the moduli space is
locally finite dimensional. Indeed, if ‚ denotes the sheaf of holomorphic vector
fields on .Y; J0/, Kuranishi shows that there is a family of complex structures
parameterized by an analytic subvariety of the unit ball in H1.Y; ‚/ which, up to
biholomorphism, sweeps out every complex structure near J0. This subvariety of
H1.Y; ‚/ is defined by equations taking values in H2.Y; ‚/, and one must then also
divide by the group of complex automorphisms of .Y; J/, which is a Lie group with
Lie algebra H0.Y; ‚/. But, in any case, near a given complex structure, this says
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that the moduli space is a finite-dimensional object, with dimension bounded above
by h1.Y; ‚/.

What we will observe here, however, is that this local finite-dimensionality can
completely break down in the large:

Theorem A Let X4k be a smooth simply connected compact manifold that admits a
hyper-Kähler metric. Then the moduli space M of complex structures on S2 � X
is infinite dimensional, in the following sense: for every N 2 Z

C, there are
holomorphic embeddings DN ,→ M of the N-complex-dimensional unit polydisk
DN WD D � � � � � D � C

N into the moduli space.
In fact, for every natural number N, we will construct proper holomorphic

submersions Y → DN with fibers diffeomorphic to X �S2 such that no two fibers are
biholomorphically equivalent. Focusing on this concrete assertion should help avoid
confusing the phenomenon under study with other possible structural pathologies of
the moduli space M.

Before proceeding further, it might help to clarify how our construction dif-
fers from various off-the-shelf examples where Kodaira-Spencer theory produces
mirages of moduli that should not be mistaken for the real thing. Consider the
Hirzebruch surfaces F` D P.O ˚ O.`// → CP1. These are all diffeomorphic
to S2 � S2 or CP2#CP2, depending on whether ` is even or odd. For ` > 0,
h1.F`; ‚`/ D .` � 1/ → 1 and h2.F`; ‚`/ D 0, so it might appear that the
dimension of the moduli space is growing without bound. However, when these
infinitesimal deformations are realized by a versal family, most of the fibers always
turn out to be mutually biholomorphic, because h0.F`; ‚`/ D .` C 5/ → 1, too,
and a cancellation arises from the action of the automorphisms of the central fiber
on the versal deformation. In fact, the F` represent all the complex structures on
S2 � S2 and CP2#CP2; thus, while the corresponding moduli spaces are highly non-
Hausdorff, they are in fact just 0-dimensional. Similar phenomena also arise from
projectivizations of higher-rank vector bundles over CP1; even though it is easy to
construct examples with h1.‚/ → 1 in this context, the piece of the moduli space
one constructs in this way is once again non-Hausdorff and 0-dimensional.

Let us now recall that a smooth compact Riemannian manifold .X4k; g/ is said to
be hyper-Kähler if its holonomy is a subgroup of Sp(k). One then says that a hyper-
Kähler manifold is irreducible if its holonomy is exactly Sp(k). This in particular
implies [1] that X is simply connected. Conversely, any simply connected compact
hyper-Kähler manifold is a Cartesian product of irreducible ones, since its deRham
decomposition [2] cannot involve any flat factors. In order to prove Theorem A, one
therefore might as well assume that .X; g/ is irreducible, since any hyper-Kähler
manifold admits complex structures, and S2 � .X � QX/ D .S2 � X/ � QX. Note that
examples of irreducible hyper-Kähler .4k/-manifolds are in fact known [1, 6] for
every k � 1. When k D 1, the unique choice for X is K3. For k � 2, the smooth
manifold X is no longer uniquely determined by k, but the the Hilbert scheme of k
points on a K3 surface always provides one simple and elegant example.

The construction we will use to prove Theorem A crucially involves the use of
twistor spaces [2, 7]. Recall that the standard representation of Sp(k) on R

4k D H
k

commutes with every almost-complex structure arising from a quaternionic scalar in
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S2 � =mH, and that every hyper-Kähler manifold is therefore Kähler with respect
to a 2-sphere’s worth of parallel almost-complex structures. Concretely, if we let J1,
J2, and J3 denote the complex structures corresponding to the quaternions i, j, and k,
then the integrable complex structures in question are those given by aJ1 CbJ2 CcJ3

for any .a; b; c/ 2 R
3 with a2 C b2 C c2 D 1. We can then assemble these to form

an integrable almost-complex structure on X � S2 by using the round metric and
standard orientation on S2 to make it into a CP1, and then giving the X the integrable
complex structure aJ1 C bJ2 C cJ3 determined by .a; b; c/ 2 S2. For each x 2 X,
the stereographic coordinate � D .b C ic/=.a C 1/ on fxg � S2 is thus a compatible
complex coordinate system on the so-called real twistor line CP1 � Z near the point
.1; 0; 0/ representing J1jx. We will make considerable use of the fact that the factor
projection X �S2

→ S2 now becomes a holomorphic submersion $ W Z → CP1 with
respect to the twistor complex structure, so that $ can therefore be thought of as a
family of complex structures on X.

Lemma 1 Let .X4k; g/, k � 1, be a hyper-Kähler manifold, and let Z be its twistor
space. Consider the holomorphic submersion $ W Z → CP1 as a family of compact
complex manifolds, and set X� WD $�1.�/ for any � 2 CP1. Then the Kodaira-
Spencer map T1;0

�0
CP1 → H1.X�0 ;O.T1;0X�// is non-zero at every �0 2 CP1.

Proof Since we can always change our basis for the parallel complex structures on
.X; g/ by the action of SO.3/, we may assume that the value �0 of � 2 CP1 at
which we wish to check the claim represents the complex structure on X we have
temporarily chosen to call J1. Observe that the 2-forms !˛ D g.J˛�; �/, ˛ D 1; 2; 3,
are all parallel. Moreover, notice that, with respect to J1, the 2-form !1 is just the
Kähler form of g, while !2 C i!3 is a non-degenerate holomorphic .2; 0/-form.

By abuse of notation, we will now also use � to denote a local complex coordinate
on CP1, with � D 0 representing the complex structure J1 of interest. Now recall
that the Kodaira-Spencer map sends d=d� to an element of H1.X;OJ1.T

1;0
J1

X//

that literally encodes the derivative of the complex structure J� with respect to �.
Indeed, since we already have chosen a differentiable trivialization of our family,
this element is represented in Dolbeault cohomology by the .0; 1/-form ' with
values in T1;0 given by

'.v/ WD
�

d

d�
J�.v

0;1/

�1;0
ˇ̌
ˇ̌̌
�D0

where the decomposition TCX D T1;0 ˚ T0;1 used here is understood to be the
one determined by J1. Now taking � to specifically be the stereographic coordinate
� D � C i�, where � D b=.1 C a/ and � D c=.1 C a/, we then have

d

d�
J�

ˇ̌
ˇ̌
�D0

D J2 and
d

d�
J�

ˇ̌
ˇ̌
�D0

D J3;
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and hence

d

d�
J�

ˇ̌̌
ˇ
�D0

D 1

2
.J2 � iJ3/:

Since T0;1 is the .�i/-eigenspace of J1, we therefore have

'.v/ D 1

2

�
.J2 � iJ3/v

0;1
�1;0

D 1

2

�
.J2 C iJ2J1/v

0;1
�1;0

D �
J2.v

0;1/
�1;0

D J2.v
0;1/

where the last step uses the fact that J2 anti-commutes with J1, and therefore
interchanges the .˙i/-eigenspaces T1;0 and T0;1 of J1.

On the other hand, since !2 C i!3 is a non-degenerate holomorphic 2-form on
.X; J1/, contraction with this form induces a holomorphic isomorphism T1;0 Š ƒ1;0,
and hence an isomorphism H1.X;O.T1;0// Š H1.X; �1/. In Dolbeault terms, the
Kodaira-Spencer class Œ'� is thus mapped by this isomorphism to the element of
H1;1

N@J1

.X/ D H1.X; �1/ represented by the contraction 'y.!2 C i!3/. Since

Œ'.v0;1/�y.!2 C i!3/ D g.ŒJ2 C iJ3�'.v0;1/; �/
D g.ŒJ2 C iJ1J2�J2.v0;1/; �/
D g.�ŒI C iJ1�v

0;1; �/
D �2i !1.v0;1; �/
D 2i !1.�; v0;1/;

the Kodaira-Spencer class is therefore mapped to 2iŒ!1� 2 H1;1
N@J1

.X/. However, since

Œ!1�2k pairs with fundamental cycle ŒX� to yield .2k/Š times the total volume of
.X; g/, 2i Œ!1� is certainly non-zero in deRham cohomology, and is therefore non-
zero in Dolbeault cohomology, too. The Kodaira-Spencer map of such a twistor
family is thus everywhere non-zero, as claimed.

We next define many new complex structures on X � S2 by generalizing a
construction [5] originally introduced in the k D 1 case to solve a different problem.
Let f W CP1 → CP1 be a holomorphic map of arbitrary degree `. We then define a
holomorphic family f �$ over CP1 by pulling $ back via f :

f �Z
Of�→ Z

f �$ ↓ $ ↓

CP1

f�→ CP1:
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In other words, if � � CP1 �CP1 is the graph of f , then f �Z is the inverse image of

� under Z�CP1
$�1�→ CP1 �CP1. Since $ is differentiably trivial, so is O$ WD f �$ ,

and OZ WD f �Z may therefore be viewed as X � S2 equipped with some new complex
structure Jf .

Lemma 2 Let OZ D f �Z be the complex .2k C 1/-manifold associated with a
holomorphic map f W CP1 → CP1 of degree `, and let O$ D f �$ be the
associated holomorphic submersion O$ D f �$ . Then the canonical line bundle
K OZ is isomorphic to O$�O.�2k` � 2/ as a holomorphic line bundle.

Proof The twistor space of any hyper-Kähler manifold .X4k; g/ satisfies KZ D
$�O.�2k � 2/. On the other hand, the branch locus B of Of W OZ → Z is the inverse
image via O$ of 2` � 2 points in CP1. Thus

K OZ D ŒB� ˝ Of �KZ Š O$�ŒO.2` � 2/ ˝ O.`.�2k � 2//� D O$�O.�2k` � 2/;

as claimed.
This now provides one cornerstone of our argument:

Proposition 1 If OZ D f �Z is the complex .2k C 1/-manifold arising from
a simply connected hyper-Kähler manifold .X4k; g/ and a holomorphic map
f W CP1 → CP1 of degree `, then there is a unique holomorphic line bundle
K�1=.2k`C2/ whose .2 C 2k`/th tensor power is isomorphic to the anti-canonical
line bundle. Moreover, h0.Z;O.K�1=.2k`C2/// D 2, and the pencil of sections of
this line bundle exactly reproduces the holomorphic map O$ W OZ → CP1. Thus
the holomorphic submersion O$ is an intrinsic property of the compact complex
manifold OZ D .X�S2; Jf /, and is uniquely determined, up to Möbius transformation,
by the complex structure Jf .

Proof Because OZ � X � S2 is simply connected, H1. OZ;Z2k`C2/ D 0, and the long
exact sequence induced by the short exact sequence of sheaves

0 → Z2k`C2 → O�
→ O�

→ 0

therefore guarantees that there can be at most one holomorphic line bundle
K�1=.2k`C2/ whose .2 C 2k`/th tensor power is the anti-canonical line bundle K�.
Since Lemma 2 guarantees that O$�O.1/ is one candidate for this root of K�, it
is therefore the unique such root. On the other hand, since O$�O.1/ is trivial on
the compact fibers of O$ , any holomorphic section of this line bundle on OZ is
fiber-wise constant, and is therefore the pull-back of a section of O.1/ on CP1.
Thus h0.Z;O.K�1=.2k`C2/// D h0.CP1;O.1// D 2, and the pencil of sections of
K�1=.2k`C2/ thus exactly reproduces O$ W OZ → CP1.

Here, the role of the Möbius transformations is of course unavoidable. After all,
preceding f by a Möbius transformation will certainly result in a biholomorphic
manifold!
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Since O$ is intrinsically determined by the complex structure of OZ, its complex
structure also completely determines those elements of CP1 at which the Kodaira-
Spencer map of the family O$ W OZ → CP1 vanishes; this is the same as asking
for fibers for which there is a transverse holomorphic foliation of the first formal
neighborhood. Similarly, one can ask whether there are elements of CP1 at which
the Kodaira-Spencer map vanishes to order m; this is the same as asking for fibers
for which there is a transverse holomorphic foliation of the .m C 1/st formal
neighborhood.

Proposition 2 The critical points of f W CP1 → CP1, along with their multiplici-
ties, can be reconstructed from the submersion f �$ W f �Z → CP1.

Proof The Kodaira-Spencer map is functorial, and transforms with respect to
pull-backs like a bundle-valued 1-form. Since the Kodaira-Spencer map of $ is
everywhere non-zero by Lemma 1, the points at which the Kodaira-Spencer map of
O$ D f �$ vanishes to order m are exactly those points at which the derivative of

f W CP1 → CP1 has a critical point of order m.
Taken together, Propositions 1 and 2 thus imply the following:

Theorem B Modulo Möbius transformations, the configuration of critical points
of f W CP1 → CP1, along with their multiplicities, is an intrinsic invariant of the
compact complex manifold OZ D f �Z.

By displaying suitable families of holomorphic maps CP1 → CP1, we will now
use Theorem B prove Theorem A. Indeed, for any .a1; : : : ; aN/ 2 C

N with jaj�2jj <

1, let Pa1;:::;aN .�/ be the polynomial of degree NC6 in the complex variable � defined
by

Pa1;:::;aN .�/ D
Z �

0

t2.t � 1/3.t � a1/ � � � .t � aN/dt;

and let fa1;:::;aN W CP1 → CP1 be the self-map of CP1 D C [ f1g obtained by
extending Pa1;:::;aN W C → C via 1 7→1; in other words,

fa1;:::;aN .Œ�1; �2�/ D ŒPa1;:::;aN .�1; �2/; �NC6
2 �;

where Pa1;:::;aN .�1; �2/ is the homogeneous polynomial formally defined by

Pa1;:::;aN .�1; �2/ D �NC6
2 Pa1;:::;aN .

�1

�2
/:

Since the constraints we have imposed on our auxiliary parameters force the
complex numbers 0; 1; a1; : : : ; aN to all be distinct, the critical points of fa1;:::;aN W
CP1 → CP1 are just the a1; : : : ; aN , each with multiplicity 1, along with 0, 1, and 1,
which are individually distinguishable by their respective multiplicities of 2, 3, and
N C 5. Since any Möbius transformation that fixes 0, 1, and 1 must be the identity,
Theorem B implies that different values of the parameters .a1; : : : ; aN/, subject the
constraints jaj�2jj < 1, will always result in non-biholomorphic complex manifolds
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OZa1;:::;aN WD f �
a1;:::;aN

Z. Thus, pulling back $ W Z → CP1 via the holomorphic map

ˆ W DN � CP1 �→ CP1

.u1; : : : ; un; Œ�1; �2�/ 7�→ fu1C2;:::;uN C2N.Œ�1; �2�/

now produces a family ˆ�$ W ˆ�Z → DN of mutually non-biholomorphic
complex manifolds over the unit polydisk DN � C

N . Since these manifolds are all
diffeomorphic to X �S2, and since this works for any positive integer N, Theorem A
is therefore an immediate consequence.

Of course, the above proof is set in the world of general compact complex
manifolds, and so has little to say about conditions prevailing in the tidier realm of,
say, complex algebraic varieties. In fact, one should probably expect the examples
described in this article to never be of Kähler type, since there are results in this
direction [5] when k D 1. It would certainly be interesting to see this definitively
established for general k.

On the other hand, the feature of the k D 1 case highlighted in [5] readily
generalizes to higher dimensions; namely, the Chern numbers of the complex
structures Jf change as we vary the degree of f . Indeed, notice the tangent bundle of
X � S2 is stably isomorphic to the pull-back of the tangent bundle of X, and that TX
has some non-trivial Pontrjagin numbers; for example, if we assume for simplicity
that X is irreducible, we then have OA.X/ D k C 1. Since the fibers of f �$ are
Poincaré dual to c1. f �Z/=.2k` C 2/, we have .c1 OA/. f �Z/ D 2.k` C 1/.k C 1/,
and a certain combination of the Chern numbers of f �.Z/ therefore grows linearly
in ` D deg f . Consequently, as N → 1, the families of complex structures we
have constructed skip through infinitely many connected components of the moduli
space M.X � S2/. Is this necessary for a complex moduli space to fail to be finite-
dimensional?

Finally, notice that the dimension of each exhibited component of the moduli
space M.X � S2/ is higher than what might be inferred from our construction.
Indeed, we have only made use of a single hyper-Kähler metric g on X, whereas
these in practice always come in large families. Hyper-Kähler twistor spaces
also carry a tautological anti-holomorphic involution, whereas their generic small
deformations generally will not. In short, these moduli spaces are still largely terra
incognita. Perhaps some interested reader will take up the challenge, and tell us
much more about them!
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