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“Dave...I can assure you ...that it’s going to be all right ...”
A Definition, Case for, and Survey of Algorithmic
Assurances in Human-Autonomy Trust Relationships
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People who design, use, and are affected by autonomous artificially intelligent agents want to be able to trust

such agents—that is, to know that these agents will perform correctly, to understand the reasoning behind

their actions, and to know how to use them appropriately. Many techniques have been devised to assess

and influence human trust in artificially intelligent agents. However, these approaches are typically ad hoc

and have not been formally related to each other or to formal trust models. This article presents a survey

of algorithmic assurances, i.e., programmed components of agent operation that are expressly designed to

calibrate user trust in artificially intelligent agents. Algorithmic assurances are first formally defined and

classified from the perspective of formally modeled human-artificially intelligent agent trust relationships.

Building on these definitions, a synthesis of research across communities such as machine learning, human-

computer interaction, robotics, e-commerce, and others reveals that assurance algorithms naturally fall along

a spectrum in terms of their impact on an agent’s core functionality, with seven notable classes ranging from

integral assurances (which impact an agent’s core functionality) to supplemental assurances (which have

no direct effect on agent performance). Common approaches within each of these classes are identified and

discussed; benefits and drawbacks of different approaches are also investigated.
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HAL 9000, 2001 A Space Odyssey, full quote: “Just what do you think you’re doing, Dave? Dave, I really think I’m entitled to

an answer to that question. I know everything hasn’t been quite right with me, but I can assure you now, very confidently,

that it’s going to be all right again.”
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1 INTRODUCTION

Trust plays a key role in interpersonal relationships. For example, a supervisor asks a subordinate
to accomplish a task based on several factors that indicate the subordinate can be trusted to do so.
Likewise, when using something like an autonomous vehicle, users must trust it appropriately in
order to use it properly. With the rapid advancement of artificially intelligent technology and au-
tonomous systems to do tasks that were previously assumed to be too complicated for machines,
there is now much discussion in public [33, 122, 139], business [10, 72, 129], and academic set-
tings [18, 38, 79] on how humans can trust said technology—although, the connection to trust is
not always made explicit from a technical standpoint. Those who discuss how to trust a specific
technology are really referring to the need to identify indicators of the appropriate level of trust.
In other words, it is desirable to design capabilities and methods into intelligent technology that
help designers, users, and other stakeholders achieve appropriate levels of trust in that technol-
ogy. These capabilities and methods are collectively referred to as assurances. The field of formal
Validation and Verification (V&V) also uses the term assurances to refer to structured evidence
that indicates whether or not a system is functioning according to a priori design specifications
[17]. These assurances will be referred to here as “hard assurances.” Hard assurances are often not
relatable to users of systems or used to adjust levels of trust with a user in real time but are used
for certification and meeting certain qualifications such as safety. This is in contrast to soft assur-
ances, which are meant to affect user trust and trust-related behaviors. In this article, “assurances”
will refer to soft assurances only.

This survey investigates what assurances an Artificially Intelligent Agent (AIA) can provide to a
human user in order to affect their trust. The colloquial definitions of appropriate use, assurance,
AIA, and trust should suffice for now to give the reader a general idea of the motivation; more
formal definitions will be presented in Section 2. Many researchers from different disciplines will
potentially be interested in this work, which includes fields like machine learning, artificial intelli-
gence, robotics, and unmanned systems. More broadly, it includes any disciplines that deal in some
way with the interface between humans and technology; particularly those who are interested in
working with, trusting, interpreting, understanding, and/or regulating AIAs. As such, this article
cuts across multiple disciplines and ties together concepts from several important research top-
ics, such as trustworthy and explainable learning and AI, ethical and transparent autonomy, and
safety-/user-aware intelligent systems.

Figure 1 is a simple diagram of the trust cycle that exists between a human user and an AIA:
user trust is affected by assurances from the AIA, which in turn affects the user’s interaction with
the AIA (e.g., to trust AIA with responsibilities or not). To fully understand and appreciate the
importance of assurances, one must have a more formal understanding of the components of the
trust cycle. This article provides an overview of the trust cycle elements and then turns more fo-
cused attention to assurances, surveying related research to date. From this survey, properties and
classifications of assurances are defined, and considerations for further research are presented.
Some of the novel contributions of this article include: creating a detailed description and defi-
nition of assurances in general human-AIA relationships (based in research from several diverse
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Fig. 1. Simple one-way trust relationship between a human user and an AIA: based on a user’s level of trust,
they take certain actions (e.g., give AIA commands), which can lead to AIA actions and/or to assurances that
affect user trust. Some Task Oriented Behaviors can fall within the trust cycle, but the addition of a separate
arrow is meant to encompass any actions that are not strictly trust related.

research communities); making a detailed breakdown of the different components of assurances;
and identifying design considerations for implementing assurances at different levels of integra-
tion within the AIA. To this end, Section 2 provides definitions for each of the terms. Section 3
presents a more detailed version of Figure 1. We classify existing work into seven categories of in-
tegration within the AIA; detailed definitions, discussion, and examples of assurances from these
categories help readers to understand how to apply assurances in their specific applications. Fi-
nally, recommendations for future work are discussed in Section 4, and conclusions are presented
in Section 5.

2 MOTIVATION AND BACKGROUND

The notion of algorithms being used to create assurances for users is not new. However, the
creation of these assurances (for example, in various engineering disciplines, software, science,
economics, and others) has historically been done in an ad hoc manner. The need for designed
assurances has grown considerably in recent years, as the advanced capabilities of intelligent sys-
tems have become more difficult to comprehend and predict [34, 50, 86, 142]. Advanced intelligent
systems share capabilities with less-advanced counterparts, but generally possess much more del-
egated responsibility, autonomous functionality, are employed in more uncertain environments,
and are operated by a wider demographic of users with different levels of understanding and
technical skills. These kinds of technologies are going to be more prolific in number and influence
than any other previous technology known to date (consider the number of people already using
digital assistants and content recommendation, as well as the impact that autonomous vehicles are
likely to have throughout the world). In this atmosphere, the practice of designing assurances with
little formal understanding is no longer viable; in short: the existing informal approach to assurance

design is no longer sufficient due to the new challenges that advanced intelligent systems introduce.

When researchers discuss concepts like “comprehensible systems,” “interpretable learning,”
“transparent systems,” and “explainable AI,” they are really interested in making deliberately de-
signed mechanisms to help designers and users appropriately “trust” autonomous and artificially
intelligent systems as they perform their tasks. For example, many systems are designed to learn
from extremely large amounts of data and are expected to regularly perform on never before seen
data—yet, it is rarely obvious if such data conforms to assumptions made at design time. Other
systems are designed to perform tasks that are too “dirty, dull, and dangerous” for humans; the
separation of users from these tasks often makes it difficult for them to understand whether these
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Fig. 2. Set of possible AIA capabilities.

systems are performing as desired. The authors, for instance, are interested in the design of un-
manned robotic vehicle systems that operate in concert with remote human operators in uncertain
dynamic environments. Since operators will generally not be computer scientists or roboticists, it
is desirable for such systems to behave/communicate in ways that help operators properly use their
abilities in scenarios featuring unexpected or incomplete information, time-critical decisions, and
risky outcomes [61, 126]. This application is explained in more detail later in relation to Figure 1.
These issues also have relevance and analogues in other applications of autonomous artificial in-
telligence, robotics, machine learning, and decision-making/support systems [7, 44, 105, 123], e.g.,
for scientific data analysis [37], public policy and medicine [64, 139], and cognitive assistance
[52].

Some fields have formally and explicitly considered trust between humans and specific forms
of intelligent technology, e.g., e-commerce, automation, and human-robot interaction. However,
these research efforts have focused largely on developing formal cognitive and psychological mod-
els of trust, rather than system behaviors or algorithms that designers can exploit as assurances.
Other fields that have explored assurance design only provide an informal connection to trust and
applications to other disciplines, so it is unknown how effective their developed assurances might
be in practice, or what principles ought to be considered for other kinds of autonomous and ar-
tificially intelligent systems. This article surveys assurance metrics and methods across relevant
application domains, with the goal of identifying common principles, approaches, and questions
related to trust-based interaction. To begin with, definitions for the trust cycle elements in Figure 1
are given to formally ground the concept of assurances. An example application is then provided
as a means to compare/contrast technical ideas and implementations of algorithmic assurances
throughout the survey in Section 3.

2.1 Trust Cycle Definitions

Artificially Intelligent Agents. Herein the term AIA will be used in order to encompass a broad
range of technologies that can be considered autonomous. An AIA is defined here as an agent that
acts on an internally or externally generated goal, and possesses, to some extent, at least one of
the capabilities shown in Figure 2 [90, 103, 116]. While the term AIA can describe anything from
a simple assembly line robot (which only possesses a single capability from Figure 2) to the fabled
HAL 9000 (who presumably possesses all of the AIA capabilities), this definition underscores the
idea that many assurances that exist for one set of (perhaps less capable) AIAs can be adapted
and generalized for use in other AIAs. In other words, this definition sets a scope for the bodies
of research that are likely to have investigated assurances and assurance principles, which can be
extended to any “intelligent” computing system. The range of AIA capabilities also helps establish
what kinds of assurances might be needed in future systems. For example, assurances for an AIA
that only carry out planning tasks will probably differ in design or implementation from assurances
for an AIA that only carry out perception tasks.
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It should be noted that an AIA is assumed to operate with a degree of autonomy that is del-

egated by a user. That is, an AIA is self-directed and self-sufficient in its task to the extent that
the user’s “intent frame” (desired goals, plans, constraints, stipulations, and/or value statements)
can be met by the AIA, regardless of how it actually accomplishes this. Following Miller [98], this
view of autonomy as a delegation relationship refines the need for “transparent AIAs” by avoiding
a contradiction of purpose that stems from an otherwise naive interpretation. From a naive stand-
point, one could argue that if AIAs are developed primarily to alleviate the burden of complex
reasoning and other undesirable workloads by removing users from the task at hand entirely, then
this purpose is undercut by exposure and explanation of sophisticated AIA inner workings to the
user. However, if AIAs are subordinates that are delegated tasks by users (who must still act as
supervisors), the meaning of “transparency” shifts away from concern over how exactly an AIA
accomplishes a task, toward concern over whether or not an AIA can execute the task as per the
user’s intent frame. This delegation-based view naturally sets up the question of user trust in AIAs.

User Trust. Trust is widely recognized as a critical part of intelligent multi-agent system
dynamics—from those involving only simple one-on-one interactions [83], to more complex ones
describing markets and governments [41]. Because of interest spanning many disciplines, it is dif-
ficult (if not impossible) to write a succinct definition of trust that would completely satisfy all
interested parties. However, following Ref. [96], for the purposes of this work, trust is defined
here as a psychological state in which an agent willingly and securely becomes vulnerable, or de-
pends on, a trustee (e.g., another person, institution, or an AIA), having taken into consideration
the characteristics (e.g., benevolence, integrity, competence) of the trustee.

This raises two important questions. Firstly, since trust is generally understood to exist between
people, is it possible for a human to enter into a trusting relationship with an AIA? It has been
confirmed several times that humans actually do develop trust in autonomous machines [8, 32, 39,
67, 92, 102, 113, 119, 141]. Lacher et al. [78] also notes that people trust AIAs for transportation sys-
tems at different levels (i.e., an engineer trusts differently than an operator or passenger). Secondly,
in designing assurances that affect trust-based user behaviors, is it possible to know what drives
those behaviors and thus have some working model of user trust that can be mapped to AIAs?
McKnight et al. [95] (and later, Ref. [94]) performed what is arguably the first multi-disciplinary
survey and unification of trust literature, which also condensed it into a single typology consisting
of four major related components. Adapted to AIAs, these are: Disposition to Trust: the extent to
which one displays a tendency to be willing to depend on AIAs in general across a broad spectrum
of situations and persons; Institution-Based Trust: the extent to which one believes that regulations
are in place that are conducive to situational success in an endeavor; Trusting Beliefs: the extent
to which one believes that the AIA has one or more characteristics beneficial to oneself; Trusting

Intentions: the extent to which one is willing to depend on, or intends to depend on, the AIA even
though one cannot control its every action. Dispositional Trust is generally considered by psy-
chologists and deals with long-term psychological traits that develop in a person from childhood
(e.g., is someone pre-disposed to trusting technology?). Institutional Trust is generally studied by
sociologists and represents the level to which a person trusts social/commercial structures. Finally,
Interpersonal Trust (encompassing both “trusting beliefs” and “trusting intentions”) deals directly
with one-on-one relationships and tends to fluctuate most quickly. Each of these trust compo-
nents has sub-components defined in Figure 3, which were identified by compiling many research
studies across several disciplines. These components are the principal drivers of user trust-related
behaviors and are the general notional targets of AIA assurances.

Trust-Related Behaviors. Trust ultimately leads to some kind of meaningful behavior or action
that reflects the level of an individual’s trust [84]. These actions are called “trust-related behaviors”
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Fig. 3. Notional assurance targets based on the component definitions of the main trust categories. While
any of these could be considered targets for assurances, the focus here is only on “Situational Normality,”
“Competence,” and “Predictability.”

(TRBs) [94]. In the case of a human-AIA relationship per Figure 1, some example TRBs could
include the kinds of tasks the human user assigns to the AIA, accepting and following through
on a plan produced by the AIA, directing that a new plan be made, or switching off autonomous
capabilities altogether to teleoperate and perform tasks manually through a physical mechanism
that the AIA otherwise controls.

Trust is not a univariate quantity that can be objectively measured. Rather, it is a multidi-
mensional phenomenon whose “relative magnitudes and directions” must be observed through
changes in TRBs, or qualitative self-reports gathered via surveys [102]. It thus comes as no sur-
prise that TRBs are the more objective method of observation due to the fact that people are not
always consistent in their ratings and may sincerely feel different levels of trust while perform-
ing similar TRBs [36]. Parasuraman and Riley [106] were interested in understanding the use of
automation by humans and defined terms to describe that use. Here, it is proposed that, by exten-
sion, those terms also apply to the behaviors of humans toward more advanced AIAs. Within this
scope the definitions are as follows: Misuse: over-reliance on an AIA (which could manifest itself
in a user’s unrealistically optimistic expectations of performance); Disuse: under-utilization of an
AIA (e.g., a user turning off the AIA prematurely or failing to use all of its capabilities); Abuse:

inappropriate application of an AIA (where application in this case means the choice to deploy an
AIA in a certain context).

Following Figure 1, AIA assurances should ideally be designed to steer the user away from mis-
use, disuse, or abuse of the AIA, i.e., toward otherwise appropriate TRBs, by properly “calibrating”
assurances to suitably influence user trust. This point, to some extent, has been alluded to in [61,
81, 85, 101]. Other researchers who propose “calibration” (or related concepts) suggest calibrating
trust as opposed to TRBs. Dzindolet et al. [36] found that providing system performance feedback
tended to increase users’ self-reported trust, even though resulting TRBs did not reflect self-reported
trust levels. This highlights the danger of calibrating “trust,” as opposed to calibrating the TRBs.
Whereas TRB calibration focuses on concrete and measurable behaviors, trust calibration involves
influencing something that is directly immeasurable and subject to individual biases when indirect
measurements are attempted.

Assurances. An assurance is an AIA property or behavior that can either increase or decrease
user trust. The term “assurance” is perhaps earliest used in the context of human-AIA relationships
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by Sheridan and Hennessy [120]. McKnight and Chervany [94] allude to this kind of feedback in
e-commerce relationships as “Web Vendor Interventions.” Corritore et al. [27] refer to assurances
as “trust cues” that can influence how online users trust e-commerce vendors. Lee and See [81]
discuss “display characteristics,” which are methods by which an autonomous system can com-
municate information to an operator. More recently, Lillard et al. [85] provided a formal definition
of assurances for autonomous systems that is similar to the one used here.

Assurances can be classified in several different ways. One way to classify an assurance is by
its Information Source: Assurances must be informed by some kind of information, whether that
means real-time observation of TRBs in order to have feedback, or well-accepted concepts of cog-
nitive science as guiding principles of design. Another approach is to identify the Source/Target

pair: In a human-AIA trust relationship, assurances link the AIA to the user. The user has multi-
dimensional trust in the AIA (see Figure 3), and each AIA capability has multiple dimensions of
“trustworthiness.” In designing an assurance, it is useful to explicitly identify the source capability
and the target trust dimension (i.e., a certain assurance may have been designed as a “planning-
competence” assurance). An assurance can be considered Component or Composite: A component
assurance stems from one AIA capability to one trust dimension. A composite assurance origi-
nates from multiple AIA capabilities to one trust dimension. Another consideration is whether the
assurance is Tutoring or Telling: An assurance that is dynamic to the different characteristics, and
experience of users is a “tutoring” assurance. It is designed to help a user learn, over time, to trust
appropriately. Conversely, all other assurances are “telling,” in that they are static in regards to
separate users. Mode of Expression: Assurances can also be classified by their mode of expression.
This includes the method and medium by which the assurance is expressed. There are many open
questions regarding each of these categories; they are discussed further in Section 4 regarding
future work.

Level of Integration. Herein, the “level of integration” of assurances are surveyed. This is useful
because it addresses a natural consideration in the design process of AIAs; it also encapsulates
well the key approaches that are in use. In this context “integration” refers to the level of effect the
assurance has on the core functions of the AIA. As an example: an assurance that, if missing, greatly
effects the AIA functionality is considered integral to the AIA. Conversely, a missing assurance that
has no effect on the AIA functionality is not integral; we also call this “supplemental.” Between
these two extremes, there is a natural continuum of integration on which we can classify the
different algorithmic approaches to designing assurances; we do so in Section 3.

Summary. Each of the elements of Figure 1 has been defined in this Section (2.1). Figure 4 il-
lustrates how these concepts fit together. In this document, algorithmic assurances are surveyed
through the lens of their “Level of Integration”; more detailed discussion of the other elements are
found in Section 4.

2.2 Recurring Example Application

To illustrate the assurances surveyed in the next section, a recurring example application based on
the “VIP escort” problem [60] is provided, motivated by the authors’ work in unmanned systems.
As depicted in Figure 5, an unmanned ground vehicle (UGV) leads a small convoy through a
road network monitored by unattended ground sensors (UGS). The road network also contains a
hostile pursuer that the UGV is trying to evade while exiting the network as quickly as possible.
The pursuer’s location is unknown but can be estimated using intermittent data from the UGS,
which only senses portions of the network and can produce false alarms. The UGV’s decision
space involves selecting a sequence of actions (i.e., go straight, turn left, turn right, go back, stay
in place). The UGS data, UGV motion, and pursuer behavior are all stochastic, and the problems of
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Fig. 4. Figure depicting the details of the human-AIA trust cycle.

Fig. 5. Application example of an unmanned ground vehicle (UGV) in a road network, trying to evade a
pursuer, using information from unmanned ground sensors (UGSs), as well as information from a human
supervisor.

decision-making and sensing are strongly coupled: some trajectories through the network allow
the UGV to localize the pursuer before heading to the exit (but incur a high time penalty); other
trajectories afford rapid exit with high pursuer location uncertainty (increasing the risk of getting
caught by the pursuer, which can take multiple paths). A human supervisor monitors the UGV dur-
ing operation. The supervisor does not have detailed knowledge of the UGV—but can interrogate
its actions, modify its decision-making stance (“aggressive” vs. “conservative”), and provide extra
information about the pursuer (which is sporadically observed and follows an unknown course).

One way to construct an autonomous UGV path planner is to discretize time and spatial variables
to build a partially observable Markov decision process (POMDP) model [73] of the navigation
task. The ideal POMDP solution is an optimal UGV action selection policy that will, on average,
maximize some utility function whose optimum value coincides with desirable UGV behaviors
(i.e., avoiding the pursuer and exiting quickly). POMDP policies can be calculated by any number
of sophisticated approximations that operate on probability distributions for the unknown pursuer
state, which, in turn, can be found via Bayesian sensor fusion [4]. This defines at least two AIA
capabilities per Figure 2: knowledge representation and planning.1 The trust-cycle terms here can
then be defined as follows relative to the supervisor (user)

—AIA: the combined POMDP planning and data fusion agent, which must make decisions
under uncertainty;

—Trust: the supervisor’s willingness to rely on the UGV’s planning and data fusion algorithms
when the safety of the VIP being escorted is at stake;

1Consideration of lower-level UGV state estimation and control also leads to perception and motor control/execution.
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Fig. 6. The continuum of the level of integration of algorithmic assurances: to the left are those assurances
that are integral to the key functions of the AIA; on the right are assurances that are not integral to perfor-
mance, i.e., “supplemental” assurances.

—TRBs: supervisor’s behaviors that indicate trust (or lack thereof) in the UGV’s planner; these
include approving/rejecting the planner’s actions, or real-time adjustments of the data fu-
sion output based on what the supervisor receives from other intelligence sources;

—Assurances: properties and behaviors of the planning agent that effect the supervisor’s trust,
e.g., communication of the escape success probability, reports that unexpected UGS data
have been registered, or explanations of actions taken.

3 SURVEY OF ALGORITHMIC ASSURANCES

Whereas other researchers have noted the existence of assurances, we now directly consider the
question: what exactly are assurances, and how can they be practically designed into AIAs? This
section surveys the related literature to understand what algorithmic approaches can be used to
design AIA assurances.

As discussed in Section 2.1, there are many different ways of classifying assurances. In evalu-
ating different practical approaches to designing assurances, we have found that it is easiest to
consider the “level of integration” of the assurance in the AIA. The level of integration of an assur-
ance refers to the extent to which the core functionality of the AIA is dependent on the existence of
that assurance. Assurances naturally lie on a continuum between being totally integral to the core
function of the AIA, and not being integral at all but being generated by artifacts of the underlying
task or AIA functionality. Figure 6 illustrates this continuum. For simplicity, we will sometimes
refer generally to assurances as “integral” or “supplemental” based on whether they lie on the left
or right side of the figure, respectively.2 In the literature, we have identified seven main categories
for designed assurances that span this continuum.

Practically, understanding the level of integration of different assurances is useful because doing
so can indicate at which point different assurances need to enter the design process. For example,
an assurance that is integral to the AIA must necessarily be considered from early on in the design
process, whereas one that is supplemental can feasibly be added much later. Also, assurances at
different levels of integration have similarities in their affects; because of this, designers may make
different decisions regarding assurance design based on their specifications and goals.

While assurances cannot guarantee appropriate TRBs from a user, integral assurances are gen-
erally built with the aim of intrinsically guaranteeing—as nearly as possible—certain effects on
user trust and TRBs. In contrast, supplemental assurances are typically weaker, and encourage ap-
propriate TRBs; they rely much more on the uncertain relationships with human users. Problems
can arise, for example, when a designer expects supplemental assurances to have the same effects

2Note that, while Figure 6 shows that the assurance classes occupy large spaces on the continuum, this is not referring to

individual “component” assurances. An individual component assurance cannot be both integral and supplemental at the

same time; it is located at a point on the continuum. This is not to say that an AIA cannot, simultaneously, have many

assurances distributed over the assurance integration continuum, but that these assurances must be considered as separate.
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on TRBs as those of integral assurances. This should generally not be expected. The remainder of
this section is dedicated to discussing each of the seven categories in more detail.

Survey Methodology. While, theoretically, a two-way trust model could be considered (i.e., in
which the AIA also has trust in the user), attention is restricted here to a one-way trust relationship
that considers only how user trust (and TRBs) evolves in response to assurances from the AIA.

It should be noted that it is practically impossible to perform a fully comprehensive survey
of all AIA assurances, due to the broad spectrum of possible assurances, and AIAs in general.
As an example, one could rightly argue that control engineers treat metrics like gain and phase
margins as assurances for automatic feedback control systems, in much the same way that machine
learning practitioners treat training and test accuracy as assurances for learning algorithms—and,
hence, concepts related to robustness, stability, and the like, for feedback control systems ought
also be included in this survey. Similar arguments exist for assurances developed in fields like
econometrics, software testing, aeronautical engineering and many others. While assurances can,
in theory, be applied in both the most simple “automatic” systems (like a thermostat), this survey
will focus on assurances in more advanced AIAs that make decisions under uncertainty. However,
the admittedly narrow scope of this survey does not impede the development of fundamental
insights and principles in designing assurances.

Initially, in order to find applicable research, papers that formally addressed trust, and tried
to create models of it, were investigated. This was done with the aim of trying to understand
how trust might be influenced. Secondly, literature regarding trust between humans and some
form of machine entity was reviewed; this led to research in fields like e-commerce, automation,
and human-robot interaction. Third, research on “interpretable,” “comprehensible,” “transparent,”
“explainable,” and other similar types of learning and modeling methods were examined. Finally,
with that literature as a background, research disciplines investigating computational methods that
can be useful as assurances, but in which trust itself is not the main focus, were considered. This
information was then used to construct an informed definition and classification of assurances
based on methods that are currently in use or being investigated.

We now proceed to discuss each of the categories from Figure 6, starting from the most integral
to the AIAs core functionality and proceeding to the least integral.

3.1 Value Alignment

AIAs operate autonomously in delegated tasks, with the expectation that they behave according
to users’ intent frames. Optimization-based algorithms are arguably among the most common and
direct approaches for accomplishing this. The general idea is to define a utility function that nor-
matively governs the AIA’s abilities so that desirable behaviors are elicited through maximization
of the utility, i.e., such that the AIA behaves rationally in accordance with the user’s intent frame.
A utility function describes the “long-term desirability” of taking certain actions in certain condi-
tions, i.e., beyond immediate benefits or penalties, and should coherently reflect user preferences
about the state of the world and AIA behaviors [116]. Such mapping of user intent frames to util-
ity functions has two positive benefits. Firstly, it ensures that AIA behaviors can themselves be
used as assurances: users will tend to trust AIA’s more if they are “well-behaved” and acting in
accordance with their desired intent than if they are not. Secondly, an AIA can generate assur-
ances via auxiliary behaviors that help ensure its utility function is aligned with the user’s intent
frame. Since it is practically quite challenging to encode user preferences and intent frames into
utility functions, the process of value alignment3 leads to many different algorithmic strategies for
generating assurances.

3Value alignment is more commonly known as “AI Alignment” in AI research [12, 148].
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Consider a generic decision-making problem where an AIA that must make choice a ∈ A given
some task state s ∈ S, with scalar utility functionUA (a, s ). If a user’s true utility is represented by
scalar function UH (a, s ), then, in the ideal situation, the AIA seeks the optimal decision a∗ ∈ A
such that, for any s ∈ S,

a∗ = arg max
A

UA (a, s ) = arg max
A

UH (a, s ).

Hence, value alignment tries to minimize the difference between the utilities of the AIA and the
user. When the utility of the robot UA (a, s ) and the human UH (a, s ) are approximately equivalent
(within some tolerance), then the values of the AIA are aligned with those of the human. An AIA
with aligned values will be considered by users to be more predictable (and thus more competent)
because the AIA will be more likely to act in desirable ways. Bostrom [14] provides a well-known
example of an AIA whose value is not aligned: an autonomous robot is designed, and deployed,
with the intent that it make paper clips. To maximizeUA (s,a), the robot then decides to take over
the world in order to maximize its resources and ability to make more paper clips. To reasonable
human users, this was clearly not the intended behavior; the utilities that the robot used for making
decisions did not match those that the human must have had. Therefore, the robot’s resulting
behavior was intrinsically an assurance that reduced trust. On the other hand, if the robot was
to try to learn from its mistakes and improve (i.e., make UA (s,a) closer to Uh (s,a)) that could
be perceived as an assurance that increases trust—the robot can be “forgiven” for making honest
mistakes in trying to optimize an ill-posed/under-specified utility function, as long as it is able to
recognize and remedy this.

3.1.1 Common Approaches:. There are two algorithmic strategies for value alignment—(i) in-
direct: approximate UH (a, s ) explicitly via UA (a, s ), and then use this approximation to find a∗;
(ii) direct: identify a∗ = arg maxUH (a, s ) directly via the use of optimal state-action value func-
tions Q∗ (s,a) (which give the utility to be gained if the AIA were to proceed optimally starting
from s , regardless of its past states or actions). These strategies closely resemble techniques used
for reinforcement learning problems and their variants (especially inverse reinforcement learning);
not surprisingly, most value alignment techniques are rooted in this domain. Value alignment re-
search tends to focus on several different issues [7, 47]; some of the more directly applicable topics
and associated methods that point to useful assurance strategies are described below. The solutions
to these problems are assurances because they afford opportunities for users to better understand
the actual intentions and goals of the AIA, as well as understand how the AIA actually interprets
intent frames.

Reward Hacking and Human-Guided Learning. The reward hacking problem deals with avoid-
ing and removing unintended consequences in AIA behaviors that arise from imperfections in
the specification ofUA (s,a) (as in the paper clip-making robot example above). The most popular
solution strategies use some form of offline supervisory human guidance or training data feed-
back in the utility function learning process. This approach recognizes the intrinsic difficulty of
mapping user preferences to a single scalar utilityUH (s,a) for complex tasks, and leverages sophis-
ticated machine learning and reasoning strategies to identify relevant preferences withinUA (s,a)
or Q∗ (s,a), depending on the kinds of tasks considered. For instance, one-shot/non-sequential
decision-making tasks like image recognition or object perception do not necessarily have dy-
namical state considerations, but may require potential expansion of the action space for sensible
labeling of new object categories.

In the context of sequential decision-making problems, Hadfield-Menell et al. [56], Hadfield-
Menell et al. [55], and Huang et al. [59] consider variations of the “inverse reward design” problem
using inverse reinforcement learning techniques. In these works, discounted cumulative rewards
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are used to model utility functionsUA (s,a) andUH (s,a), where the actual reward factors contribut-
ing to UH (s,a) are unknown but can be inferred from user-generated contextual information at
design time. Specifically, Ref. [56] notes that reward factors provided by users in limited train-
ing contexts serve as “noisy evidence of intent”. Hence, to avoid situations where an AIA trainee
demonstrates desirable behaviors in specific training scenarios but later demonstrates undesirable
behaviors in novel scenarios, the AIA must be able to reason over the uncertainty in the user’s
intent in order to fully capture the context in which it was trained. In a different task setting, Fre-
itas [40] compared two approaches to discovering “interesting” knowledge from large datasets,
based on the idea that human users require assistance from complex systems in order to find
useful patterns and other interesting insights. He mentions “user-driven” methods that involve a
user suggesting interesting templates or providing general impressions in the form of IF–THEN
rules. A subsequent comparison to different “data-driven” methods suggests that the latter are not
very effective in practice. Having said that, user-driven approaches may not fare any better when
compared over many users, as each user will likely have different preferences. Other scaled-up
user-driven approaches, e.g., based on crowd-sourcing Chang et al. [20], can also achieve better
accuracy for labeling tasks while also exploring new or ambiguous classes that can be ignored with
traditional approaches (especially if training datasets are biased or very limited). Chang et al. [20]
also consider a similar, scaled up, user-driven approach called “Revolt” that crowd-sources the la-
beling of images. It is able to attain high accuracy labeling, while also exploring new or ambiguous
classes that might be ignored with traditional approaches.

Some other methods for designing, learning, and eliciting appropriate utility functions are also
discussed in Refs [29], [44], and [55]. Despite the differences in AIA application contexts, these
methods all provide the user with better context for what should be known by the system, and
for how well it can interpolate/extrapolate. These processes allow users to refine their own in-
tent in complex settings, e.g., to reveal or resolve subtle low-level inconsistencies in desired task
requirements that would otherwise lead a rational AIA to undesirable behaviors.

Safe Learning and Correct-by-Construction Synthesis.. In many applications, UH (s,a) must be
safely approximated when certain combinations of (s,a) lead to irreversibly bad consequences.
Hence, as AIAs try to learn what a user’s utility is, they must do so in a safe manner. For instance,
humans do not learn about the dangers of heights from falling off of skyscrapers. Instead we have
to do so cautiously over time and extrapolate from a much less drastic experience (i.e., tripping on
a curb). Safe reinforcement learning (safe RL) methods offer formal strategies and assurances for
AIAs to learn in similar ways. Safe RL has been defined as the process of avoiding “unintended
and harmful behavior that [emerges] from machine learning systems” [7]. Two ways to approach
safe RL are: (i) modification of the optimality criterion with a safety factor, and (ii) modification of
the exploration process through the incorporation of external knowledge [44].

For example, Lipton et al. [87] designed an “intrinsic fear” RL approach that uses a deep Q-
network and a “supervised danger model.” The danger model stores the likelihood of entering a
catastrophe state within a “short number of steps.” This model can be learned by detecting catas-
trophes through experience and can be improved over time. Curran et al. [28], in a more specific
application, asks how a robot can learn when a task is too risky and then avoid those situations or
ask for help. Similarly, Kahn et al. [65] use Bayesian Deep Neural Nets (using bootstrapping and
dropout) to learn about the probability (with uncertainty) of an autonomous vehicle colliding in
an environment given its current state, observations, and sequence of controls. Using this model
they formulate a “velocity-dependent collision cost” that is used for model-based reinforcement
learning. With this approach, the vehicle naturally proceeds slowly when there is an elevated risk
of collision. This “safety-aware” behavior provides an assurance signal to the user.
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Aside from purely learning-based approaches, we can also consider V&V methods. Not all prac-
titioners are aware that V&V techniques can generate soft assurances for users. This is because
V&V typically refers to the use of formal methods to guarantee the behavior of a system within
some set of specifications, which are handed down by a certification authority as requirements to
system designers to generate “hard assurances” (formal proofs of the functionality of the system).
Although these “hard assurances” are not primarily designed for user consumption, they could, in
principle, be exposed to and interpreted for users in certain contexts. A prime example is given by
Raman et al. [110], who developed a formal way for non-expert users to provide structured natural
language task specifications to a robot, such that a “correct-by-construction” controller will be built
if the specification is valid. Otherwise, the robot will provide an explanation about which specifica-
tion(s) are unrealizable/inconsistent and will cause failure. In the context of a practical self-driving
car application, Ghosh et al. [45] presents a framework called Trusted Machine Learning (TML)
for learning models from dynamically generated data that fit pre-determined “trustworthiness”
constraints. These approaches are promising in that they not only present a way to communi-
cate when and why specified tasks cannot be performed or certain actions cannot be taken, but
also provide positive assurances in the form of guaranteed, formally verified, AIA processes for
performing desired tasks (plans, models, etc.). While this directly addresses the competence and
predictability components of AIA trust, the “raw” expression of these assurances does not formally
account for effects on user trust or TRBs in formulating explanations.

Robustness to Context Shifts. How can an AIA determine when the basis and provenance of
its approximation to UH (s,a) or Q∗ (s,a) is no longer valid for a particular task? This problem
has attracted much recent attention in the learning literature under the guise of “nonstationary”
learning. Nonstationarity refers to the complex challenge of training a model based on data from
one distribution D while taking into account that the test distribution D ′ will likely shift through
time [109]. For instance, in the context of classification problems, Sugiyama et al. [123] propose
using importance sampling Monte Carlo to formally detect events related to “covariate shift ”
(training and test input data follow different distributions) and “class-balance change” (where the
class-prior probabilities are different in training and test phases, but where there is no covariate
shift). Similarly, Charikar et al. [21] address learning from “untrusted” data, which could be subject
to adversarial attack or unknown nonstationarity.

These methods can be more generally adapted and developed beyond learning tasks, in order
to evaluate the sensitivity of as-designed AIA’s capabilities to possible changes in task context
not captured/considered at design time (an example of coping with “unknown unknowns”). If
the sensitivities imply a significant deviation in UA (s,a) or a∗ from expected values (i.e., from
user intent frame as initially understood), or indicate the presence of new (s,a) pairs that are
not accounted for byU (s,a) (e.g., test data that is very far from the training set), then the AIA can
inform the user accordingly and thus possibly opt out of performing tasks that are now potentially
“out of scope.” This provides direct low-level behavioral assurances about changes in predictability,
competence, and situation normality, though these may not be immediately understood by non-
expert users.

3.1.2 Grounding Example. In the case of the “VIP Escort” problem (described in Section 2.2),
value alignment might be used as an assurance in the following way, starting with the assumptions
that:

—The UGV has just begun an attempt to escape the road-network.
—The UGV uses safe RL to learn its escape policy.
—The operator is able to observe the UGV during its entire escape attempt.
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The operator has used several different UGVs for similar tasks. This newer model uses “safe RL”
to learn its policy. When observing the UGV’s attempt at escape, the operator notices a difference
in how the UGV operates. Whereas the older UGV models would sometimes do risky things, this
UGV seems to navigate dangerous situations much better.

Discussion of Example: In this case, safe RL enabled the UGV to treat situations that an operator
might classify as “dangerous” with more care. With this integral capability, the UGV assures the
operator that it is more competent.

3.2 Interpretable Models and Processes

Another way to provide assurances about AIA conformance to user intent frames is to expose
the models and algorithmic processes governing its actions directly to the user. If these models
and processes also happen to be easy for users to interpret, then the user can (ideally) acquire
a well-formed and highly predictive “theory of mind” for the AIA’s behavior, with little or no
effort . Doshi-Velez and Kim [34] give an argument for why interpretability is critical in AIA sys-
tems since interpretability “is used to confirm other important desiderata of [machine learning]
systems.” Yet, perhaps unsurprisingly, “interpretability” and the attendant desiderata still elude
formal universally accepted definitions. They also use the words “interpretable” and “explainable”
interchangeably. In contrast, we treat them as distinct descriptors. We discuss models that are in-
herently interpretable here, and models that can be understood by explanation in Section 3.5.1.
The difference is that interpretability (in our view) implies that the actual process/model used by
an AIA is self-explanatory, whereas explainable models can be made interpretable by post hoc
operations but do not necessarily explain the actual model/process used by an AIA. Being able
to interpret the actual model/process used by an AIA helps human users to more appropriately
understand their behaviors, and thus exhibit appropriate TRBs in turn. This approach to assurance
also captures broader AIA processes and models that rely on rules, heuristics, and the like, rather
than just those that rely on optimization of some particular utility.

3.2.1 Common Approaches. Two main approaches to designing interpretable AIA models and
processes are considered here. The first is to assess an existing set of candidate models/processes in
order to evaluate their interpretability in the context of a particular task, and then select the best
candidate. This is typically done with certain classes of models or solution processes, e.g., whether
to use decision trees vs. decision tables for a given planning task. The second is to synthesize inter-

pretable models/processes by leveraging human designer input during the model/solution-building
process. The first approach requires pre-defined measures of interpretability, and thus some mech-
anism for capturing ability to gain insights into competence, predictability, and situation normality.
This also presupposes that the candidates are inherently interpretable along these lines to begin
with, which may rule out methods that perform well on certain tasks. The second approach allows
designers to apply domain knowledge to determine metrics for interpretability, although this can
lead to solutions that do not perform as well as those that are less interpretable.

What is the assurance mechanism that potentially leads to proper TRBs in either approach?
Essentially, allowing the user to access and examine an interpretable model/process also allows
them to simultaneously assess competency, predictability, and situational normality components
of trust. If the models/processes are perfectly interpretable, then a user could understand exactly
how the AIA would perform its task (i.e., down to a mechanical/programmatic level). This gives
the user a “mental model” of what the AIA would consider to be situational normality and how
AIA would respond in different situations (predictability and competence). The caveat here is that
incorrect TRBs may arise if the user misinterprets or only understands part of the model/process.
This is a significant risk in highly complex or specialized problems, where users may not actually
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Fig. 7. Example of simple global interpretable learning model on the left, and on the right, a more complex
locally interpretable learning model that can be used when more precise understanding of a specific decision
made by the learner is required.

have sufficient training or expertise. This also poses concerns for how/when users can access
interpretable AIA components. Unlike value alignment (where a user accesses assurances only
through behavior of AIA itself), the user has more freedom in deciding when and how to “peek
under the hood.” This relates to assurances based on information visualization discussed later,
except that here, the information being given to the user are the actual AIA algorithms themselves,
as opposed to byproducts or after effects of those algorithms.

Assessing Interpretability. Van Belle and Lisboa [135] suggested three ways to ascertain the level
of interpretability and potential utility of learned models (compare to categories proposed by Lip-
ton [86]): (1) Map them to domain knowledge; (2) Ensure safe operation across the full opera-
tional range of model inputs; and (3) Assess whether important non-linear effects are accurately
accounted for. This work identifies certain strengths and weaknesses of different techniques, but
ultimately concludes that no method is clearly best in all situations. Along similar lines, Huysmans
et al. [62] compared decision trees, decision tables, propositional if–then rules, and oblique rule
sets to understand which set of methods is “most interpretable.” It was experimentally determined
that decision trees and tables tend to be easier to interpret, but it is noted that each method could
perform better than others in different applications. For example, decision trees and tables are
typically better suited for answering a symbolic question (which requires a local understanding of
a model) like: how does the model classify observation X ? This is in contrast to a spatial question
(which requires a global understanding of the model) like: is it correct that applicants with a high

income are more likely to be accepted than applicants with a low income? Having quantified the in-
terpretability of a model given different classes of problems and different requirements of users,
the appropriate model can then be selected during design to fit the needs of a specific application.

Interpretable Model Synthesis. Ruping [115] asks how classification results and the accuracy-
interpretability tradeoff can be made more transparent to those who design and use classifiers.
He explores one approach by combining simpler global models with more complex local models
that are built around learning results (Otte [105] and Ribeiro et al. [111] implement similar ideas
as well). Figure 7 illustrates this idea. The explanation of Figure 7 could be something like: “The
classification boundary is generally a horizontal line. However, for a small region on the right-
hand side, the boundary is shaped roughly as an inverse quadratic starting from the horizontal
line.”

Considerable effort has also gone into endowing “grey box” and “black box” models with in-
terpretable features. For instance, Abdollahi and Nasraoui [1] investigate making collaborative
filtering models more interpretable by using a conditional restricted Boltzmann machine (RBM).
Ridgeway et al. [112] use “weight of evidence” (WoE) as a boosting method that is more amenable
to interpretation, and show that the performance WoE is on par with AdaBoost. Choi et al. [23]
construct a recursive attention neural network to remove recurrence on the hidden state vector,
and instead add recurrence on the visits of patients to doctors, as well as on different diagnoses
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during those visits. In this way,2 the model is able to predict possible diagnoses in time, and a
visualization can be that that indicates the critical visits and diagnoses that lead to that prediction.

Learning of human-understandable representations for data and feature selection also provides
another avenue for developing assurances [11, 53]. For instance, Mikolov et al. [97] studied how
to represent words and phrases in a vector space for natural language text learning; this en-
ables simple vector operations for understanding word sense similarity and relative relationships
learned from text corpora. For example, the vector addition operation airlines+German yields sim-
ilar entries that include Lufthansa. Such representations encode knowledge that can be easily
checked and understood by humans, and thus implicitly facilitate interaction and calibration of
trust (see Ref. [57] for another example). The problem of discovering human understandable fea-
tures and representations in more general settings still remains an open question. Currently, the
main question for representation learning is how to find the “best representations” for a particular
application—not necessarily the representations and features that are “most humanly understand-
able.” This is not surprising, since human-understandable representations and features are not
necessarily optimal for the criteria that AIAs are typically designed against.

Contrary to the belief that interpretable models are necessarily worse performing than their
less interpretable counterparts, several researchers have shown that this is not always the case (at
least in the context of machine learning). However, the real tradeoff is the amount of work that
goes in to crafting the interpretable model from the start; these methods are often custom designed
for certain tasks and are not easily transferable to other problems. Because of this, AIA designers
must strike a balance between interpretable models, explainable models, and black-box models.

Park et al. [107] point out that real interpretability in complex tasks still requires expert knowl-
edge to make sense of complicated features; in essence: people are needed at both ends of in-

terpretable models. For instance, Jovanovic et al. [64] use “Tree-Lasso” (TL) logistic regression
with domain knowledge (i.e., medical diagnostic codes) to group similar conditions, and then use
TL regression again on that information to develop a sparser model. Zycinski et al. [152] also
use domain knowledge to structure a data matrix before feature selection and classification. See
also Zhang et al. [150] and Khoa et al. [71] for other related examples. This kind of approach is
also illustrated by those who use “theory guided data science” (TGDS [37, 68]). As one example
Morrison et al. [100] address the situation where an imperfect analytical model is available for
chemical reaction kinetics: the theoretical reaction equations are well known, but a “stochastic
operator” is added on top of this to account for uncertainties and modeling errors. In adopting this
approach, the model becomes interpretable (to experts).

3.2.2 Grounding Example:. In the case of the “VIP Escort” problem (described in Section 2.2),
interpretable models might be used as an assurance in the following way, starting with the as-
sumptions that:

—The UGV has just begun an attempt to escape the road-network.
—The UGV is using a decision-tree for selecting different movements.
—The operator is able to view the decision-tree model the UGV is using.

While the operator is monitoring the progress of the UGV in its attempt to escape the road-
network, they are able to consult the decision-tree model. In this case, the operator chose to consult
the table when they saw the UGV make an unexpected turn at a given intersection. The operator
identified the conditions that led to the decision and found that the UGV was not well-equipped
to execute the decision the operator thought was best.

Discussion of Example: In this example, the use of a decision-tree as a model enabled the operator
to investigate unexpected behavior. During inspection, they identified certain conditions that led to
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a decision, and they found that the UGV was not competent to perform what the operator thought
was a better decision. Because of this, the operator better understood the decision the UGV made
and will have a more appropriate level of trust in future interaction.

3.3 Human-Like Behavior

Since humans are accustomed to forming and evaluating trusting relationships with each other,
imitation of human–human communication and interactive behaviors provides yet another avenue
for developing AIA assurance strategies. Support for this idea is given by Tripp et al. [134], who
compared human trust in other humans against human trust in intelligent interactive technology.
They found that as the technology becomes more “human-like,” self-reported levels of trust in
technology become more similar to levels of trust in other humans.

Also, de Visser et al. [30] specifically discusses different methods by which AIAs can be more
human-like in order to “repair trust” with users (here, trust repair is roughly analogous to as-
surances, but focuses on re-building trust after it is lost). Among several other possibilities, they
suggest that an AIA might repair trust by anthropomorphizing (responding using a human com-
munication channel), or by explaining its actions in the same way a person would. Such human-like
behavior opens the door for AIAs to exhibit “non-rationally motivated” behaviors (i.e., suboptimal,
as opposed to irrational actions), if these conform to social norms or other psychological cues that
provide useful assurances about predictability (e.g., a robot arm that executes legible motions),
competency (e.g., a robot which slowly backs away from unfamiliar or potentially dangerous ob-
jects), or situation normality (e.g., a robot car that apparently rubbernecks near an unfamiliar scene
on the road).

3.3.1 Common Approaches. Generally, we do not have algorithms that describe how humans
interact with each other (yet), and must settle for heuristics or best attempts to create human-like
behavior via algorithms. From a high level, researchers have addressed these: nonverbal commu-
nication and mannerisms.

Nonverbal Communication. Nonverbal communication can take many different forms. One pop-
ular approach is to use motion or gestures. Szafir et al. [127] investigated how to enable “As-
sisted Free Flyer” robots (quad-copters that are made to interact with humans in close spaces) to
communicate by using gestures. In doing so, they use “motion primitives” (a basic vocabulary of
movements) that were inspired by basic “character animation” principles [136]. In their evalua-
tions of these primitives with human participants in the presence of free flyers, they found that
human users significantly found the free flyers to be more natural, and felt safer around them.
Later, Szafir et al. [128] also experimentally showed the effectiveness of using illuminated “turn
signals” and pairs of human-like “eyes” that shifted with free flyer heading (much as human eyes
do when people walk in a crowd) to help users more easily interpret the vehicle’s intended move-
ments and actions. These works provide strong support for “commonsense communication” as-
surances aimed at predictability in physical user-AIA interactions (even if indicators like “moving
eyes” do not actually see anything). Likewise, Dragan and Srinivasa [35] investigate “legible mo-
tion planning,” i.e., planned robotic physical movements and gestures that, by themselves, convey
intended actions and goals. For example, a table-setting robot may grasp a plate on both sides
from the top using two end effectors if it intends to shift the position of the plate along the ta-
ble surface, whereas it may grasp the same plate with only one hand from the side if it intends
to pull away and remove the plate from the table. Legible motion is used by humans working in
close proximity, and so can also be useful and important for situations in which a physically em-
bodied AIA and person are collaboratively working in close proximity to each other. Similarly, in
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more recent work, Kwon et al. [76] investigates calculating trajectories that convey “incapability,”
which is what the AIA is trying to do, and why it is unable to do so. See also Ref. [3] for related
work.

Mannerisms. Humans are naturally inclined to leverage social interaction cues and adherence
to/violation of social norms as evidence for assessing the trustworthiness of other humans in ev-
eryday interactions. AIAs can leverage these inclinations to provide simultaneous assurances of
their competence, predictability, and situation normality. Consider, for instance, a recent “mini-
Turing Test” example from the popular media: at Google/IO 2018, Google Duplex [46] was intro-
duced through a demo where it placed a phone call to make a reservation. An oft-remarked feature
of this demo is the great difficultly (if not near impossibility) of detecting whether or not the Du-
plex voice is human—down to the words spoken, tone of voice, and speech mannerisms (which
included “um . . . ,” pauses, and shortened sentences). The human on the other end of the call was
none the wiser, and trusted that they were, in fact, speaking to a regular human customer—when,
in fact, they were speaking in a completely natural manner to the product of a recurrent neural
network (RNN) trained on anonymized phone conversation data.

More formally, Salem et al. [119] investigated the effects of autonomous task errors, task types,
and “system personality” on cooperation and trust for humans who observed a domestic robot
performing house tasks, such that the robot implicitly showed competence by its mannerisms and
successes/failures during tasks. In this case, the mannerisms and competency of the robot were
completely under control and hard-coded into the system. Regardless, when participants were
asked to cooperate with the robot on certain other tasks, the strange/unexpected operation of the
robot was found to influence the self-reported trust levels of the participants.

Wu et al. [145] investigated how a person’s decisions in a coin entrustment game are affected
by their belief in whether they are competing against an AIA or another human player (which,
unbeknownst to participants, was in fact an AI with some programmed human-like idiosyncrasies,
e.g., variable wait times between turns). Trust in this context was measured directly by the number
of coins a participant was willing to lose by putting them at risk to the other player. The experiment
found that the participants trusted the AI opponent more than they trusted the “human” opponent;
the authors suggest that this may be due to the perception that the AI opponent did not have
feelings and operated in a more predictable and consistent “machine-like” way. Given that, in this
situation, the “human” player was represented by an AI as well, this experiment illustrates that
“machine-like” behavioral consistency can lead to implicit positive effects and the trust of the
participant in certain contexts.

3.3.2 Grounding Example. In the case of the “VIP Escort” problem (described in Section 2.2),
human-like behavior might be used as an assurance in the following way, starting with the as-
sumptions that:

—The UGV is about to begin an attempt at escaping the road-network.
—The operator can observe all the actions of the UGV via video feeds at intersections.
—The UGV has been designed with the ability to use gestures in order to indicate its ‘incapa-

bility’ as in Ref. [76].

As the UGV begins the escort problem, the human supervisor is monitoring progress. When the
UGV reaches a certain intersection of the road network, the supervisor expects the UGV to take
a path A, but it does not. However, before choosing to take path B, the UGV made a movement
that, to the operator, indicated that it considered attempting to traverse A. Due to the attempt, the
supervisor was able to surmise that the UGV wanted to take that path but couldn’t due to some
limitation.
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Discussion of Example: In this case, the UGV is able to maintain appropriate trust of the supervi-
sor because the supervisor was able to interpret the “gesture” that UGV was using. This highlights
the assuring effects that human-like communication/behaviors can have on users.

3.4 User Interaction

Despite the oft-repeated sentiment that advanced AIAs will “soon” be able to operate with little
or no human involvement, those who have more practical experience with AIAs are much more
skeptical of this claim, and point out that it is highly unrealistic to expect AIAs to ever function
“perfectly out of the box” with true total autonomy [15]. A popular and promising avenue for sur-
mounting the inevitable shortcomings of AIAs, and thus engendering trust in users, has therefore
been to put the users “in-the-loop” (or “on-the-loop”) as collaborative partners who can augment
(or supervise) AIA capabilities. In formulating algorithms for AIA capabilities that leverage user
inputs, the user becomes analogous to a supervisor working alongside those they supervise; in
doing so, they are able to provide useful feedback in real time, lend their expertise, and better ap-
preciate the decisions and outcomes of the team’s work. Such collaborative problem solving not
only gives users a chance to directly assess AIA competence and predictability through experience
(assurances), but also provides a way for users to continuously engage AIAs in accordance with
their actual capabilities (appropriate TRBs). Note that user interaction techniques are not the same
as user assessment techniques discussed later, since user assessment techniques do not involve
fundamentally changing AIA algorithms or capabilities to exploit user interaction.

3.4.1 Common Approaches:. Users can be exploited to provide or augment any of the AIA capa-
bilities in Figure 2 on many different levels. At one extreme, a user might fully replace or augment
a subset of core AIA capabilities, e.g., to act as a high-level “sensor” and planner for an autonomous
robot in a navigation task [69]. On the other extreme, the human might have a very weak involve-
ment in the core perception functionality of an AIA, e.g., to validate the labeling of image data.
Since the literature in this area is quite vast and ongoing research quite active, we focus here,
for the sake of brevity, only on a few typical methods from the human-robot interaction litera-
ture where the AIA (an autonomous robot) engages the user as an additional “sensor”/perception
agent or “controller”/planning agent. The references cited in these works also point to a host of
other related and relevant techniques, which, in turn, can (and have) been adapted to other AIA
capabilities such as learning, reasoning, knowledge representation, etc.

Sweet and Ahmed [125] investigate the use of humans as “soft” sensors for target localization
tasks, whereby semantic natural language observations (“Target is by the bridge,” “Nothing in the
street”) can be directly combined with conventional “hard” robot sensor data (from cameras, lidar,
sonar, etc.) in order to improve and augment the robot’s Bayesian state estimation algorithms.
They apply their approach in a scenario called “Cops and Robots” where a single “cop” robot tries
to locate mobile “robber” robots in a semantically rich indoor environment. In this case, the human
acts as a “deputy” that remotely interacts with the system. The human can see security camera
footage of the building in which the cop is searching and can offer natural language feedback to
the cop robot when appropriate. If the human offers information, it can be fused into the cop robot’s
estimation model, but in the meantime, the cop robot operates autonomously to plan its motion
without human assistance. Along similar lines, Kaupp and Makarenko [69] empirically identify
the appropriate level of autonomy for a robotic navigation system while taking into account the
amount of sensory interaction required by a human supervisor. In this case, the robot has sensors
of its own but can also ask for user input when the value of information (VOI) is high enough
(i.e., is it worth asking a human sensor for information given that there is a cost?); they define the
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threshold VOI by performing human trials before deployment of the system in order to optimize
the involvement of the human user.

Tellex et al. [130] consider planning algorithms that are augmented by human natural language
commands for an autonomous assembly robot that can detect when it has failures (conditions that
don’t match expectations based on internal models). When this occurs, the robot requests help
from the human user to resolve the problem. In this way the human and robot are dependent on
each other to accomplish a task. Since the user knows that, if needed, the robot will ask for help,
they can more appropriately trust that unknown problems won’t occur without them being in-
formed. Freedy et al. [39] studied performance measures for mixed-initiative human-autonomous
robot teams (where users and robots share planning and decision authority), and examined the
extent to which such teams can only be successful if “humans know how to appropriately trust
and hence appropriately rely on the automation.” They explore this idea by using a tactical re-
connaissance scenario where human participants supervised a UGV platoon with three levels of
autonomous targeting/firing capability (low, medium, high); these levels were dependent on the
experimental conditions. The operator needed to monitor the UGV in case it couldn’t perform as
desired; in such cases, the operator could intervene to resolve the problem. Operators were trained
to recognize signs of task failure and to only intervene if they thought the mission completion time
would suffer.

3.4.2 Grounding Example:. In the case of the “VIP Escort” problem (described in Section 2.2),
user interaction might be used as an assurance in the following way, starting with the assumptions
that:

—The UGV has just begun an attempt to escape the road-network.
—An interface system exists by which the operator can receive and provide information to

the UGV.

The UGV is capable of operating autonomously, but also can benefit by asking for assistance or
information when necessary, e.g., using a natural language interface for augmented planning and
sensor fusion. In this way, the functionality of the UGV can be greatly improved via interaction
with the user. As the user interfaces with the UGV and is able to provide feedback and information
about the best known location of the pursuer based on information unavailable to the UGV, they
have more trust in the competence, predictability, and situational normality of the UGV.

Discussion of Example: In this scenario, the user is more immersed in the functioning of the
UGV. Not only are they able to respond to queries from the UGV, but they can also provide direct
observations as well. Subsequently, the user feels more immersed in the functioning of the UGV
and is more cognizant of appropriate TRBs.

3.5 AIA Self-Assessment

The techniques of previous sections generally tend to provide integral assurances (i.e., designed as
part of core functionality of AIA capabilities) that are artifacts of interactive algorithms designed
to compensate for shortcomings in AIA capabilities. This section focuses on ‘introspective’ assur-
ances that inform users of competency limits and boundaries of AIA capabilities without requiring
user interaction, and that can generally be separated from core AIA functionality (i.e., without re-
quiring modification of core, underlying, AIA design). These self-assessments can provide users
with insights regarding either or both of the following related issues: (i) what information and
tasks are actually within the AIA’s reach, and (ii) what is required by the AIA to actually do its as-
signed task? In contrast to user interaction techniques: the analogy here is of a subordinate telling
a supervisor what she is/is not capable of, or telling the supervisor what she would need in order
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to carry out the specific task at hand to achieve a specific outcome, or what the possible outcomes
actually would be for that specific task.

3.5.1 Common Approaches. The literature in this section can be split into two high-level cat-
egories. The first set deals with how an AIA can algorithmically account for its uncertainties in
its models of its task, environment, operating context, and capabilities. These kinds of assurances
help inform the predictability and situation normality aspects of trust. The second set of methods
attempts to algorithmically reduce complex “uninterpretable” models or processes that underlie
AIA capabilities into more interpretable ones by providing explanations. Here, the AIA makes
an active attempt at processing data and making information available to the user to inform the
competency aspect of trust.

Accounting for Uncertainty. An AIA that can predict its performance on different tasks can pro-
vide assurances about competence, predictability, and the situational normality of a given task.
Several researchers have worked to improve this ability in visual classification [25, 51, 66, 151].
For example, to ensure that visual classifiers don’t fail silently in novel scenarios, Zhang et al.
[151] learned models of errors on training images to predict errors on test images. Kaipa et al. [66]
consider a 3D visual classification of assembly line parts for robotic pick and place tasks, and de-
velop statistical goodness-of-fit tests to estimate the likelihood that robots can use their sensors to
find parts matching desired ones. These approaches allow the AIA to assess capability and present
appropriate assurances to users, though without any formal notions of trust.

Mitchell et al. [99], discuss, in the context of a “never ending learning problem” (i.e., where the
AIA perpetually learns over time), how an agent can quantify uncertainty on unlabeled data given
three requirements: (1) three or more approximations of a function are available, (2) the assump-
tion that these functions are more accurate than chance, and (3) these functions have independent
errors. The rates at which these functions agree on classification of unlabeled examples can be used
to solve for their exact accuracies. Doing this allows the system to actively reduce uncertainty by
seeking relevant data. In the context of image classification, Paul and Newman [108] introduced
“perplexity” as a metric that represents uncertainty in predicting a single class and is used to select
the “most perplexing” images for further learning. There have also been several attempts to use
Gaussian processes (GPs) to actively learn and assign probabilistic classifications [13, 31, 48, 49,
91, 131–133]. As with perplexity-based classifiers, the key insight is that if a classifier possesses a
measure of uncertainty, then that uncertainty can be used for efficient instance searching, com-
parison, and learning, as well as reporting a measure of confidence to users. The key property of
GPs to this end is their ability to produce output confidence/uncertainty estimates that grow more
uncertain away from the training data. This information can be readily assessed and conveyed to
users, even in high-dimensional problems. This property has also found much use in other AIA
active learning problems, e.g., Bayesian optimization [16, 63, 121].

Neural network (NN) models are commonly considered black-box models, and methods to rep-
resent uncertainty have not historically been available. However, there have been several recent
advances to make this possible to some extent [42, 43]. Bayesian neural networks (BNNs) are a
method by which we can draw insight about the uncertainty of a neural network’s predictions;
this is possible by placing prior distributions over the weights in an NN. Kendall and Gal [70], in
the context of computer vision, also use deep BNNs to help visualize epistemic (input) and aleatoric
(model) uncertainty for each pixel of an image. Similarly, Kahn et al. [65] use deep BNNs to learn
about the probability (with uncertainty) of an autonomous vehicle colliding in an environment
given its current state, observations, and sequence of controls. Using this model, they formulate
a “velocity-dependent collision cost” that is used for model-based reinforcement learning. In or-
der to help predict uncertainty in real-time robotic applications that learn from demonstrations,
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Choi et al. [24] use mixture density networks (MDNs)—neural networks that learn parameters of
a Gaussian mixture distribution—to model complex distributions from human demonstrations.

Models and logic are not trustworthy by themselves; they may be flawed to begin with, or be-
come invalid when assumptions or specifications are violated. Thus, there is great interest in pro-
viding assurances that the models and assumptions underlying different AIA processes are, in fact,
sound. Laskey [80]—with the intention of communicating model validity to users of “probability-
based decision aids”—notes that it is infeasible to perform a decision-theoretic calculation to de-
termine if model revision is necessary. She presents a class of theoretically justified model revision
indicators, based on the idea of constructing a computationally simple alternate model and then
initiating model revision if the likelihood ratio of the alternate model becomes too large (see also
Habbema [54] and Zagorecki et al. [149]). Ghosh et al. [45] present “model repair” and “data repair”
strategies that can be used when the current model does not match the observed data, at which
point the model and data can be repaired, and control actions can be replanned in order to conform
with the formal method specifications. One challenge is how the “trustable” constraints should be
identified, as this places a strong burden on the certifying authorities and system designer to fore-
see all possible failures.

Reduce Complexity. Representations within an AIA are often complex. Sometimes using inher-
ently less complex, “interpretable models” (as discussed in 3.2), is the most straightforward way
to address this challenge. However, in some cases, it is desirable to maintain complex, less inter-
pretable representations (e.g., for performance reasons) and then reduce the inherent complexities
(possibly post-hoc) to aid human users.

One typical approach is to generate explanations, but how should explanations be provided?
There are also considerations regarding whether explanations should occur by two-way interac-
tion between system and user, by natural language interaction, or by probabilities. Some of the
answers to these questions lie more in the realm of cognitive science. Still, natural language and
other communication modalities could be used [58]. Specifically, Olah et al. [104] investigate how
predictions of NNs can be explained through visualizing how different parts of the network re-
spond to certain images. They propose combining several different approaches to get a holistic
view of the NN behavior. Specifically, they use feature visualization (what a neuron is looking for),
and attribution (how it affects the output).

There are several classes of explanations. Abdollahi and Nasraoui [2] propose three in the con-
text of collaborative filtering: “neighbor style” (explanation based on examples from similar situa-
tions), “influence style” (present the most influential items that led to a certain model output), and
“keyword style” (identify common features between user keywords and content). Otte [105] and
Ribeiro et al. [111] implement analagous ideas in the realm of safe ML and interpreting classifiers,
respectively. Huang et al. [59] use “algorithmic teaching” (see Ref. [9]) as inspiration for helping
human users learn a robot’s true objectives. Algorithmic teaching involves having a model of a
student’s learning algorithm and then presenting training examples to allow the student to learn
a target model. In this case the “student” is the human user, and the “teacher” is the robot that
is trying to teach the human its own objective function by presenting a set of (optimal) training
examples. Here, we would consider the robot’s training examples as assurances.

Another consideration is whether an explanation is meant to be descriptive or aimed at ensur-
ing comprehension, as well as whether explanations need to be on a macro or micro scale relative
for parts of the Bayesian network (similar to globally/locally interpretable learned models [115]).
Lacave and Díez [77] address the AIA reduction of complexity from the perspective of explain-
ing probabilistic inference in Bayesian networks—specifically, how and why a Bayesian network
reaches a conclusion given some imputed evidence. They present three properties of explanation:
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(1) content (what to explain), (2) communication (how to explain), and (3) adaptation (how to adapt
based on who the user is). Several key points for designing assurances arise from considering the
differences between explaining evidence (i.e., data), the model (i.e., the Bayesian network itself),
or the reasoning (i.e., the inference process).

Aitken [5] propose a metric called “machine self-confidence” for providing users with better
insight into autonomous decision-making under uncertainty. This insight comes from breaking
down the complex influences of uncertainty on the decision-making process and presenting them
to the user in a simple way. Self-confidence is defined as the machine’s own perception of its ability
to carry out tasks in light of uncertainties in its knowledge of the world, its own self/states, and
its reasoning process and execution abilities. In this sense, self-confidence is an AIA’s metacogni-
tive assessment of its own behavior and “competency boundaries.” A computational measure for
POMDP-based autonomous planning is defined from five component assurances (which are fairly
general and applicable to most other kinds of planners): (1) Model Validity, (2) Expected Outcome
Assessment, (3) Solver Quality, (4) Interpretation of User Commands, and (5) Past Performance.
The key idea behind this set of measures is to assess where and when approximations required
for planning under uncertainty are expected to break down. Model validity attempts to quantify
the validity of a model within the current situation. The expected outcome assessment uses the
distribution over rewards to indicate how beneficial or detrimental the outcome is likely to be.
Solver quality quantifies how a specific POMDP solver is likely to perform in the given problem
setting (i.e., how close to optimal the solution policy and approximate solution policy can get).
The interpretation of commands component is meant to quantify how well the objective has been
interpreted (i.e., how sure is the AIA that it correctly interpreted mission specifications into rele-
vant tasks and suitable goals). Finally, past performance is meant to add in empirical experience
from past missions in order to make up for theoretical oversights and account for learning-based
processes.

Aitken [5] proposes that self-confidence values could, for instance, be reported as a single value
between −1 (complete lack of confidence in achieving mission objectives) and 1 (complete confi-
dence in achieving mission objectives); a self-confidence value of 0 reflects total uncertainty. Each
of the component assurances could be useful on its own, but the composite “sum” of the factors is
meant to distill the information from the five different areas, so that a (possibly novice) user can
quickly and easily evaluate the ability of the AIA to perform in a given situation. Currently, only
two of the five metrics (Expected Outcome Assessment and Solver Quality) have been developed
quantitatively, but there is continuing work on the other metrics and they plan to perform human
experiments to evaluate the usefulness of the self-confidence metrics for AIAs. Other approaches
for computing and communicating AIA self-confidence have also been proposed for more specific
applications [61, 66, 75, 149].

3.5.2 Grounding Example. In the case of the “VIP Escort” problem (described in Section 2.2),
self-assessment might be used as an assurance in the following way, starting with the assumptions
that:

—The UGV is about to begin an attempt to escape the road-network.
—The UGV is using the “solver quality” metric mentioned by Aitken et al. [6].
—The operator has access to an interface where they can view the self-confidence metric

calculated by the UGV

Before the UGV begins its attempt, it is able to assess its “solver quality” given the specific,
previously unseen road-network based on similarities between the current network and ones that
it has encountered before (i.e., problem features that are important to determining the quality of
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Fig. 8. Human-in-the-loop process model [118] ©2017 IEEE. Reprinted, with permission, from Sacha,
Dominik, et al. “Visual Interaction with Dimensionality Reduction: A Structured Literature Analysis.” IEEE
Transactions on Visualization and Computer Graphics, vol. 23, no. 1, Jan. 2017, pp. 241–50.

the approximate solution produced by the policy). The UGV reports that it has high confidence in
its solver quality, and the operator is assured that they can trust the solver in this situation.

Discussion of Example: In this case, the UGV is able to assure the operator of the quality of the
solver in the specific road-network. Generally, the UGV reduced what could be a very complex
analysis into a simple format for the operator to interpret. This is in contrast to the operator
viewing policies, models, algorithms, and complex probability distributions.

3.6 Information Visualization

We define “information visualization” as the act of displaying artifacts generated by AIA models
or processes for the task at hand in such a way as to communicate to one of the trust dimensions of
a human user. Specifically, we consider the “competence” and “predictability” of the AIA, as well
as the “situational normality” of the task at hand. This can overlap but is not necessarily the same
as generating self-assessments, which are introspective and process-based assurances (i.e., which
are descriptive and reflective of the AIA’s capabilities); rather, information visualization tends to
more broadly include or revolve around outcome-based assurances (i.e., which focus on results or
expected results of applying the AIA’s capabilities).

3.6.1 Common Approaches. Liu et al. [88] review several of the current methods that exist for
visualizing machine learning models. They identified three main purposes for which visualizations
are useful in this context: (1) understanding (why models behave the way they do on certain prob-
lems), (2) diagnosis (failures or unexpected behavior on certain tasks), and (3) refinement (ability to
improve performance on tasks). We consider two common methods that assist in these processes:
dimensionality reduction and visualization of uncertainty.

Dimensionality Reduction. Dimensionality reduction (DR) is one of the key methods used in
creating visualizations. Sacha et al. [118] identify seven different methods by which users interact
with DR techniques. They use this to make the human-in-the-loop process model for interactive
DR that is shown in Figure 8. This interactive nature of their model helps users to better understand
the information that they are viewing.

Venna [138] discusses DR for ML and reviews many linear and non-linear projection methods.
Vellido et al. [137] also discusses the importance of DR for making ML models interpretable. As
one example, Chipman and Gu [22] applied this idea by constraining principle component analysis
(PCA) in an attempt to make the resulting linear combinations of variables more interpretable
(more homogeneous or more sparse).

ACM Computing Surveys, Vol. 51, No. 6, Article 113. Publication date: January 2019.



“Dave...I can assure you ...that it’s going to be all right ...” 113:25

Fig. 9. Proposed “trust annunciator panel” [61] Hutchins, Andrew R., et al., Proceedings of the Human Fac-
tors and Ergonomics Society Annual Meeting, “Representing Autonomous Systems’ Self-Confidence through
Competency Boundaries” Vol. 59, Issue 1, pp. 279–83. copyright ©2015 by SAGE Journals, Reprinted by Per-
mission of SAGE Publications, Inc.

At times, a simple visualization is the most efficient way to communicate the results of decision-
making or planning. For example: Chadalavada et al. [19] enable a robot to project its path onto
the ground so users can see.

Treatment of Uncertainty. In the previous section, we have already visited the importance of
an AIA being able to quantify its uncertainty. Visualization researchers are concerned with how
to convey that uncertainty to human users (and quantify uncertainty inherent in making visual-
izations). Sacha et al. [117] discuss how the propagation of uncertainty through visual analytics
systems can affect the trust of human users (see also Ref. [26]). One excellent example of this is
the work by Wu et al. [146], who create a tool to visualize the flow and propagation of uncertainty
in the visualization process. In this way, users can understand where uncertainty enters the data
visualization process.

The relationship between systemic uncertainties and their effects on system performance can be
very complex. Hutchins et al. [61] address this by using expert knowledge and a “trust annunciator
panel” (TAP) that has several “uncertainty level indicators” in order to display how uncertainties
in sensors will effect the output quality and the mission impact; the same goes for the planning
algorithm (see Figure 9).

3.6.2 Grounding Example. In the case of the “VIP Escort” problem (described in Section 2.2),
information visualization might be used as an assurance in the following way, starting with the
assumptions that:

—The UGV has just begun an attempt to escape the road-network.
—The user has access to an interface like that proposed in Ref. [61].

During the attempt, the user is able to see how the sensor uncertainty might possibly effect the
outcome of the mission. In this case, the user is assured that the sensors will have little negative
impact on the outcome of the mission given the current weather conditions.

Discussion of Example: Here we see how a visualization is able to assist the user in correlating
the effects between sensor uncertainty and mission outcome. This is not a simple relationship for
operators (especially untrained) to learn on their own; even if they were able to learn, the time
required to do so can be very detrimental.

3.7 User Assessment

In this section, we address assurances that are based solely on user assessment; in other words, the
AIA expends little or no computational effort to “digest data” to turn into assurance information
for the user, and instead relies on the user’s own cognitive abilities to draw assurances from their
observations. Such assurances are clearly not integral to the function of the AIA, as they might,
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for example, be realized by incorporating simple displays, print statements, or other “raw data”
indicators into a basic user interface. This category is in contrast to Section 3.6, where the AIA is
designed to process data to assist the user in understanding how to trust the AIA appropriately.
This approach is enticing for many system designers given how easy it is to implement at any
stage of AIA design (even as an after-thought). However, the effectiveness of this approach rests
on several, strong assumptions:

—The user can form a “good enough” mental model of the AIA on their own to inform ap-
propriate TRBs;

—Different users have “similar enough” capabilities and experiences to draw appropriate in-
ferences on their own;

—There are no other compelling sources of information that will confound the assurance;
—Common cognitive biases won’t interfere with the long-term operation/supervision of the

system (e.g., recency, framing, or anchoring effects that skew user’s perception of non-linear
changes in performance variables like power/fuel consumption).

The weight of each of these assumptions relies heavily on the task to be performed and the
characteristics of the typical users. For example, in situations with highly trained personnel (i.e.,
military or manufacturing facility), all users will have a similar level of capability; thus, “user as-
sessment” is a viable and effective solution. In other scenarios with more diverse users and operat-
ing environments, these assumptions begin to break down (i.e., mass market consumer products).

3.7.1 Common Approaches. As suggested in the section’s name, users can form assurances by
any method of perception. The most commonly investigated approaches are: simple, visual, “dis-
play of raw data,” and “by inspection” performance-based assessment.

Display of Raw Data. Assurances associated with displaying AIA performance variables sound
banal (e.g., flow rate for an automated pump [102]), but they actually make use of a nuanced
point: the displayed performance value actually serves to inform the user’s own mental model
of the trustworthiness of an AIA capability. That is, the user’s trust in the AIA’s capability does
not change only in response to the instantaneous “goodness/badness” of the AIA’s performance,
but accounts for the past history of the AIA’s performance as well as any observed discrepancies
between the AIA’s expected behavior and its actual behavior. The user’s trust dimensions (“com-
petence,” “predictability,” etc.) are then affected by their perception of trustworthiness according
to the combined model and data delivered by the display. This approach (also noted and discussed
by Refs [61], [120], and [144]) is effective but relies heavily on the implicit assumption that the
user will create a “good enough statistical model” of the AIA’s behavior from data presented by
the AIA. With this in mind, one might train a user to recognize signs of failure/success in different
interactions with an AIA as assurances [32, 39, 119]. The main drawback of this idea is that it still
relies on users’ ability to construct “good enough” mental models of AIA behavior and characteris-
tics from noisy observations to avoid misinterpreting AIA behaviors. It can also require intensive
and costly special effort for non-expert or non-specialist users. A more ideal approach in such
cases would be to design explicit assurances that help users construct correct/consistent mental
process models of AIA behavior and thus reduce the risk of misinterpretation.

Performance-based. Users can also be assured by directly assessing the performance of an AIA
on their own without any additional aiding or prompting. Put simply: making stuff that (obvi-

ously) doesn’t break improves trust. Riley [113] investigated how reliability and workload affected
the participant’s likelihood of trusting in automation. Two simulated environments were created
to this end. First was for participants to use/not use an automated aid (with variable reliability) to
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classify characters while also performing a distraction task. Interestingly, they found that pilots
(those with extensive experience working with automated systems) had a bias to use more au-
tomation but reacted similarly to students in the face of dynamic reliability changes.

In a similar vein, Desai et al. [32] investigated the effects of robot reliability on the trust of
human operators. In this case, a human participant needed to work with an autonomous robot to
search for victims in a building while avoiding obstacles. The operator had the ability to switch the
robot from manual (teleoperated) mode, to semi-autonomous, or autonomous mode depending on
how they thought they could trust the system to perform. During this experiment, the reliability of
the robot was changed in order to observe the effects on the operator’s reliance to the robot. Trust
was measured by the amount of time the robot spent in different levels of autonomy (i.e., manual
vs. autonomous), and it was found that trust changed based on the levels of reliability of the robot.
Yu et al. [147] also had similar findings in their study of operators utilizing an “automatic quality
monitor.”

3.7.2 Grounding Example. In the case of the “VIP Escort” problem (described in Section 2.2),
user assessment might be used as an assurance in the following way, starting with the assumptions
that:

—The UGV has just begun an attempt to escape the road-network.
—The user can observe the location of the UGV on the road network.
—The user has access to the speedometer of the UGV.
—The user has been trained and understands how the UGV functions.

As the user monitors the UGVs progress, they notice that, on a particular stretch of road, the
speedometer reading seems very high, and the UGV stops moving. They recall from training that
in situations where the speedometer shows a high speed and the UGV isn’t moving, it is likely that
the UGV is spinning out or high-centered. They are able to diagnose the failure and dispatch the
appropriate assistance.

Discussion of Example: In this case, the user was able to diagnose a problem based on the UGV not
moving and the speedometer being high. They were able to do so because they were familiar with
the system and were trained to be able to recognize this kind of situation. In future interaction,
the user might associate the failure to certain characteristics of the road or other properties of the
task...or just feel like the UGV isn’t very competent.

4 FUTURE WORK

The formal design of algorithmic assurances is still an emerging field. Consequently, there are
many opportunities for further research along different lines. This section outlines some possible
promising directions for future work.

4.1 Properties of Assurances

Figure 4 gives some hints about how designers might be able to fully characterize the properties
of AIA assurances. In this survey, we investigate in some detail “Level of Integration.” However,
all of the other grayed-out boxes in Figure 4 have open questions that should still be investigated.

Source-Target Classification. It would be especially convenient for designers of AIAs to be able
to refer to assurances by way of their source AIA capability (see Figure 2) and their target user
trust dimension (see Figure 3). For example, human-like gestures could be considered a “motion-
predictability” assurance. For instance, the reader may be able, in retrospect, to identify work
from Ref. [35] as a “motion-predictability” assurance, while the work by Wang et al. [141] could be
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Fig. 10. Component vs. composite assurances: the combination of multiple component assurances into a
single assurance is a composite assurance. On the left are two component assurances a1 and a2; on the
right, only a3 affects the trust dimension.

considered to describe “perception-competence” and “planning-predictability” assurances (among
others). Meanwhile, Aitken et al. [6] considered a large set of assurances that span several source
capabilities and target trust dimensions. However, it is not always easy to clearly separate AIA
capabilities or trust dimensions due to the inherent cross-over.

Still, such classifications are useful because different classes of algorithms will likely present
themselves as useful in applications for which assurances must target “predictability” dimensions
of trust, for example, as opposed to “situational normality.” Given the inherent difficulty of
precisely modeling and measuring trust, it is not immediately clear how such mappings can be
precisely delineated. Future research might begin by looking for missing correspondences or
correlations in the literature for notional capability source-trust target pairs. For example, have
satisfactory assurances been developed for the “learning-situational-normality” source-target
pair? Or, to what extent (if any) can assurance x for “perception-competence” also be applied
to “learning-competence”? Finally, are there certain classes of algorithms that are suited for
communicating to the “predictability” dimension of trust, and can they be adapted from one AIA
capability to another?

Component and Composite. A component assurance is an assurance that describes a single AIA
capability (or one aspect of an AIA model/process for a capability), and targets one or more trust
dimension targets. Component assurances are the most well-researched in the existing literature.
A component assurance might include displaying the confidence of a classification prediction, or
visualizing a model. A composite assurance is the combination of more than one component as-
surance into a single assurance. A notable example is the machine self-confidence work by Aitken
[5], which notionally combines five component assurances into a single composite assurance in-
terpretable to non-experts.

Figure 10 illustrates the concepts of component and composite assurances. Some open questions
here are: how can component assurances generally be combined to create a composite one? Also,
to what extent can component and composite assurances be used in concert to provide assurances
for users of differing expertise? And, are the effects of a composite assurance equal to the sum of
its components?

Explicit and Implicit Assurances. This work has only considered designed algorithmic assurances.
However, users will always form some kind of trust relationship to an AIA, even if deliberately
designed assurances are not available. In the absence of designed assurances, user trust is informed
by implicit undesigned assurances. These can be thought of as artifacts or side-effects of other
design decisions not meant to directly influence user trust.

Why is it important to consider implicit assurances? There is always a danger that users attend
to the “wrong” assurances, i.e., AIA features that are not meant to be interpreted as assurances but
are nevertheless easily perceived as such (possibly more so than intended explicit assurances). For
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example, a designer may create a planning-predictability assurance for an autonomous wheeled
mobile robot, which could be rendered ineffective by an implicit assurance given by the appearance
of that robot, e.g., the user may trust it less if the robot has old tires or has a large tool attached to
its front end which makes it “look unsafe.”

It remains an open question as to how designers can identify and mitigate the impact of implicit
assurances, especially so that they do not confound the intended effects of explicit assurances.
User studies will undoubtedly be helpful in obtaining feedback about which AIA characteristics
most affect user trust, e.g., if explicit assurances are being perceived, and if there are implicit
assurances whose effects overwhelm those of explicitly designed assurances. With such feedback,
designers would have a realistic idea about whether their explicitly designed assurances are having
the desired effect on user TRBs. However, the design and analysis of this issue remains open for
further study, and is likely to have many application-specific dependencies (though, in the spirit
of this article, cross-domain comparisons would also likely prove valuable).

Tutoring vs Telling. Assurances investigated to date are largely designed for one-way “telling” of
information, i.e., that they do not consider and adapt to the experience or other traits of different
users. The ability to adapt to different users and tutor them to appropriately trust AIAs will become
more critical as time passes due to the diversity of user bases for advanced AIAs and time that users
will spend interacting with them on complex tasks. A tutoring assurance might, for example, be a
planned dynamic sequence of assurances that would change in time to adapt to the user’s needs
via two way user-AIA communication. This might include modification of assurances to help a
user avoid boredom or fatigue in long-duration applications requiring user supervision, or to use
the system differently in varying circumstances. It is not surprising that, to our knowledge, no
research has been done with respect to tutoring a user in a trust relationship. This is a complex
problem that requires understanding how different users learn and identifying potential strategies
for eliciting appropriate TRBs from them. However, many interesting avenues for pursuing these
ideas may come from the work on educational tutoring systems [143] and algorithmic teaching [9].

4.2 Trust and Distrust

The treatment of assurances in this survey is based, in part, on a model of interpersonal trust.
For completeness, it will be important to further investigate distrust, as reviewed and discussed by
Lewicki et al. [82], and formalized in McKnight and Chervany [93]. Low trust is not the same as
distrust, and low distrust is not the same as trust. McKnight and Chervany [93] suggest that “the
emotional intensity of distrust distinguishes it from trust,” and they explain that distrust comes
from emotions like wariness, caution, and fear—whereas trust stems from emotions like hope,
safety, and confidence. Trust and distrust are orthogonal elements that define a person’s TRB to-
ward a trustee. Since distrust was not considered here, it is not clear to what extent the human-AIA
trust model remains effective in the presence of user wariness, caution, or fear. Questions for future
work include: to what extent can behaviors driven by distrust be isolated from those originating
from trust? How can those behaviors be detected to begin with? And in what circumstances is the
extra effort necessary?

4.3 Human Limitations

Dealing with human users requires consideration of their cognitive limitations. For instance, cog-
nitive biases known as “framing effects” (reacting to the same choice in different ways depending
on how it is presented) will be important to consider for designing usable AIAs that must make
decisions under uncertainty [39, 113]. The existence of framing effects are not surprising to those
familiar with cognitive science, but they will likely be unanticipated phenomena to many AIA
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system designers. Other related cognitive biases and limitations such as “recency effects” (being
biased in making choices based on recent experience), “focusing effects” (being biased in choice
selection based on a single aspect of a correlated event), or “normalcy biases” (failure to consider
situations that have never occurred before) are also important to consider.

Besides cognitive biases, humans are also limited in their ability to understand certain kinds of
information. Communities that investigate how probabilistic and statistical explanations can be
presented to humans will have many insights that are relevant for AIA designers and assurance
design [74, 89, 114, 124, 140]. But it is not immediately clear what methods are most appropriate
for application in assurance design, or how they might be applied. For instance, can the AIA detect
when cognitive limitations are effecting TRBs? What other user limitations need to be character-
ized?

4.4 Expression and Perception of Assurances

Although specific algorithms can be used to build the contents of assurances, it is also critical to
consider the actual communication of assurances. The expression (and subsequent perception) of
an assurance involves considering mediums, methods, and efficacy. The medium of an assurance
includes the form in which it is expressed, e.g., visually, audibly, or otherwise. The method of
expression includes, for example, using a plot or a natural language phrase (which could be text-
based or speech-based, depending on the medium). Finally, the factors influencing the efficacy of
the assurance must also be considered (e.g., consider using an audible assurance in a noisy environ-
ment). Humans generally utilize different methods/mediums when communicating assurances to
each other to maintain efficacy when potential “losses in transfer” might occur. However, arguably
the greatest challenge in using different mediums and methods is not in their implementation, but
in designing the ability to recognize and decide when they should be applied. Some interesting
questions are: In what circumstances are different methods most useful? And the same for medi-
ums? How can different methods/mediums be selected in order to maximize assurance efficacy
while also taking into account that using all possible combinations will not help the user? How,
and to what extent, can AIAs assess the efficacy of an assurance before, during, or after operation?

4.5 Observing Effects of Assurances

Since assurances are meant to influence TRBs, it is important to quantify these effects so that:
(1) the AIA system designer can understand how effective the assurances actually are; and (2) the
AIA can evaluate the efficacy of its assurances and adapt them as needed. To our knowledge, there
has not been any work that enables an AIA to observe user responses to assurances and then adapt
behaviors appropriately (at least not in the trust cycle setting).

There are two known approaches to measuring the effects of assurances: gathering self-reported
changes [67, 92, 102, 119, 144] and measuring changes in TRBs [8, 32, 39, 119, 145]. Measuring
changes in TRBs is the more objective approach, generally speaking, but the choice between one
method and the other depends on the application. Still, more investigation is needed to identify the
principles behind measuring the effects of assurances. Some interesting, yet unanswered questions
include: are there some TRB measurement strategies that fare better than others for particular
kinds of applications or assurances? In what ways, if any, do these methods need to be adapted
to suit different kinds of users? Is it possible to show that there are, in fact, causal relations from
specific assurances to specific TRBs?

5 CONCLUSIONS

The issues of user trust in AIAs and appropriate deployment/use of AIAs have become very
prominent. Assurances are the method by which AIAs can influence humans to trust and (more
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importantly) use them appropriately. We have presented here a definition, case for, and survey
of algorithmic assurances in the context of human-AIA trust relationships. A formal treatment of
this topic is necessary because the ecosystem of AIAs is evolving more rapidly than ever before;
consequently, previous informal approaches to designing algorithmic assurances are insufficient.

This survey was performed, to some extent, from a standpoint of designing intelligent un-
manned vehicle systems that must work in concert with a human supervisor. However, the theo-
retical framework and categorization of assurances is meant to be generally applicable to a broad
range of AIAs. A major motivation for this survey was the observation that there are many re-
searchers in different but related domains such as human factors, robotics, machine learning, ar-
tificial intelligence, and others who are (unknowingly) working along different parts of the same
human-AIA assurance spectrum. It is important for members of each community to recognize this,
so that research efforts can be methodically organized to answer related open questions in this im-
portant area. Assurances have historically been ignored from a practical standpoint and are the
least understood component of human-AIA trust relationships. There have been many researchers
who have recognized the concepts behind assurances, but no detailed definitions have been given
until now.

There are three main contributions from this work: (1) we have drawn from multiple bodies
of research in order to fill in the missing details for the human-AIA trust cycle (Figure 1) and
to formally define assurances within this cycle; (2) we present a classification of assurances in
Section 2.1; (3) we identify an “assurance integration continuum” shown in Figure 6. On that con-
tinuum, seven different classes of algorithms were identified. Practitioners can use these classes
to select and design assurances for AIAs. Given the material provided herein, those who design
assurances should have the tools required to approach design and future research from a solid
theoretical foundation.

A final important and sobering takeaway is that there is not a single “silver bullet” algorithmic
assurance that will perform the best in all situations. Given enough time, it is quite possible that
highly specialized assurances could be designed for many situations. Even so, we warn that, for
the research and design of assurances to be sustainable in the current environment of fast-paced
development of new technology, it is important to consider approaches that are as principally
grounded as possible, in order to be more easily used with yet-to-be-invented methods for imple-
menting various AIA capabilities. We have identified many future opportunities for research on
AIA assurance design and their influence on human trust, and hope researchers will begin looking
outside of their own disciplines to discover, design, and formally test new tools and ideas for as-
surance design and implementation. The framework presented here should unify research efforts
by providing a common taxonomy in relation to human-AIA trust relationships. We believe it will
help researchers see the field from a larger perspective, classify the type of research they are per-
forming, and consider the greater implications of their work. The field of algorithmic assurances
has an abundance of avenues for new and challenging research, and we encourage researchers to
pursue them.
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