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a b s t r a c t

Autonomous unmanned systems and robots must be able to actively leverage all available informa-
tion sources — including imprecise but readily available semantic observations provided by human
collaborators. This work develops and validates a novel active collaborative human–machine sensing
solution for robotic information gathering and optimal decision making problems, with an example
implementation of a dynamic target search scenario. Our approach uses continuous partially observable
Markov decision process (CPOMDP) planning to generate vehicle trajectories that optimally exploit
imperfect detection data from onboard sensors, as well as semantic natural language observations that
can be specifically requested from human sensors. The key innovations are a method for the inclusion
of a human querying/sensing model in a CPOMDP based autonomous decision making process, as well
as a scalable hierarchical Gaussian mixture model formulation for efficiently solving CPOMDPs with
semantic observations in continuous dynamic state spaces. Unlike previous state-of-the-art approaches
this allows planning in large, complex, highly segmented environments. Our solution is demonstrated
and validated with a real human–robot team engaged in dynamic indoor target search and capture
scenarios on a custom testbed.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Dynamic target search and localization remains a very ac-
ive research area for unmanned autonomous vehicle systems.
olutions typically leverage joint state space models of target dy-
amics, mobile sensor platform motion, and sensor observations
o solve challenging combined optimal control and estimation
roblems. However, practical algorithms for data fusion and deci-
ion making can still be too computationally expensive and brittle
o ensure full vehicle autonomy.

In many cases, human operators and users can act as ‘human
ensors’ that contribute valuable information beyond the reach of
utonomous vehicle sensors. For instance, operators in search and
racking missions using small unmanned aerial systems (UAS) can
rovide ‘soft data’ to narrow down possible survivor locations
sing semantic natural language observations (e.g. ‘Nothing is
round the lake’; ‘Something is moving towards the fence’), or
rovide estimates of physical quantities (e.g. masses/sizes of ob-
tacles, distances from landmarks) to help autonomous vehicles
etter understand search areas and improve online decision mak-
ng with limited computational resources. This naturally raises
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the question of how autonomous reasoning can actively and
opportunistically engage human reasoning to improve its own
performance.

We present a rigorous framework for intelligent human-
autonomy interaction that not only leverages combined robot–
human sensing, but is also tightly integrated with dynamic plat-
form decision making and planning. Our approach uses Bayesian
data fusion to exploit soft data in such a way as to interface with
existing autonomous sensing frameworks, while also enabling
accessible and understandable interaction with the system on
the part of the human. Such ‘plug and play’ human sensing for
robot state estimation was explored in [1,2] for restricted types
of human observations, and has received increased attention in
recent years [3–6]. In this paper, we combine our recent work on
Bayesian semantic natural language human data fusion [7,8] with
concepts from optimal active sensing, in order to develop a new
framework for interactive human–robot semantic sensing. Here
we focus on the challenging problem of non-myopic decision
making for simultaneous (tightly coupled) vehicle motion plan-
ning and human sensor querying in continuous dynamic search
environments. As shown in Fig. 1, our approach leads to joint
action–query policies (i.e. control laws) over a continuous target
search space. A policy tells the robot how to respond to target
location uncertainty, so that it simultaneously makes optimal de-
cisions about how to move/sense on its own in the environment

https://doi.org/10.1016/j.robot.2021.103753
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http://www.elsevier.com/locate/robot
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Fig. 1. Closed-loop collaborative Bayesian target search using a non-myopic policy for simultaneous semantic querying and sensor vehicle motion planning.
nd about which semantic natural language questions it should
sk human sensors in order to ‘pull’ useful information. The
uman only needs to act as a (voluntary) sensor; hence, the robot
oes not ‘‘depend’’ on the human but can opportunistically gain
nformation or adapt to whatever soft information is provided
y the human. Furthermore, the policy lets the robot conduct an
ptimal search with complex non-Gaussian uncertainties, even
ithout human input.
Our technical approach builds on recent foundational work for

fficiently finding policies based on continuous partially observ-
ble Markov decision process (CPOMDP) models [9]. While this
POMDP approach provides several beneficial theoretical features
or collaborative dynamic target search, this work also addresses
echnical challenges that arise for practical implementation for
eal human-autonomy teams. In particular, this work presents a
calable hierarchical CPOMDP solution that allows our framework
o be deployed in arbitrarily complex environments, e.g. large
ndoor settings with multiple rooms/search areas, many possible
emantic grounding references, and moving targets, which would
therwise be intractable for a single CPOMDP policy to handle. A
ovel formulation of human querying/sensing is also introduced
ithin the context of the hierarchical CPOMDP, allowing infor-
ation to be volunteered by and autonomously requested from

he human with regard to each layer of the hierarchy. Finally,
ardware demonstration results are presented which validate our
pproach with a real human–robot team engaged in dynamic
ndoor target search and capture scenarios. Varying levels and
ypes of human-autonomy interaction are compared, showcasing
he value of human information in a variety circumstances. While
he presentation is grounded in dynamic target search problems,
ur human-autonomy collaboration framework can be applied to
ther interactive dynamic data fusion problems as well.
This paper is structured as follows. Section 2 reviews back-

round and related work. Section 3 presents our new hierarchical
POMDP framework for optimal search and interactive seman-
ic soft data querying, in the context of indoor dynamic target
earch. Section 4 provides demonstration results on our custom
uman–robot team target search testbed, and Section 5 presents
onclusions and future work.

. Background and related work

While the novel framework debuted in this work is show-
ased on a dynamic target search problem, it is readily extensible
o other scenarios involving human–robot collaborative decision
aking such as autonomous planning in human-collocated en-
ironments [10], robotic self-localization [11–13], autonomous
riving [14,15], and inventory control [16].
In many applications, several fundamental difficulties arise,

hich lead to brittleness in practice. Firstly, autonomous robotic
2

vehicles are subject to constraints on motion, size, weight, power,
and cost; this limits their computing and sensing payloads as
well as their operating time and range. Secondly, the sensing and
planning horizons for approximate optimal search algorithms are
inherently limited. This not only restricts the ability to correctly
detect and sense targets, but also the ability to execute adaptive
long term information gathering strategies in complex dynamic
environments. Finally, sensing platforms may only have access to
imperfect/highly uncertain target behavior models. This can lead
to non-Gaussian probability distributions over target states, and
make online planning and sensing/data fusion even more difficult.

Formal integration of robotic and human perception can
greatly improve the efficiency and robustness of autonomous de-
cision making, especially in situations where uncertainties cannot
be well-characterized in advance and must be adapted on the fly.
Soft data provided by humans can be broadly related to either
‘abstract’ phenomena that cannot be measured by robotic sensors
(e.g. labels for occupied/unoccupied rooms, object categories and
behaviors) or measurable dynamical physical states that must be
monitored continuously (object position, velocity, attitude, tem-
perature, size, mass, etc.) [17]. This work examines the problem
of active soft data fusion, and builds on methods for addressing the
following key issues: (i) soft semantic data modeling for recursive
state estimation; and (ii) active semantic sensing for intelligent
planning under uncertainty.

In the following, Section 2.1 defines the grounding dynamic
target search problem used throughout the rest of the paper
as a specific application of collaborative semantic human–robot
sensing and planning. Section 2.2 then reviews related work
for managing human–robot information exchange. In Section 2.3
a data fusion method leveraging Gaussian Mixture models for
human–robot ‘‘hard–soft’’ data fusion is reviewed. Section 2.4 sets
out the challenges and approaches for decision making under
uncertainty as relates to the grounding problem. Finally, Sections
2.5 and 2.6 give a formal problem statement and general solution.

2.1. Motivating problem

This paper focuses on search and localization applications
where the number and type of targets are known, and where
mobile sensor platform dynamics, observation models, and envi-
ronment maps are known. The motivating scenario is a dynamic
target search problem, ‘‘Cops and Robbers’’ (CNR), which takes
place in an indoor environment such as the one shown in Fig. 2.
An autonomous robotic agent, referred to here as the cop, is
tracking a robber within the confines of an indoor environment,
with the help of an off-site human collaborator. The cop’s goal is
to localize, track, and intercept the robber as quickly as possible.
The environment is segmented into interconnected ‘‘rooms’’, each
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Fig. 2. An example cops and robots room layout. The global space is fully partitioned into labeled rooms, each of which contains objects of known semantic labels
and positions.
of which carries a known semantic label typical to a domestic
home environment, such as ‘‘hallway’’ or ‘‘kitchen’’. Within each
room, distinct objects are placed in fixed locations, each with
its own semantic label. For instance, in the room ‘‘kitchen’’, one
of the labeled objects might be the ‘‘refrigerator’’, while in the
‘‘study’’ there might be a ‘‘desk’’. In a real-world scenario, each
room would likely contain a multitude of non-unique objects in
many possible configurations [18]. The robber moves randomly
from room to room, independent from the movements of the cop
and with no preference for a given room or sequence of rooms.

The human collaborator is able to imperfectly monitor the en-
ironment through the use of security cameras placed in the en-
ironment, and can also access the viewpoint of the cop through
n on-board mounted camera. The human’s role is to provide
nformation relevant to the cop’s task through two related meth-
ds, with the terminology for both adopted from previous work
n [19]. The first is the ‘‘Robot-Pull’’ event, in which the cop
equests information about the robber’s position relative to a
abeled object or room. For instance, the cop might ask ‘‘Is the
obber in front of the chair?’’, to which the human can pro-
ide a binary answer of ‘‘yes’’ or ‘‘no’’. The second method is
hrough ‘‘Human-Push’’ events, in which the human can volun-
eer information which they deem useful. As an example, after
hecking the security camera mounted in the kitchen, the human
ight push the statement, ‘‘The robber is not in the kitchen’’.

n both cases the human is assumed to be imperfect but well-
ntentioned, and is capable of passing along false information by
istake. Note that the human is unable to directly influence the
op’s movements, and at no point are commands or directions
ssued. However, the semantic information they provide directly
nfluences the cop’s understanding of the targets position, and
herefore will have some effect on actions. For instance, repeated
ssertions by the human that the robber is in the study would
easonably lead to the cop investigating the study. In most cases
owever, due to the view of security cameras not spanning the
ntire environment, the human will not be able to immediately
ocate the target and will be limited to negative observations.

.2. Algorithms for human–machine interaction

This section reviews existing frameworks and algorithms for

uman-autonomy interaction with emphasis on applicability to

3

the motivating problem. The use of humans as sensors in the
motivating problem provides unique challenges from both the-
oretical and implementation perspectives. Ultimately, the human
must be modeled, and interacted with, as a multi-purpose semi-
opaque probabilistic sensor. As an example, in a real world im-
plementation a human might be able to reason about the future
trajectory of the robber regarding which rooms have items of
value, or be able to infer blind spots based on camera feeds. This
imperfect natural inference can help bound the search area for
the cop, using information the cop may not have thought to ask
for. This form of reasoning both mirrors and complements robotic
reasoning based on recursive Bayesian estimation (discussed in
the next section). Thus, the methods by which the human and
cop interact would ideally allow for both the useful but impre-
cise nature of human sensor observations, as well as their and
capacity to offer surprising or unexpected information.

While existing literature has explored the idea of learning
how individual humans offer information to machines in repeated
tasks [20,21], these primarily focus on learning the parameters
of a specific human collaborator. Tasks such as the motivating
problem can also benefit from more generalized human models.
These ‘‘plug and play’’ human models, as explored in [1] and [2],
allow a system to understand information originating from a non-
specific human. These ideas have been explored using varying
mathematical frameworks [3], and adapted to account for hu-
man factors such as cognitive load and physiological state [4].
However, such frameworks have typically focused on the data
fusion aspect of human sensing. In order to address the problem
proposed in Section 2.1, a method of decision making which takes
data fusion framework into account is also required.

A major component of the motivating problem is the ability
of the cop to initiate a ‘‘Robot-Pull’’ event to query the human
for specific information. This ability gives rise to the issue of
deciding which question should be asked. Put another way, given
a multitude of options regarding the various rooms, objects, and
directions the cop can generate queries from, which combination
leads to the greatest increase in utility? In general, this problem
can be framed as a Value of Information (VOI) [19] problem.
Previous work has grappled with this active sensing problem
by positing a direct link between state uncertainty and utility.

This leads to the implicit assumption that perfect knowledge of a
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obber’s location will lead to maximal utility through rapid inter-
eption, and the correct question to ask is that which leads to the
reatest expected decrease in uncertainty. Unfortunately, even in
ases where the calculation of VOI can be accomplished easily
or the current timestep, determining the optimal sequence of
uestions becomes intractable due to the combinatoric increase
n questions trajectories over time. Thus VOI aware planning
as generally been used in myopic implementations [8], though
ork has been done on training machine-learning algorithms to
ecognize non-myopic VOI from current uncertainty levels [22].
owever, even these cases still calculate VOI according to ex-
ected changes in uncertainty rather than on expected changes in
he probability of success. The framework proposed in this work
nstead directly links information gathering with a reward func-
ion representing desired behaviors. Thus active sensing explicitly
ecomes a matter of choosing information gathering actions that
ead most certainly and quickly to success.

Solutions to the problem of integrating the knowledge of re-
pective members of a human–robot team can take many forms.
or many tasks, humans can serve as information providers not
nly about the state of the task, but also about potential policies
r strategies to accomplish the task. Techniques such as Appren-
iceship Learning [23] or Learning from Demonstration [24,25],
llow the human to provide examples which allow the robot
o learn an appropriate policy. These examples can be direct
nd initiated by the human [26], or a result of robot actions to
voke a response by the human [27]. A core assumption of these
ethods is that the human knows what they are doing, or at the

east is capable of providing useful information about the optimal
olicy for the task. In cases where the human cannot serve as a
easonably effective teacher, the robot must rely on other means
o calculate a policy.

In tasks allowing language based communication, natural lan-
uage methods enable robust communication between human
nd robot team members, but introduces the problem of facili-
ating dialog on the part of the robot. Such dialog can handled
ithin optimal planning frameworks to help accomplish shared
oals [28], and account for language uncertainties [29]. However,
any previous approaches applying natural language dialog to
hared tasks assume the human as a direct collaborator, as-
uming they will perform their own actions cooperatively or
ndependently from the robot, or that the human is in some way
upervising a task and directing the robots actions. In cases where
he human acts as a sensor, rather than an on-the-ground partner
r commander, there arises a need to account for both temporary
navailability and inaccuracy on the part of human, such that a
obot can accomplish a task fully independently in the worse case.

.3. Mixture-based Bayesian soft data fusion

Ref. [7] showed how to model and fuse flexible semantic natu-
al language data to provide a broad range of positive/negative in-
ormation for Bayesian state estimation, e.g. ‘The target is parked
ear the tree in front of you’, ‘Nothing is next to the truck heading
orth’. This fusion algorithm directly plugs into Gaussian mixture
ilters for robotic state estimation, which can accurately represent
omplex posterior pdfs while avoiding the curse of dimension-
lity. Suppose sk ∈ Rn is a random vector representing some

continuous state of interest at discrete time k (e.g. target location,
velocity, heading) with prior pdf p(sk), which may already be
conditioned on hard/soft sensor data and predicted forward in
time from according to known a stochastic state transition pdf via
the Chapman–Kolmogorov equation. Let Dk be a discrete random
variable representing a human-generated semantic observation
related to sk. Bayes’ rule gives the posterior pdf

p(sk|Dk = i) =
P(Dk = i|sk)p(sk)∫ (1)

P(Dk = i|sk)p(sk)dsk

4

where the likelihood function P(Dk|sk) captures the human’s se-
mantic classification behavior conditioned on the true state sk. If
Dk = i corresponds to one of m exclusive semantic categories for
a known dictionary of state observations, then a softmax function
(i.e. multinomial logistic function) can be used to model P(Dk =

i|sk),

P(Dk = i|sk) =
ewT

i sk+bi∑m
j=1 e

wT
j sk+bj

(2)

where wj and bj are vector weight and scalar bias for class label
i. For a sufficiently rich dictionary of semantic observations Dk,
multiple softmax models can be defined via Eq. (2) withm = 2 for
different binary sets of semantically similar class labels (‘nearby’
vs. ‘not nearby’, ‘next to’ vs. ‘not next to’, ‘close by’ vs. ‘not close
by’, etc.), so that they need not be treated as mutually exclusive
labels within a single large softmax model. The likelihood pa-
rameters wj and bj can be learned from semantic human sensor
calibration data [7] and algebraically manipulated to shift, dilate,
rotate, and geometrically constrain semantic class boundaries in
Rn [8,30].

Eq. (1) must be approximated for recursive Bayesian data
fusion with softmax likelihoods, since the exact posterior pdf
p(sk|Dk) cannot be obtained in closed-form for any p(sk). If P(Dk =

i|sk) is generally given by a softmax model for observation label i
and the prior is given by a finite Gaussian mixture (GM) with M
prior components evaluated at sk,

p(sk) =

M∑
m

wmφ(sk|µm, Σm) (3)

(where wm, µm ∈ Rn, and Σm ∈ Rn×n are the weights, mean
vector and covariance for mixand m), then p(sk|Dk = i) can be
well-approximated by an M component GM,

p(sk|Dk = i) ≈

M∑
n

wnφ(sk|µn, Σn) (4)

The weights, means and covariances of posterior component n
can be determined by fast numerical approximations methods [7],
and mixture compression methods can be used to manage the
growth of mixture terms due to non-linear dynamics or applica-
tion of non-convex ‘multimodal’ softmax models [31].

2.4. Active semantic sensing for planning under uncertainty

A major challenge for problems like target localization is that
dynamics and uncertainties can quickly become quite non-linear
and non-Gaussian, particularly given the types of semantic in-
formation available for fusion (e.g. negative information from
‘no detection’ readings [32]). As a result, typical stovepiped ap-
proaches to control/planning and sensing/estimation can lead to
poor performance, since they rely on overly simplistic uncertainty
assumptions. Constraints on human and robot performance also
place premiums on when and how often collaborative data fusion
can occur. For example, it is generally important to balance situa-
tional awareness and mental workload for a human sensor (who
might also need to switch between tasks constantly). Likewise,
it is important for the robot to know how and when a human
sensor can be exploited for solving complex planning problems,
which would otherwise be very inefficient to tackle using only its
own local sensor data

Target search problems in uncertain environments can be
cast as Partially Observable Markov Decision Processes (POMDPs)
to non-myopically integrate VOI-based reasoning. In general,
POMDPs solvers seek a policy, which maps a belief over the state
space (i.e. a pdf) to a recommended action. These actions seek to
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aximize the expected time-discounted reward over time. Exact
olutions to POMDPs are impractical in all but the most trivial
f problems, and a variety of approximate solutions have been
roposed.
One approach to POMDP approximation, the QMDP algo-

ithm [33], attempts to use a fully observable MDP policy to
ompute the optimal action in a partially observed step. As
MDPs are only exactly optimal assuming the state will indeed
ecome fully observable after a single timestep, they are generally
nsuitable for information gathering dependent problems such as
he one addressed in this work. However, the introduction of the
racular POMDP (OPOMDP) formulation [34,35] built on a QMDP
olicy and enabled the use of a human sensor to provide ‘‘perfect’’
tate information at a fixed cost. Further work resulted in Human
bservation Provider POMDPs (HOP-POMDPs) [36], which allow
he consideration of oracular humans who are not always avail-
ble to answer a robotic query. HOP-POMDPs calculate a cost of
sking, which is then weighed against the potential information
alue, similar to VOI aware planning in [19]. When augmented
ith the Learning the Model of Humans as Observation Providers
LM-HOP) algorithm [21], HOP-POMDPs can estimate both the
ccuracy and availability of humans, thus treating them as prob-
bilistic sensors. A primary drawback to using either OPOMDPs
r HOP-POMDPs to address the motivating problem from Sec-
ion 2.1 is that while they both enable a QMDP based policy to
onsider information gathering actions, these actions consist of
single self-localization query. Such formulations ignore the rich

nformation set available in the motivating problem thanks to the
resence of semantically labeled objects.
Another class of POMDP approximation known as Point-Based

alue Iteration [37] and various related algorithms [38,39] rely
n recursively solving the corresponding Bellman equations with
nown observation and transition models for some subset of
ossible beliefs that might be encountered during policy execu-
ion. When specified over discrete state, observation, and action
paces, the computational complexity explodes quickly with the
umber of joint configurations across each space.
The introduction of the CPOMDP method [40] showed that sets

f Gaussian Mixture (GM) models can be used to approximate
he policy over a continuous state space, while Switching-Mode
OMDPs [41] further extended the CPOMDP framework to ac-
ount for non-constant transition functions such as those caused
y the presence of obstructions in the space. Finally, Variational
ayes POMDPs (VB-POMDPs) [9] were developed to handle non-
aussian observation models in the form of softmax models.
hese easily model semantic observation statements and excel
t parsing semantic input statements over a continuous space
hile significantly decreasing the computational cost of finding
nd implementing a policy. Unlike previous discrete state space
OMDPs, which scaled in complexity with the number of discrete
tates, CPOMDP approaches scale with the complexity of the
eliefs. This allows the use of POMDPs in much larger spaces,
imited primarily by how precise the GM belief representation
eeds to be.
In many human-autonomy interaction applications, the in-

roduction of common real world complications such as large
emantic object dictionaries, walls, and expansive state spaces in-
rease computational complexity beyond practicality when using
single monolithic POMDP policy. While the use of CPOMDP for-
ulations such as VB-POMDP naturally handle large state spaces
uch a room, they do not naturally account for discontinuous
ransitions, e.g. such as those involving obstacles for mobile plat-
orm motion planning. While this was partially addressed by
he Switching-Mode POMDP framework [41], the presence of
any semantic labels can add prohibitively more computation
o the policy solution. This occurs in two ways. For example, in

5

the motivating problem, the cop is able to request information
about the target’s location with respect to a particular object, ‘‘Is
the robber behind the Checkers Table’’. Larger semantic object
dictionaries mean the cop must make a decision on which to
ask about from among a larger set of possible queries. Having
large numbers of objects which can act as anchors for semantic
human sensor observations also leads to a large observation
space, further increasing computational costs. Even with recent
advances in scalability such as those showcased by VB-POMDP,
existing policy approximation methods are ill-suited to handle
the kind of complex and informationally dense settings found in
real world applications. With its separate but connected rooms,
and information-dense environment filled with objects that can
be referenced for observations, the motivating problem presents
a challenge for typical POMDP approaches. CPOMDP methods
struggle with the number and complexity of switching-modes
required to encapsulate objects and walls. Additionally, the in-
troduction of ‘‘Human-Push’’ and ‘‘Robot-Pull’’ actions naturally
lead to larger action spaces and dramatically larger observation
spaces.

In principle, online POMDP solvers such as [42] or [43] could
be used to come up with acceptable approximations for such
problems using policy search techniques. But online solvers strug-
gle with problems like CNR, since rewards can only be obtained
at a single point in the state space, i.e. when the robber is caught.
This causes problems for large state spaces as positive reward
states will often lie beyond an online solver’s effective planning
horizon, and thus intermediate rewards cannot be obtained to
promote adequate policy exploration. In principle, expanding the
effective planning horizon negates these issues. However, results
from [9] show that even in comparatively simple planning envi-
ronments, online planners take significantly longer than offline
planners at policy execution to achieve similar results. When
applied to computationally constrained robotic platforms and
larger/more complex spaces the advantage of offline planners
becomes more pronounced if the aforementioned issues with
information density can be addressed. In the specific case of the
motivating problem, the continuous indoor environment is easily
separable into connected regions, which suggests exploring the
use of multiple connected CPOMDP policies that can be obtained
offline.

The first major contribution of this work is the specification
of CPOMDPs for collaborative robotic information gathering and
optimal control where a human collaborator is formulated as a
semantic sensor, alongside the ability to actively query this new
sensor for information relevant to an autonomous agent’s goal.
The VB-POMDP [9] variant of the CPOMDP formulation is used
to specify solve a target search problem with semantic sensor
measurements. These measurements are described as softmax
functions as in [7], and are used to fuse information in both
‘‘Human-Push’’ and ‘‘Robot-Pull’’ events, as well as an on-board
robotic measurements. This results in the computation of an
optimal POMDP planning and querying policy, where the actions
recommended by the policy consist of both physical movements
and queries for the human, and observations consist of both
robotic and human semantic information. This pre-computed pol-
icy is able to run in real-time on a physical robotic platform,
and actively accounts for collaborative information gathering in
a human–robot team.

The second major contribution of this paper is a divide and
conquer hierarchical POMDP-based querying strategy for large
problem spaces. This approach exploits the natural segmenta-
tion of certain environments, such as a building, into multiple
connected open spaces, such as rooms. Each of these rooms can
be treated as a separate CPOMDP, while a PBVI-based discrete
POMDP solver can be used to connect them at a higher level. This
results in a hierarchical POMDP structure, with the discrete solver
directing which room level CPOMDP policy should be followed at
each time step.
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.5. Formal problem definition

Formally, the generalized human-autonomy collaborative
ensing and planning problem addressed in this chapter is stated
s an infinite horizon POMDP, represented by a 7-tuple
S,A, T ,R, Ω,O, γ }. States s ∈ S are assumed to be continuous
in Rn. The action space A consists of a Cartesian product of
the set of robotic actions Am, such as movements or other such
decisions that purely affect the autonomy, and query actions Aq,
which denote a decision to request information from the human
collaborator, such that

A = Am × Aq, (a ∈ A) = [am, aq] (5)

The probabilistic transition function T , in this application, is
specified as an n-dimensional Gaussian, with mean s + ∆a, and
ariance Σa, where ∆a is the n-dimensional vector of the ex-
ected resulting change occurring due to action a, and Σa is an
×n covariance matrix of transition noise resulting from action a.
xecuting action a results in a probabilistic transition from state
∈ S to state s′ ∈ S.

= p(s′|s, a) = φ(s′|s + ∆a, Σa) (6)

While this Chapter only considers transition functions of this
unimodal Gaussian structure, they could also be constructed from
Gaussian Mixtures as shown in prior work [9], in order to capture
multi-modal uncertainties. This would require no significant algo-
rithmic or theoretical changes to the methods described below.
Furthermore, non-Gaussian models could in theory be applied
in so much as their product with either softmax functions or
Gaussian mixtures can be approximated as a Gaussian Mixture
after the manner of the VB-POMDP algorithm described in [9].

The observation space O is decomposed similarly to the action
space in that it consists of a Cartesian product of observations
resulting from the robot’s onboard sensors ov ∈ Ov and the
uman’s responses to the robot’s query actions oq ∈ Oq, such

that:

O = Ov × Oq, (o ∈ O) = [ov, oq] (7)

The observation model Ω relates the probability of receiving a
particular observation o to the state s through the use of an
-dimensional softmax function, which can be constructed as
er [7,8].

= p(o|s, a) =
ewT

o s+bo∑
|O|

j=1 e
wT
j s+bj

(8)

The probability distribution over the current state s at time t ,
referred to in this work as the belief b, is represented as a
Gaussian Mixture pdf consisting of M weighted mixands,

b(s) = p(st |a0:t , o0:t ) =

M∑
m

wmφ(s|µm, Σm) (9)

1 =

M∑
m

wm (10)

.6. General POMDP solution

The general solution to the POMDP is a policy π (b), which
aps from a belief to an action π (b) → a, such that the expected
iscounted reward function R(s, a) over time is maximized. Thus
he value function V under a particular policy π and starting
elief b0 is

Vπ (b0) =

∞∑
γ tE[R(st , at )|b0, π] (11)
t=0

6

for a given time discount factor γ .
As shown in [44], the policy π (b) can be represented as a

set of piece-wise continuous functions, each of which correspond
to a non-exclusive action. These piece-wise functions, when in
a continuous state space as in [40], are known as α-functions,
and are constructed as Gaussian Mixture models over S. A given
action may correspond to multiple α-functions, in a one-to-many
fashion, while each function can be associated with only one
action. These α-functions are collected in the set Γ , which is used
to find the policy π (b) for a given belief as the action attached to
the α-function maximizing its continuous dot product with the
belief,

π (b) = argmax
α∈Γ

⟨α(s), b(s)⟩ (12)

Such a policy is obtained in the manner of the VB-POMDP
algorithm [9], using dynamic programming to solve the Bellman
backup equations with a Variational Bayesian approximation to
fuse the softmax observation functions with Gaussian Mixture
α-functions.

3. Hierarchical CPOMDP collaborative semantic sensing

This section proposes a hierarchical CPOMDP solution to the
formal problem statement in Section 2.5. First, the problem is cast
into a target search and localization application in Section 3.1,
and addressed in a single-policy fashion in Section 3.2. Sections
3.3–3.8 detail arguments for and implementation of a hierarchical
structure which more scales more effectively and incorporates
human information input.

3.1. Application to dynamic target search and localization

The grounding CNR problem is now formulated in the CPOMDP
setting. As stated above in the general formulation, it is an infinite
horizon POMDP 7-tuple {S,A, T ,R, Ω,O, γ }. The autonomous
agent referred to as the ‘‘cop’’ has state sc ∈ Sc while the target
‘‘robber’’ has state sr ∈ Sr such that S = Sc × Sr ∈ R4. The cop
may initiate movement actions am and human query actions aq
such that the full discrete action space is A = am × aq. Movement
actions am dictate changes from the cop’s current state sc to
its next s′c , modeled alongside the robber’s motion through a
conditional Gaussian transition model.

Query actions aq have no effect on the state, therefore the
transition model is held independent of them.

The cop is rewarded only for being co-located with the robber,
such that a robber in the same position as a cop is held to be
captured. This reward is expressed in the reward model R, such
that for some distance threshold τ ,

R =

{
100 dist(sc, sr ) ≤ τ

−1 dist(sc, sr ) > τ
(13)

Note that the reward function in this case is not explicitly depen-
dent on actions, but rather implicitly through the state transitions
actions cause.

The cop receives observations from two sources, first being
those from its on-board camera view ov , which can take values
ov ∈ Ov = {Detect,No Detect}. The viewable area of this cone is
assumed to have angle θ projected to a forward flat leading edge
of length Lv in the direction of movement. The results of human
query actions aq are modeled as additional action dependent
observations oq ∈ Oq = {Yes,No}, such that O = Ov × Oq
with a set size |O| = 4. All observations are generated from
corresponding softmax observation models Ω for some known
fixed dictionary, and the time discount γ ∈ [0, 1] is here set
to 0.9. While a γ = 1 would correspond to a truly infinite
horizon policy, most practical problems require some temporal
discounting for policy convergence [45].
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.2. Single policy implementation

The implementation of the policy described above results in a
ingle-policy, or monolithic, POMDP, wherein a single belief b(s)
s maintained which spans the state space S and a single policy
aps said belief to an action. Obtaining such a policy for an active
uman sensing solution to a robotic search problem follows the
our primary steps below, and is summarized in Algorithm 1:

(1) Identify and label salient semantic features in the state
space. These could be objects, such as chairs and build-
ings, spatial areas such as rooms or neighborhoods, or
categorical identifiers such as high, medium, and low on
a continuous scale. Note that semantic features need not
exist exclusively in Cartesian space. However, their abil-
ity to be interpreted by a human collaborator should be
considered.

(2) For each semantic feature, identify and collect a set of
semantic relational indicators with respect to the feature.
These indicators can include global bearings such as North
and East, local bearings such as ‘‘In front of’’ and ‘‘Behind’’,
or binary existence indicators such as ‘‘Inside’’ and ‘‘Out-
side’’, as well as any other types of relation relevant to
the problem at hand. Note, while not mathematically re-
quired, relational indicators for human collaboration prob-
lems should generally be intuitive or understandable to
the human, as queries from the autonomous system will
be drawn from this set. Including ‘‘Inside’’ as an indicator
for the semantic feature ‘‘Chair’’ may not make sense in
most problems, even if chair takes up a defined spatial
area which a point could technically be inside of. The total
collection of semantic labels and relational indicators make
up the semantic dictionary for the problem.

(3) Using the softmax synthesis methods drawn from previ-
ous work [8,30], geometrically construct softmax functions
around the spatial extent of each feature, labeling the re-
sulting classes from the semantic dictionary. This could be
in a one-to-one fashion, or a multi-modal softmax rep-
resentation in a one-to-many approach where each label
combines multiple classes. The query action set Aq should
consist of each member of the semantic dictionary, while
the query observation function Ω should now contains the
labeled softmax class weights and biases.

(4) Having combined Aq with a problem appropriate move-
ment set Am as in the previous section, apply the VB-
POMDP algorithm from Algorithm 2 to the 7-tuple
{S,A, T ,R, Ω,O, γ } with problem dependent choices for
T ,R, to obtain the policy π .

Algorithm 1 Active Human Collaboration POMDP Construction

1: Input: States S , Transitions T , Rewards R, Discount γ

2: Hand select semantic feature set {f } from state space
3: Assign semantic label set fl to each feature
4: Aq =

∑
f {f }l

5: Ω = p(o|s, a) = Softmax Synthesis(f ), ∀a ∈ Aq
6: π = VB-POMDP({S,A, T ,R, Ω,O, γ }) #Algorithm 2
7: return π

Actions chosen during policy execution π (b) will now be
rawn from the set A = Am×Aq, which can then be disambiguated

and used appropriately. The queries Aq and their resulting hu-
man observations have the effect of actively pointing a human
sensor with respect to the chosen semantic dictionary, while
7

the movement actions Am effect the state and potential rewards
more directly. It is imperative to note that while here actions
Am are referred to as movements, that does not constrain the
frameworks discussed here to only physically embodied mobile
robots. Rather, movement references a change in abstract state
affected from an autonomous agent. Indeed, even the ‘‘human’’
part of the human query actions Aq is not strictly necessary. Any
agent, physical or virtual, need only be capable of influencing
the state through decisions and querying an external information
source for probabilistically modeled semantic observations in
order to implement this framework.

3.3. Formal hierarchical solution

In this section a general hierarchical framework is proposed
for human-autonomy sensing and planning problems. The con-
tinuous state space S is fully partitioned into a set of non-
overlapping lower level state subspaces Sl, such that for each
label (l), Sl is a proper subset of S which shares exactly zero states
with other subspaces.

∀l, Sl ⊂ S (14)

S = ∪lSl (15)

Sa ∩ Sb = ∅, ∀(a ̸= b) (16)

This partitioning occurs along discontinuous transition bound-
aries in S , where the Gaussian transition model outlined in Sec-
tion 3.1 fails to hold. Partitions need not be of equal size, nor are
they necessarily restricted to any uniform regularity conditions
such as shape or dimensionality. Each subspace Sl is then treated
as a separate CPOMDP, and a policy πl is found, with actions Al
and observations Ol. In general, partitions are predetermined by
hand, and transitions between partitions should be representative
of state space transitions in the unpartitioned space. For example,
a neighborhood might ‘‘naturally’’ decompose into blocks, while
transitions between blocks occur through a 4-connected or 8
connected grid. Alternatively, an indoor environment might be
partitioned as a set of rooms, where the locations of doorways
govern the transition between rooms.

A meta-space Sh is defined as the set of labels (l), and con-
sists of a state space for a higher level discrete POMDP. The
action space Ah of this POMDP corresponds to a Cartesian prod-
uct of movements between partitions Am,h and human queries
regarding each partition Aq,h,

Ah = Am,h × Aq,h (17)

Similarly, observations Oh are given with respect to each partition
as Ov,h and queries regarding partitions Oq,h,

Oh = Ov,h × Oq,h (18)

The Gaussian Mixture (GM) belief b(s) over the non-
partitioned state space S is broken up into a set of conditional
beliefs bl(s) = p(s|l). This is accomplished with a hard clas-
sification of each mixand to the partition containing its mean,
creating the set {ωl}. Each mixand’s mean in {ωl} is constrained
to stay within its assigned partition under dynamics updates,
and any probability density originating from mixands outside the
partition is ignored. The belief for the discrete meta-space Sh then
becomes the sum of the weights for each element of {ωl},

b(l ∈ Sh) =

∑
wm1(wm ∈ {ωl}) (19)∑

l

b(l ∈ Sh) = 1, (20)

where 1(wm ∈ {ωl}) denotes the indicator function with respect
to the spatial position of the mean within {ω }. As the original
l
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elief b(s) over S is required to be a proper pdf, this ensures
that b(l) is a proper pmf. The conditional beliefs for each partition
can then be weighted by their respective probability b(l), and the
elief b(s) over the full state space can be extracted from a sum
ver subspaces,

l(s) = p(s|l) =
1
b(l)

M∑
m

wmφ(s|µm, Σm)1(wm ∈ {wl}) (21)

(s) =

∑
l

b(l)bl(s) =

∑
l

p(l)p(s|l) (22)

Of note, this leads to the slightly paradoxical assumption that a
ixand mean transitioning towards a partitions boundary which
ould otherwise be traversable, such a doorway between rooms,
ill remain bound in its original partition. Rather than govern the

low of probability density between rooms in such a manner at
he partition level, such flow is mediated at the meta state space
evel Sh, with probability mass being allocated among discrete
tates by a uniform change to each partitions contained mixand
eights.
The observation models in the lower level CPOMDPs Ol are

pecified as softmax functions. These can be fused directly into
he full space belief b(s) by way of the Variational Bayes algorithm
escribed in [7],

(s|Ol) ≈
p(s)p(Ol|s)

p(Ol)
(23)

Observations in the higher level discrete POMDP can be fused
directly into b(l) using a discrete Bayes Filter.

In terms of policy execution, action output am,h from the
discrete POMDP indicates which CPOMDP policy πl to query. The
action generated by πl(bl(s)) is then taken. Human queries are
then generated from both aq,h and aq,l. Responses to these queries,
as well as robotic observations ov,h and ov,l are then fused back
into the belief before requesting another action. This approach
results in a set of CPOMDP policies, governed by a single discrete
POMDP. Each policy can be solved independently and combined
during runtime.

3.4. Application to dynamic target search and localization

Here the general hierarchical POMDP formulation from the
previous section is applied to the motivating CNR problem for
target search in complex indoor search spaces, e.g. see Fig. 2.
A separate CPOMDP policy is found for each distinct room in a
particular map, where obstacles are sparse enough not to ne-
cessitate the switching modes used in [41]. Each of these room
level policies is then treated as an action selection by a discrete
POMDP policy over the rooms. Transitions between rooms in Sh
are governed by a discrete transition model, as shown in Fig. 5.
This leads to a novel hierarchical CPOMDP policy that can not
only take fuse low-level semantic soft information about target
locations in metric physical space (e.g. ‘next to the chair’; ‘not
by the refrigerator’), but also exploit higher-level semantic data
about target locations in abstract label spaces, i.e. room designa-
tions (‘in the kitchen’; ‘not in the dining room’). By accounting for
the dependencies between these different types of high-level and
low-level semantic data, we arrive at an intelligent hierarchical
decision making policy that enables top-down motion planning
(i.e. determine which areas to search, and then how to search
them), as well as determination of the best set of high-level
and low-level semantic queries for a human sensor that will
ensure rapid capture of the robber. While this approach carries
additional approximations, such as shifting consideration of the
case where the cop and robber are not in the same room to
the higher-level discrete policy, it allows the consideration of
problems at the scale of CNR.
8

3.5. Lower level CPOMDP

The lower level CPOMDP for each room is specified in the
same manner as the formal problem statement in the previous
section, with state Sl ∈ R4 for room (l). The cop’s state variables
are changed deterministically with actions while the robber’s are
assumed to be drawn from a high variance Gaussian random
walk,

p(s′r ) = φ(s′r |sr , Σr ) (24)

The vector ∆a is necessarily zero for the robber states sr , as the
cop’s actions do not directly effect the robber’s movements.

This Nearly Constant Position (NCP) model introduces an ap-
proximation when dealing with most real systems. While a drift-
ing or unpowered target in a dynamic environment might adhere
well to a Brownian motion scheme, intentional agents rarely
do. Instead they tend to operate according to trajectories or
patterns. The CPOMDP framework shown in [40] is equipped to
handle transition functions which can be modeled as conditional
Gaussian distributions with their mean shifted by the actions ∆a
expected effect on the state s:

p(s′|s, a) = φ(s′|s + ∆a, Σa) (25)

When only a limited number of state components are directly
controllable, the others are forced to execute a Gaussian random
walk with the given variance. This prevents the use of target
trajectories in search problems such as the one described here.
In order to incorporate target dynamics, it is desirable to have a
transition function of the form,

p(s′|s, a) = φ(s′|Fs + ∆a, Σa) (26)

where F is the state transition matrix which encapsulates changes
in the state independent of actions. Bellman backups can be easily
resolved with this alteration in the CPOMDP framework, thus
permitting solutions to a broader class of continuous space plan-
ning problems, as shown in [9]. As the focus of this work is the
hierarchical CPOMDP structure, and in an attempt to minimize
the dimensionality, velocities are not included here.

The cop can choose from among 5 noisy movements Am =

{East,West,North, South, Stay}, and can ask questions about the
robber’s spatial relation to each object in the room such that Aq =

{Objects}×{Left, Right, Front, Behind}. Of note, while the question
space could have been based in global compass coordinates, they
are instead represented in local body coordinates. This is due to
the fact that the cameras through which the human views the
space, both the cop’s on-board view and security cameras, contain
no explicit global coordinate reference. While the provided map
in the interface could allow the human operator to reason about
global coordinates by knowing the camera placements, cognitive
load is decreased by instead assigning orientations to each object
and having the human refer to them each in their local frame.
For instance, the chair object is set up with a 90 degree counter-
clockwise rotation, so the observation ‘‘Front’’ with respect to the
chair indicates the area to its west. The full discrete action space
is then A = Am ×Aq. An example action might be ‘‘Move East and
ask ‘Is the robber in front of the fern?’’’.

In addition to human information resulting from its queries,
the cop receives viewcone observations through its onboard cam-
era, which is capable of visually detecting the robber at close
range. Given that the cop’s viewcone is fixed to the direction
of travel along one of four directions, and has a leading edge
of length Lv , the area of the box will correspond exactly to the
area swept out by the leading edge of the viewcone during the
preceding action. This can be shown by integrating the length of

the leading edge of the view cone in the direction of travel. So
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or any movement, the magnitude of the approximated area Aa
swept out is:

|Aa| =

∫ s′c

sc
Lvdsc =

∫ ∆sc

0
Lvdsc = Lv∆sc (27)

Therefore any movement of mmeters (∆sc = m) behind a leading
edge Lv meters long will produce an area of approximately Lv∆sc
square meters which would have triggered the viewcone obser-
vation ov during the time in which the movement was executed.
From Eq. (27), it is clear that for different cop displacement or
viewcone parameters the box approximation can be modified ap-
propriately. The box model remains an approximation however,
due to the fact that most of the area swept out by the viewcone
will be in front of the cop, whereas we assume the cop to be
centered in that area. Furthermore, the box approximation does
not perfectly account for area swept out without contact with the
leading edge of the viewcone, and sacrifices distant coverage in
the direction of movement in favor of coverage near to the cop,
as shown in Fig. 3. Thus while the area of the box represents a
shifted area of similar size to that swept out by the viewcone,
its size serves as a lower bound for that reached by the entirety
of the viewcone. The approximation improves as the viewcone
angle θ is increased while holding Lv constant, such that the area
of the viewcone Av becomes an infinitesimal area along Lv . Thus
the approximation area magnitude |Aa|, and true area coverage
magnitude |At | approach each other in the limit of the angle as:

|Av| =
1
2
Lv tan

(
180 − θ

2

)
(28)

|At | = |Av| +

∫ s′c

sc
Lvdsc (29)

lim
θ→180

|Av| = lim
θ→180

1
2
Lv tan

(
180 − θ

2

)
= 0 (30)

lim
θ→180

|At | = |Aa| = Lv∆sc (31)

This limit, corresponding to a coverage area of a thin line imme-
diately leading the robot, results in an approximation area which
leads the true area, rather than the opposite which occurs with
our hardware. Including orientation into the state vector would
remove the need for the box approximation altogether, but fur-
ther increase the dimensionality of the state. Thus to reduce the
size of the state space for this implementation, the box approxi-
mation was used. Alternatively, the viewcone observations could
carry a dependence on the movement action taken, transforming
the likelihood model p(ov|s) to p(ov|s, am) where am acts as a
switch between a number of likelihood models corresponding to
the correct orientation for that action. While this modification
increases the complexity of implementation somewhat, it is valid
within the CPOMDP framework and will be explored in future
work.

It is important to note that the action and observation spaces
in the problem could be implemented without recognition of
their ability to factor into distinct sets {Am, Aq} and {Ov,Oq}.
However, this increases the difficulty of implementation when
trying to account for the diverse results of the combined ac-
tion/observation. In this case, the cop’s movement actions Am
primarily effect the state without changing the observations,
while the cop’s ‘question actions’ Aq have no effect on the state
at the current time, and fully dictate the meaning of the ob-
servations Oq. Similarly, the viewcone observations Ov are only
state dependent and thus independent of either action, while Oq
depends on both state and action. Factoring each space into its
constituent parts allows for simpler handling of these dependen-
cies, and increases the explainability of the cop’s actions and the
changes in its beliefs. The differences in the two approaches are
summed up in Fig. 4. Each room’s lower level continuous POMDP

policy is found using the VB-POMDP algorithm detailed in [9].
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Fig. 3. A comparison of the area swept out by the cop’s viewcone in one
timestep (green) vs. the area of the box approximation (red) for a viewcone with
angle θ when moving from position sc to s′c . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this
article.)

3.6. Higher level discrete POMDP

The higher level discrete POMDP is specified on a state vector
consisting of all rooms. For example, the room configuration
shown in Fig. 2 corresponds to the state space:

Sh ={Billiard Room,Hallway, Kitchen, (32)
Dining Room, Study, Library}

as shown in Fig. 5. The state sr represents the robber’s current
position, and the robber randomly transitions according to the
particular connections between rooms in the map being used
with probability p(l′|l) independent of actions. The location of the
cop is left out of the high level POMDP, instead being accounted
for by a combination of the high level actions and low level state.
The cop can choose movement actions am,h corresponding to each
room, which will deterministically move the cop to that room
according to

p(s′c = l|am,h = l) = 1 (33)
p(s′c ̸= l|am,h = l) = 0

as well as questions actions aq,h, which will ask the human if the
robber is in a particular room. Thus for the higher level policy,
both Am,h = Sh and Aq,h = Sh. If the am,h indicates the room
the cop currently occupies, the movement action of the lower
POMDP policy is respected within that room as per Algorithm 2.
In general, as a product of the PBVI [37] roots of the CPOMDP
family of algorithms, similar beliefs will lead to similar actions.
Therefore in practice movement between rooms tends to only
occur after either a thorough search of a room or significant shift
in belief, and the cop avoids bouncing back and forth between
rooms without searching either. This behavior is confirmed in the
experimental results below. As with lower level policies, the full
action space is Al = Am,l × Aq,l. An example action would be
‘‘Search the Library and ask ‘Is the robber in the Kitchen?’’’.

In the higher level discrete POMDP, the cop is rewarded for
choosing to move to the room the containing the robber, and
penalized for choosing the wrong room according to

R(sh, am,h) =

{
100 am,h = sh
−1 am,h ̸= sh > τ

(34)

The cop receives viewcone observations Ov,h at each time step,
similar to the lower level CPOMDP. Given that being in the same
room as the robber does not guarantee a viewcone detection,
likelihoods for Ov,h = Detect are fairly low for any given time step
even if the cop and robber are in the same room. With respect to
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Fig. 4. POMDP graphical models with different action/observation factorizations.
Algorithm 2 Hierarchical CPOMDP Evaluation

Input: Discrete Policy πh, Continuous Policy Set {πl}

With Belief b(s) and Cop State sc
while ov ̸= Detect do
l = ahm = πh(b)
alm = πl(b)
if sc ∈ l then
s′c ∼ p(s′c |sc, a

l
m)

else
s′c → l

end if
aq = N_Actions() #Algorithm 3
oq = Human Responses
b = Belief _Update(b, alm, ahm, ov, oq)

end while

Fig. 5. The states and transitions for the higher level discrete POMDP
orresponding to the room layout in Fig. 2.

v,h for the high level POMDP, rooms are treated as identical, such

hat each has an identical detection rate ν

(o = Detect|a = l, s = l) = ν, ∀l (35)
v,h m,h h
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This approach could be refined by considering the ratio of the
area covered by the viewcone and the total area of the room,
such that each rooms detection likelihood reflects its size, or by
leveraging prior knowledge about likely robber movements and
positions within each room.

It is important to note that during implementation of a policy,
the observations ov,h and ov,l are only derived from the actual
visual system, and are not double counted as separate observa-
tions from the high and low level systems. Viewcone observations
are only modeled as above when finding a high level policy, to
approximate the response of the low level viewcone. Also, as the
policy is solved over the state space Sh, each additional spatial
area considered adds only 1 additional state. This additional lower
level policy does not contribute any complexity to the other room
policies, allowing the hierarchical structure to scale well to larger
numbers of spatial areas.

We use the Point-Based Value Iteration (PBVI) algorithm from
[37] to find the policy πh for the discrete layer.

3.7. Hierarchy and question lists

At each time step, the policy chooses an action consisting of
a room to search and a room to query. If the cop is outside the
search room, it is directed to go there. Otherwise, if the cop is
already in the search room, the lower level CPOMDP policy is
queried to provide a movement action. The query room is asked
about in the form ‘‘Is the robber in (room)?’’, and the low level
CPOMDP policy for that room gives an additional question about
the robber’s relation to an object in that room.

In this implementation the human sensor receives a question
from the cop at every time step. Because the policy was trained to
expect responses from the human sensor, steps where the human
fails to answer are unknown events from the system’s standpoint,
i.e. they are not accounted for when solving for the policy. One
method for handling these failures would be to include a ‘‘Null’’
observation with a uniform likelihood across states to represent
a lack of human observation. Further steps could be taken by
incorporating a form of human attention model into the state
vector and an option to ask a ‘‘Null’’ question when the policy
believes the human would not be able to answer. Each of these
methods increases the problems complexity, either by enlarging
the observation space for the first or by enlarging the state,
action, and observation spaces for the second. Also, it should
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e noted that the policies for both the Higher and Lower level
OMDPs map from any belief to an action. Both PBVI and VB-

POMDP solve policies from a set of example beliefs that the
system may encounter, and interpolate between them when an
unseen belief is encountered during runtime. A belief resulting
from an unmodeled human failure would in most cases not have
been explicitly explored during policy solution. Yet it is likely
sufficiently close to a belief that was such that a suitable action
can be found. Therefore any effects of this discrepancy can be
minimized, if not entirely negated, by solving over a sufficient set
of example beliefs.

In most applications, the desired output of a POMDP policy
is the action with the highest value for the current belief. This
makes sense in most contexts as only one action can be taken
at a time. However, in our problem multiple questions could be
displayed to the human at each time step, and so we want to ask
the N most valuable questions. In both discrete and continuous
policies using PBVI-type approximations each policy element, or
α-element, contained in Γ corresponds to an action and encodes
art of the approximate value function over beliefs. As each α-

element is specified over the entire belief space, it can provide a
value for its action at any belief, even were it does not provide
the maximum value. Therefore, the α-elements with the top N
values can be said to correspond to the top N actions, as shown
in Fig. 6. As multiple α-elements might correspond to the same
action, this does not guarantee N unique actions. However, as all
α-elements must be evaluated to choose the correct action for
a belief, the top N unique actions can still be chosen. This also
implies that choosing a list of actions requires only the minimal
extra computation of a sorting function substituted for an argmax,
as in Algorithm 3. This method of choosing the top N actions
s ultimately a heuristic, equivalent to asking ‘‘Given the policy
vailable right now, if the existence of the top N −1 actions were
gnored, what would the best action be?’’. This disregards the fact
hat most PBVI-type algorithms prune away a large portion of
-elements which do not maximize the value of any particular
elief, and are not actively collecting second-best or third-best
ctions. Therefore the only actions identified by this heuristic will
e ones associated with α-elements which maximize the value of
different belief. While at the core of the PBVI approach rests

he assumption that similar beliefs will generally have similar
ctions, the different beliefs maximized by a second or third best
-element are not guaranteed to be similar to the current belief.
While Algorithm 3 can identify a ranked set of action pref-

rences, it is important to note that most applications can only
xecute a single action for a given timestep. In such cases the
utput of Algorithm 3 can be used to adapt to unexpectedly for-
idden actions or recover gracefully from system failures which
isallow actions. The application detailed in this work varies
lightly, in that while a single movement action am can be taken,
ultiple query actions aq can be posed simultaneously without

conflict. Thus the list returned from the algorithm can be filtered
for only actions pertaining to the highest value movement ac-
tion. This filtered list then makes up a ranked set of preferred
questions, all corresponding to the same robotic movement.

Algorithm 3 Choose Top N Actions

Function: N_Actions
Input: Policy Γ , Belief b(s), N
for ∀α ∈ Γ : do
V(α) =

∫
α(s)b(s)ds

end for
list = sort(V)
return list[0:N]
11
Fig. 6. Application of the N_Actions() algorithm for belief b and N = 3. Policy
elements α who have the greatest value at b are chosen, and their questions
presented to the human collaborator.

3.8. Hierarchical policy implementation

The implementation of the framework described above results
in a hierarchical POMDP policy, composed of multiple monolithic
continuous state policies governed by a single discrete space
policy. Obtaining such a structure for an active human sensing
solution to a robotic search problem follows the four primary
steps below, and is summarized in Algorithm 4:

(1) Partition the state space. In the case of the CNR prob-
lem, this is done according to rooms, with each partition’s
boundaries matching precisely with the rectangular walls
of each room. Transitions between rooms are mapped out
according to doorways, wherein rooms without doorways
have probability zero of transition. In the general case, de-
pending on the appropriate target model, transition prob-
abilities should either be distributed randomly between
adjacent states or according to inferred target intent. As-
sign each partition a semantic label (l), creating a labeled
continuous state space Sl, keeping in mind that these labels
should be intelligible to a human collaborator. The set of
labeled partitions becomes Sh, while the transition model
becomes Th.

(2) Following the process laid out in Algorithm 1, create a
semantic dictionary from labeled features within each par-
tition. Construct the action set Aq,l for each partition, con-
taining relational indicators attached to each semantic fea-
ture, along with a query observation function Ωl

(3) Solve each partition’s associated POMDP using the VB-
POMDP Algorithm [9], and store each resulting policy πl in
a lower level policy set.

(4) Using the PBVI algorithm [37] and the higher level Sh and
Th, solve for the high level discrete policy across partitions
πh. This policy, along with the lower level set πl can then
be implemented using Algorithm 2.

Algorithm 4 Hierarchical Human Collaborative POMDP Construc-
tion
1: Partition and label state space S into set of Sl
2: Construct semantic dictionary and models Aq,l, Ωl, ∀l using

Algorithm 1
3: πl = VB-POMDP(Sl) ∀l
4: πh = PBVI(Sh)
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Fig. 7. Cops and Robots user interface: ‘robot pull’ queries are answered in the lower middle panel with ‘Yes/No’ buttons; voluntary ‘human push’ sensor inputs are
provided with the structured text input on the lower right panel.
4. Results on the CNR experimental testbed

Hierarchical CPOMDPs were implemented and tested on the
ops and Robots (CNR) hardware platform at the University of
olorado at Boulder’s Research and Engineering Center for Un-
anned Vehicles. Cops and Robots is a physical simulation of
home environment, as described in Section 2.1. For the data
resented here, a single human participant played the role of the
eputy assigned to assist the cop robot. Semantic labels assigned
o the rooms on a given map and objects within each room.
hese labels are known to both the cop and human, which allows
or communication of information through a fixed codebook of
ossible observations. Individual robotic agents playing the part
f the cop and robber were instantiated on Turtlebots running
rom an Odroid U3 microcontroller on iRobot Create platforms.
he cop was equipped with an Xbox Kinect to both relay video
o the human and visually detect the robber. Given goal posi-
ions from the Hierarchical CPOMDP, the cop implemented low
evel navigation using the A* algorithm and an occupancy grid
epresentation of object and wall locations. A VICON motion
racking system was used to both provide the cop’s fully ob-
ervable data during runtime and track the ground-truth robber
ocation for post-run data analysis. All elements of the hardware
ystem are networked using a Robot Operating System (ROS) [46]
ayer, which provides a node based publisher/subscriber interface
nter-component communication.

In this work a maximum of three exclusively unique objects
er room are considered, each of which has a fixed position
nd orientation as in Fig. 2. In Fig. 2, each room has either
or 2 objects, each of which carries 4 ego-centric relational

ndicators such as ‘‘In front of (Object)’’ or ‘‘To the left of (Object)’’.
his results in a semantic dictionary, and corresponding query
ction set Aq, of size 4 or 8 depending on the room. With the
ovement action set defined in Section 3.3, where |Am| = 5,

his results in |A| = 20–40 per room. Given the arrangement of
ix rooms, with 10 objects total, framing the CNR problem as a

onolithic POMDP via Section 3.2 would result in an action set

12
of size |A| = |Am| × |Aq| = 5 × 50 = 250. Given the one-
to-many nature of action to α function assignments discussed
in Section 2.6 this implies an optimal monolithic policy would
likely be described by significantly more alpha functions than
actions. Each of these α functions must be regularly condensed
both when finding and executing a VB-POMDP policy under the
logic of Section 3.2, which when combined with the additional
processing for action selection during policy execution results in a
significant computational burden during runtime. This limits the
ability of such a policy to be used on compute limited platforms,
such as those used in CNR.

Furthermore, monolithic VB-POMDP policies explicitly assume
Gaussian state transition functions. While this is inevitably only
an approximation in physical hardware (such as at the bounds
of a state space), such models are more dramatically inaccurate
when dealing with the discontinuous transition environments in
CNR, e.g. due to walls. Even if the policy could be constructed
to prevent the cop from trying to transition through walls, the
robber is assumed to be uncontrollable by the policy. This can
easily result in policies solved accidentally assuming an intan-
gible robber, the ghost of a robot perhaps, which further in-
crease the unavoidable error between the policy model and the
true hardware capabilities. Approaches such as Switching-Mode
POMDPs [41] might alleviate this specific concern, but apply
an additional complexity and computation layer on top of the
already nearly intractable problem resulting from the large action
set. Thus, a monolithic POMDP approach is impractical at best for
this problem. However, the hierarchical techniques developed in
Section 3.3 specifically allow large problems to be broken up into
more manageable sizes, as well as allow discontinuous transition
features to serve as subspace boundaries rather than mid-space
obstacles.

To give insight into the practicality these more manageable
problems, all lower level policies were solved on the time scale of
a few hours, and the higher level discrete policy required a trivial
solution time. For policy execution, previous work [9] has found
the policy query time, or time required to extract an action from
a policy, in VB-POMDP based algorithms to require only fractions
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f a second. Even given the additional computational overhead of
he hierarchical policy structure in this work, this still compares
avorably with the action execution time of the Turtlebot platform
n use.

The human interface, shown in Fig. 7, visualizes the cop’s
elief about the robber’s position as a heatmap, as well as the
op’s position and viewcone detection range (See Section 3.5).
he interface also displays a real-time feed from the cop’s camera
nd various security cameras placed throughout the space. Each
ecurity camera is connected to a Raspberry Pi microcomputer,
hich relays imagery over ROS to the computer running the
uman interface. The security cameras each allow the human a
ixed view of a room. The cop’s camera facilitates observations
n the cop’s immediate area as well as a visual robber detection
ystem. This system is implemented as an OpenCV blob detection
lgorithm [47], where a sufficient number of contiguous pixels
n a given color range triggers a detection event. The robber
obot is color coded bright red which is distinct from other colors
n the environment, and the minimum threshold of the pixel
ount can be tuned to allow capture over a range of distances.
hile in this case a blob detection algorithm is used due to

he simplicity of implementation and compatibility with available
ensors, other proximity sensor modalities could be substituted
ithout affecting planning or decision making, provided they can
e modeled with similar types of likelihood models as described
n Section 2.5.

The human plays the role of a sensor, voluntarily passing
nformation to the cop through the semantic codebook embedded
n the interface and answering binary ‘yes/no’ questions passed
rom the cop (e.g. ‘Is the robber in the kitchen?’; ‘Is robber in
ront of fern?’). The set of semantic statements constructable
sing the codebook represents a one-to-one correspondence with
he classes of the cop’s softmax function observation models.
herefore each observation which the human can volunteer has
corresponding form which can be used a robot query action. To
urther distinguish these forms of human statement, the follow-
ng terminology from Section 2.1 and existing literature [19] is
sed. Robotic query actions in the following text are referred to
s ‘pull’ or ‘robot pull’ actions, while volunteered human infor-
ation is labeled as ‘push’ or ‘human push’ observations. Human
tatements generally followed the template form, ‘‘The robber
is/isn’t) (relation) of (object)’’. For instance, the statement ‘‘The
obber is in front of the dining table’’ initiates the same Bayesian
elief update as an affirmative answer to the question ‘‘Is the
obber in front of the dining table?’’. The human is also required
o validate visual detections of the robber made by the cop, where
positive validation leads to successful capture of the robber and
he end of the experiment run. Visual detection instances are
uggested by the robot, eliminating the possibility of human error
nstigating false positives (where the human falsely indicated a
uccessful capture). Also, in the data collected for this work, there
ere no instances of false negatives, where the human incorrectly
ejected a successful capture. Thus the data analysis to follow
eed not account for such events, although other applications
everaging broader data sets or more complex settings may need
o account for this possibility.

The Hierarchical CPOMDP policy approximation method was
ested on two CNR maps, each with a different rooms structure.
he first map, shown in Fig. 8a, consisted primarily of a hallway
unning the length of the space, with rooms branching off on
oth sides. The second map, shown in Fig. 8b, had the rooms in
semi-bipartite arrangement, with two sets connected through a

ong hallway and conservatory on the margins. In data collection,
he human participant was fully familiarized with the first map
eforehand, while the second map was presented as a previously

nknown environment.

13
Fig. 8. Layouts for first (above) and second (below) maps.

Table 1
Times required for the cop to capture the robber in each scenario posed for the
first map.
First map: All runtimes (s)

Room\Case NonHuman HumanPush RobotPull Both

Library 307 80 51 69
Study 191 132 42 61
Kitchen 123 87 75 40

Each map was tested under 4 input conditions. As a base-
line, the Hierarchical CPOMDP policy was implemented without
human input, with the cop relying only on its visual sensor
to gather information about the world. Second, the policy was
implemented with a human who did not respond to the ‘robot
pull questions’, but only provided ‘human push’ statements at
their own discretion. Third, the policy received a human who
only responded to ‘robot pull’ questions, and ignored ‘human
push’. Finally, the policy was implemented with a human who
used both the ‘robot pull’ questions and ‘human push statements’
to give information. The resulting times required to catch the
robber are summarized in Tables 1 and 2. The data shows that
introducing human information, whether through ‘push’ or ‘pull’
data, shortens the time needed to capture the robber. Intriguingly,
the case using both ‘push’ and ‘pull’ performs better than either
singularly, implying that the robot is obtaining useful information
the human did not volunteer through queries, while the human
is able to push information the robot was not aware it needed,
thus neatly complementing the strengths of each team member.

4.1. The familiar map

Across each input condition, tests were run with the robber’s
initial position in 3 different rooms: the Library, the Study, and
the Kitchen. The cop’s initial position was constant throughout
all tests as the far right end of the hallway. The cop also held
an identical initial belief for the robber state for each test, with
belief dispersed equally between rooms. Each room’s belief was
initialized with a single Gaussian, with mean located at the rooms
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entroid and covariance chosen to extend probability density
hroughout the room.

The results show that across starting positions, the ‘‘Only

obot Pull’’ and ‘‘Robot Pull and Human Push’’ input conditions
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tended to require less time to catch the robber than either the
‘‘Only Human Push’’ or ‘‘No Human’’ input conditions. This is ex-
pected as the policy was computed assuming the robot would be
able to pull information from the human, and thus the resulting
information is accounted for in the robot’s planning, while the
‘push’ information is helpful yet unexpected. Furthermore, the
‘‘Only Human Push’’ condition improved on the times for the ‘‘No
Human’’ input condition over all cases, demonstrating the utility
of unexpected human semantic sensor data.

Over all tests in the familiar map, 79 observations were given,
averaging approximately 9 human inputs per test excluding the
‘‘No Human’’ condition. In terms of the propensity for the human
deputy to provide negative information (e.g. ‘‘I know the Robber
is not in the Study’’) vs. positive information (e.g. e.g. ‘‘I know the
Robber is in the Study’’), about 53% of all statements were positive
relations. Limited to observations about rooms, the human only
provided positive observations 40% of the time. When referencing
objects in each room, 78% of observations were positive. The
human referenced rooms about twice as often as they did objects,
as shown in Fig. 9. Furthermore, the sparse nature of the right
hand side of Fig. 9 indicates that many objects were rarely talked
about by the human. While this peculiarity may subside given a
larger dataset, it is possible that certain objects were not found
as useful (explicitly or otherwise) by the human for their task.
This implies the existence of a subset of salient features to which
the full semantic dictionary could be reduced without substan-

tially reducing the efficacy of the human–robot team. Ideally,
Fig. 10. Summary of cop’s beliefs for the first map. Gaussian mixture mean and 2-sigma bounds of the cop’s belief pdf for robber state are plotted against robber’s
rue position (dashed line). Vertical lines are color coded for positive (green) and negative (red) human statements. (For interpretation of the references to color in
his figure legend, the reader is referred to the web version of this article.)
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able 2
imes required for the cop to capture the robber in each scenario posed for the
econd map.
Second map: All runtimes (s)

Room\Case NonHuman HumanPush RobotPull Both

Billiard 176 86 87 46
Study 214 183 99 35

this insight could be used to dynamically construct ‘appropriate’
dictionaries for the task at hand, ensuring that planning efforts
on the part of the autonomy are directed towards information
the human is likely to engage with.

The cop’s beliefs are summarized in Fig. 10 for the 4 test runs
ith the robber starting in the Study. For each input type, the
ixture mean and 2-sigma bounds are plotted along with the

obber’s actual position. Belief compression, using the hybrid pre-
lustering technique of prior work [9], was uniformly applied
cross rooms to maintain a maximum of 10 mixands per room.
he ‘‘No Human’’ input condition sees the belief expanding faster
han the cop can gather visual sensor data, as the robber is out of
iew and moving with unknown direction and velocity. Human
emantic observations, shown as vertical lines in the plot, can
ause dramatic belief shifts. The robber’s position is can be seen to
e generally well bounded by the cop’s belief, which can correct
or errors through additional human observations.

.2. The unfamiliar map

For the second set of test scenarios, the human observer was
amiliar with the task and platform, but not with the map itself,
hown in Fig. 8b. The locations of the rooms and positions of the
bjects within remained unknown to the human until the start of
esting, in order to explore whether the human’s ability to com-
unicate effectively with the robot was primarily an artifact of

heir ability to communicate about the current map. If the robot is
imilarly able to utilize both ‘push’ and ‘pull’ human information
n an unknown (to the human, not the robot) environment, it
mplies that the advantage of human information is not diluted
y the human’s preconceived biases or experience, but rather a
esult of optimal use of the human sensor in a general sense.
urthermore, the transition structure of the higher level discrete
OMDP in the unfamiliar map varies significantly when compared
o the known first map, providing additional insight into the
bility of hierarchical human-collaborative POMDPs to plan in a
ariety of structured environments. As in the first map, 4 input
onditions were tested over multiple initial robber positions, in
his case the Billiard Room and the Study. Across all tests, the
op’s initial position was set in the Kitchen, and the belief was
venly distributed between rooms. The timing results from the
est, summarized in Table 2, are generally comparable with those
f the first map, taking an additional 11 s to catch the robber on
verage. The comparison between input conditions also remains
onsistent, with the unfamiliar map results even suggesting an
dditional advantage for the ‘‘Both’’ condition over ‘‘Robot Pull
nly’’.
For all tests in the second map there were a total of 66

bservations, with an average of 11 human inputs per test ex-
luding the ‘‘No Human’’ condition. In this case about 47% of
ll statements were positive relations, with 42% positives for
oom observations and 58% positive for objects. Rooms were
eferenced almost 3 times as much as objects, with frequencies
or each statement shown in Fig. 11. Interestingly, the human
iscussed a broader variety of objects in the unfamiliar map,
mplying a predilection for certain salient features in the first

ap arose partly from familiarity. However, for each semantic

15
Fig. 11. Heatmap of the relative frequency of each human observation in the
second map.

object used by the human, a single relational indicator tended to
dominate the relative frequency of observations for that object.
This fact might have a geometric interpretation, such that for
certain objects the robber was far more often ‘in front’ due to
their placement in the room, or another facet of the human’s
dynamic understanding of the map. In either case, the semantic
dictionary used by the human ended up being much sparser than
what was available to them, further indicating the opportunity to
focus robotic planning around a smaller number of more salient
features.

The cop’s beliefs, summarized in Fig. 12, are once again a
reasonable estimate of the robber’s position despite slightly more
errors.

4.3. Discussion

The cop using the Hierarchical CPOMDP approach succeeded
in all cases at catching the robber, and was demonstrably quicker
in cases where it received and fused human information. Of
particular note is the improvement of the ‘‘Robot Pull Only’’ input
condition over the ‘‘Human Push Only’’ condition. This implies
that information delivered at the policy’s request was more valu-
able than that which the human decided to volunteer. As the
policy is meant to approximate the optimal value function for the
problem, this serves as evidence of its efficacy.

The system was also able to adapt to false information from
the human sensor, as displayed in Fig. 13. In Fig. 13a, after the
robber passed in front of the security camera in the Study while
moving into the Kitchen, the human unintentionally gave a series
of false observations, rapidly shifting the belief from an uncertain
but reasonable one to one that was decidedly inaccurate. Later in
the same run, the human was able to combine visual information
from both the Hallway camera and the cop’s viewcone to indicate
correctly that the robber had moved into the Dining Room, as
shown in Fig. 13b.

With human information, the policy was able to direct the
cop more efficiently. As shown in Fig. 14a, without any human
sensor data the policy primarily directs the cop to patrol the
Hallway, popping in and out of individual rooms along the way.
This behavior is reasonable considering the Hallway’s position as
a hub room, where the cop could expect to eventually stumble
upon the robber as it moves from room to room. This displays
the robustness of the policy’s action selection in the absence of
expected information. However, when a human operator is able
to provide information as in Fig. 14b, the policy chooses a path
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Fig. 12. Summary of cop’s beliefs for the second map. Mean and 2-sigma bounds of the cop’s belief are plotted against robber’s true position (dashed line). Vertical
lines are color coded for positive (green) and negative (red) human statements. As expected, the unfamiliar environment leads to less accurate beliefs in the Human
Push scenario. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 13. Top: The human gives a series of mistaken observations. Bottom: The human gives a helpful statement.
hrough the Library, and ends up tracking the robber directly
hrough the Study, and into the Hallway, finally cornering it in
he Dining Room.

The observations given in each scenario show interesting dif-
erences between each map, as shown in Figs. 9 and 11. In the
16
first map, where the human was familiar with the map layout
and object placement, the observations were sparse. While room
observations were dispersed, the human tended to focus on a few
key objects, where observations would have a well known and
predicable effect on the belief. In the unfamiliar case, the operator
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Fig. 14. Cop (green) and robber (red) paths without vs. with human sensor
nput. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

ave observations about a broader range of objects, often using
he objects in the cops camera feed for reference. In both maps,
he object most referenced was the cop itself. In particular, the
uman operator used the observation ‘‘The Robber is in front of
he Cop’’ more than any other across all tests, possibly in attempts
o urge the cop forward when the robber was in view but distant.

In summary, the robot was able to actively use human in-
ormation within a hierarchical POMDP framework to improve
ts own effectiveness. Such information led to distinct behav-
oral difference as in Fig. 14, and shorter capture times. The
uman, even as an imperfect sensor, was able to actively rec-
gnize mistakes and error correct. However, though the POMDP
uccessfully advantage of the structure of the problem, it relied on
erfect a prior knowledge of this structure. The techniques used
hroughout this paper address models of uncertainty but fail in
he face of models which are themselves incomplete or uncertain.
urthermore, Figs. 9 and 11 show large parts of the semantic
ictionary went unused, while others were heavily exploited
y the human. Ideally, the dictionary would contain primarily
seful entries, and respond to new information about the problem
y expanding appropriately to allow communication about new
emantic features. Such an approach is explored in [48].

. Conclusion

We developed and validated a novel collaborative human–
achine sensing solution for dynamic target search. Our ap-
roach used continuous partially observable Markov decision
rocess (CPOMDP) planning to generate vehicle trajectories that
ptimally exploit imperfect detection data from onboard sensors
nd semantic natural language observations that can be requested
17
from human sensors. The main innovation was a scalable hierar-
chical Gaussian mixture model formulation for efficiently solving
CPOMDPs with semantic observations in continuous dynamic
state spaces. The approach was demonstrated with a real human–
robot team engaged in dynamic indoor target search and capture
scenarios on a custom testbed. The results showed that combined
human–robot sensing not only enhances target localization qual-
ity (as expected), but that the resulting CPOMDP policies provide
sensible simultaneous search movements and semantic human
sensor queries that allow the search vehicle to intercept the target
more efficiently. The resulting CPOMDP policies are robust and
effective even with irregular/unpredictable inputs and occasional
errors from the human sensor.

Ongoing and future research will focus on semantic data fu-
sion in problems where we relax our assumptions of: known
number of targets; known search environment/map and semantic
reference objects; known search vehicle states; and known hu-
man sensor parameters. These problems are significantly more
challenging to solve, but also have important practical implica-
tions for applications involving target search in highly uncertain
environments, e.g. search and rescue or disaster relief. Building
on the work here and in [9], it is of interest to investigate
how semantic human sensor data can be actively leveraged for
online interactive learning and planning, as well as online state
estimation and perception.
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