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ABSTRACT

Neuromorphic Computing has become tremendously popular due

to its ability to solve certain classes of learning tasks better than

traditional von-Neumann computers. Data-intensive classification

and pattern recognition problems have been of special interest to

Neuromorphic Engineers, as these problems present complex use-

cases for Deep Neural Networks (DNNs) which are motivated from

the architecture of the human brain, and employ densely connected

neurons and synapses organized in a hierarchical manner. However,

as these systems become larger in order to handle an increasing

amount of data and higher dimensionality of features, the designs

often become connectivity constrained. To solve this, the computa-

tion is divided into multiple cores/islands, called processing engines

(PEs). Today, the communication among these PEs are carried out

through a power-hungry network-on-chip (NoC), and hence the

optimal distribution of these islands along with energy-efficient

compute and communication strategies become extremely impor-

tant in reducing the overall energy of the neuromorphic computer,

which is currently orders of magnitude higher than the biological

human brain. In this paper, we extensively analyze the choice of

the size of the islands based on mixed-signal neurons/synapses for

3-8 bit-resolution within allowable ranges for system-level classi-

fication error, determined by the analog non-idealities (noise and

mismatch) in the neurons, and propose strategies involving local

and global communication for reduction of the system-level en-

ergy consumption. AC-coupled mixed-signal neurons are shown

to have 10X lower non-idealities than DC-coupled ones, while the

choice of number of islands are shown to be a function of the

network, constrained by the analog to digital conversion (or vice-

versa) power at the interface of the islands. The maximum number

of layers in an island is analyzed and a global bus-based sparse con-

nectivity is proposed, which consumes orders of magnitude lower

power than the competing powerline communication techniques.
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1 INTRODUCTION

The energy efficiency of the biological human brain is orders of mag-

nitude better than today’s conventional von-Neumann computers.

The human brain (100 billion neurons, 20W power, ≈ 20 fJ/synaptic
operation), when emulated on a super computer requires 500 MW

of power [9]. As an alternative computing paradigm, Neuromorphic

computing uses artificial neural networks for computation, and has

found success in applications involving image/pattern recognition,

miniaturized autonomous robots and neural prosthetic. However, in

terms of the energy efficiency, the multiply and accumulate (MAC)

operation alone in a neuromorphic synapse can consume ≈ 200

fJ for a traditional digital implementation [1]. For analog/mixed-

signal implementations, the energy consumption promises to be

lower [3, 6, 7, 17, 20], as shown in Fig. 1. However, unlike digital,

analog implementations suffer from noise and variability. For a

von-Neumann computer, the non-idealities of analog systems re-

duces the computing precison, which makes their energy-efficiency

less attractive. In deed, digital circuits perform better for applica-

tions that require high (> 60 dB) signal-to-noise ratio (SNR) for

information processing [18]. However, when SNR requirements

are relaxed, analog computation can be orders of magnitude better

in terms of energy and area efficiency. This is because the ana-

log macros can represent a mathematical function with intrinsic

device/circuit dynamics, instead of relying on the logical imple-

mentation of the function using digital gates. As an example, an

analog multiplier can be implemented with a single transistor, bi-

ased for a fixed transconductance (𝑔𝑚), which produces an output
current as a multiplication of the input voltage and the fixed 𝑔𝑚 of

the device, with almost infinite resolution. On the other hand, to

implement the multiply-and-accumulate (MAC) operation using

8b digital multipliers, ≈ 3000 transistors are required [6]. The com-

bined static leakage of such a large number of transistors is usually

found to be comparable to, if not greater than the bias current of

the analog implementation in scaled technologies. At this point, it

is interesting to note that the von-Neumann architecture achieves
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Figure 1: Motivation of using Mixed-Signal Implementation

for Deep Neural Networks: Mixed-Signal Neurons (MSN)

achieves almost two orders of magnitude better energy effi-

ciency than digital, but requires the input signals to be ana-

log, and suffers from noise accumulation/mismatch as the

number of layers increase. The proposed island-based ar-

chitecture with dense-local and sparse-global connections,

with analog-to-digital conversion at the output interface of

the islands, eliminates the noise accumulation for MSN.

high accuracy through multi-bit representation which necessitates

a digital implementation. However, today’s deep neural networks

(DNN) contain multiple connections from its inputs to output due

to its distributed multi-path nature and hence the noise and vari-

ability of analog transistors can be tolerated to some extent due to

this inherent error-resiliency [6].

As the size of the DNN increases to handle a large amount of

data (also to find distinguishable features in higher dimensions),

today’s implementations often divide the computation into multiple

cores/islands/processing engines (PEs). The connectivity among

these PEs could be dense or sparse, depending on the architectural

definitions, physical proximity of the cores and the statistics of the

data traffic. Digital designers usually implement the PEs in a modu-

lar way, based on the dataflow structure, and hence the number of

stages/layers in the PE is determined by the algorithm. However,

for analog/mixed-signal implementations, the cumulative effect of

noise and mismatch within the island should also be considered

for determining the number of consecutive layers in the island. As

shown in Fig. 1, the analog/mixed-signal islands would contain dig-

ital interfaces (ADC and DAC: analog-to-digital conversion at the
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Figure 2: Use-case for the Proposed Architecture in the

(memory, computation) space: The proposed system is

most suitable when we have voltage-based memory (e.g.

SRAM/Floating Gate based memory), with in-memory

mixed-signal computation for low-power operation.

output and digital-to-analog-conversion at the input) to eliminate

the effect of noise accumulation/transfer to the next island. In this

paper, we analyze the allowable size of the islands for mixed-signal

implementations. As shown in Fig. 2, the proposed architecture is

most suitable for Analog, in-memory (or near-memory) computa-

tion with voltage-based memories that can be implemented in a

cost-efficient CMOS technology.

The PEs are typically connected together with a power and

area-hungry Network-on-Chip (NoC) in digital implementations,

which is not efficient for sparse connectivity. Inspired by our earlier

work [5, 8, 21] on energy-efficient communication, we also pro-

pose the use of a global bus for sparse connectivity which offers

energy-efficient inter-island communication, and compare it with

the competing power-line communication (PLC) technology [2].

1.1 Related Work

Analog/mixed-signal neuromorphic systems are becoming increas-

ingly popular among researchers for their extreme energy efficien-

cies, along with their compatibility with CMOS. The BrainScales

project [20] helped developing a high-speed (1000-10,000 times

faster than the human brain) system that uses analog computa-

tion aided by digital asynchronous communication. The design

consists ≈ 200k analog neurons with 40M synapses, while consum-

ing ≈ 1kW at 125 MHz frequency (156 fJ per synapse). Neurogrid

[3] uses a mixed-signal design approach, and reduces transistor
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count by sharing synapses and dendritic trees, as shown in [4].

Neurogrid consists ≈ 1M neurons, each with 8k synapses and con-

sumes 3.1W for real-time computations (390fJ per synapse). Both

BrainScales and Neurogrid are aimed towards spiking neural net-

works (SNNs) which models instantaneous neural activities with a

current-switching spiking neuron architecture. This requires com-

plex learning models such as spike timing dependent plasticity

(STDP). On the other hand, convolutional neural networks (CNN)

employ simple back-propagation-based learning algorithms which

utilize a multiply-and-accumulate (MAC) model [15] for the neuron.

CNNs are extensively used today for image/pattern recognition

applications such as surveillance and weather predictions. Our

earlier work on voltage-mode, small-signal mixed-signal neuron

(MSN) [6, 7] demonstrated an attractive power-bandwidth trade-off

through dominant pole compensation, achieving energy efficiencies

< 1fJ for the synaptic MAC operation.
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Figure 3: Our previous work [6] on low-power Mixed-Signal

Neuron (MSN) implementation, utilizing a DFE-based struc-

ture with weight-independent static currents and band-

width extension through dominant pole compensation.

Achieved energy benefits are >100X across all frequencies,

compared to digital implementations (WT: Wallace Tree

multiplier, AM: Array Multiplier).

Fig. 3 presents the MSN architecture shown in [6]. The neuron

consists of 𝑛 multipliers (synapses) of 𝑁 -bits each. Each slice 𝑗
in multiplier 𝑖 produces an AC current equal to 𝑔𝑚 𝑗 × 𝑣𝑖 where
𝑔𝑚 𝑗 is the effective transconductance of the input stages in slice 𝑗
(proportional to the constant current 𝑗 × 𝐼𝑢𝑛𝑖𝑡 in each slice), and 𝑣𝑖
is the input ac voltage to multiplier 𝑖 . The weight𝑊𝑖 in a multiplier

controls which slices contribute to the overall ac current by turning

on (or off) the switches for the input 𝑣𝑖 . The overall ac current
addition happens inherently through KCL at the output node, which

is converted to an equivalent voltage (𝑣𝑜𝑢𝑡 ) through the PMOS load
impedances. 𝑣𝑜𝑢𝑡 can then be expressed as shown in eq. 1.

𝑣𝑜𝑢𝑡 = 𝐹

(
𝐴𝑣 ×

𝑛∑
𝑘=1

𝑊𝑘𝑣𝑘

)
(1)

where 𝐹 denotes the inherent non-linear activation of the differ-

ential amplifier-based structure, and 𝐴𝑣 is the overall small-signal

voltage gain of a multiplier which needs to be made equal to 1 for

a CNN. The use of weight-controlled switches at the input allows a

fixed static current, thereby allowing non-linear PMOS loads (in-

stead of area-inefficient linear resistors which would have been

required had the weights switched the current sources). The use of

irregular slices (value of the current source increases in a binary

fashion, while the sizing of the input transistor remains constant)

improves the energy efficiency by a factor of 2
𝑁−1
𝑁 . The Resistive

feedback in each slice compensates for the dominant pole, which ex-

tends the bandwidth of operation. Alternatively, the dominant-pole

compensation allows for the use of larger devices at the same band-

width, which reduces the effects of noise and mismatch. Further

details can be found in [6].

1.2 Our Contribution

In this paper, we present the following:

(1) Analysis ofNon-idealitieswith increasing synapse area,

for DC-coupled/AC-coupled architectures (Section 3):

We show that for iso-area consumption, AC-coupled MSNs

offer >10X better non-ideality percentage (effect of noise

and mismatch) than DC-coupled MSNs for allowable non-

linearity ranges as defined by system -level simulations.

(2) Analysis ofmaximumallowable stages in an island/PE

(Section 4.1): Given an area and allowable non-ideality

ranges from system-level simulations, we show that the max-

imum number of allowable layers in an island is limited by

the resolution required (for e.g., 4 layers for 8b resolution).

(3) Analysis of the power overhead due to ADC/DACs in

terms of the system power (Section 4.2): We show that

the number of islands in theDNN, beforewhich theADC/DAC

power starts consuming >10% of the system power, is a func-

tion of the network size (number of synapses). We also show

that for practical networks, island-based communication

with MSN offers better energy-efficiency than digital.

(4) Analysis of global bus-based sparse communication

as an alternative to NoC-based or PLC-based architec-

tures (Section 5): We analyze the global bus-based sparse

connectivity in comparison with PLC-based connectivity

and show the energy benefits (which is more than 3 orders

of magnitude better than PLC-based architecture).
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2 SYSTEM-LEVEL REQUIREMENTS AND
ANALYSIS

It was shown in [18] that analog design is better than digital in

terms of power and area efficiency for applications that can toler-

ate < 8b precision. Google has also recently indicated that > 8b

fixed point precision is redundant for most neural network appli-

cations [19]. As a proof-of-concept, we have shown in [6] that for

MSN-based networks, the accumulated non-idealities in the form

of noise and/or mismatch slightly increases the classification error

for different digit/image recognition applications, which is shown

in Fig. 4. The analysis is performed on the MNIST dataset [16]

for handwritten digits and the CIFAR-10 dataset [13] for images.

The network architectures used are CNN (LeNet [15] for MNIST,

AlexNet [14] for CIFAR-10) and a 784×100×50×10 fully connected
network (FCN) for MNIST. The baseline classification error (Fig. 4,

top-left) with digital neurons show that the classification error sat-

urates for >8b resolution, while 3-8b resolution shows reasonably
acceptable errors for each application.

To represent the non-idealities present in MSN (noise and mis-

match), eq. 1 is modified as shown in eq. 2,

𝑣𝑜𝑢𝑡 = 𝐹

(
𝐴𝑣 ×

𝑛∑
𝑘=1

𝑤𝑘 (𝑣𝑘 +
√
𝐴 + Δ𝑘 )

)
(2)

which includes the input referred noise voltage (
√
𝐴, thereby

denoting an input referred noise power of 𝐴) and input referred
DC offset (Δ𝑘 ) due to mismatch for the 𝑘-th multiplier. Details of
the analysis can be found in [6].

Eq. 2 can be re-written as eq. 3.

𝑣𝑜𝑢𝑡 = 𝐹

(
𝐴𝑣 ×

𝑛∑
𝑘=1

𝑤𝑘

(
1 +

√
𝐴 + Δ𝑘
𝑣𝑘

)
𝑣𝑘

)
(3)

The quantity 100 ×
(
1 +

√
𝐴+Δ𝑘
𝑣𝑘

)
is called ‘Voltage non-ideality

percentage’ (𝑉𝑁𝐼𝑃 ), and will be used as a measure of non-ideality

from now on. Maximum 𝑣𝑘 is assumed to be 400mV as in [6].

From Fig. 4, it can be observed that for 16b/8b resolution with

𝑉𝑁𝐼𝑃 <1% the degradation in classification error is <1% for MNIST

(FCN/CNN) and <4% for CIFAR (CNN). Similarly, for 3b resolution

with 𝑉𝑁𝐼𝑃 <0.3%, the degradation in classification error is <1.5%
for MNIST (FCN/CNN) and <3% for CIFAR (CNN). This analysis

indicates that as long as 𝑉𝑁𝐼𝑃 <1% for 8b resolution (0.3% for 3b),

the neural network can tolerate the effects of noise and mismatch.

Fig. 5 shows the noise and mismatch present in one multiplier

stage of the MSN of Fig. 3. As explained in [6] and in Fig. 4, larger

𝑊 and 𝐿 for the input transistors help in reducing both noise and
mismatch (DC offset), at the cost of area. Interestingly, as shown in

Fig. 5, the absolute value of the noise voltage is ≈5X smaller than
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Circuit Noise in Mixed-Signal Neuron Implementation

DC Offset in 8b MSN Implementation 
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Figure 5: Noise and Input-Referred Mismatch present in

one Multiplier of the MSN. The device noise (input referred

noise voltage, integrated over the bandwidth) for the 8b neu-

ron is only 0.17mV, while the standard deviation for the

input referred DC offset is 0.82mV, indicating that DC off-

set/mismatch is more detrimental for MSN.

the absolute value of the DC offset (8b scenario), which means that

it is possible to reduce𝑉𝑁𝐼𝑃 through a combination of AC coupling

(removes DC offset with an input coupling capacitor) and device

upsizing (reduces noise).

3 ANALYSIS: DC-COUPLING/ AC-COUPLING
OF MSN STAGES

As shown in Fig. 4 (bottom-right), AC-coupling subsequent stages

of MSN results in a high-pass filtering (HPF) action, with the cutoff

frequency of the HPF being 1
2𝜋𝑅𝐶 , where 𝑅 denotes the biasing re-

sistance and 𝐶 represents the AC-coupling capacitance. Assuming

𝑅=20MΩ or higher (which requires a pseudo-resistor-based MOS-

FET implementation [11] for the biasing resistances), the cutoff

frequency of the HPF is shown in Fig. 6 w.r.t. the capacitance value.

We calculate that a capacitance of 80fF is required for an HPF cutoff

of 100kHz, which is suitable for operating frequency >1MHz. The
area of the 80fF MIMCap (Metal-Insulator-Metal Capacitor) in a

standard 65nm technology is about 100𝜇m2.

Fig. 7 shows the variation in the 𝑉𝑁𝐼𝑃 as a function of the multi-

plier area. For the DC-coupled MSN, the (𝑊 /𝐿) of the input transis-
tors are varied from (1𝜇m/65nm) to (30𝜇m/1.95𝜇m) and the𝑉𝑁𝐼𝑃 is

simulated. For the AC-coupled MSN, 80fF coupling capacitors were

placed at the inputs (total 160fF for differential inputs), and then

the (𝑊 /𝐿) of the input transistors are varied from (1𝜇m/65nm) to
(30𝜇m/1.95𝜇m). For 𝑉𝑁𝐼𝑃 <1% (as obtained as a requirement from

the system level simulations) with 8b resolution, total multiplier

area is only 330𝜇m2 for the AC-coupled case and about 1050𝜇m2 for

the DC coupled case. For 3b MSN, the requirement of 𝑉𝑁𝐼𝑃 <0.3%
is only fulfilled with AC-coupled architecture, with multiplier area

≈400𝜇m2. For a nominal multiplier area of 400𝜇m2 or above, AC-

coupled architecture achieves ≈10X better 𝑉𝑁𝐼𝑃 than DC-coupled

architecture. Also, the digital implementation of the Wallace-Tree

(WT) multiplier consumes ≈700𝜇m2 area, obtained using Synop-

sys EDA tools, implying that the MSN can achieve acceptable

system-level performance with ≈100X lower power (Fig. 3) and

≈1.75X lower area (Fig. 7) than digital implementations.
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4 ANALYSIS: NUMBER OF STAGES IN ISLAND

4.1 Limits arising from Resolution

For the AC-coupled scenario, the accumulated non-ideality (which

is only the noise voltage, obtained from the linear addition of noise

301



ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Chatterjee and Sen

power for subsequent stages) is plotted in Fig. 8 as a function of the

number of stages in the island. For 𝑣𝑘=400mV and 8b resolution (i.e.
400
28−1mV = 1.5686mV resolution), the allowable accumulated one-

sided non-ideality is only 1.5686mV/2, which corresponds to a𝑉𝑁𝐼𝑃

limitation of 0.196%. Assuming a multiplier area of ≈400𝜇m2, and

taking the non-ideality of the individual stage accordingly, we have

obtained Fig. 8. For 8b resolution, the allowable limit for consecutive

MSN stages is 4. This increases to ≈ 850 for 3b resolution since the

allowable accumulated 𝑉𝑁𝐼𝑃 increases exponentially with lowered

resolution, while 𝑉𝑁𝐼𝑃 itself increases in proportion to the square-

root of the number of stages.
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tive MSN stages/layers for which accumulated non-ideality
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comes from themaximum signal swing, divided by the num-

ber of resolution-steps.

4.2 ADC/DAC Power and System Power

As the number of islands increase in larger and larger DNNs, the

power consumption in the interfacing circuitry (ADC and DAC)

increases. This is shown in Fig. 9, with two example DNNs with

10M and 100M synapses. With 8b resolution for the smaller network

(10M synapses), the ADC/DAC power becomes >10% of the overall

system power as the number of islands increase beyond 4. For this

analysis, the ADC/DACs are assumed to have an energy efficiency

of 30fJ/conversion step [10]. With a realistic DNN (100M synapses),

the power consumption in ADC/DAC is <10% of the total system’s

power up to 32 islands. Since MSN is already > 100X better in

terms of energy efficiency than digital neurons, this additional

power overhead is insignificant. At this juncture, it is important

to note that the initial characterization networks used in [6] are

fairly small (<100k synapses for the 784×100×50×10 FCN, ≈1M
synapses for LeNet and ≈60M synapses for AlexNet). However, the

biggest network, AlexNet contains 8 layers, which is more than

the allowable Number of contiguous stages/layers in an island as

shown in Fig. 8. As a result, the system-level degradation in CIFAR-

10 classification with AlexNet CNN is >1%. With 2 islands, this

degradation is expected to return to ≈1%.

5 CHOICES FOR SPARSE INTERCONNECTS

For longer distances, the inter-island connectivity is expected to be

sparse through architecture design. Today’s PE-basedDNNs achieve
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Figure 9: Overall System Power Consumption with two ex-

ample FCNs, containing 10M and 100M synapses respec-

tively.With the smaller network (10M synapses in this case),

for 8b resolution, the system power becomes almost entirely

dominated by the ADC/DAC power as the number of islands

increase beyond 4. With a realistic DNN (100M synapses),

ADC/DAC power is <10% of the total system’s power up to
32 islands.

inter-island connectivity through NoCs, which are inefficient in

terms of area an power. In this section, we compare two techniques

for low-power, long-distance sparse connectivity.

5.1 Powerline Communication (PLC)

Our earlier work [2] introduced the powerline communication ap-

proach for enhanced connectivity in neuromorphic systems, and

analyzed a hybrid PLC-NoC-based memristive architecture for high

throughput and improved energy efficiency. In PLC, small and

sparse data is injected onto the power line through a transmitting

buffer (Tx), while the data is recovered at the receiver (Rx) side

with help of a level shifter, followed by a low-noise amplifier (LNA),

optional variable gain amplifiers (VGAs) and a sampler. The am-

plifier chain is necessary because of the small amount of signal

injected by the Tx and the channel loss in the powerline (≈ 10-20dB

for the longest path in a 1960𝜇m × 1960𝜇m power grid, depending

on the metal trace [2]). The average energy benefit over several

benchmarks was observed to be ≈39% at comparable latency, when

compared with NoC-based architectures.

5.2 Global Bus-based Communication (GBC)

Noting that PLC requires driving the power grid with a high-power

Tx and also needs a highly sensitive Rx because of the small ampli-

tudes of signal received, we propose the use of a dedicated global

bus for the sparse connectivity. Fig. 10 compares PLC with the
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sparse global connectivity among islands. The PLC Tx needs to drive the power grid (a direct contention with the LDOs in

the system), thereby consuming a high amount of power (100mW or more), while only imparting a small-amplitude signal

(10mV) on the powerline. The PLC Rx, on the other hand, needs to recover the small received signal. In presence of power-

supply noise, the PLC Rx becomes increasingly power hungry due to high PSRR and filtering requirements. The GBC Tx and

Rx overcomes this problem by having a dedicated global bus between the Tx and the Rx. Since there is no contention with the

LDO for the GBC Tx (also, the capacitance to be driven is much lower than PLC Tx), the GBC Tx achieves ≈2800X lower power
at 100MHz, while transmitting rail-to-rail signals. The GBC Rx receives higher amplitude signals, and hence can operate at

lower power (≈4X lower than PLC Rx, even in the case when PLC Rx does not suffer from power supply noise).

global bus-based Communication (GBC). Please note that for any

System on a Chip (SoC) or embedded system, a low-dropout reg-

ulator (LDO) is employed which drives the power grid and tries

to keep the voltage constant in the grid. Hence, the PLC Tx would

always need to burn additional power to overcome the driving

capabilities of the LDO (a typical output resistance of a commercial

LDO is 𝑅𝑂𝑈𝑇,𝐿𝐷𝑂 ≈ 100mΩ [12]). The output swing for the PLC Tx,

based on the ratio of resistances (𝑅𝑂𝑈𝑇,𝐿𝐷𝑂/𝑅𝑂𝑈𝑇,𝑇𝑥 ) is plotted

in Fig. 10, showing that signal swings >10mV can be achieved for

𝑅𝑂𝑈𝑇,𝐿𝐷𝑂/𝑅𝑂𝑈𝑇,𝑇𝑥 >0.01 (with 1V supply). The 10mV swing is

assumed at the Tx side so that it is distinguishable from noise, and

provides enough signal (>1mV) at the Rx side with 10-20dB channel
loss [2]. For 𝑅𝑂𝑈𝑇,𝐿𝐷𝑂/𝑅𝑂𝑈𝑇,𝑇𝑥 >0.01, the power consumption at
the PLC Tx > 148mW for 100MHz operating frequency. For higher

303



ASPDAC ’21, January 18–21, 2021, Tokyo, Japan Chatterjee and Sen

frequencies, the dynamic power consumption becomes dominant,

as the power grid is often connected to 100s of nF, or even 𝜇F ex-
ternal capacitances for decoupling. A power analysis at the Rx side,

using a standard 65nm process, shows 46.3𝜇W power consumption

for 100MHz operating frequency, in absence of any power sup-

ply noise (with only the level shifter, LNA and sampler). When a

10mVpp, 60Hz noise in the powerline is considered, the power con-

sumption increases due to the requirements of high power supply

rejection ratio (PSRR) and filtering.

For GBC, a dedicated global bus is utilized for sparse connectivity.

The capacitance of this bus is in the range of a few pF in the worst

case (when the bus travels several mmwithin the chip), as extracted

from a standard 65nm process, which results in a dynamic power

consumption of 52𝜇W at 100MHz. Since there is no contention

with the 𝑅𝑂𝑈𝑇 of the LDO in this case, the signal swing at the Tx

is rail-to-rail (1V), while simultaneously achieving a power benefit

of ≈ 2800X as compared with the PLC Tx.

Since the voltage transmitted by the GBC Tx is 1V, and the

channel loss, in the worst case, is still only 10-20dB, the received

signal for GBC Tx is expected to exceed 100mV, providing very

good SNR, and hence a simple inverter chain (or a simple resistive

feedback LNA followed by an inverter) will be able to recover the

signal. The power consumption for such a chain is found to be

only 11.6𝜇W at 100MHz, thereby providing a 4X additional power

benefit at the Rx side (even when the PLC Rx is considered to have

no supply noise). The combined power benefit for the GBC Tx+Rx

exceeds 10,000X, when compared with PLC.

6 CONCLUSION

Mixed-signal neuromorphic computing promises almost two orders

of magnitude better energy efficiencies than digital implementa-

tions, at the cost of additional classification error arising from the

analog non-idealities (noise and mismatch). This paper extensively

analyzes the usability of mixed-signal neurons (MSN) for deep

neural networks, with an island-based architecture with digital in-

terfaces for preventing the effects of accumulated non-idealities. AC

coupling is shown to be a more area-efficient method than device

upsizing with DC coupling, for reducing the effects of noise and

mismatch. The resolution of the application is shown to limit the

maximum allowable accumulated non-ideality in an MSN-based

island, from which the maximum number of stages/layers in the

island can be found out. Multiple islands are shown to incur neg-

ligible power overhead (<10%, arising from the ADCs and DACs

at the island interface) when the number of synapses contributing

to the system energy consumption is more than a few million. Fi-

nally, global-bus based communication is shown to be more than

three orders of magnitude more power efficient than powerline

communication for implementing sparse global connectivity.
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