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Einstein Metrics, Harmonic Forms and
Conformally Kéhler Geometry

Claude LeBrun

Abstract

The author has elsewhere given a complete classification of the com-
pact oriented Einstein 4-manifolds that satisfy W (w,w) > 0 for some
self-dual harmonic 2-form w, where W+ denotes the self-dual Weyl cur-
vature. In this chapter, similar results are obtained when W (w,w) > 0,
provided the self-dual harmonic 2-form w is transverse to the zero section
of AT — M. However, this transversality condition plays an essential role
in the story; dropping it leads one into wildly different territory where
entirely different phenomena predominate.

9.1 Introduction

Recall that a Riemannian metric b is said to be Einstein [3] if it has con-
stant Ricci curvature, or in other words if it solves the Einstein equation

r=MAh (9.1)

for some real number A, where 7 is the Ricci tensor of h. When this
happens, A is called the Finstein constant of h, and of course has the
same sign as the Finstein metric’s scalar curvature.

Dimension four seems to represent a sort of “Goldilocks zone” for the
Einstein equation. In lower dimensions, Einstein metrics are extremely
rigid, in the sense that they necessarily have constant sectional curva-
ture, and so do not really exhibit any interesting local differential geome-
try. In higher dimensions, on the other hand, they are extremely flexible,
existing in such profusion on familiar manifolds [6, 7, 32| that their local
geometry seems to offer little clue as to the identity of the manifold where
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they reside. By contrast, dimension four seems “just right” for (9.1), as
four-dimensional Einstein metrics exhibit a well-tempered combination
of local flexibility and global rigidity that often makes their geometry
perfectly reflect the manifold on which they live. For example, if M is
a compact real or complex-hyperbolic 4-manifold, a 4-torus, or K3, the
moduli space of Einstein metrics on M is known explicitly, and moreover
turns out to be connected [3, 4, 16].

Unfortunately, however, we do not have a similarly complete un-
derstanding of the moduli space of Einstein metrics on most of the
4-manifolds where this moduli space is non-empty. An important family
of test-cases is provided by the del Pezzo surfaces, here understood to
mean the smooth compact oriented 4-manifolds that support complex
structures with ample anti-canonical line bundle. Up to diffeomorphism,
there are exactly ten such manifolds, namely S x S? and the nine con-
nected sums CPy#mCP,, m = 0,1, ...,8. These 4-manifolds are com-
pletely characterized [8] by two properties: they admit Einstein metrics
with A > 0, and they also admit symplectic structures. However, it is
currently unclear whether the known Einstein metrics on these spaces
sweep out the entire Einstein moduli space. One of our main objectives
here will be to generalize and strengthen a characterization of the known
Finstein metrics on del Pezzo surfaces previously proved by the author
in [20].

In order to formulate our results, first recall that the bundle of
2-forms A2 — M over an oriented Riemannian 4-manifold (M, h) de-
composes invariantly as the Whitney sum

A=At QA (9.2)

of the eigenspaces of the Hodge star operator x : A> — A%. Sections of
the (+1)-cigenbundle AT are called self-dual 2-forms, while the sections
of the (—1)-eigenbundle A~ are called anti-self-dual 2-forms. The de-
composition (9.2) is moreover conformally invariant, meaning that it is
unchanged by multiplying the metric by an arbitrary positive function.

One important consequence of the decomposition (9.2) is that it in-
duces an invariant decomposition of the Riemann curvature tensor R
into simpler pieces. Indeed, if we identify the Riemann curvature tensor
with the self-adjoint endomorphism R : A? — A? of the 2-forms defined
by

1
Pab — 5 RCdab‘pcd

and known as the curvature operator, then (9.2) allows us to decompose
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R into irreducible pieces:

<o

w4+

r W=+

where s denotes the scalar curvature, r=1r — 49 is the trace-free Ricci
curvature, and where the remaining pieces W+, known as the self-dual
and anti-self-dual Weyl tensors, are the trace-free parts of the endo-
morphisms of A* induced by R. Remarkably, the corresponding pieces
(Wi)“ peq Of the Riemann curvature tensor are both conformally invari-
ant, in the sense that they remain unaltered if the metric is multiplied
by an arbitrary smooth positive function.

Let us now assume that (M, h) is a compact oriented Riemannian 4-
manifold. The Hodge theorem then tells us that every de-Rham class
on M has a unique harmonic representative. In particular, there is a
canonical isomorphism

H*(M,R) = {p € I'(A?) | dp =0, d*p = 0}.

However, since the Hodge star operator x defines an involution of the
right-hand side, we obtain a direct-sum decomposition

H*(M,R) =H} & H,, (9.4)
where
My = {p € I(AF) | dp = 0}

are the spaces of self-dual and anti-self-dual harmonic forms. Since the
conditions of being closed and belonging to A* are both conformally
invariant, it follows that the spaces HT are both conformally invari-
ant, too. Moreover, the dimensions by = dimH* of these spaces are
completely metric independent, and can easily be shown to be oriented
homotopy invariants of the 4-manifold M.

Now, if (M, h) is a compact oriented Riemannian 4-manifold, and if
w € HT is a fixed self-dual harmonic 2-form, the quantity

W) i= W @),0) = 3 OV i

transforms in an extremely simple manner under conformal rescaling;



218 C. LeBrun

namely, if we change our metric by
h o~ u®h
for some positive function u, then the quantity in question changes by
W (w,w) ~ u W (w,w).

In particular, the sign of this quantity at a given point is unchanged
by conformal rescalings. This makes this hybrid measure of curvature
particularly compelling when by (M) = 1, because in this case there is,
up to a non-zero constant factor, only one non-trivial choice of w, and the
sign of W (w,w) at each point then becomes a natural global conformal
invariant of (M, h).

The main result of [20] was that if a compact 4-dimensional Einstein
manifold satisfies

WH(w,w) >0 (9.5)

for some self-dual harmonic 2-form w, then (M, h) is one of the known
Einstein metrics on some del Pezzo surface. Conversely, the known Ein-
stein metrics on del Pezzo surfaces all have this property. Combining
these two observations then shows, as a corollary, that the known Ein-
stein metrics on these spaces exactly sweep out one connected component
of the Einstein moduli space. Here it is worth noting that every del Pezzo
surface has by = 1, so that condition (9.5) represents a rather natural
characterization of the known Einstein metrics on these 4-manifolds.

Oun the other hand, since condition (9.5) trivially implies that both
W+ and w are nowhere zero, it might seem desirable to relax this overly
stringent condition by merely requiring that W (w,w) be non-negative.
What we will show here is that this can indeed be done, provided one
imposes an interesting and natural condition on the 2-form. Namely,
if w is a harmonic self~dual 2-form on a compact oriented Riemannian
4-manifold (M, h), one says that w is near-symplectic if its graph is
transverse to the zero section of the rank-3 vector bundle AT — M.
This is a generic condition, as has come to be understood through the
work of Taubes [27, 29] and others [14, 18, 24|; indeed, on any smooth
compact oriented 4-manifold with b, = 0, the set of metrics admitting a
near-symplectic self-dual harmonic 2-form is open and dense. Of course,
a dimension count immediately reveals that the zero locus of a near-
symplectic self-dual harmonic 2-form w on (M, h) is automatically a
(possibly empty) finite disjoint union Z of circles:

Z~Uj St (9.6)
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Imposing this reasonable assumption on the behavior of w will actually
allow us to prove some natural generalizations of the main result of [20].
Namely, the main results of the present chapter are the following:

Theorem 9.1.1  Let (M, h) be a compact oriented Finstein 4-manifold
that carries a near-symplectic self-dual harmonic 2-form w such that

W (w,w) >0, Wt (w,w) # 0. (9.7)

Then W (w,w) > 0 everywhere, M is diffeomorphic to a del Pezzo sur-
face, and h is conformally related to a positive-scalar-curvature extremal
Kadhler metric g on M with Kdhler form w. Conversely, every del Pezzo
surface admits an Einstein metric h satisfying (9.7) for a self-dual har-
monic 2-form w that is nowhere zero (and hence near-symplectic).

Theorem 9.1.2 Let (M,h) be a compact oriented A > 0 Einstein
4-manifold that carries a near-symplectic self-dual harmonic 2-form w
such that

WH(w,w) >0 (9.8)

everywhere. Then w is nowhere zero, and h is conformally related to
an extremal Kdhler metric g on M with Kdhler form w. Moreover, M is
diffeomorphic to a del Pezzo surface, a K3 surface, an Enriques surface,
an Abelian surface, or a hyper-elliptic surface. Conversely, each of these
complex surfaces admits a X > 0 FEinstein metric h satisfying (9.8) for
a self-dual harmonic 2-form w that is nowhere zero (and hence near-
symplectic).

Theorem 9.1.3 The near-symplectic hypothesis in Theorem 9.1.1 is
essential: counter-examples show that the result fails without this as-
sumption.

The proofs of these main results can be found Section 9.4 below, fol-
lowing the proofs, in Sections 9.2-9.3, of the technical results that un-
derpin these theorems.
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9.2 An Integral Weitzenbock Formula

Let (M, h) be a compact oriented Riemannian 4-manifold with harmonic
self-dual Weyl curvature, in the sense that SW+ := —V-W* = 0. When
h is Einstein, this property automatically holds, by virtue of the second
Bianchi identity. We will further assume throughout that h is at least
C*. The latter assumption is of course innocuous in the Einstein case,
as elliptic regularity for (9.1) implies that Einstein metrics are always
[10] real-analytic in harmonic coordinates.

We will henceforth also assume that by (M) # 0. This is equivalent to
saying that (M, h) admits a self-dual harmonic 2-form w # 0. We now
choose some such form, and regard it as fixed for the remainder of the
discussion. Let Z C M denote the zero set of w. Since w is self-dual by
assumption,

WAW=wAxw = |wlidun,

and it therefore follows that w is actually a symplectic form on the open
set X := M — 7, where w is non-zero. Moreover, the Riemannian metric
g on X defined by g = 27/2|w|,h is then an almost-Kdihler metric, in
the sense that g is related to the symplectic form w by ¢ = w(:, J-) for a
unique almost-complex structure J on X.

Let us now re-express the conformal relationship between our two
metrics as

h=fg,

where f = 21/4|w\,:1/2. The fact that h satisfies W™ = 0 then implies
[23] that g satisfies 6(fWW ™) = 0. Since our assumptions imply that ¢

is also at least C?, we therefore have [9, 12, 20, 23] the Weitzenbéck
formula

0=V"V(W*) + ng’L —GfWr oWt £ 2f|WHRT  (9.9)

for fW, which for notational simplicity has been represented here as
a trace-free section of End(A™), while s and V respectively denote the
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scalar curvature and Levi-Civita connection of our almost-Kéhler metric
gon X.

Our strategy is now to contract (9.9) with w ® w, integrate on X =
M — Z, and then try to integrate by parts in order to throw the Bochner
Laplacian V*V onto w ® w. In order to accomplish this, we first exhaust
X by domains X, with smooth boundary, where X is the region where
|w|p > €, where e > 0 is any regular value of the smooth non-negative
function |w|p : X — R. Integrating by parts on X, then has the following
effect:

Lemma 9.2.1 There is a constant C, independent of € € (0,1), but
depending on (M, h,w), such that

’/ [(VV(W ), wew) — (fW,V'V(wew)] dug| < Ce *?Vol(9X-, h),

where all terms in the integral on the left are computed with respect to g,
but where the 3-dimensional boundary volume on the right is computed
with respect to h.

Proof By the divergence version of Stokes’ theorem, we have

| @ vuw o, = [ V9w wwid
Xe

e

- V- A(VIWT wew)du,

JX.

+/ (VIWT V(v @ w))dpug
X

e

—/ (VoW w@w)day
0X.

+/ (VW V(w®@w))dug
Xe

—/ Vo, (fWt wew)da,
JOX,
[ W T wida,
00X
i [V W @)y
X

+/ (fWH, =V - V(v @ w))dpug
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=— V(W wew)da,
00X

+2/ W,V (w0 ® w))day
00X
v W s

= — vu[fW+ (wsw)]dag
0Xe

—|—4/ W (w, V,w)da,
00X
T / W, VY (w © ) dg,
Xe

where v is the outward-pointing unit normal of X, with respect to g,
and where da, is the g-induced volume 3-form on the boundary. Here,
every term is thus understood to be computed with respect to g.

We now estimate the boundary integrals by first re-expressing them
in terms of the original metric h = f2¢. For emphasis and clarity, we
will temporarily use ©# = f~!v to denote the unit normal of dX, with
respect to h, and V to denote the Levi-Civita connection of h, which
differs from the Levi-Civita connection of V of g by

53 Be + 098y — Bah™ hye,

where g = dlog f = —%dlog |w|p. In other cases where the meaning of
a term depends on a choice of metric, we will indicate the metric used
by means of a subscript; for example, since index-raising is needed to
define W (w,w), one has

W (w,w)], = W (w,w)]n.

With these conventions in hand, we thus have

VoW (w,w)]gdag
0X.

- ‘ / IVl W (w,w)|nf 2day
00X,

<7 T NWH (w,w)]ndan

JOXe

/ f5V,;[W+(w,w)]hdah
0X.

+
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< 7‘ / P31V W o
00X,

+ ‘/ IPIVWH||wl|? day,
00X,

+2’/ PPIW T |w|n | Vw!|pday,
0X.

:7‘/ 21/4)0]|dleo | [V [ndan
0X.

+ ‘/ 25/4|| 2 | W |y day,
00X

+2

/ 25/ o2 W | Sl dan
JOX.

< C1e732v0l® (X, h),

where C; = V2 [11(maxM [W*15,) (max |Vwln) + 2 maxy, |¢W+|h}

(In the last step, we have used the Kato inequality |d|w|| < |[Vw|, and
have remembered that € < 1 by hypothesis.) Similarly,

/ fW*(w,V,,w)gdag = ‘/ f- f6W+(w,Vf,;w)hf73dah
X, 9X.

f5W+ (UJ, Vf,w)hda,h
0X.

<2 PRIV |wln| V| dar,
Jox.

gz/ P ]|Vl
00X,

+6\ [ P el hdan
0X.-

:2/ FIWH ool ol ndan
00X,

+3‘/ f5|W+|h|w|h|d|w\h|hdah
0X.

35/ 25/ 4o 2 W [Tl il
00X,

< Coe32Vol® (80X, h),

where Cy = 10v/2(maxy; [W|,)(max |@w|h) Setting C = Cy + 4C5,
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and referring back to our integration-by-parts calculation, we thus see
that the claim now follows immediately from the triangle inequality. O

So far, we have only assumed that w is a non-trivial self-dual harmonic
form on (M, h). However, the information we have just gleaned becomes
much more useful when w happens to be near-symplectic:

Lemma 9.2.2 Let w be a near-symplectic self-dual harmonic 2-form
on a compact oriented Riemannian 4-manifold. Let X = M — Z be the
complement of the zero set Z of w, set f = 21/4|w|;1/2 on X, and let
g = [72h be the almost-Kdhler metric on (X,w) obtained by conformally

rescaling h to make |w|g = V2. Then

/(V*V(fW*),w@w) dug:/<fw+,v*ww®w)> dug. (9.10)
X X

where the integrands on both sides are defined with respect to g, and
where both moreover belong to L. In particular, both integrals are finite,
and may be treated either as improper Riemann integrals or as Lebesgue
integrals.

Proof To say that w is near-symplectic means, by definition, that the
section w of AT — M is transverse to the zero section along its zero
locus Z =~ u;‘zlSl. In particular, the derivative of w along Z induces
an isomorphism between the normal bundle of Z C M and the vector
bundle AT|z; — Z. This moreover allows us to construct a diffeomor-
phism between a sufficiently small tubular neighborhood U of 7 and
Z x B3, where B2 C R? is the standard 3-ball of some small radius
€, by combining the nearest-point projection &4 — 7 with the compo-
nents of w relative to some orthornormal framing of the vector bundle
At — U. (Here, we are using the fact that A*|y is necessarily trivial
because AT is oriented, SO(3) is connected, and U deform retracts to a
union of circles.) Via this diffeomorphism, the function |w|, on U then
just becomes the standard radius function on B2. Moreover, after reduc-
ing the size of ¢ if necessary, the Riemannian metric A on & becomes
quasi-isometric to the standard flat product metric hg on Z x B2, in
the sense that ho/k < h < khg for some constant x > 1, and where we
have |w|p > € on the complement M — U of U. It then follows that the
hypersurfaces (90X, h) are uniformly quasi-isometric to (Z x S2, hg), so
there consequently exists a positive constant L = 47| Z|x%/? such that

Vol®(8X,, h) < Le?
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for all £ € (0,2). Combining this with Lemma 9.2.1 then tells us that
‘/ [(V'V([WT),w@w) — (fWT, V'V(w®@w))]| dug| < CLy/Z
for all ¢ € (0,¢). In particular, this implies that
gi\ll(l) /X (V'V(IW),w@w) — (fWF, V*V(w®w))] dug =0. (9.11)

To prove the claim, it therefore suffices to show that both integrands
in (9.10) are absolutely integrable, and so belong to L. To see this, first
notice that

J AW,y <2 [ [V, duy
=2 [ P VUW | 1
<2 [ UVGw), dun
+8 [ (30 ), dun
+1o/)'< 8@ VW), dun
+40/X]/3®/3®fw+|hduh
S2/Xf|V*VW+|hduh
22 [ 19AUITW
10 [ 19T i,
450 [ 179 PR

<Ca [ [l +Vhelz s
M
1/2 —1/2
+lwly 2Vl V2R

+ 99kl n] dpn
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_ 1, —
<Ca [ [l + Sl 19uls
M

23 s ~
+ el 2V} + 20w, 2V Vela ] dun

<Ca [ el du
M

< 00,
where C3 is a positive constant depending on (M, h), Cy is a positive
constant depending on (M, h,w), and where, as in the remainder of the
chapter, V denotes the Levi-Civita connection V of h when its relation
to h is clearly indicated by a subscript. Here, in the last step, we have
used the fact that |w|~>/? is comparable, near Z = M — X, to r=>/2

on B3 x St where r = |7 is the distance from the origin in the e-ball
B3 C R3, and therefore has finite integral because

€
/ |Z| 752 dat A da® A da® = 477/ r=2/20%dr = 87\/E < 0.
B3 0

In much the same way,
[ w9 s ), du
< 2\/§/X SIW | V*Vwlgdpg + 2/X SIW | Vew|2dpg
<22 [ W19 Vel + 21 VBl
4181l Vel + 8[2leol| £~
+2 [ PIW s [l + 481kl Tl
FAIBRIIR] £ dpn
<2 [ W[ Vel 29 el
+ 42V fnlVwln + FIV S ln] dpn
+2 [ WL [PITulh + 47Vl Dl

+ AV SRR dran
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<Cs [ (Wl 19 Vi + ol 9l
X
2| VVw|? Vw3 | d
+ w7 IVl 4wl ™7Vl | dun

< C@/ |w|;5/2duh < o0,
M

where C5 and Cg are positive constants depending, respectively, on
(M, h) and (M, h,w). Thus, the integrands in (9.10) both belong to L?,
and (9.11) therefore implies that the two integrals in (9.10) are equal. O

Since we are thus entitled to carry out the desired integration by parts
in the near-symplectic case, (9.9) therefore implies an interesting integral
Weitzenbock formula when h also satisfies W+ = 0.

Proposition 9.2.3 Let w be a near-symplectic self-dual harmonic 2-
form on a compact oriented Riemannian 4-manifold (M, h) with SW+ =
0. Let X = M — Z be the complement of the zero set 7Z of w, set f =
21/4|<.u|,:1/2 on X, and let g = f~2h be the almost-Kéhler metric on
(X,w) obtained by conformally rescaling h to make |w|, = v/2. Then g
satisfies

/X [(W*N*V(w ®w)) + §W+(w,w) — 6| (W) + 2|W*|2|w|2]f dpig =0,
both as a Lebesgue integral and as an improper Riemann integral.
Proof Contraction of (9.9) with w ® w tells us that

(VW) wew) + ngWw»w) —6fIW (@) +2f W Plwl* = 0
on (X, g), so integration certainly tells us that

/ (VI W ), w@w) 2 FWF (w,0) =6/ IW T @)+ 2/ W Ll | dpg = o0.
X

However, because the first term is L', equation (9.9) tells us that the
same is also true of the sum of the remaining terms, and Lemma 9.2.2
therefore allows us to rewrite the above expression as

[ LW 9 V)41 5 W (w0) =6 A1 ) 427 W P ol dy =
X

Collecting the common of factor of f now yields the desired result. [
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9.3 Some Almost-Kahler Geometry

When an oriented Riemannian manifold (M, h) with 6WT = 0 carries
a near-symplectic self-dual harmonic 2-form w, we saw in Proposition
9.2.3 that, if we set f = 21/4|w|,:1/2 on the open set X where w # 0,
the conformally related almost-Kéhler metric g = f~2h then satisfies an
integral Weitzenbock formula on X. In order to exploit this effectively,
we will need a universal identity previously pointed out in [20]:

Lemma 9.3.1 Any 4-dimensional almost-Kahler manifold satisfies
(W V' V(wew)) =W (w,w)* +4WH(w)]* — sW(w,w)
at every point.

Proof First notice that the oriented Riemannian 4-manifold (X, g) sat-
isfies

ATeC=Cws KoK,

where K = A'Z,’O is the canonical line bundle of the almost-complex
structure .J defined by w = g(J-, ). Locally choosing a unit section ¢ of
K, we thus have

Vw=a®@p+a®p
for a unique 1-form a € A", since Vj,wpq = 0 and w"V,wy. = 0. If
®: AT x AT 5 OfAT
denotes the symmetric trace-free product, we therefore have
(Vew) ® (V) = 2la’p ® ¢ = —; [ Vul'w ® 1w
and we thus deduce that
(WH V*'V(w®w)) =2WH(w, V*Vw) — 2W T (V.w, Véw)
— W (w, V) + %|Vw|2W+(w,w)
= W (w, 2WF (W) — %w)

(W () - %] W (w, w)

_ —§5W+(w,w) A ()2
—|—[W+(w,w) — g]W*(w,w)
= W (w,w)? + AW (w)|* = sW (w,w),
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where we have used the Weitzenbock formula
0= V*Vw — 2W*(w) + %w
for the harmonic self-dual 2-form w, as well as the associated key identity
1 9 i s
—|Vw|* =W (w,w) — = (9.12)
2 3
resulting from the fact that |w|? = 2. a
In conjunction with Proposition 9.2.3, this now yields the following:

Theorem 9.3.2 Let w be a near-symplectic self-dual harmonic 2-form
on a compact oriented Riemannian 4-manifold (M, h) with SW+ = 0.
Let X = M — Z be the complement of the zero set Z of w, set f =
21/4|(,u|,;1/2 on X, and let g = f~2h be the almost-Kdihler metric on
(X,w) obtained by conformally rescaling h to make |w|g = V2. Then the
almost-Kdhler metric g satisfies

/x [8 <|W+|2 B %'Wﬂw)ﬂz) - 5W+(w»¢d)] fdpy =0, (9.13)

where s is the scalar curvature of g, and where W+ (w)t denotes the or-
thogonal projection of W (w) to the orthogonal complement of w € A™.
Moreover, the integrand belongs to L', so the statement holds whether
the left-hand-side is construed as a Lebesgue integral or as an improper
Riemann integral.

Proof Combining Proposition 9.2.3 with Lemma 9.3.1, we have
0= /Y (W, V' Vwew) + W (w,w)
— 6[WF (@) + 20 Plwf?] £ dp
- /X [(IW* w0 + W @) — s (w,w))
+ §W+(w,w) 6w (w)]? + 4|W+|2} Fdu
_ /X [ .00 = SWH(w,0) = 2AWH @)+ WP f di
Since [WH(w)* > = [WH(w)|> — $[WT (w,w)]?, multiplication by 2 thus
yields the desired formula (9.13). Moreover, this calculation shows that

the integrand is the sum of two L' functions, and is therefore itself L'
by the triangle inequality. O



230 C. LeBrun

Next, we prove a refinement of a point-wise inequality used in [20]:
Lemma 9.3.3 Any 4-dimensional almost-Kahler manifold satisfies
WP = S (@) 2 2 (W 0] 4 W ()
at every point.
Proof If A = [Aj;] is any symmetric trace-free 3 X 3 matrix, the fact

that Ass = —(A11 + Aga) implies that

3 A ?
Z ASp > 243, + ATy + A% + (A1 + A)? = 245, + §A?1 +2 (% + A22)
jk

and we therefore conclude that
3
A]* > 245, + S AT

If we now let A represent WT : AT — At with respect to an orthog-
onal basis e, eq, e3 for AT such that w = v/2¢; and W+ (w)® o ey, this
inequality becomes
3
8

and subtracting §|W ™ (w)*|? from both sides thus proves the claim. O

WHP 2 W @)+ 5 [ (w,0)]°,
This now yields a key inequality:

Lemma 9.3.4 Let (M,h), w, X, g, and f be as in Theorem 9.5.2.
Then the almost-Kahler metric g = f~2h satisfies

02 [ [Wrea el ¢ SR Ly 014)
X

in the sense that the Lebesgue integral on the right is well defined and
belongs to [—oo,0].

Proof Theorem 9.3.2 tells us that
1
0 :/ {8 <|VV+|2 — §|W+(w)l|2) — .‘;W+(w,w)} f dug
b'e

and that the positive and negative parts of the integrand are both L!
functions. The point-wise inequality of integrands provided by Lemma
9.3.3 therefore implies that

oz/x [3 [W+(W,w)]2_5W+(w,w)+4|W+(w)J_|2]fdug
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in the Lebesgue sense. After dividing by 3, we can then re-express this
as

OZ/X{WJ’(w,w) (W+(w,w)—§)+§|w+(w)l|2} g (9.15)

However, (9.12) tells us that W (w,w) — £ = £[Vw|? for any almost-
Kéhler 4-manifold. Making this substitution in (9.15) and then multi-

plying by 2 thus yields the desired inequality (9.14). a

In the special case where (M, h,w) satisfies the conformally invariant
condition W+ (w,w) > 0, we thus obtain the following:

Proposition 9.3.5 Let (M, h) be a compact oriented Riemannian 4-
manifold that satisfies W+ = 0, and suppose that w is a near-symplectic
self-dual harmonic 2-form on (M, h) that satisfies W (w,w) > 0. Let
X, g, and f be as in Theorem 9.3.2. Then the almost-Kdhler manifold
(X, g,w) satisfies

/ {W+(w,w)|w|2 + §|W+(w)L|2] [ dug =0, (9.16)
X

both as a Lebesgue and as an improper Riemann integral.

Proof The added assumption that W™ (w,w) > 0 obviously implies
8

/ {W+(w,w)|Vw|2 +

x 3

as an extended real number, because the integrand is now non-negative.
But, in conjunction with (9.14), this immediately implies that

W £ a2 0

[ v + S £ au, =0
X

as a Lebesgue integral. Moreover, since the integrand is also L', the
integral also necessarily vanishes as an improper Riemann integral. O

This very strong statement now has even stronger consequences:

Proposition 9.3.6 Let M, h, w, X, g, and f be as in Proposition
9.3.5. Then either g is a Kdhler metric on X whose scalar curvature is
given by s = ¢/ f for some constant ¢ > 0, or else g satisfies W+ =0,
and so is an anti-self-dual metric.

Proof Since f > 0 by construction, and since W (w,w) > 0 by as-
sumption, both terms in the integrand of (9.16) must vanish identically.



232 C. LeBrun
We thus have
WH(w,w)|Vul>?=0 and WH(w)t=0 (9.17)

at every point of X. In particular, Vw = 0 wherever W (w,w) # 0.
If ¥ C X is the open subset where W (w,w) # 0, the restriction of
g to ¥ is therefore Kéhler. On the other hand, since h = f2g satisfies
SW* =0, conformal invariance of this equation tells us that g satisfies
S(fWT) =0, as previously noted. On (¥, g) we therefore have

0= wabWCdVe(fW;l;Cd) _ ve(fWe—QI—)deabwcd)

= V([ ans®) = gV 82) = FVO(f5) = VLW ()l

since at each point of any Kéahler manifold of real dimension 4, the
Kahler form w is an eigenvector of W+ : At — At with eigenvalue
one-sixth of the scalar curvature s. This shows that d[fW(w,w)] = 0
on ¥, and therefore, by continuity, on the closure # of ¥, too. On the
other hand, since our definition of ¥ guarantees that fW ™' (w,w) = 0
on the open set X — 7, we also have d[fW*(w,w)] =0on X — 7. It
follows that d[fW*(w,w)] = 0 on all of X. Since X is connected, and
since fWT(w,w) > 0, we therefore conclude that fW(w,w) = ¢/3 for
some non-negative constant ¢ > 0.

If ¢ >0, ¥ = X, and it follows that (X, g,w) is a Ké&hler manifold,
with

s =3WT(w,w) = %

Otherwise, ¢ = 0, and we have W' (w,w) = 0. On the other hand,
(9.17) also tells us that W+ (w)® =0 on X. Substituting these two facts
into (9.13) then yields

[ s, —o.

X

Thus, when ¢ = 0, we conclude that W = 0, and g is therefore anti-

self-dual in this remaining case, exactly as claimed. O
Sharpening these conclusions now supplies our mainspring result:

Theorem 9.3.7 Let (M,h) be a compact orienled Riemannian 4-
manifold with SWT = 0 that admits a near-symplectic self-dual harmonic
2-form w such that

W (w,w) > 0.

Then either h satisfies W+ = 0, and so is anti-self-dual, or else W (w, w)
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is everywhere positive, in which case M admits a global Kdihler metric g

with scalar curvature s > 0 such that h = s~%g.

Proof 1If (X, g) satisfies WT = 0, the conformal invariance of this con-
dition implies that (X,h) satisfies W = 0, too. But since X C M is
dense, it then follows by continuity that h satisfies W = 0 on all of M.
Thus, (M, h) must be a compact anti-self-dual manifold in this case.
Otherwise, W # 0, and Proposition 9.3.6 then guarantees that g =
f72h must be a Kihler metric on X = M — Z, with Kéhler form w and

3SWH(w,w)=s=cf !
for some positive constant c. However, since h = f2g, we also have
W (w,0)ln = [ W+ (w,w)l,
and it therefore follows that

W w.w)ln =3 [

But since f = 21/4|u;|f:1/2 by construction, this means that
W (w, @) = b |wl; (9.18)

on X, where b = \4/50/12 is a positive constant. However, since g is
Kéhler, with positive scalar curvature and Kahler form w, it follows
that W has a repeated negative eigenvalue at every point of X, and
that w everywhere belongs to the positive eigenspace. This implies that

2
W) = | 2o

at every point of X, both for g and for h. Thus (9.18) implies that
3/2
(W, = alw]¥ (9.19)

everywhere on X, where a = \/gb is another positive constant. However,
since X C M is dense, and because the two sides are both continuous
functions, it then follows that (9.19) actually holds on all of M. Now
notice that this implies that |W ™| is everywhere differentiable, and that
W+ must vanish to first order along Z; thus, VW™ = 0 at every point
of Z, where V denotes the Levi-Civita connection of h. Next, notice that
(9.19) also implies that

3 )2
AW H|aln = Salwly* dlewlaln
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on X = M — Z. Since the near-symplectic nature of w moreover guar-
antees that |d|w];| is bounded away from zero near Z, we therefore have

AWl > Alw|Y/?

on some neighborhood % of Z, where A := ga info, _z |d|w|p|n is an-
other positive constant. By the Kato inequality, we therefore have

VW, > Alwl/?

on % . But since h has been assumed throughout to be a C* metric,
VW is a differentiable tensor field, and we have moreover previously
observed that this field vanishes along Z. It thus follows that [VIWV ™|, is a
Lipschitz function that vanishes along Z. But since w is near-symplectic,
|w]p, is commensurate with the distance from Z in a small enough neigh-
borhood % O Z, and we must therefore have Blw|, > |[VW¥]|, on a
sufficiently small neighborhood % of Z, for some positive constant B.
But this then says that

Bluwly > Alwl,/”

on 7% , and so implies that

2

A
|w|h>§>0

on % — 7. But since X — (% —Z) = M — % is compact, and since w # 0
on X, this implies that |wy,| is uniformly bounded away from zero on all
of X. But since X is dense in M, it therefore follows by continuity that
|wlp, is bounded away from zero on all of M. Since Z is by definition the
zero set of w, we are therefore forced to conclude that Z = @.

Thus, g is a globally defined Ké&hler metric with scalar curvature s > 0
such that h = f2g = c2s 2g on all of M. By now replacing w with ¢~ 2/3w
and thus replacing ¢ with ¢=2/3
be given by s~2g, as promised. O

g, we can now arrange for h to simply

This tells us quite a bit about the 4-manifolds that carry metrics
h of the type covered by Theorem 9.3.7. Indeed [3, 9], if (M, J,g) is
a compact Kihler surface of scalar curvature s > 0, then h = s~ 2g
is a metric on M with W' = 0, and with W*(w,w) > 0 for the
Kéhler form w of g. On the other hand, if a compact complex surface
(M, J) admits K&hler metrics g with s > 0, it is necessarily rational
or ruled [33]. Conversely, any rational or ruled surface has arbitrarily
small deformations that admit such metrics [13, 26]. Up to oriented
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diffeomorphism, we can therefore give a complete list of the 4-manifolds
that admit solutions of this first type: they are CPy, (X2 x S?)#kCPs,
and X2 x S2, where ¥ is any compact orientable surface, k is any non-
negative integer, and X2 x S? is the non-trivial oriented 2-sphere bundle
over ¥. The moduli space of solutions on any of these manifolds is,
moreover, infinite dimensional.

The other class of solutions allowed by Theorem 9.3.7 is rather dif-
ferent, both because the moduli spaces of solutions are always finite
dimensional, and because the near-symplectic self-dual harmonic 2-form
w is allowed to have non-empty zero set. Of course, a vast menagerie of
smooth compact oriented 4-manifolds with by # 0 is known to admit
anti-self-dual metrics [21, 28], but little is known about when their self-
dual harmonic 2-forms w are near-symplectic. There certainly are many
examples with nowhere-zero w that are not conformally Kéhler [15], but
there are also related explicit families [5] with b = 1 where the self-dual
harmonic 2-form w transmutes from being nowhere zero to having non-
empty zero locus. For the latter explicit anti-self-dual manifolds, it seems
likely that the self-dual harmonic 2-form w is usually near-symplectic,
but this is equivalent to the non-degeneracy of all critical points for a
preferred harmonic function on a quasi-Fuchsian hyperbolic 3-manifold
associated with the solution. Perhaps some interested reader will decide
that this tractable-looking open problem merits careful investigation!

9.4 The Main Theorems

With the results of Section 9.3 in hand, we are now ready to prove our
main theorems, starting with Theorem 9.1.1.

Proof of Theorem 9.1.1 1If (M, h) is an oriented 4-dimensional Einstein
manifold, the second Bianchi identity implies that §WT = 0. If (M, h)
is moreover compact, connected, and admits a near-symplectic self-dual
harmonic 2-form w such that W (w,w) > 0, the conclusions of Theorem
9.3.7 then apply. Thus, if W (w,w) > 0 at some point, we know that
W #£ 0, and Theorem 9.3.7 then tells us that W+ (w,w) > 0 everywhere,
and h = s~ 2g for some globally defined K&hler metric g on M with
scalar curvature s > 0. However, any 4-dimensional Einstein metric is
Bach-flat, and, because this is a conformally invariant condition, the
Kaéhler metric g must therefore be Bach-flat, too. In particular, this
implies [8, 9] that g is an extremal K&hler metric. Moreover, one can
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also show [17] that the complex structure associated with any such g
has ¢; > 0, and it therefore follows that M is necessarily diffeomorphic
to a del Pezzo surface. Conversely, each del Pezzo diffeotype carries [8,
22, 25, 30, 31] an Einstein metric h which can be written as s~2g for a
suitable extremal Kéhler metric g with scalar curvature s > 0. In fact,
h is actually Kéhler—Einstein in most cases, the only exceptions being
when M is diffeomorphic to CPy#CPsy or CPy#2CP,. O

For each del Pezzo diffeotype, the moduli space of all Einstein metrics
h with W (w,w) > 0is actually connected |20]. Moreover, it follows from
[19, Thm. A] and a modicum of elementary Seiberg—Witten theory [16,
Thm. 3| that, for each del Pezzo M, this moduli space exactly coincides
with the moduli space of all conformally K&hler, Einstein metrics. We
now prove Theorem 9.1.2.

Proof of Theorem 9.1.2 1f (M*,h) is a compact oriented A > 0 Ein-
stein manifold that carries a near-symplectic self-dual harmonic w with
W+ (w,w) > 0, then Theorem 9.3.7 tells us that either W+ (w,w) > 0
everywhere, or else W+ = 0. Since the former case is covered by Theo-
rem 9.1.1, we may therefore assume that W+ = 0. However, by the
Weitzenbock formula for the Hodge Laplacian, the non-trivial self-dual
harmonic 2-form w satisfies

0=V*"Vw — 2W+(w) + gw,

and, since W+ = 0 and s = 4\ > 0 in our case, taking the inner product
with w and integrating yields

4N
0= / {|Vw|2 + (—|w|2] dp,.
M 3

We therefore conclude that Vw = 0 and A = 0, so that (M*, h) is nec-
essarily Ricci-flat and K&hler. Thus, after multiplying w by a positive
constant if necessary in order to give it constant length |wl|;, = V2, we
see that (M, h) carries an integrable, metric-compatible almost-complex
structure J such that w = h(J-,-). Moreover, since the Kéhler metric h
is Ricci-flat, the canonical line bundle K of (M, J) is flat, and ¢1 (M, J)
must therefore be a torsion class. The Kodaira classification of complex
surfaces [2, 11] therefore tells us that (M, J) must be a K3 surface, an
Enriques surface, an Abelian surface, or a hyper-elliptic surface. Con-
versely, Yau’s solution of the Calabi conjecture [35] tells us that each
complex surface of one of these types carries a unique Ricci-flat Kéhler
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metric in each K&hler class, and every such Calabi—Yau metric satisfies
w+=o0. |

It is worth pointing out that the moduli space of Ricci-flat Ké&hler met-
rics is connected. Indeed, since the Kéhler cone is contractible for each
complex structure, Yau’s theorem reduces this statement to the known
fact [2] that all the ¢} = 0 complex structures on these 4-manifolds are
swept out by a single connected family.

Finally we prove Theorem 9.1.3, by showing that the near-symplectic
hypothesis is absolutely essential for Theorem 9.1.1:

Proof of Theorem 9.1.8 Let (M, J, h) be a Kéhler—Einstein metric with
A < 0 on a compact complex surface (M, J) with py(M) := h*°(M) # 0.
(For example, we could take (M, J) to be a smooth quintic hypersurface
in CPs, so that ¢;(M) < 0 and py(M) = 4, and let h be the Kahler—
Einstein metric whose existence is guaranteed by the Aubin—Yau theo-
rem |1, 34].) Now recall that the self-dual Weyl curvature W+ : AT —
AT of any Kihler surface (M, J, g) takes the form

Olw

in any orthonormal basis e;, s, e3 for AT in which e3 is a multiple of the
Ké&hler form, where s is the scalar curvature. Rather than taking w to be
the Kéhler form, we now instead take w = Re(yp) for some holomorphic 2-
form ¢ # 0, on (M, J). Of course, the existence of such a ¢ is guaranteed
by our assumption that h%° # 0. Notice that ¢ is automatically self-dual
and harmonic as a consequence of standard K&hler identities, and that
the same is therefore automatically true of its real part w.

However, since w € Re A?? is everywhere point-wise orthogonal to
the Kéahler form, we now see that

WHew,w) =~ = Dl > 0
since the Einstein constant A of h is assumed to be negative. More-
over, since w # 0, this non-negative expression is somewhere positive.
On the other hand, the canonical line bundle of (M,.J) is non-trivial,
because ¢1(K) = —c¢1 > 0, so ¢, and therefore w, must vanish along
some non-empty holomorphic curve ¥ C M. Thus, W (w,w) vanishes
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somewhere, and the conclusion of Theorem 9.1.1 therefore fails for this
class of examples. O

Of course, in light of counter-examples like those detailed in the proof
of Theorem 9.1.3, it is important to explain exactly where the proof of
Theorem 9.1.1 breaks down when w is not near-symplectic. In fact, the
key failure occurs at the very beginning of our chain of reasoning, when
Lemma 9.2.2 is deduced from Lemma 9.2.1. Recall that Lemma 9.2.1 tells
us that the boundary terms arising from integration by parts have size
~ e3/2Vol®(8X_, h), where dX. is the hypersurface where |w|, = &.
In the near-symplectic case, V01(3)(8X ¢, h) ~ €2, so the boundary terms
are no worse than £'/2, and so vanish in the limit as ¢ — 0. By contrast,
in the above examples, the zero locus Z = ¥ of w has real codimension 2,
and we instead have Vol(g)(OXs7 h) ~ e. This means that the boundary
terms could in principle blow up as fast as e~1/2
can then no longer be expected to become negligible as ¢ tends to zero.

, and so, in particular,
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