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ABSTRACT

Floating point is widely used in software to emulate arithmetic

over reals. Unfortunately, floating point leads to rounding errors

that propagate and accumulate during execution. Generating inputs

to maximize the numerical error is critical when evaluating the

accuracy of floating-point code. In this paper, we formulate the

problem of generating high error-inducing floating-point inputs

as a code coverage maximization problem solved using symbolic

execution. Specifically, we define inaccuracy checks to detect large

precision loss and cancellation. We inject these checks at strategic

program locations to construct specialized branches that, when

covered by a given input, are likely to lead to large errors in the

result. We apply symbolic execution to generate inputs that exercise

these specialized branches, and describe optimizations that make

our approach practical. We implement a tool named FPGen and

present an evaluation on 21 numerical programs including matrix

computation and statistics libraries. We show that FPGen exposes

errors for 20 of these programs and triggers errors that are, on

average, over 2 orders of magnitude larger than the state of the art.
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1 INTRODUCTION

Floating-point numbers are widely used as a standard to represent

reals in modern computers. The limited precision in floating-point
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representation and computation, however, remains a known threat

to the correctness, accuracy and stability of floating-point programs.

Numerical bugs due to rounding errors, nonreproducibility and

floating-point exceptions are common in floating-point programs

[18]. In particular, the propagation and accumulation of rounding

errors have resulted in catastrophic failures [1, 6, 33].

Floating-point errors. The floating-point error of a computa-

tion refers to the sum of the rounding errors accumulated in the

result of the computation. This includes errors due to inaccurate

initial data as well as errors generated during the computation due

to floating-point finite precision. The amount of floating-point error

included in the final result of a program specifies the accuracy of

the code. While there are several tools (e.g., [10, 25, 27]) that, given

a set of inputs, help detect and identify accuracy and stability prob-

lems of floating-point code, few testing tools have been developed

to trigger and expose floating-point errors. Existing floating-point

testing tools [9, 11, 19] mainly focus on triggering floating-point

exceptions, or maximizing code coverage of floating-point pro-

grams, while finding inputs to test accuracy is left to developers.

Generating inputs to maximize the numerical error is critical when

evaluating the accuracy of floating-point code. Besides testing, max-

imizing numerical error is significantly important in identifying

inaccurate code areas for automated floating-point program repair

or optimization [21, 24, 29, 31, 32, 38].

Error-inducing floating-point inputs. Finding inputs that

trigger large numerical errors is non-trivial. As observed in a pre-

vious study [10], only a very small portion of the input domain

can cause large errors. It is challenging to identify such inputs be-

cause rounding errors are unintuitive and difficult to reason about.

Floating-point optimization techniques [21, 29, 31] use random in-

puts that satisfy common distributions or code coverage criteria.

The state-of-the-art error-inducing input generators [16, 37, 39]

perform limited analysis over the floating-point errors generated

during execution, and mainly rely on searching or sampling to

identify error-inducing inputs. This leads to a lack of support for

numerical programs with multi-dimensional input data due to the

large input space. Both LSGA [39] and EAGT [37] are designed for

floating-point programs with a small number of scalar inputs.1

In reality, a large number of numerical programs, e.g., matrix

computation libraries that are widely used in scientific computing,

machine learning libraries, and software in computer graphics and

data analysis, take multi-dimensional input data such as arrays,

1LSGA does not provide an algorithm to generate multiple floating-point inputs, and is
evaluated on programs with at most four scalar floating-point inputs (with the majority
taking only one scalar floating-point input). EAGT relies on the approximation of
condition numbers, and only focuses on programs with one scalar floating-point input.
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vectors or matrices. S3FP[16] is the state-of-the-art tool for gener-

ating error-inducing multi-dimensional floating-point inputs. S3FP

divides each input number interval and randomly permutes the

subintervals to zoom into tighter input ranges in exploring the in-

put space. However, its black-box nature results in a smaller chance

to find inputs that trigger the highest errors.

In this paper, we propose a white-box algorithm to generate high

error-inducing inputs for floating-point programs especially with

multi-dimensional input data. Specifically, we check the floating-

point errors generated during execution and use such error patterns

to identify inputs that are likely to trigger high errors in the result.

By adding error checks, we transform the problem of generating

high error-inducing inputs into the code coverage maximization

problem that can be solved by performing symbolic execution.

Symbolic execution. Symbolic execution (e.g., [13, 14, 20, 23])

enhances program testing by symbolizing inputs to achieve higher

code coverage. In symbolic execution, instead of concrete values,

the inputs are represented as symbols that indicate arbitrary num-

bers. Each program operation on concrete values is replaced by an

operation on symbolic values, and accordingly the value of each

variable is an expression in terms of the input symbols. When en-

countering a conditional statement, the execution is forked into two

to each follow the true and false branch, and each child process adds

the corresponding constraints into its program state to identify the

executed path. Once the program terminates, or an error occurs,

e.g., division by zero, the path constraints are solved by satisfiability

modulo theory (SMT) constraint solvers to find concrete values for

the symbolic inputs.

Recent works [19, 28] have incorporated floating-point arith-

metic in symbolic execution. Like integer variables, floating-point

variables are symbolized to be integrated into different path con-

straints and floating-point inputs are generated through SMT solvers

with floating-point support (e.g., Z3 [7]). However, a floating-point

input that covers one path of the program does not necessarily

trigger large numerical errors on that path, which is shown in our

evaluation. To find inputs that trigger high errors, a more specific

algorithm is needed.

Key insight. Our key insight is that by injecting inaccuracy

checks after floating-point arithmetic operations, we force sym-

bolic execution to explore the probability of the occurrence of severe

rounding errors or numerical cancellation at each injection site.

Severe rounding can cause significant precision loss, which could

affect the accuracy of the result, and a cancellation could be cat-

astrophic due to loss of significance. In floating-point code, it is

hard to predict which part of the program could possibly involve

severe rounding or cancellation, and what the impact in the result

is if either happens. Our technique enables symbolic execution to

explore rounding and cancellation possibilities in different code

areas. For each input generated, we measure the error it exposed,

and select only those that trigger the largest error.

The main challenge stems from an inherent limitation of sym-

bolic execution: path explosion [15]. Due to the exponential growth

of the number of feasible paths, CPU and memory usage becomes

high. More importantly, as more constraints are added into a path

constraint, it takes longer for such constraints to be solved. The

necessity for inaccuracy check injection aggravates the problem by

introducing additional paths to be explored. To alleviate path explo-

sion, we carefully manage the number of symbolic input variables

by separating the input variables into two groups and concretizing

the group with larger size. Second, we only instrument the floating-

point operations of interest in the core loop of the algorithm, and

use two sampling strategies to dynamically enable injection. Lastly,

we formulate the inaccuracy checks using bitwise operations, which

significantly reduce the number of branches at each injection point.

We implement our approach in a tool named FPGen and demon-

strate that FPGen is effective at generating inputs that expose large

floating-point errors. Our evaluation on 3 summation algorithms

and 18 numerical programs from the Meschach library [5] and the

GNU Scientific library [2] shows that FPGen is able to expose errors

for nearly all programs, and the order of the magnitude of exposed

relative errors is −6.35 on average, which indicates that the result

has only around 6 accurate digits.

We compare FPGen’s generated inputs against random input

generation, the state-of-the-art error-inducing input generator S3FP

[16], and KLEE-Float [28], a symbolic execution engine that pro-

vides floating-point support. The results show that random input

generation and S3FP trigger errors in 13 out of 21 programs while

FPGen triggers errors in all programs except for one. Furthermore,

FPGen triggers larger errors than all other approaches for 15 out

of 21 programs. The order of the magnitude of the exposed rela-

tive errors is −12.69 on average for random input generation and

−8.46 on average for S3FP. On the other hand, KLEE-Float fails

to trigger errors for all programs. Regarding to the magnitude of

errors the tools can trigger, FPGen improves the state-of-the-art

input generator S3FP by more than 2 orders of magnitude.

The contributions of this paper are as follows:

• We enable symbolic execution to find high error-inducing inputs

by incorporating precision loss and cancellation checks under

floating-point computations, and describe various optimizations

to scale symbolic execution, including managing the number of

symbolic variables and selecting injection sites (Section 3).

• We evaluate FPGen on a set of 21 numerical programs including

matrix computation and statistics libraries, and show that FPGen

outperforms the state of the art in the majority of the programs.

Moreover, FPGen advances the state of the art by triggering

errors that are more than 2 orders of magnitude larger (Section 4).

The rest of this paper is organized as follows. Section 2 illustrates

testing of floating-point programs using 3 summation algorithms.

Section 3 describes our inaccuracy checks, and optimizations that

make symbolic execution effective at generating error-inducing

inputs. Section 4 describes our experimental evaluation. Finally,

Section 5 discusses related work and we conclude in Section 6.

2 FLOATING-POINT ACCURACY TESTING

In this section, we first illustrate the problem of exposing floating-

point inaccuracy using three well-known floating-point summation

algorithms: recursive summation, pairwise summation, and com-

pensated summation. Second, we show how the state of the art in

error-inducing input generation (along with other two baselines)

fails to find inputs that trigger errors in these algorithms while we

successfully craft such an input manually. Finally, we discuss our

insight for generating inputs that maximize error.
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1 double recursive_summation(double* A, int size){

2 for (int i = size -1 ; i > 0 ; i--)

3 A[i-1] += A[i];

4 return A[0];}

(a) Recursive Summation

1 double pairwise_summation(double a1, double a2,

2 double a3 , double a4){

3 a1 += a2; a3 += a4;

4 a1 += a3;

5 return a1;}

(b) Pairwise Summation

1 double compensated_summation(double* A, int size){

2 double sum , a, e=0;

3 for (int i = size -1 ; i > 0 ; i--){

4 sum = A[i];

5 a = A[i-1] + e;

6 A[i-1] = sum + a;

7 e = (sum - A[i-1]) + a;}

8 return A[0];}

(c) Compensated Summation

Figure 1: Floating-point summation algorithms.

2.1 Floating-Point Summations

To achieve better accuracy when adding floating-point numbers,

a variety of summation algorithms have been proposed. Figure 1

shows 3 summation algorithms that compute the sum over the

elements of a double array.2 The recursive summation algorithm

iteratively adds each element in the array in reverse order. It is

simple and the most frequently used, but its accuracy depends on

the order in which numbers are given. Pairwise summation adds

array elements in pairs to avoid large rounding errors introduced

when adding each of the elements to the partial sum. Lastly, the

compensated summation algorithm uses a correction term, i.e., e

(line 2), to diminish the rounding error incurred in the addition

operation (line 6) of the last iteration. More details on the accuracy

of these (and other) summation algorithms can be found in [22].

2.2 Error-Inducing Inputs for Summations

First, we investigate the effectiveness of three existing approaches

for generating error-inducing inputs. Specifically, we use the C++

rand function as random number generator, S3FP [16], the state-

of-the-art error-inducing input generator for programs with multi-

dimensional input data, and KLEE-Float [28], a symbolic execution

engine that supports floating point.We implement an additional 128-

bit quadruple precision version of each summation. For each input

array generated, we run both original and high-precision programs

to calculate the error in the result. As shown in Table 1a, for an

input array of size 4 in range [−100, 100], the random generator and

S3FP searched 1000 input arrays but failed to find one that exposes

error in the summations. KLEE-Float generated an array of zeros

that covers the only path in the programs while exposing no errors.

Second, we manually crafted an array A that triggers high nu-

merical error on each summation algorithm. The values for each

array element can be found in Table 1b. We refer to the manual

2For simplicity and readability, we omit the bulky code of pairwise summation for an
array of size N, and illustrate it using 4 double variables.

Figure 2: Summations on the manually crafted input array.

approach simply as Manual. Table 1a shows that Manual exposes

a relative error of 12 in the recursive and compensated summations,

and a relative error of 1 in the pairwise summation.

Figure 2 shows the computation process of each summation

algorithm over the manually crafted input to shed light on the gen-

eration of error-inducing inputs. Program executions of recursive

summation in double and qadruple precision produce summa-

tion results 1.1e−15 and −1e−16, respectively. Using the result of
qadruple execution as the ground truth, the absolute error of

double execution is 1.2e−15, and the relative error is 12. We fur-

ther examine the result and the error incurred at each addition

operation in double precision. As shown in Figure 2, the first addi-

tion addsA[3] toA[2]. BecauseA[2] is less than the least significant

digit (i.e., ULP) of A[3], −1.4e−14, A[2] is rounded off (shown as

the rounding error, e). The second addition adds the result so far to

A[1], unfortunately both values cancel out. The local error remains

−1.2e−15 since no new rounding errors occur. Lastly, A[1], which
contains the partial summation result 0, is added toA[0] = 1.1e−15.
The final result, 1.1e−15, is stored in A[0], and the error accumu-

lated in the result is −1.2e−15. Because the magnitude of the error

is close to the result of the summation, the relative error is high.

Similarly, the first two additions in pairwise summation generate

two errors by rounding off the smaller operand, and the last addi-

tion cancels the two partial summation results. The cancellation

causes the magnitude of the error to be comparable to the result,

leading to a large relative error. Compensated summation maintains
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Table 1: Accuracy testing of summation algorithms. The input is an array of size 4 in the range [−100, 100].

(a) Testing results.

Maximum Relative Error

Approach #Inputs Recursive Sum. Pairwise Sum. Compensated Sum.

Random 1000 0 0 0

S3FP 1000 0 0 0

KLEE-Float 1 0 0 0

Manual 1 12 1 12

(b) Manual values for input array.

Array

Element FP Value

A[3] -98.0

A[2] -1.2e-15

A[1] 98.0

A[0] 1.1e-15

a correction term, i.e., ẽ in the third subgraph of Figure 2. It captures

the rounding error generated by the current addition operation, and

will be added when applying the next addition. For example, after

the first addition, ẽ holds the rounding error −1.2e−15, introduced
by adding A[3] and A[2]. However, because the next term to add,

A[1] = 98.0, has an ULP greater than −1.2e−15, the correction term

is dropped in the second addition. Also, cancellation occurs in the

second iteration. In the end, the compensated summation performs

the same as recursive summation, and its result over array A is

1.1e−15 with a relative error of 12.

Input generation insight. We observe two general patterns in

the summations over the manual input array A: (a) rounding that
particularly occurs when adding two floating-point numbers whose

exponents vary widely, e.g.,−98.0+(−1.2e−15), and (b) cancellation
that affects large terms. The first pattern introduces rounding errors

in intermediate results while the second pattern exposes the errors

by canceling the accurate significant digits. We propose to inject

inaccuracy checks at floating-point operations to detect rounding

and cancellations. Our checks do not require maintaining a high-

precision shadow execution to calculate intermediate errors, but

check inaccuracies solely based on the operands and the result of

the computation.

In response to where to inject inaccuracy checks, we observe

in our example that the rounding pattern arises in the first addi-

tion while the cancellation pattern occurs on different addition

operations in the 3 summation programs (2nd addition in recursive

and compensated summation, and 3rd addition in pairwise sum-

mation). In reality, it is unattainable to predict the floating-point

operations at which rounding and cancellation need to happen.

This is the reason why we create a search space on the inaccuracies

of computations and conduct the search using symbolic execution.

In summary, the goal of our inaccuracy checks is to create a search

space to allow symbolic execution to explore the inaccuracies of dif-

ferent code areas for high error-inducing inputs. This observation

on the inaccuracy patterns can be generalized to other floating-

point code. It is highly likely that an input that conforms to our

inaccuracy checks will produce a high numerical error in the result.

3 TECHNICAL APPROACH

Our approach to generate floating-point inputs that expose large

numerical errors consists of three main components, which are

illustrated in Figure 3. We first apply a program transformation that

injects checks for precision loss and cancellation into the program

P . Second, we apply various optimizations to mitigate path explo-

sion during symbolic execution, including reducing the number

Figure 3: FPGen workflow.

of symbolic variables by concretizing some input variables using

random values. Input specifications are required for the identifi-

cation of input variables. Symbolic execution is then performed

in the transformed program P ′. Finally, we assess the quality of

the generated inputs I1, I2, ..., In by measuring their errors with

respect to a higher-precision version of the program Ph . The input
that exposes the largest error, ImaxErr, is then selected. We also

diagnose the root cause of the numerical error to further help the

programmer in identifying the program expressions that contribute

the most to the numerical inaccuracy.

3.1 Inaccuracy Check Injector

The goal of the inaccuracy check injector is to transform a given

program so that the result of each injected floating-point arithmetic

operation is explicitly checked for precision loss and cancellation er-

rors. In this section, we assume a three-address code representation

in which each arithmetic operation has at most two operands. We

first define each of the two checks separately, and then we describe

how we combine the two when injecting them into the program.

3.1.1 Check for Precision Loss. Rounding errors are inherent to

floating point, and occur when an operation results in a value that

cannot be exactly represented in floating point. This leads to a

loss of precision in the computed result. In this paper, we focus

on precision loss that results in most bits of a data value being

discarded. For example, a number smaller than 1.2e−38 is rounded
to 0 when represented in single precision3. The rounding error

incurred is equal to the data value itself, and all bits of precision

are effectively discarded.

3Assuming no subnormal numbers.
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In most cases this type of precision loss4 is unintentional and

can be the symptom of a numerical bug. For example, consider the

summation of 1, 1e−8, and −1. If we apply the summation in the

order of 1 + 1e−8 + (−1) in single precision, the sum is 0 because

1 + 1e−8 equals to 1 due to precision loss that causes all bits of

precision of 1e−8 to be lost. However, if we change the order to

1 + (−1) + 1e−8, we are able to attain the exact result of the sum-

mation, 1e−8, without generating numerical errors. From the view

of programmers, the intention is to add the three given numbers.

However, the first order leads to a result that only adds two of the

numbers due to precision loss. This violates programmers’ inten-

tion and therefore is a hidden numerical bug. Precision loss checks

are designed to expose such errors.

We inject explicit precision loss checks after floating-point ad-

dition and subtraction operations.5 For each given floating-point

operation, we compare the exponents of the two operands. The

intuition behind is that the addition of two floating-point values

of similar magnitude will result in a more accurate result than the

addition of two values whose magnitude differ significantly. We

define the precision loss check as follows:

|exp (op1) − exp (op2) | ≥ σ (1)

where exp (op1) and exp (op2) represent the exponents of the

two source operands, respectively, and σ is an integer constant that

defines the lower bound of the exponent difference. In other words,

σ represents the number of bits of precision that are discarded. For

example, if σ is greater than the number of significand digits, i.e., 23

in single precision and 52 in double precision, all bits of precision

in the corresponding operand will be discarded.

res x[±1]
1 8 or 11 23 or 52 bits

op2 x − σ
σ bits discarded

op1 x

The figure above visualizes the computation on op1 and op2,

which leads to σ bits of op2 being discarded. Each operand and the

result of the computation are described in the floating-point format

that contains three components: sign (1 bit), exponent (8 bits in

float, 11 bits in double) and fraction (23 bits in float, 52 bits in

double). As shown, the exponent of op1 is x , σ greater than the

exponent of op2. When performing an addition or subtraction on

op1 and op2, the fraction of op2 is shifted to the right by σ bits. The

first few bits (23 − σ bits in float, 52 − σ bits in double) of op2

are used to compute the fraction of the result res while the last σ
bits are discarded. Finally, res is normalized and its exponent can

be adjusted by 1.

4For simplicity, the rest of this paper refers to precision loss when most bits of precision
are discarded.
5Among the floating-point arithmetic operations, +, −, ×, ÷, √ , %, addition and sub-

traction are the common operations that are likely to discard most bits of precision in
one of its operand data values.

3.1.2 Check for Cancellation Errors. A cancellation occurs when

two floating-point numbers with opposite sign and nearly equal

magnitude are added. Themost significant bits are canceledwith the

least (often inaccurate) significant bits taking precedence. Consider

the decimal numbers 1.9874 and −1.9856. Rounding these numbers

to three decimal digits results in 1.987 and −1.986, each with a

rounding error of 4e−4. If we add these numbers, the first three

digits cancel each other and the result of the addition is 0.001,

which is comparable in magnitude to the rounding errors. The

relative error of the result is |0.001−0.0018|/0.0018 = 4.4e−1, which
can be unacceptable. Such a cancellation error can have serious

repercussions. The affected value could change the control flow of

the program if used in a conditional expression, or be amplified

through the rest of the computation, thus potentially introducing a

large numerical error in the final result.

Cancellation checks have been used in prior work [10, 25] to

detect program instability on the fly. Specifically, the cancellation

check is defined as follows:

max{exp (op1), exp (op2)} − exp (res ) ≥ θ (2)

where exp (x ) represents the exponent of floating-point number x ,
op1 and op2 are the two operands, and res is result of an addition

or subtraction operation. The value θ denotes the lower bound of

the number of significant bits that are canceled. For example, two

numbers are canceled out to 0 if θ is 23 bits in single precision.

As visualized below, operand op1 and operand op2 have the same

exponent x , and the exponent of the computation result res is re-

duced to x − θ . The first θ bits of op1 and op2 are discarded due to

cancellation. The few least significant bits of op1 and op2 (23 − σ
bits in float, 52 − σ bits in double), which are inaccurate due to

rounding errors, are used to compute the most significant bit of res.

res x − θ
1 8 or 11 23 or 52 bits

op2 x

θ bits

op1 x

θ bits

3.1.3 Check Injection. First, we construct an inaccuracy detector

that checks for precision loss and cancellations in floating-point

computations. To facilitate symbolic execution, we divide the pro-

gram execution under the computation into three branches. As

shown in Figure 4, one branch is guarded by the precision loss

condition formalized in Equation (1) to explore inputs that lose pre-

cision in the execution; one branch is secured with the cancellation

condition described in Equation (2) to select inputs that can cause

catastrophic cancellation; and the third branch satisfies neither of

the two conditions, and can be referred as the accurate branch.

Precision loss and cancellation conditions are contradictory as can-

cellation requires the two source operands to be nearly equal and

precision loss happens only when the two source operands are in

significant different order of magnitude. Therefore, no cancellation

occurs in the precision loss branch.

Inaccuracy thresholds.We select thresholds σ and θ for precision

loss and cancellation, respectively. Threshold σ represents the num-

ber of bits of precision that are discarded in precision loss from
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Figure 4: Inaccuracy check branches.

Figure 5: Average of maximum errors on 3 summation pro-

grams with different inaccuracy thresholds.

Equation (1), and θ represents the number of bits in the significand

that cancel from Equation (2). The larger σ is, the more bits of preci-

sion are discarded in the operand value with the smaller magnitude

of the two. Similarly, the larger θ is, the more bits of the significand

are canceled in the two operand values. Both will cause significant

inaccuracies. In double precision, σ and θ are positive integers no

greater than 52 (the number of bits in the significand). We select

the values of σ and θ based on an empirical evaluation on the three

summation programs presented in Section 2.

We start the search with the parameter setting {σ = 28, θ = 4}

and investigate all multiples of 4 for σ and θ .6 For each parame-

ter setting, we compute the average of the top 3 errors triggered

in each program and combine the results of the three programs

by calculating the mean value. Figure 5 shows the mean value of

the errors in the three summation programs while the threshold

parameters σ and θ vary. The coordinate of a bar indicates (θ ,σ ),
and the height denotes the mean value of the maximum errors. The

bars use distinct colors for different values of parameter σ . The
parameter setting that ranks first is {σ = 32,θ = 40}. We use this

setting in our experimental evaluation, which yields fruitful results.
Check condition binarization. The two check conditions in Fig-

ure 4 involve computations such as the absolute value of an integer
in Equation (1) and the maximum of two integers in Equation (2).
These operations generate additional branches in the binary code.
The following two statements show these branches using the con-
ditional operator (? :) in C.

6Our initial value is σ = 28 because we consider that discarding at least 28 bits could
affect precision sufficiently.

1 #define exp_bt(pa) (long)((*( unsigned long*)(pa)

2 >>52)&0x7ff)

(a) exp

1 #define abs_mask(a) ((a)>>(sizeof(long)*8-1))

2 #define abs_bt(a) (((a)+abs_mask(a))^abs_mask(a))

(b) abs

1 #define max_bt(a, b) ((a)^(((a)^(b))&-((a) <(b))))

(c) max

Figure 6: Bitwise utility functions.

abs(a) = (a > 0)? a : -a;
max(a, b) = (a > b)? a : b;

The expansion of branches increases the number of paths expo-

nentially and makes it more difficult for the symbolic execution

engine to find inaccuracy patterns. To alleviate this problem, we

designed three highly optimized bitwise utility functions that do

not include any branches. The utility functions are exp_bt to obtain

the exponent of a floating-point number with specified precision as

a long integer, abs_bt to obtain the absolute value of a long integer,

and lastly, max_bt that returns the largest of two long integers. Fig-

ure 6 presents the detailed implementation of the three functions

in double precision using C macros.

Selecting injection sites. In this paper, we mainly focus on max-

imizing numerical error for floating-point code that uses multi-

dimensional input data. On the selection of injection sites for inac-

curacy checks, we are particularly interested in loops that iterate on

the input data and update the variable that holds the result. Assum-

ing three-address code, we inject inaccuracy checks under the addi-

tion and subtraction operations. Unfortunately, it is not practical to

check for inaccuracies in each iteration. Therefore, we provide two

sampling strategies, uniform and logarithmic, to dynamically se-

lect loop iterations for inaccuracy checks. Both sampling strategies

supply the parameter start and step for customization. Parameter

start allows the user to start the counter from any iteration, and

step specifies the step to the next sampled iteration. In logarithmic

sampling, step indicates the initial step, which is multiplied by 10

each time the counter increases by one order of magnitude.

Remark. Based on our observation of inaccuracy patterns (de-

scribed in Section 2), we inject inaccuracy branches to enable sym-

bolic execution to find error-inducing inputs. Note that previous

work [10, 25] has used Equation (2) to detect cancellation when

running a program on a given set of inputs. In contrast, our focus

in this paper is to generate inputs that maximize error. To the best

of our knowledge, we are the first to formulate precision loss in

which most bits of one operand are discarded, and combine it with

cancellations for inaccuracy checking. Our technique is the first to

enable a widely-used technique such as symbolic execution to find

floating-point inputs that maximize error. Symbolic execution itself,

however, is unable to generate such inputs as shown in Section 4.

3.2 Symbolic Execution with Concretization

After injecting precision inaccuracy checks, we proceed to symbol-

ically execute the program under test. In this paper, we use one of

the most popular and mature symbolic execution tools, KLEE [13],
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Data: Input variables : inVars, Input specifications : inSpecs, Program :

P, Program with injected inaccuracy checks : P’, Time budget :

tBudget, Timeout parameters : τ0, τ1
Result: Maximum error, the error-inducing input

1 tStart = time();

2 /* Random search for an error-inducing input. */

3 randomErrMax = 0; inBase = NULL;

4 rStart = time();

5 while time() - rStart < τ0 do

6 generate a random input in the input domain : in;

7 err = compute-error(in, P);

8 if err > eMax then

9 randomErrMax = err; inBase = in;

10 end

11 end

12 /* Separate the input variables into operands. */

13 op1Vars, op2Vars = partition-variables(inVars, inSpecs);

14 /* Initilization. */

15 errMax = randomErrMax; errInput = inBase;

16 concVars = op1Vars; symbVars = op2Vars;

17 while time() - tStart < tBudget do

18 /* Concretize convVars using base values. */

19 concretize the variables in convVars using inBase;

20 symbolize the variables in symbVars;

21 STAT, sInputs = symbolic-execution(convVars, symbVars, P’, τ1);

22 if STAT = timeout then

23 sNum = length(symbVars);

24 s1Vars, s2Vars = random-divide(symbVars, sNum/2, sNum/2);

25 convVars = convVars + s1Vars;

26 symbVars = s2Vars;

27 else

28 for sInput in sInputs do

29 err = compute-error(join-input(sInput, inBase), P);

30 if err > errMax then

31 errMax = err; errInput← join-input(sInput, inBase);

32 end

33 end

34 sNum = length(symbVars); lop2=length(op2Vars);

35 s1Vars, s2Vars = random-divide(op2Vars, lop2-sNum, sNum);

36 convVars = op1Vars + s1Vars;

37 symbVars = s2Vars;

38 end

39 end

40 return errMax, errInput

Algorithm 1: Symbolic execution with concretization.

as our symbolic execution engine. KLEE models the environment to

explore all legal values while ensuring the accuracy of the program

state, maintains memory efficiently to allow exploring as many

as hundreds of thousands of paths simultaneously, and provides a

set of heuristic search strategies that users can select from. More

importantly, it has an extension, KLEE-Float [3], which provides

support for floating-point arithmetic and thus enables symbolic

execution of floating-point programs.

Symbolic execution allows program inputs to be represented

as symbols. The program is then interpreted using these symbolic

values rather than concrete inputs. In the execution of a conditional

statement, KLEE forks the current process into two, and each child

process updates its program state by adding the branch constraints

over the input symbols into its path constraints. Path constraints

are solved when the program terminates and input symbols are

concretized to specific values that exercise the given path. One of the

main challenges faced by symbolic execution is path explosion. The

number of feasible paths grows exponentially with the size of the

program. Unfortunately, injecting inaccuracy checks exacerbates

path explosion. To alleviate this problem, it is important to manage

the number of symbolic variables. We concretize input variables

prior to symbolic execution and find that it significantly reduces

the number of paths to explore, making symbolic execution for our

transformed programs practical.

First, we refer to input variables as scalars. The array and matrix

input variables are broken down into multiple scalar input variables

for concretization and symbolization, discussed in the rest of this

section. Concretizing input variables to manage the number of sym-

bolic variables is critical for the application of symbolic execution.

First, symbolizing all input variables is redundant since symbol-

izing only one of the two operands in an operation suffices. Take

the operation x + y as an example. To trigger a cancellation in the

operation, it is sufficient to symbolize either variable x or y, and the
value of the other can be arbitrary. The concretization of redundant

symbolic variables is effective in speeding up the constraint solver

behind symbolic execution. Second, besides the redundant input

variables, we randomly select input variables for concretization in

order to perform symbolic execution.

Algorithm 1 describes the procedure of symbolic execution with

concretization. Given program P, program P’ with inaccuracy check

injections, input variables, and input specifications that describe

the input variables and how they are related in the computation,

our algorithm returns the maximum error triggered in program

P and the corresponding error-inducing input within a time bud-

get. Specifically, we first conduct a random search over all input

variables (line 2-11) and the input that triggers the highest error is

kept as base values of the input variables for future concretization.

We then partition the input variables into two groups based on the

input specifications so that two operand variables are separated

into different groups (line 13). Take matrix multiplication (MM) as

an example, which performs multiplication over two matrix input

variables. Each of the matrices is an operand of the multiplication,

and in our operand partition, the two matrix entries are separated

as op1Vars and op2Vars .
Lastly, we perform symbolic execution with concretization to

maximize the numerical error in program P (line 14-39). We first

initialize the maximum error and the corresponding input using

the result of random search (line 15), and then update them every

time a higher error is triggered (line 30-32). The input variables are

divided into concrete variables (shown as concVars) and symbolic

variables (symbVars). Concrete variables use the corresponding

concrete values from the base input (inBase) (line 19), and symbolic

variables are declared as symbols (line 20).

The symbolic execution engine is invoked on the injected pro-

gram P’ with an execution time threshold τ1 (line 21). If symbolic

execution does not terminate within the time threshold τ1, we re-
duce the number of symbolic variables by half (line 23-26) and
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repeat.7 The initial number of symbolic variables is the number of

the operand variables with smaller size (line 16). If the symbolic

execution engine terminates, we examine each input it generates

by computing the numerical error each input triggers and update

the largest error to the maximum error errMax and error-inducing

input errInput (line 28-33). Finally, we shuffle the concrete and

symbolic variables in the operand variable op2Vars (line 34-37) and

repeat the above procedure until time is up.

3.3 Error Measurement

As discussed in the previous section, the inputs generated by ran-

dom search and symbolic execution are evaluated by computing

the numerical error they trigger (Algorithm 1, lines 7 and 29). To

measure the error, we transform the program into higher preci-

sion (e.g., 128-bit precision). We compare the result produced by

the original program against the one from the high-precision pro-

gram. Moreover, the error is represented by the relative error of

the two program results, i.e., |r − r0 |/max{FLT_MIN , |r0 |} where
r is the result produced by the original program, r0 is the result
of the transformed program in high precision, and FLT_MIN indi-

cates the minimum representable positive floating-point number

in float precision. In addition, we print the diagnosis informa-

tion that contains the log of precision losses and cancellations and

the corresponding code area an inaccuracy event occurs. This can

help the programmer in identifying the program expressions that

contribute the most to the numerical inaccuracy.

4 EXPERIMENTAL EVALUATION

We implemented our algorithm in a tool named FPGen.8 FPGen

includes a floating-point computation analyzer for C programs

implemented using LibTooling [4]. The analyzer yields a list of

code sites, i.e., statements that contain floating-point addition/sub-

traction operations located within loops, to select as inaccuracy

injection sites. FPGen then performs symbolic execution with con-

cretization on the transformed program to maximize the error in

the result. We use KLEE-Float as the symbolic execution engine,

which is built to run on LLVM [26] bitcode files.

In the evaluation of FPGen, all experiments were run on a work-

station Intel(R) Xeon(R) Gold 6238 CPU (8 cores, 2.10GHz), 32GB

RAM, and the operating system is Ubuntu 14.04.5 LTS.

The goal of this evaluation is to answer the following questions:

RQ1 How effective is FPGen at finding error-inducing inputs?

RQ2 How does FPGen compare to random input generation, the

state-of-the-art tool S3FP, and KLEE-Float?

Benchmarks. We evaluate FPGen on the 3 summation algo-

rithms described in Section 2, 9 matrix computation routines from

the Meschach library [5], and 9 unique statistics routines from the

GNU Scientific library (GSL) [2]. Meschach provides a series of basic

computation routines on matrices and vectors in C. The routine sum
adds the elements of a vector. As their names indicate, 1-norm and

7In the experiments discussed in Section 4, we use “–max-time=τ1” to halt the execution
of the symbolic execution engine when time is up according to the threshold τ1, and
check whether it has ever reached any error injections and thus triggered errors with
incomplete execution. If it reached error injections and triggered errors within time
threshold τ1, it is considered as an effective termination, otherwise considered as
non-termination (i.e., requiring more time to explore the error paths).
8The source of FPGen is available on GitHub: https://github.com/ucd-plse/FPGen

2-norm compute the 1-norm and 2-norm of a vector, and routines

dot and convolution calculate the dot product and convolution

product of two vectors, respectively. MV multiplies a matrix by a

vector, and MM multiplies two matrices. LU and QR factor a matrix to

different forms. GSL provides a wide range of mathematical rou-

tines written in C and C++, and has been used for evaluation in

prior work [37–39]. Specifically, we use the GSL statistics routines

that take array data as input.9 These routines compute the mean,

variance, standard deviation and more advanced statistical terms

such as absolute deviations, skewness and kurtosis for weighted

samples. The functions mainly take two input arrays, one as the

samples and one being the associated weights.

Experimental Setup. Table 2 presents the benchmarks and their

input characteristics including kind of input (the number in the

parentheses indicates the size of each input kind), size of symbolized

input and size of concretized input in both the initial and final

configurations of FPGen. As described in Algorithm 1, the initial

partition of symbolized and concretized inputs is based on the

input operands. For the summation programs, MM, LU, and QR, half
of the elements of an array/matrix operand are symbolized and the

rest of the input data is concretized. For the remaining programs,

all elements of an array/vector operand are symbolized and all

elements of the other operand are concretized. Moreover, the final

configuration on size of symbolized and concretized inputs indicates

the partition in which the best relative error is observed.10

With regard to the time threshold parameters τ0 and τ1 de-

scribed in Algorithm 1, we use τ0 = 0,τ1 = 30min for summation

programs, τ0 = 10min,τ1 = 55min for Meschach programs and

τ0 = 20min,τ1 = 33min for GSL programs. Lastly, all benchmarks

use double precision,11 and we inject inaccuracy checks into the

last addition/subtraction operation that updates the accumulator

in the core loop of each program. The generated inputs are float

numbers in [−100, 100] to facilitate comparison with S3FP, which

operates on float numbers and requires an input range.

Baselines. We compare FPGen to (1) a random input genera-

tor we implemented in C++, (2) S3FP, the state-of-the-art floating-

point error-inducing input generator for programs with multi-

dimensional floating-point input, and (3) KLEE-Float, the floating-

point symbolic execution engine used by FPGen. We use the default

parameter settings for S3FP: Cinit is randomized while parameters

k and Npart are set to the value 1.

Error Measurement. The ground truth for our benchmarks

is obtained by running higher-precision implementations of the

programs on the generated inputs. Specifically, we implemented

summations that use 128-bit precision, and perform long double

precision (80-bit extended precision) for Meschach and GSL rou-

tines. Meschach and GSL support compilation in double and long

9There are a total of 15 floating-point statistics routines in GSL, however, from the
standpoint of symbolic execution, 6 of them (wvariance-m, wsd-m, wtss-m, wabsdev-m,
wskew-m, and wkurtosis-m) are a replicate of 6 other routines (wvariance, wsd, wtss,
wabsdev, wskew, and wkurtosis). We only report results for 9 distinct routines, but
the results for all 15 GSL statistics routines are available for full reference.
10The final input size does not indicate the size of symbolized and concretized input
in the last partition of the search. For some programs, further partitions yield smaller
errors.
11GSL routines use long double for the accumulators, and we manually modified
them to be in consistent precision with the samples, i.e., double in the experiments.
We believe the change will not cause any overflow exceptions since all samples and
their associated weights are in a specific input range.
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Table 2: Input characteristics of benchmarks.

Initial Input Size Final Input Size

Benchmark(s) Input Kind Symbolized Concretized Symbolized Concretized

Summations array(32) 16 16 16 16

sum, 2-norm vector(4) 4 0 4 0

1-norm vector(4) 4 0 2 2

dot, convolution 2 vectors(4) 4 4 2 6

MV vector(4), matrix(4 × 4) 4 16 2 18

MM 2 matrices(4 × 4) 8 24 8 24

LU matrix(4 × 4) 8 8 8 8

QR matrix(4 × 4) 8 8 4 12

wmean, wvariance-w, wsd-w, wtss[-m] 2 arrays(4) 4 4 4 4

wabsdev[-m], wskew[-m], wkurtosis[-m] 2 arrays(4) 4 4 4 4

wvariance[-m], wsd[-m] 2 arrays(4) 4 4 2 6
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Figure 7: Comparison of maximum errors triggered by the error-inducing input generators.

double precision.12 Note that all benchmarks are transformed to

higher precision at the source code level, and we did not observe

precision-specific operations that can potentially cause errors in

the transformation [36]. For all our benchmarks, we calculate the

relative error of the result produced by the original program with

respect to the ground truth. Note that five of our benchmarks pro-

duce vectors or matrices as final result. In these cases, we report

the maximum relative error observed across all elements.13

Experimental Results. We evaluate FPGen on the given 21

benchmarks, and compare it to (1) random input generation (re-

ferred to as Random), (2) the state-of-the-art input generator S3FP,

and (3) KLEE-Float. For all experiments we consider a time budget

of 2 hours. The results are shown in Table 3. Column “Rel. Error”

indicates the maximum relative error triggered by generated in-

puts (the largest error triggered among the four tools is shown

12The support of long double precision in Meschach is incomplete, and we manually
adjusted few header files.
13S3FP only aims on triggering high error for one single output number. For vector/-
matrix output, we adopts the same methodology described in the paper [16] which
reports the relative error for the output element whose computation requires the
highest number of floating-point operations. If all output elements involve the same
number of operations, it reports the relative error of the first output element.

in bold), “# Inputs” denotes the total number of generated inputs

, and “hh:mm:ss” describes the execution time. As shown, KLEE-

Float is not able to trigger numerical errors on its own as it simply

searches for inputs that cover program paths. Among the three

error-inducing input generators, FPGen generates error-inducing

inputs for 20 out of 21 benchmarks while the inputs generated

by Random and S3FP trigger an error in 13 out of 21 programs.

As shown in the first four rows in Table 3, Random and S3FP ex-

plored over five hundred thousand input arrays/vectors but failed

to find one that exposes an error for the 3 summation programs and

5 Meschach routines. FPGen, however, triggered errors in these

programs, except for 1-norm, after exploring significantly fewer

inputs within the time budget. Furthermore, the numerical errors

triggered by FPGen are up to 1.0, which are comparable in order of

magnitude to the errors triggered by the hand crafted input from

Section 2.

Figure 7 visualizes themaximum relative error each error-inducing

input generator triggered for all benchmarks except 1-norm for

which none of the generators triggered an error. The Y axis that

indicates the maximum relative error triggered in each benchmark

is proportional to the logarithm of the errors. As shown, FPGen
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Table 3: Accuracy testing results for numerical library routines.

Recursive Summation (32) Pairwise Summation (32) Compensated Summation (32)

Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss

Random 0.0000e+00 583704 02:00:00 0.0000e+00 579979 02:00:00 0.0000e+00 533939 02:00:00

S3FP 0.0000e+00 577227 02:00:00 0.0000e+00 551594 02:00:00 0.0000e+00 550118 02:00:00

KLEE-Float 0.0000e+00 1 ≤00:00:01 0.0000e+00 1 ≤00:00:01 0.0000e+00 1 ≤00:00:01
FPGen 1.0000e+00 9472 02:00:00 1.3174e-16 1532 02:00:00 1.0000e+00 547 02:00:00

sum 1-norm 2-norm
Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss

Random 0.0000e+00 542842 02:00:00 0.0000e+00 550180 02:00:00 3.1216e-16 544735 02:00:00

S3FP 0.0000e+00 550353 02:00:00 0.0000e+00 549360 02:00:00 3.1170e-16 542879 02:00:00

KLEE-Float 0.0000e+00 1 ≤00:00:01 0.0000e+00 1 ≤00:00:01 0.0000e+00 1 ≤00:00:01
FPGen 1.0000e+00 43055 02:00:00 0.0000e+00 41690 02:00:00 2.2117e-16 41039 02:00:00

dot convolution MV
Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss

Random 1.7010e-12 587409 02:00:00 9.2803e-13 561780 02:00:00 0.0000e+00 562187 02:00:00

S3FP 5.5831e-10 541171 02:00:00 1.9864e-10 529503 02:00:00 0.0000e+00 559708 02:00:00

KLEE-Float 0.0000e+00 1 ≤00:00:01 0.0000e+00 1 ≤00:00:01 0.0000e+00 1 ≤00:00:01
FPGen 1.9190e-04 43649 02:00:00 2.0446e-04 42099 02:00:00 8.9366e-04 41180 02:00:00

MM LU QR
Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss

Random 1.1102e-16 587108 02:00:00 0.0000e+00 544796 02:00:00 0.0000e+00 551384 02:00:00

S3FP 1.1102e-16 530526 02:00:00 0.0000e+00 543181 02:00:00 0.0000e+00 502424 02:00:00

KLEE-Float 0.0000e+00 1 ≤00:00:01 0.0000e+00 9 00:01:20 0.0000e+00 24 02:24:51

FPGen 2.5783e-14 43965 02:00:00 2.7327e+00 40831 02:00:00 2.5912e-14 40944 02:00:00

wmean wvariance (wvariance-m) wsd (wsd-m)
Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss

Random 9.4290e-12 526315 02:00:00 1.5039e-11 528128 02:00:00 7.5193e-12 529821 02:00:00

S3FP 1.6620e-07 526118 02:00:00 2.5955e-05 528292 02:00:00 1.2977e-05 535576 02:00:00

KLEE-Float 0.0000e+00 1 ≤00:00:01 0.0000e+00 16 00:00:25 0.0000e+00 16 00:00:25

FPGen 1.0000e+00 89844 02:00:00 7.6280e-02 89221 02:00:00 3.7439e-02 88883 02:00:00

wvariance-w wsd-w wtss (wtss-m)
Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss

Random 7.9593e-12 529220 02:00:00 3.9797e-12 531602 02:00:00 5.5294e-16 526324 02:00:00

S3FP 2.0918e-05 531397 02:00:00 1.0459e-05 528545 02:00:00 4.7739e-16 526869 02:00:00

KLEE-Float 0.0000e+00 16 00:00:25 0.0000e+00 16 00:00:25 0.0000e+00 16 00:00:25

FPGen 2.2858e-12 90107 02:00:00 1.1429e-12 89057 02:00:00 4.4513e-16 89318 02:00:00

wabsdev (wabsdev-m) wskew (wskew-m) wkurtosis (wkurtosis-m)
Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss Rel. Error #Inputs hh:mm:ss

Random 2.6840e-11 535959 02:00:00 2.5025e-11 497012 02:00:00 4.5107e-11 499180 02:00:00

S3FP 2.2077e-05 535286 02:00:00 3.1646e-02 507847 02:00:00 4.3139e-08 473608 02:00:00

KLEE-Float 0.0000e+00 16 00:00:25 0.0000e+00 1 ≤00:00:01 0.0000e+00 16 00:00:24

FPGen 1.0000e+00 44041 02:00:00 2.5675e+01 89715 02:00:00 1.7733e-12 89794 02:00:00

outperforms Random and S3FP for 15 out of 20 benchmarks. In 2 of

the other benchmarks, the three approaches are comparable to each

other, and the order of magnitude of the errors are −16. For the
remaining 3 benchmarks (from GSL), FPGen failed to reach an error

path within the time budget and S3FP triggered the largest error

among the input generators through black-box search. It requires

future improvements on symbolic execution to assist FPGen reach

more error paths, and thus trigger larger errors for these programs.

In summary, using precision loss and cancellation checks is effec-

tive in finding high error-inducing inputs especially for numerical

programs with multi-dimensional input data. From the evaluation

on the summation benchmarks, the matrix computation library

Meschach, and the GSL statistics functions, FPGen significantly

outperforms the state of the art.

RQ1: FPGen proves to be effective at finding error-inducing

inputs by triggering errors in 20 out of 21 benchmarks and

the errors are -6.35 on average in the order of magnitude.

RQ2: FPGen significantly outperforms the state of the art by

triggering errors in 33% more programs while errors are more

than 2 orders of magnitude larger on average.
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Specifically, FPGen generated error-inducing inputs for 20 bench-

mark programswhile the state-of-the-art generators trigger an error

for 13 out of 21 programs. Moreover, regarding the maximum errors

triggered by the generated inputs, FPGen (-6.35 on average in 20

programs) improves S3FP (-8.46 on average in 13 programs) by over

two orders of magnitude. The order of magnitude of the maximum

errors triggered by Random in 13 programs is -12.69 on average.

Discussion. The error-inducing inputs generated by FPGen can

be used in many contexts including floating-point precision tun-

ing and compiler testing for floating-point optimizations. Dynamic

precision tuning (e.g., [31]) lowers precision while satisfying an ac-

curacy constraint. Such approaches tune the programs with respect

to a given test set. Augmenting such test sets with inputs gener-

ated by FPGen could lead to more robust precision optimizations.

Moreover, compilers transform code for optimizations but the trans-

formation is risky for floating-point code because floating-point

arithmetic does not satisfy associative and distributive laws. To

enhance the compiler optimizations for floating-point code, inputs

that maximize the numerical error are required for testing.

With regard to the limitation of our tool, first, FPGen requires a

specification for inaccuracy check injection (we used core loops in

this paper). It remains future work to identify other code areas to

inject inaccuracy checks. Second, we mainly rely on optimizations

such as concretization to manage the number of symbolic variables

to alleviate the scalability problem symbolic execution faces. In

the future, it would be interesting to complement our work using

techniques to speedup symbolic execution [8, 35].

5 RELATEDWORK

Floating-Point Test Data Generation. S3FP [16], the state-of-the-

art error-inducing input generator for numerical programs with

multi-dimensional input data, is black-box. S3FP iteratively divides

the search range of each input variable into two and permutes them

randomly to generate a tighter search space. The tool evaluates

each subspace by sampling inputs and selecting one for further

exploration. The black-box nature of S3FP indicates that it is not as

effective as FPGenwhen the input space becomes large. Other error-

inducing input generators, i.e., LSGA [39], EAGT [37] and AutoRNP

[37] target numerical program with few scalar inputs. LSGA uses a

genetic algorithm to evolve the exponent of the inputs, however,

it does not provide an algorithm in evolving multi-dimensional

floating-point inputs, and the tool is not publicly available. EAGT

and AutoRNP compute the approximation of the condition number

in selecting inputs, and focus on programs with one scalar input.

FPSE [9] and CoverMe [19] generate floating-point test inputs

that maximize code coverage. FPSE [9] adopts a number of search

heuristics to solve path conditions containing floating-point com-

putations. CoverMe [19] translates the problem of covering a new

branch in the floating-point code into a mathematical problem that

can be solved by applying unconstrained programming. Such efforts

are complementary to our testing approach, and can be adopted to

enhance our symbolic-execution based approach.

Floating-point input generation tools have been developed to

detect other specific problems. Chiang et al. [17] detect path di-

vergence between a floating-point program and its high precision

execution. Barr et al. [11] use symbolic execution to detect floating-

point exceptions such as overflows and underflows. They also per-

form a transformation on the numerical program, and symbolically

execute the transformed program to identify inputs that trigger an

exception. The transformation, however, focuses on injecting ex-

ception checks before a floating-point operation, which is different

from ours. Moreover, the transformed program is symbolically exe-

cuted using real arithmetic while we use floating-point arithmetic.

Floating-Point Dynamic Analysis. Benz et al. [12] perform every

floating-point computation side by side in higher precision and

track the propagation of errors to detect accuracy problems. Lam

et al. [25] conduct binary instrumentation on floating-point addi-

tions and subtractions to detect cancellations. They analyze the

exponents of the operands and the result of the instrumented oper-

ations to determine the severity of a cancellation and report stack

information for severe cancellations. Besides the runtime detection

of mathematical cancellations, Bao and Zhang [10] propose to track

the propagation of the cancellation error, which can be suppressed

or inflated in the subsequent execution. Both cancellation detection

techniques [10, 25] use the cancellation check equation described

in our paper. However, their main purpose is to detect cancellation

issues for existing inputs and cannot generate error-inducing in-

puts. Furthermore, it is important to combine precision loss with

cancellation in the generation of error-inducing inputs. To the best

of our knowledge, we are the first to present such an approach.

RAIVE [27] performs floating-point computation with a vector

of values to capture rounding errors and report output variations.

Similarly, Tang et al. [34] perturb the underlying numerical values

and expressions to uncover instability problems in numerical code.

Such dynamic analyses detect accuracy problems on given input

data. Moreover, a large number of dynamic techniques (e.g., [21, 24,

29–32]) optimize floating-point code using a given input set. All of

these techniques could benefit from the inputs FPGen generates.

6 CONCLUSION

We presented an approach to effectively generate floating-point

inputs that trigger large errors. First, we formulated two inaccuracy

checks for large precision loss and cancellation. The injection of in-

accuracy checks after floating-point computation enables symbolic

execution to explore specialized branches that cause numerical in-

accuracy, which can lead to large errors in the final result. Second,

we proposed optimizations to alleviate path explosion. In partic-

ular, this was achieved by strategically reducing the number of

symbolic variables via concretization. We implemented our algo-

rithm in a tool named FPGen, and presented an evaluation on 21

numerical programs including matrix computation and statistics

libraries. Our results show that FPGen is able to expose errors for 20

of the evaluated programs while the state-of-the-art error-inducing

input generator S3FP only triggers errors for 13 out of 21 programs.

Moreover, FPGen triggered an error as large as 10−6 on average

while the maximum error S3FP triggered is about 10−8 on average.
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