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ABSTRACT

Neuromorphic Computing has become tremendously popular due
to its ability to solve certain classes of learning tasks better than
traditional von-Neumann computers. Data-intensive classification
and pattern recognition problems have been of special interest to
Neuromorphic Engineers, as these problems present complex use-
cases for Deep Neural Networks (DNNs) which are motivated from
the architecture of the human brain, and employ densely connected
neurons and synapses organized in a hierarchical manner. However,
as these systems become larger in order to handle an increasing
amount of data and higher dimensionality of features, the designs
often become connectivity constrained. To solve this, the computa-
tion is divided into multiple cores/islands, called processing engines
(PEs). Today, the communication among these PEs are carried out
through a power-hungry network-on-chip (NoC), and hence the
optimal distribution of these islands along with energy-efficient
compute and communication strategies become extremely impor-
tant in reducing the overall energy of the neuromorphic computer,
which is currently orders of magnitude higher than the biological
human brain. In this paper, we extensively analyze the choice of
the size of the islands based on mixed-signal neurons/synapses for
3-8 bit-resolution within allowable ranges for system-level classi-
fication error, determined by the analog non-idealities (noise and
mismatch) in the neurons, and propose strategies involving local
and global communication for reduction of the system-level en-
ergy consumption. AC-coupled mixed-signal neurons are shown
to have 10X lower non-idealities than DC-coupled ones, while the
choice of number of islands are shown to be a function of the
network, constrained by the analog to digital conversion (or vice-
versa) power at the interface of the islands. The maximum number
of layers in an island is analyzed and a global bus-based sparse con-
nectivity is proposed, which consumes orders of magnitude lower
power than the competing powerline communication techniques.
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1 INTRODUCTION

The energy efficiency of the biological human brain is orders of mag-
nitude better than today’s conventional von-Neumann computers.
The human brain (100 billion neurons, 20 W power, ~ 20 fJ/synaptic
operation), when emulated on a super computer requires 500 MW
of power [9]. As an alternative computing paradigm, Neuromorphic
computing uses artificial neural networks for computation, and has
found success in applications involving image/pattern recognition,
miniaturized autonomous robots and neural prosthetic. However, in
terms of the energy efficiency, the multiply and accumulate (MAC)
operation alone in a neuromorphic synapse can consume = 200
fJ for a traditional digital implementation [1]. For analog/mixed-
signal implementations, the energy consumption promises to be
lower [3, 6, 7, 17, 20], as shown in Fig. 1. However, unlike digital,
analog implementations suffer from noise and variability. For a
von-Neumann computer, the non-idealities of analog systems re-
duces the computing precison, which makes their energy-efficiency
less attractive. In deed, digital circuits perform better for applica-
tions that require high (> 60 dB) signal-to-noise ratio (SNR) for
information processing [18]. However, when SNR requirements
are relaxed, analog computation can be orders of magnitude better
in terms of energy and area efficiency. This is because the ana-
log macros can represent a mathematical function with intrinsic
device/circuit dynamics, instead of relying on the logical imple-
mentation of the function using digital gates. As an example, an
analog multiplier can be implemented with a single transistor, bi-
ased for a fixed transconductance (g;,), which produces an output
current as a multiplication of the input voltage and the fixed g, of
the device, with almost infinite resolution. On the other hand, to
implement the multiply-and-accumulate (MAC) operation using
8b digital multipliers, ~ 3000 transistors are required [6]. The com-
bined static leakage of such a large number of transistors is usually
found to be comparable to, if not greater than the bias current of
the analog implementation in scaled technologies. At this point, it
is interesting to note that the von-Neumann architecture achieves
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Neural Networks: Digital vs. Mixed-Signal Implementation
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Figure 1: Motivation of using Mixed-Signal Implementation
for Deep Neural Networks: Mixed-Signal Neurons (MSN)
achieves almost two orders of magnitude better energy effi-
ciency than digital, but requires the input signals to be ana-
log, and suffers from noise accumulation/mismatch as the
number of layers increase. The proposed island-based ar-
chitecture with dense-local and sparse-global connections,
with analog-to-digital conversion at the output interface of
the islands, eliminates the noise accumulation for MSN.

high accuracy through multi-bit representation which necessitates
a digital implementation. However, today’s deep neural networks
(DNN) contain multiple connections from its inputs to output due
to its distributed multi-path nature and hence the noise and vari-
ability of analog transistors can be tolerated to some extent due to
this inherent error-resiliency [6].

As the size of the DNN increases to handle a large amount of
data (also to find distinguishable features in higher dimensions),
today’s implementations often divide the computation into multiple
cores/islands/processing engines (PEs). The connectivity among
these PEs could be dense or sparse, depending on the architectural
definitions, physical proximity of the cores and the statistics of the
data traffic. Digital designers usually implement the PEs in a modu-
lar way, based on the dataflow structure, and hence the number of
stages/layers in the PE is determined by the algorithm. However,
for analog/mixed-signal implementations, the cumulative effect of
noise and mismatch within the island should also be considered
for determining the number of consecutive layers in the island. As
shown in Fig. 1, the analog/mixed-signal islands would contain dig-
ital interfaces (ADC and DAC: analog-to-digital conversion at the
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Use-Case for Mixed-Signal Neurons (MSN
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Figure 2: Use-case for the Proposed Architecture in the
(memory, computation) space: The proposed system is
most suitable when we have voltage-based memory (e.g.
SRAM/Floating Gate based memory), with in-memory
mixed-signal computation for low-power operation.

output and digital-to-analog-conversion at the input) to eliminate
the effect of noise accumulation/transfer to the next island. In this
paper, we analyze the allowable size of the islands for mixed-signal
implementations. As shown in Fig. 2, the proposed architecture is
most suitable for Analog, in-memory (or near-memory) computa-
tion with voltage-based memories that can be implemented in a
cost-efficient CMOS technology.

The PEs are typically connected together with a power and
area-hungry Network-on-Chip (NoC) in digital implementations,
which is not efficient for sparse connectivity. Inspired by our earlier
work [5, 8, 21] on energy-efficient communication, we also pro-
pose the use of a global bus for sparse connectivity which offers
energy-efficient inter-island communication, and compare it with
the competing power-line communication (PLC) technology [2].

1.1 Related Work

Analog/mixed-signal neuromorphic systems are becoming increas-
ingly popular among researchers for their extreme energy efficien-
cies, along with their compatibility with CMOS. The BrainScales
project [20] helped developing a high-speed (1000-10,000 times
faster than the human brain) system that uses analog computa-
tion aided by digital asynchronous communication. The design
consists ~ 200k analog neurons with 40M synapses, while consum-
ing ~ 1kW at 125 MHz frequency (156 fJ per synapse). Neurogrid
[3] uses a mixed-signal design approach, and reduces transistor
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count by sharing synapses and dendritic trees, as shown in [4].
Neurogrid consists * 1M neurons, each with 8k synapses and con-
sumes 3.1W for real-time computations (390f] per synapse). Both
BrainScales and Neurogrid are aimed towards spiking neural net-
works (SNNs) which models instantaneous neural activities with a
current-switching spiking neuron architecture. This requires com-
plex learning models such as spike timing dependent plasticity
(STDP). On the other hand, convolutional neural networks (CNN)
employ simple back-propagation-based learning algorithms which
utilize a multiply-and-accumulate (MAC) model [15] for the neuron.
CNNs are extensively used today for image/pattern recognition
applications such as surveillance and weather predictions. Our
earlier work on voltage-mode, small-signal mixed-signal neuron
(MSN) [6, 7] demonstrated an attractive power-bandwidth trade-off
through dominant pole compensation, achieving energy efficiencies
< 1f]J for the synaptic MAC operation.

Mixed-Signal Neuron Implementation
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Figure 3: Our previous work [6] on low-power Mixed-Signal
Neuron (MSN) implementation, utilizing a DFE-based struc-
ture with weight-independent static currents and band-
width extension through dominant pole compensation.
Achieved energy benefits are >100X across all frequencies,
compared to digital implementations (WT: Wallace Tree
multiplier, AM: Array Multiplier).

Fig. 3 presents the MSN architecture shown in [6]. The neuron
consists of n multipliers (synapses) of N-bits each. Each slice j
in multiplier i produces an AC current equal to gm; X v; where
gm; is the effective transconductance of the input stages in slice j
(proportional to the constant current j X I;5;; in each slice), and v;
is the input ac voltage to multiplier i. The weight W; in a multiplier
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controls which slices contribute to the overall ac current by turning
on (or off) the switches for the input v;. The overall ac current
addition happens inherently through KCL at the output node, which
is converted to an equivalent voltage (voy;) through the PMOS load
impedances. vy can then be expressed as shown in eq. 1.

vout = F

Ay X Zn: kak)

k=1

where F denotes the inherent non-linear activation of the differ-
ential amplifier-based structure, and A, is the overall small-signal
voltage gain of a multiplier which needs to be made equal to 1 for
a CNN. The use of weight-controlled switches at the input allows a
fixed static current, thereby allowing non-linear PMOS loads (in-
stead of area-inefficient linear resistors which would have been
required had the weights switched the current sources). The use of
irregular slices (value of the current source increases in a binary
fashion, while the sizing of the input transistor remains constant)

improves the energy efficiency by a factor of &]\;1 The Resistive
feedback in each slice compensates for the dominant pole, which ex-
tends the bandwidth of operation. Alternatively, the dominant-pole
compensation allows for the use of larger devices at the same band-
width, which reduces the effects of noise and mismatch. Further
details can be found in [6].

1.2 Our Contribution

In this paper, we present the following:

(1) Analysis of Non-idealities with increasing synapse area,
for DC-coupled/AC-coupled architectures (Section 3):
We show that for iso-area consumption, AC-coupled MSNs
offer >10X better non-ideality percentage (effect of noise
and mismatch) than DC-coupled MSNs for allowable non-
linearity ranges as defined by system -level simulations.
Analysis of maximum allowable stages in an island/PE
(Section 4.1): Given an area and allowable non-ideality
ranges from system-level simulations, we show that the max-
imum number of allowable layers in an island is limited by
the resolution required (for e.g., 4 layers for 8b resolution).
Analysis of the power overhead due to ADC/DACs in
terms of the system power (Section 4.2): We show that
the number of islands in the DNN, before which the ADC/DAC
power starts consuming >10% of the system power, is a func-
tion of the network size (number of synapses). We also show
that for practical networks, island-based communication
with MSN offers better energy-efficiency than digital.
Analysis of global bus-based sparse communication
as an alternative to NoC-based or PLC-based architec-
tures (Section 5): We analyze the global bus-based sparse
connectivity in comparison with PLC-based connectivity
and show the energy benefits (which is more than 3 orders
of magnitude better than PLC-based architecture).

—~
N
=
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Precision Requirements
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System-Level Analysis: Effect of Non-idealities (Noise+Mismatch) on Classification
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Methods to Reduce Non-idealities (Noise and/or Mismatch) and their Trade-offs
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Figure 4: System-level Precision analysis for target applications and System level simulation results for 3-bit, 8-bit and 16-bit
MS-N: MNIST [16] with FCN, MNIST with CNN and CIFAR-10 [13] with CNN are considered. Details can be found in [6].

2 SYSTEM-LEVEL REQUIREMENTS AND
ANALYSIS

It was shown in [18] that analog design is better than digital in
terms of power and area efficiency for applications that can toler-
ate < 8b precision. Google has also recently indicated that > 8b
fixed point precision is redundant for most neural network appli-
cations [19]. As a proof-of-concept, we have shown in [6] that for
MSN-based networks, the accumulated non-idealities in the form
of noise and/or mismatch slightly increases the classification error
for different digit/image recognition applications, which is shown
in Fig. 4. The analysis is performed on the MNIST dataset [16]
for handwritten digits and the CIFAR-10 dataset [13] for images.
The network architectures used are CNN (LeNet [15] for MNIST,
AlexNet [14] for CIFAR-10) and a 784x100x50%10 fully connected
network (FCN) for MNIST. The baseline classification error (Fig. 4,
top-left) with digital neurons show that the classification error sat-
urates for >8b resolution, while 3-8b resolution shows reasonably
acceptable errors for each application.

To represent the non-idealities present in MSN (noise and mis-
match), eq. 1 is modified as shown in eq. 2,

Oout = (2)

n
FAox )" wie(o + VA+Ay)
k=1

300

which includes the input referred noise voltage (VA, thereby
denoting an input referred noise power of A) and input referred
DC offset (Ax) due to mismatch for the k-th multiplier. Details of
the analysis can be found in [6].

Eq. 2 can be re-written as eq. 3.
) is called ‘Voltage non-ideality

\/_+Ak

Uk

(3)

Yout =

AUxZwk(

The quantity 100 X (1 + =k \F+Ak

percentage’ (Vyrp), and will be used as a measure of non-ideality
from now on. Maximum v, is assumed to be 400mV as in [6].
From Fig. 4, it can be observed that for 16b/8b resolution with
VNIP <1% the degradation in classification error is <1% for MNIST
(FCN/CNN) and <4% for CIFAR (CNN). Similarly, for 3b resolution
with Vyp <0.3%, the degradation in classification error is <1.5%
for MNIST (FCN/CNN) and <3% for CIFAR (CNN). This analysis
indicates that as long as Vnyp <1% for 8b resolution (0.3% for 3b),
the neural network can tolerate the effects of noise and mismatch.
Fig. 5 shows the noise and mismatch present in one multiplier
stage of the MSN of Fig. 3. As explained in [6] and in Fig. 4, larger
W and L for the input transistors help in reducing both noise and
mismatch (DC offset), at the cost of area. Interestingly, as shown in
Fig. 5, the absolute value of the noise voltage is ~5X smaller than
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Circuit Noise in Mixed-Signal Neuron Implementation
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Figure 5: Noise and Input-Referred Mismatch present in
one Multiplier of the MSN. The device noise (input referred
noise voltage, integrated over the bandwidth) for the 8b neu-
ron is only 0.17mV, while the standard deviation for the
input referred DC offset is 0.82mV, indicating that DC off-
set/mismatch is more detrimental for MSN.

the absolute value of the DC offset (8b scenario), which means that
it is possible to reduce Vyp through a combination of AC coupling
(removes DC offset with an input coupling capacitor) and device
upsizing (reduces noise).

3 ANALYSIS: DC-COUPLING/ AC-COUPLING
OF MSN STAGES

As shown in Fig. 4 (bottom-right), AC-coupling subsequent stages
of MSN results in a high-pass filtering (HPF) action, with the cutoff
frequency of the HPF being 5 anC’ where R denotes the biasing re-
sistance and C represents the AC-coupling capacitance. Assuming
R=20MQ or higher (which requires a pseudo-resistor-based MOS-
FET implementation [11] for the biasing resistances), the cutoff
frequency of the HPF is shown in Fig. 6 w.r.t. the capacitance value.
We calculate that a capacitance of 80fF is required for an HPF cutoff
of 100kHz, which is suitable for operating frequency >1MHz. The
area of the 80fF MIMCap (Metal-Insulator-Metal Capacitor) in a
standard 65nm technology is about 100um?,

Fig. 7 shows the variation in the Vxrp as a function of the multi-
plier area. For the DC-coupled MSN, the (W /L) of the input transis-
tors are varied from (1pm/65nm) to (30um/1.95um) and the Vyyp is
simulated. For the AC-coupled MSN, 80fF coupling capacitors were
placed at the inputs (total 160fF for differential inputs), and then
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the (W/L) of the input transistors are varied from (1pym/65nm) to
(30pum/1.95um). For Vnp <1% (as obtained as a requirement from
the system level simulations) with 8b resolution, total multiplier
area is only 330pum? for the AC-coupled case and about 1050um? for
the DC coupled case. For 3b MSN, the requirement of Vyp <0.3%
is only fulfilled with AC-coupled architecture, with multiplier area
~400um?. For a nominal multiplier area of 400um? or above, AC-
coupled architecture achieves ~10X better Viyrp than DC-coupled
architecture. Also, the digital implementation of the Wallace-Tree
(WT) multiplier consumes ~700um? area, obtained using Synop-
sys EDA tools, implying that the MSN can achieve acceptable
system-level performance with ~100X lower power (Fig. 3) and
~1.75X lower area (Fig. 7) than digital implementations.
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Figure 6: Analysis of the required capacitance for AC cou-
pling (Assumption: biasing resistance = 20MQ): The HPF cut-
off frequency and the capacitance area in a 65nm technology
are shown in the two y-axes.
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Figure 7: Synapse (one multiplier) Area vs Non-ideality Per-
centage for DC coupled and AC coupled Mixed-Signal Neu-
rons, and their comparison with WT-based digital multi-
plier. The non-ideality of the digital multiplier is effectively
assumed to be zero.

4 ANALYSIS: NUMBER OF STAGES IN ISLAND

4.1 Limits arising from Resolution

For the AC-coupled scenario, the accumulated non-ideality (which
is only the noise voltage, obtained from the linear addition of noise
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power for subsequent stages) is plotted in Fig. 8 as a function of the
number of stages in the island. For v3.=400mV and 8b resolution (i.e.
Zzé(ﬁ)l mV = 1.5686mV resolution), the allowable accumulated one-
sided non-ideality is only 1.5686mV/2, which corresponds to a Vyp
limitation of 0.196%. Assuming a multiplier area of ~400um?, and
taking the non-ideality of the individual stage accordingly, we have
obtained Fig. 8. For 8b resolution, the allowable limit for consecutive
MSN stages is 4. This increases to ~ 850 for 3b resolution since the
allowable accumulated Vj7p increases exponentially with lowered
resolution, while Vip itself increases in proportion to the square-
root of the number of stages.

20
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Figure 8: Analysis on the number of maximum consecu-
tive MSN stages/layers for which accumulated non-ideality
in MSN surpasses the resolution limit. The resolution limit
comes from the maximum signal swing, divided by the num-
ber of resolution-steps.

4.2 ADC/DAC Power and System Power

As the number of islands increase in larger and larger DNNs, the
power consumption in the interfacing circuitry (ADC and DAC)
increases. This is shown in Fig. 9, with two example DNNs with
10M and 100M synapses. With 8b resolution for the smaller network
(10M synapses), the ADC/DAC power becomes >10% of the overall
system power as the number of islands increase beyond 4. For this
analysis, the ADC/DACs are assumed to have an energy efficiency
of 30f]/conversion step [10]. With a realistic DNN (100M synapses),
the power consumption in ADC/DAC is <10% of the total system’s
power up to 32 islands. Since MSN is already > 100X better in
terms of energy efficiency than digital neurons, this additional
power overhead is insignificant. At this juncture, it is important
to note that the initial characterization networks used in [6] are
fairly small (<100k synapses for the 784x100x50x10 FCN, ~1M
synapses for LeNet and ~60M synapses for AlexNet). However, the
biggest network, AlexNet contains 8 layers, which is more than
the allowable Number of contiguous stages/layers in an island as
shown in Fig. 8. As a result, the system-level degradation in CIFAR-
10 classification with AlexNet CNN is >1%. With 2 islands, this
degradation is expected to return to ~1%.

5 CHOICES FOR SPARSE INTERCONNECTS

For longer distances, the inter-island connectivity is expected to be
sparse through architecture design. Today’s PE-based DNNs achieve
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Figure 9: Overall System Power Consumption with two ex-
ample FCNs, containing 10M and 100M synapses respec-
tively. With the smaller network (10M synapses in this case),
for 8b resolution, the system power becomes almost entirely
dominated by the ADC/DAC power as the number of islands
increase beyond 4. With a realistic DNN (100M synapses),
ADC/DAC power is <10% of the total system’s power up to
32 islands.

inter-island connectivity through NoCs, which are inefficient in
terms of area an power. In this section, we compare two techniques
for low-power, long-distance sparse connectivity.

5.1 Powerline Communication (PLC)

Our earlier work [2] introduced the powerline communication ap-
proach for enhanced connectivity in neuromorphic systems, and
analyzed a hybrid PLC-NoC-based memristive architecture for high
throughput and improved energy efficiency. In PLC, small and
sparse data is injected onto the power line through a transmitting
buffer (Tx), while the data is recovered at the receiver (Rx) side
with help of a level shifter, followed by a low-noise amplifier (LNA),
optional variable gain amplifiers (VGAs) and a sampler. The am-
plifier chain is necessary because of the small amount of signal
injected by the Tx and the channel loss in the powerline (~ 10-20dB
for the longest path in a 1960ym X 1960um power grid, depending
on the metal trace [2]). The average energy benefit over several
benchmarks was observed to be #39% at comparable latency, when
compared with NoC-based architectures.

5.2 Global Bus-based Communication (GBC)

Noting that PLC requires driving the power grid with a high-power
Tx and also needs a highly sensitive Rx because of the small ampli-
tudes of signal received, we propose the use of a dedicated global
bus for the sparse connectivity. Fig. 10 compares PLC with the
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Powerline Communication (PLC) vs. Global Bus-based Communication (GBC)
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Figure 10: Powerline Communication (PLC) and Global Bus-based communication (GBC) as two techniques for achieving
sparse global connectivity among islands. The PLC Tx needs to drive the power grid (a direct contention with the LDOs in
the system), thereby consuming a high amount of power (100mW or more), while only imparting a small-amplitude signal
(10mV) on the powerline. The PLC Rx, on the other hand, needs to recover the small received signal. In presence of power-
supply noise, the PLC Rx becomes increasingly power hungry due to high PSRR and filtering requirements. The GBC Tx and
Rx overcomes this problem by having a dedicated global bus between the Tx and the Rx. Since there is no contention with the
LDO for the GBC Tx (also, the capacitance to be driven is much lower than PLC Tx), the GBC Tx achieves ~2800X lower power
at 100MHz, while transmitting rail-to-rail signals. The GBC Rx receives higher amplitude signals, and hence can operate at
lower power (*4X lower than PLC Rx, even in the case when PLC Rx does not suffer from power supply noise).

global bus-based Communication (GBC). Please note that for any
System on a Chip (SoC) or embedded system, a low-dropout reg-
ulator (LDO) is employed which drives the power grid and tries
to keep the voltage constant in the grid. Hence, the PLC Tx would
always need to burn additional power to overcome the driving
capabilities of the LDO (a typical output resistance of a commercial
LDOis Royr,Lpo ~ 100mQ [12]). The output swing for the PLC Tx,
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based on the ratio of resistances (RouT,.po/RouT,Tx) is plotted
in Fig. 10, showing that signal swings >10mV can be achieved for
ROUT,LDO/ROUT,TX >0.01 (with 1V supply). The 10mV swing is
assumed at the Tx side so that it is distinguishable from noise, and
provides enough signal (>1mV) at the Rx side with 10-20dB channel
loss [2]. For RouT,L.p0/RouT,Tx >0.01, the power consumption at
the PLC Tx > 148mW for 100MHz operating frequency. For higher



ASPDAC °21, January 18-21, 2021, Tokyo, Japan

frequencies, the dynamic power consumption becomes dominant,
as the power grid is often connected to 100s of nF, or even yF ex-
ternal capacitances for decoupling. A power analysis at the Rx side,
using a standard 65nm process, shows 46.3uW power consumption
for 100MHz operating frequency, in absence of any power sup-
ply noise (with only the level shifter, LNA and sampler). When a
10mVpp, 60Hz noise in the powerline is considered, the power con-
sumption increases due to the requirements of high power supply
rejection ratio (PSRR) and filtering.

For GBC, a dedicated global bus is utilized for sparse connectivity.
The capacitance of this bus is in the range of a few pF in the worst
case (when the bus travels several mm within the chip), as extracted
from a standard 65nm process, which results in a dynamic power
consumption of 52yW at 100MHz. Since there is no contention
with the Royt of the LDO in this case, the signal swing at the Tx
is rail-to-rail (1V), while simultaneously achieving a power benefit
of ~ 2800X as compared with the PLC Tx.

Since the voltage transmitted by the GBC Tx is 1V, and the
channel loss, in the worst case, is still only 10-20dB, the received
signal for GBC Tx is expected to exceed 100mV, providing very
good SNR, and hence a simple inverter chain (or a simple resistive
feedback LNA followed by an inverter) will be able to recover the
signal. The power consumption for such a chain is found to be
only 11.6u4W at 100MHz, thereby providing a 4X additional power
benefit at the Rx side (even when the PLC Rx is considered to have
no supply noise). The combined power benefit for the GBC Tx+Rx
exceeds 10,000X, when compared with PLC.

6 CONCLUSION

Mixed-signal neuromorphic computing promises almost two orders
of magnitude better energy efficiencies than digital implementa-
tions, at the cost of additional classification error arising from the
analog non-idealities (noise and mismatch). This paper extensively
analyzes the usability of mixed-signal neurons (MSN) for deep
neural networks, with an island-based architecture with digital in-
terfaces for preventing the effects of accumulated non-idealities. AC
coupling is shown to be a more area-efficient method than device
upsizing with DC coupling, for reducing the effects of noise and
mismatch. The resolution of the application is shown to limit the
maximum allowable accumulated non-ideality in an MSN-based
island, from which the maximum number of stages/layers in the
island can be found out. Multiple islands are shown to incur neg-
ligible power overhead (<10%, arising from the ADCs and DACs
at the island interface) when the number of synapses contributing
to the system energy consumption is more than a few million. Fi-
nally, global-bus based communication is shown to be more than
three orders of magnitude more power efficient than powerline
communication for implementing sparse global connectivity.
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