
PLINER: Isolating Lines of Floating-Point Code
for Compiler-Induced Variability

Hui Guo
Department of Computer Science
University of California, Davis

Davis, CA, USA
higuo@ucdavis.edu

Ignacio Laguna
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Livermore, CA, USA
ilaguna@llnl.gov

Cindy Rubio-González
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Abstract—Scientific applications are often impacted by numer-
ical inconsistencies when using different compilers or when a
compiler is used with different optimization levels; such incon-
sistencies hinder reproducibility and can be hard to diagnose.
We present PLINER, a tool to automatically pinpoint code lines
that trigger compiler-induced variability. PLINER uses a novel
approach to enhance floating-point precision at different levels
of code granularity, and performs a guided search to identify
locations affected by numerical inconsistencies. We demonstrate
PLINER on a real-world numerical inconsistency that required
weeks to diagnose, which PLINER isolates in minutes. We also
evaluate PLINER on 100 synthetic programs, and the NAS
Parallel Benchmarks (NPB). On the synthetic programs, PLINER
detects the affected lines of code 87% of the time while the state-
of-the-art approach only detects the affected lines 6% of the
time. Furthermore, PLINER successfully isolates all numerical
inconsistencies found in the NPB.

Index Terms—reproducibility, numerical reliability, floating-
point arithmetic, compiler optimizations, scientific computing

I. INTRODUCTION

Floating-point arithmetic is used in virtually all classes of
scientific and engineering applications and it is the bedrock for
the numerical computations that these applications execute.
Since important decisions are made based on the numerical
results of these applications, the degree of reproducibility and
numerical consistency of these applications is crucial. With
advanced HPC systems moving to an era of heterogeneous
computing where code can be run on different architectures in
the same system (e.g., CPUs and accelerators), and compilers
for different architectures can yield different floating-point
programs, reproducibility and numerical consistency in such
scenarios becomes a challenging problem.
While many programming languages provide support for

floating-point arithmetic, usually floating-point is underdefined
in the language specification, and as a result compilers have
a great degree of freedom in generating code around floating-
point programs. This freedom comes at the price of having
possibly different numerical results when two different com-
pilers optimize the same code—since floating-point operations
are non-associative—or even for the same compiler when
different optimization levels are used, e.g., -O2 versus -O3. We
refer to such inconsistencies as compiler-induced numerical
inconsistencies. These inconsistencies can sometimes signif-

icantly impact the productivity of programmers when they
affect numerical results in unpredictable ways.
When compiler-induced inconsistencies arise in floating-

point programs, programmers are interested in understanding
what parts of their application are causing these inconsisten-
cies. However, currently tools support to help programmers
identify the source of such inconsistencies is scarce, and as
a result programmers spend a significant amount of time
isolating such issues. This paper presents a novel approach to
mitigate such numerical inconsistencies more effectively and
help programmers identify their origin faster.
A Real-World Motivating Example. Consider a real-world

numerical inconsistency encountered recently at the Lawrence
Livermore National Laboratory (LLNL) in the development
of a new hydrodynamics application [1, 11], Laghos. The
application was being adapted to study the impact of using
performance portability layers [16] in the new Sierra system
at LLNL, which uses NVIDIA V100 GPUs. During the porting
process, programmers observed that the energy computed in
the application had a significant numerical inconsistency when
the code was compiled using the IBM XL C/C++ compiler
(xlc) with -O3 in contrast to other compilers available in the
system, such as gcc and clang. Table I shows the computed
energy |e| for several compilers and optimization levels (see
the last row). As we can see, the computed energy was very
different for xlc -O3; note that using lower optimizations is
usually not appealing as programmers want to extract most of
the performance out of compiler optimizations.

TABLE I: Compiler-induced numerical inconsistency of hy-
drodynamics app under different compilation settings.

Compiler Optimization |e|
clang -O1 129664.9230611104
clang -O2 129664.9230611104
clang -O3 129664.9230611104
gcc -O1 129664.9230611104
gcc -O2 129664.9230611104
gcc -O3 129664.9230611104
xlc -O1 129664.9230611104
xlc -O2 129664.9230611104
xlc -O3 144174.9336610391

It took several weeks of effort to diagnose the issue and
isolate the code in the application that, combined with this
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compiler and optimization level, caused the numerical incon-
sistency. After a large effort using several ad-hoc methods
to compile files and functions with different levels of opti-
mization, the issue was isolated to a single function. It was
observed that when this function was compiled with -O2 and
the rest of the program was compiled with -O3 the numerical
inconsistency disappeared.
Although the programmers of the application wanted to

know the exact line of code in the isolated function that caused
the issue, this was an even more challenging task: this function
was significantly large to analyze manually and no tools were
available to automatically identify the lines of code in the
function that caused the inconsistency. Examples of hard-to-
diagnose inconsistencies such as this are not uncommon in
the scientific computing community. With trends on floating-
point precision reduction in accelerators (e.g., half precision)
and more aggressive compiler optimizations, programmers are
likely to increasingly experience such issues.
Our Contributions. In this paper, we present PLINER, a

new approach to automatically isolate the lines of code that
cause compiler-induced numerical inconsistencies in floating-
point programs. PLINER consists of a search engine and a
precision transformer. The search engine iteratively divides the
code and invokes the transformer to enhance precision for a
sequence of code areas. A key concept in PLINER is that we
recompile the transformed program to test result consistency—
if it yields consistent results, we believe that the origin of
the compiler-induced numerical inconsistency is included in
the transformed code sequence. We iteratively zoom into the
suspicious code sequence until the lines of code responsible for
the compiler-induced inconsistency are isolated. To scale the
code search, we identify four levels of granularity: function,
loop, basic block, and line. We first break and search the
code with the top level of granularity (function), and gradually
refine our search until the isolated code is not divisible.
Another crucial insight of PLINER is that we use high

precision to simulate arithmetic over reals. It is known that
floating-point compiler optimizations that induce numerical
inconsistencies perform well on real arithmetic, but not neces-
sarily well when precision is lost. As a result, the transformed
program with high precision should yield consistent results.
Lastly, we design the precision transformer to manipulate the
abstract syntax tree (AST) of the program and rewrite the
source code. This makes our algorithm applicable to different
compilers and architectures.
Using PLINER we were able to automatically identify the

line of code that cause the inconsistency in the hydrodynamic
application described above in only a few minutes, while it
took weeks of effort for the programmers to find the root cause.
Moreover, we evaluate PLINER on 100 floating-point synthetic
programs produced by Varity [4], a framework to generate ran-
dom floating-point programs that produce numerical variations
when compiled with different compiler optimization levels.
In our evaluation, 50 Varity programs produce inconsistent

results when compiled with IBM XL C/C++ compiler with
-O3 optimization level on the Power8 platform and 50 Varity

programs produce inconsistent results when compiled with
GCC compiler with -O3 -ffast-math compiler option on
Intel platform in contrast to unoptimized code. PLINER iso-
lated the origin of inconsistency in 87 out of 100 programs.
Moreover, we compare PLINER to the state-of-the-art tool

that identifies root causes of floating-point errors, Herbgrind
[23], on the 50 synthetic programs on an Intel platform.
Herbgrind only reported root causes of floating-point errors
in 5 out of 50 benchmarks, where only 3 of the reported
cases correctly isolated the affected lines of code. We find
that PLINER significantly outperforms Herbgrind in isolating
compiler-induced numerical inconsistencies.
Lastly, we triggered three compiler-induced inconsistencies

in the SNU NPB Suite [26], and show that PLINER success-
fully isolates the origin of the three inconsistencies in minutes.
To summarize, the contributions of this paper are:

• We design an algorithm that applies precision enhancement
and hierarchical search to isolate the origin of compiler-
induced numerical inconsistencies in floating-point pro-
grams (Section III).

• We present the implementation of our algorithm in the
PLINER tool as an extension of the clang/LLVM compiler.
To the best of our knowledge, PLINER is the first tool
to combat compiler-induced numerical inconsistencies at a
fine-grained level (lines of code) (Section IV).

• We show that PLINER is effective at isolating compiler-
induced inconsistencies by evaluating PLINER on 100
floating-point programs across different architectures and
compilers, the SNU NPB Suite, and a real-world numerical
inconsistency in a hydrodynamics application (Section V).

• We compare PLINER to the state of the art that identifies
root causes of floating-point errors, Herbgrind, and show
that PLINER outperforms the state of the art in isolating
compiler-induced numerical inconsistencies (Section V).

II. BACKGROUND

In this section, we discuss background information that will
be useful later and a high-level overview of our approach.

A. Compiler-Induced Numerical Inconsistencies

The real-world case of numerical inconsistency presented
in Section I from the hydrodynamics application (Laghos) is
an example of a compiler-induced numerical inconsistency.
Generally speaking, there are two classes of compiler-induced
numerical inconsistencies. The first class occurs when a given
application A is compiled with two different compilers, C1

and C2, that are available using an equivalent optimization
level in both compilers (e.g., -O2); when the two resulting
programs are executed with a given input, they produce
different numerical results. The second class occurs when A is
compiled with two different optimization levels (e.g., -O2 and
-O3) using the same compiler (e.g., C1); when the outputs of
the two resulting programs are compared, they are different.



1 vo id rUpda t eQuadra tu r eDa ta2D ( c o n s t doub l e GAMMA,
c on s t doub l e H0 , . . . ) {

. . .
127 i f ( g radv10 == 0) {
128 minEig = ( gradv00<gradv11 ) ? gradv00 : gradv11 ;
129 } e l s e {
130 const double zeta = (gradv11-gradv00) / (2.0*gradv10);
131 c o n s t doub l e a z e t a = f a b s ( z e t a ) ;
132 doub l e t = 1 . 0 / ( a z e t a + s q r t ( 1 . 0+ z e t a * z e t a ) ) ;

. . .
148 } / / end of i f�e l s e s tm t

. . .
196 } / / end of rUpda t eQuadra tu r eDa ta2D

Fig. 1: Origin of the numerical inconsistency in Laghos.

B. Floating Point and Optimizations

Most compilers provide at least four optimization levels:
-O0, -O1, -O2, and -O3. When code is highly optimized (e.g.,
with -O3), floating-point optimizations can provide significant
performance improvements, but at the same time, they can
generate code that is not compliant with the IEEE 754-2008
standard for floating-point arithmetic.
The philosophy of open-source compilers, such as gcc

and clang, is by default to be compliant, or strict, with
respect to IEEE 754-2008, unless the user indicates the
opposite; the -ffast-math option can be used in gcc and
clang to produce programs that are not compliant with IEEE.
GPU compilers, such as nvcc, also provide a similar option,
--use_fast_math. On the other hand, the philosophy of
commercial compilers, such as xlc, is different: in the xlc
compiler, -O3 by default performs aggressive optimizations
that alter the semantics of the program and are not compliant
with IEEE, i.e., by default with -O3 it is non-strict with respect
to IEEE. The -qstrict option in xlc generates code that is
compliant with IEEE.

C. Laghos Case

The case presented in Section I is an example of both of the
two classes of inconsistencies described above, i.e., the energy
that results from the program compiled with xlc with -O3
is different from the energy that results from the clang and
gcc compilations and it is also different between the various
optimization levels for xlc. In addition to the numerical
inconsistencies, the execution time of the xlc -O3 version
was significantly smaller than any of the other versions.
Using a number of methods to compile functions at different

optimization levels, the issue was isolated to the function
rUpdateQuadratureData2D. It was observed that when this
function was compiled with -O2 and the rest of the program
was compiled with -O3 the numerical inconsistency disap-
pears. However, the function was composed of several loops
and branches, and no insight lead to the conclusion that a
specific line of code originated the inconsistency. Once the
function had been isolated, a number of programmers still
spent several days of effort diagnosing this case to no avail.

Program: P 
(source code)

Origin of compiler-induced inconsistencies

Search-&-Test 
Engine

Hierarchical 
Code Isolation

Program 
Transformer

Precision 
Enhancement

Search-&-Test 
Engine

Compile-&-Test

Pisolated

pisolated'

feedback

Input Data

Fig. 2: Overview of PLINER.

Instead of compiling function rUpdateQuadratureData2D
with -O2, we increased the precision of this function to
long double and recompiled the code with xlc -O3—this
yields consistent results with other compilers or xlc -O2.
In the Power8 xlc compiler, a long double data type is
referred as IBM extended double type which uses a pair
of double values for more bits of precision. We further
minimized the code area that uses long double from function
rUpdateQuadratureData2D to one line of code in the func-
tion. Specifically, we increased the precision of the operations
on line 130 to long double and recompiled the code with
-O3—this change ultimately eliminated the numerical incon-
sistency. Figure 1 highlights the line of code we isolated from
Laghos.
After analyzing the assembly code for the function

rUpdateQuadratureData2D, we observed that the division
operation on line 130 is converted to a reciprocal operation
and a multiplication in the -O3; we speculate that the com-
piler performs this transformation to improve performance
while the -O2 version (or lower) performs the floating-point
division operation. The reciprocal operation easily introduces
exceptions when the values of gradv10, gradv00, gradv11
are subnormal numbers that are close to zero while division
operation performs well. The goal of PLINER is to automat-
ically find cases such as this where increasing the floating-
point precision of lines of code can help programmers isolate
compiler-induced numerical inconsistencies.

D. Overview of PLINER

Figure 2 gives an overview of PLINER to isolate the
origin of compiler-induced numerical inconsistencies. Suppose
the floating-point program P yields a different output when
compiled by compiler C1 with high compiler optimization
level compared to the case when P is compiled with low
optimization (or compiler with C2). Taking the source code
of P and the triggering inputs, PLINER returns the code lines
that are responsible for this inconsistency.

PLINER comprises two modules (see Figure 2): (1) a search-
&-test engine that consists of hierarchical code isolation and
compile-&-test, and (2) a program transformer that performs
precision enhancement. Hierarchical code isolation identifies
the minimal code areas that are suspicious, Pi, and precision



1 doub l e foo ( doub l e arg1 , doub l e * arg2 , i n t a rg3 ) {

2 doub l e va r1 = * a rg2 ;
3 va r1 = ( a rg1 � va r1 ) / a rg3 ;
4 r e t u r n va r1 ;
5 }

(a) Original implementation for function foo.

1 doub l e foo ( doub l e arg1 , doub l e * arg2 , i n t a rg3 ) {

2 l ong doub l e v a r a r g1 = a rg1 ;

4 l ong doub l e va r1 = ( long doub l e ) * a rg2 ;
5 va r1 = ( v a r a r g1 � va r1 ) / a rg3 ;
6 r e t u r n va r1 ;
7 }

(b) Function foo with enhanced precision.

Fig. 3: Function Transformation Example.

enhancement transforms the floating-point operations in Pi to
high precision for testing. Compile-&-test compiles the trans-
formed code using compiler C1 with high optimization level
and tests for inconsistencies in contrast to unoptimized code
or compiler C2. The feedback of compile-&-test regarding the
existence of inconsistencies guides hierarchical code isolation
in finding the next suspicious code areas to examine.

III. APPROACH

This section describes PLINER’s approach for precision en-
hancement, and our hierarchical algorithm for code isolation.

A. Source-to-Source Precision Enhancement

With the purpose of optimization, the compiler reorders
and transforms program instructions. The optimized code
is guaranteed to be equivalent to the original code on the
condition that the arithmetic used in the computation satisfies
the commutative, associative and distributive laws. Unfortu-
nately, floating-point arithmetic does not satisfy associative
and distributive laws, therefore, a compiler optimization could
induce numerical inconsistencies on floating-point code.
To eliminate the impact of compiler optimizations on a

floating-point code region (i.e., compiler-induced numerical
inconsistencies), we emulate real arithmetic using high pre-
cision. Ideally, such emulation will result in optimized code
that produces the same result as the original code. We refer to
the process of transforming a given code region to use high
precision as precision enhancement. Specifically, precision
enhancement replaces the floating-point types of variables and
operations to a user-specified higher precision in a given code
region. Theoretically, all operations on reals are accurate and
our goal is to ensure that the transformed code is accurate with
compiler optimizations.
To allow our algorithm operate on all compilers, we con-

sider enhancing floating-point precision at the source level
instead of transforming a specific intermediate representation,
such as LLVM or GCC IR. Our algorithm manipulates the
abstract syntax tree (AST) of the program, and rewrites the
source code. Precision enhancement is achieved by function
transformation that enhances precision for a function, and
region transformation that enhances precision for code regions
such as a for loop.

1) Function Transformation: Figure 3 illustrates the trans-
formation with a simple function foo—Figure 3a shows the
original definition of function foo, and Figure 3b describes the
transformed definition of foo in which floating-point opera-
tions are performed in higher precision. Assume the user has
specified the long double type to emulate reals. Changes in
the code are highlighted. We describe these changes separately
in the following paragraphs.
Scalar Parameters/Variables. For each of the floating-

point scalar parameters such as arg1 in function foo, we first
declare a new local variable with enhanced precision, which
is initialized with the value of the associated parameter. As
shown on line 2 in Figure 3b, a local variable var_arg1
is declared for parameter arg1 using higher precision, and
assigned the value of arg1. Next, each use of such floating-
point scalar parameter in an expression is replaced by its
corresponding higher-precision variable (see variable replace-
ment on line 5).1 For floating-point scalar local variables such
as var1 in function foo, we rewrite each declaration to use
higher precision, e.g., the first change on line 4 in Figure 3b.
Pointer and Array Parameters/Variables. For floating-

point pointer and array parameters/variables such as arg2
in foo, we manually cast their values to higher precision
when dereferenced (see line 4 in Figure 3b). We choose to
keep floating-point array parameters/variables in their original
precision to prevent a significant increase in memory usage.
Remarks. In function transformation, we do not intend to

modify the function signature. Using the original signature can
potentially cause downcasting when, for example, returning
the value of var1 in double precision, as shown on line 6
in Figure 3b. However, we did not observe a necessity in
our evaluation to transform function signatures. Finally, we
transform the precision of math library function calls, such as
sin and cos, for which a higher-precision implementation is
available (e.g., sinl and cosl in C, respectively).
2) Region Transformation: We define a region as a se-

quence of basic blocks that has a single entry point from a
basic block outside the region and a single exit point to a

1There are cases where simply replacing a variable with its corresponding
higher-precision variable would cause an error. For example, replacing vari-
able x in statement swap(&x, &y) with its corresponding higher-precision
variable will cause a compilation error because function swap takes the
reference of double variable. Such cases are handled separately.



Data: Code Region : region
Result: Variable Sets: var toReplace, var toRevise,

var toCast
1 var toReplace, var toRevise, var toCast = set(), set(),

set();
2 curr reads, visited = set(), set();
3 for st in reversed(region) do
4 reads = obtainVarReads(st);
5 writes = obtainVarWrites(st);
6 curr reads += reads;
7 for v in curr reads ^ writes and not in visited do
8 visited.add(v);
9 if obtainDeclSt(v) in region then

10 var toRevise.add(v);
11 else
12 var toReplace.add(v);
13 end
14 end
15 end
16 var toCast = curr reads - visited;
17 return var toReplace, var toRevise, var toCast

Algorithm 1: FP Variable and Parameter Categorization.

basic block outside the region. In region transformation, we
synchronize data at the entry/exit points.
Goals. Enhancing the precision of a region R requires the

following: (1) all floating-point operations inside region R
are performed with enhanced precision, (2) there are as few
floating-point downcasts as possible inside region R, and (3)
all floating-point operations outside region R are performed
in their original precision. Upcasting all operands for every
floating-point operation in region R suffices to achieve the
first goal. However, the result of the operation is then downcast
by the compiler when stored in a variable of lower precision.
Consider the following two operations as an example. Suppose
all variables are declared in double precision. We upcast
each operand of the two arithmetic operations, which forces
to perform the operation with enhanced precision.
1 v1 = ( long doub l e ) v2 / ( l ong doub l e ) v3 ;
2 v1 = ( long doub l e ) v1 + ( long doub l e ) v2 ;

First, v2 and v3 are cast to long double precision. The
division is therefore performed in long double, but the result
is then downcast to double before being stored in v1. The
addition operation reads the operand v1, but precision has been
lost due to the previous downcast.2 The second condition aims
to avoid such precision loss by increasing the precision of v1.
Note that v1’s precision must be reestablished once outside
region R. Any floating-point operations outside region R that
involve v1 should be performed in their original precision, as
described in the third condition.

2It is possible that in the binary code, the value of v1 is maintained in a
register and would not be downcast to double before the second operation.
However, this is not guaranteed and the compiler may still downcast the long
double value to save it to memory because of register allocation.

Data: Code Region : region
Result: Revised Code Region: region revised

1 /* Insert sync statements at the entry. */

2 entryStmts = NULL;
3 for v in var toReplace do
4 v HP = v.name() + “ HP”;
5 entryStmts += Declare(v HP); entryStmts +=

Assign(v HP, v);
6 end
7 /* Revise statements of the region. */

8 for st in region do
9 reads, writes, decls = obtainReads(st),

obtainWrites(st), obtainDeclare(st);
10 uses = reads + writes;
11 for v in uses do
12 if v in var toReplace or var toRevise then
13 replace(v.name(), v.name() + “ HP”);
14 end
15 if v in reads and var toCast then
16 castUp(v);
17 end
18 end
19 for v in decls and var toRevise do
20 v HP = v.name() + “ HP”;
21 replaceDecl(v, v HP);
22 end
23 end
24 /* Insert sync statements at the exit. */

25 exitStmts = NULL;
26 for v in var toReplace do
27 v HP = v.name() + “ HP”;
28 exitStmts += Assign(v, v HP);
29 end
30 for v in var toRevise do
31 v HP = v.name() + “ HP”;
32 exitStmts += Declare(v);
33 exitStmts += Assign(v, v HP);
34 end
35 region revised = entryStmts + region + exitStmts;
36 return region revised

Algorithm 2: Region Transformation.

Variable Categorization. To achieve the above goals, we
divide local floating-point variables and parameters into three
categories: (1) revise declaration, (2) replace declaration, and
(3) typecast. Algorithm 1 describes the categorization process.
We define three sets to hold the variables in each category
(line 1), and two additional sets: curr reads and visited
(line 2). curr reads stores the collection of variables whose
value has been read so far in the region, and visited contains
the variables that have been categorized up to this point.
The algorithm traverses the statements in the given region
in reverse order (line 3). For each statement, we retrieve
operand variables, i.e., set reads (line 4), and the variables



that are overwritten in the statement, i.e., set writes (line
5). If a variable var is overwritten in the current statement
and it will be read by an operation in or after the current
statement (recall that statements are traversed in reverse or-
der), i.e., var 2 curr reads ^ writes, then the variable is
added to categories var toRevise or var toReplace based
on the location of the variable’s definition. Each variable in
var toRevise is defined inside the region (line 9-10) while
each variable in var toReplace is defined prior to the start of
the region (line 12). Lastly, once all statements are traversed,
the remaining uncategorized floating-point variables whose
value has been read, i.e., curr reads � visited, are added
to the set var toCast (line 16).
The categorization algorithm ensures that var toCast in-

cludes variables for which there are no write operations across
the region, or for which there are no read operations following
a write; var toRevise consists of variables for which there is
at least one read operation following a write, and the variable
is declared inside the region; and var toReplace includes
the remaining variables for which there is at least one read
operation following a write but the variable is declared prior
to the entry of the region.
Code Transformation. Finally, we describe how we trans-

form a given region based on the categorization of floating-
point variables and parameters. The transformation involves
inserting statements for data synchronization at the entry and
exits points of the region, and rewriting variables and types in
the statements within the region.
Algorithm 2 describes code transformation. At the entry

of the region, for each variable v 2 var toReplace, we
declare a new variable with enhanced precision v HP , which
is initialized with the value of its corresponding v (lines 3-6).
Next, we replace each use of such variables v within the region
with its higher-precision version v HP (line 13). Lastly at the
exit of the region, we assign the value of v HP back to its
corresponding variable v (lines 26-29).

Variables in category var toRevise are declared inside the
region, thus we simply revise their existing declarations. As
shown on lines 8-23 in Algorithm 2, for each statement in the
region we capture the variables it declares into the set decls.
If a declared variable v is in the category of var toRevise,
we replace its definition with the definition of v HP , which
denotes variable v declared with enhanced precision (lines 19-
22). For any use in the region of variable v 2 var toRevise,
we replace v with v HP (line 13). Finally, at the exit of
the region, we insert the original declaration of v initialized
with the value of v HP (line 30-33) so that later operations
outside the region access v in the original precision. Finally,
for the category of variables v 2 var toCast, we add a cast
for any use of v in the region to enhance the precision of the
corresponding operation (lines 15–17).
Consider our earlier example introduced when explaining

the goals of region transformation,
1 va r1 = va r2 / va r3 ;
2 va r1 = va r1 + va r2 ;
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Fig. 4: Illustration of hierarchical code isolation. The algorithm
searches for the problematic code at the level of functions,
loops, BBs and lines. Specifically, we first isolate the functions
that corresponds to the compiler-induced inconsistency, then
zoom into each problematic function to isolate the affected
code regions in each function. The isolated functions/code
regions at each level is shown in red.

the transformed region for the two operations is as follows:

1 l ong doub l e var1 HP = va r1 ;
2 var1 HP = ( long doub l e ) va r2 / ( l ong doub l e ) va r3 ;
3 var1 HP = var1 HP + ( long doub l e ) va r2 ;
4 va r1 = var1 HP ;

Variable var1 is replaced with var1_HP that is declared
with enhanced precision, and two assignments synchronizing
var1 and var1_HP are inserted at the entry and exit of the
region.3 Moreover, variables var2 and var3 are upcast. In the
revised code, (1) all operations are performed with enhanced
precision, (2) there are no downcast instructions between the
two operations, and lastly (3) the precision of statements prior
to or after this region is not affected.
Remarks. The complexity of both the categorization al-

gorithm and the transformation algorithm is O(nm) while n
indicates the number of statements and m denotes the number
of variables in the specified region. Similar to function trans-
formation, we do not modify the declaration of pointer or array
variables and parameters, i.e., these will not be categorized into
var toReplace or var toRevise. Instead, these variables or
parameters will be categorized into var toCast if the floating-
point values they point to or store are used as operands in the
given region.

3The synchronization of var1 and var1_HP at the entry of the region is
not necessary because var1_HP is rewritten right away in the first operation.
Future analysis can help remove such unnecessary data synchronization.



B. Hierarchical Code Isolation

To isolate the lines of code that are responsible for compiler-
induced numerical inconsistency, we apply binary search on
the code hierarchically. As shown in Figure 4, we first divide
the code into functions and use binary search to isolate
the functions that induce inconsistencies. In the search, we
enhance the precision of a function by performing function
transformation, as described in the previous section. For the
isolated functions (shown in red in the figure), we further ex-
amine the loops, basic blocks (BBs), and lines to hierarchically
isolate the problematic lines of code in each function. The
precision of loops, BBs and lines are enhanced by applying
region transformation. In the rest of this section, we first give
an overview of the search algorithm, then elaborate on each
phase of the search.
Code Search. During the search, we iteratively divide the

program into regions, enhance the precision of each such
region, and test whether the numerical inconsistency persists
or disappears.
As an example, consider a program P for which a numerical

discrepancy is observed between the results produced by PO0

and PO3, where PO0 is the executable of P generated with
compiler optimization level �O0, and PO3 is the executable
generated with �O3, i.e., there exists an input for which
Execute(PO0, input) 6= Execute(PO3, input).4 Let P (r)
denotes the program generated by enhancing the precision of
the code region r in P . The purpose of our search algorithm
is to minimize r with respect to Execute(PO0, input) =
Execute(PO3(r), input). We achieve this by performing bi-
nary search on the list of code regions. In this paper, we use the
bisection algorithm followed by a 1-minimal [29] check. The
bisection algorithm iteratively bisects the region list and selects
the sublist in which regions have to be transformed to high
precision to prevent inconsistencies. The search terminates
when regions in both sublists have to be transformed to high
precision, and returns the minimal sublist it isolated. We
further minimize this sublist by attempting to remove each
individual region in it. The final set the isolated regions is
guaranteed to be 1-minimal, which indicates that removing
any individual region will cause inconsistencies.
Function Isolation. First we collect all functions in the

program, and discard those that do not contain floating-point
operations. The remaining functions are organized in a list as
shown at the top of Figure 4. The search is performed over this
list to identify problematic functions. The subsequent phases
in the search zoom into each problematic function individually.
Loop Isolation. This step is optional, and only applies

to functions that include loops. Unsurprisingly, the origin of
numerical inconsistencies is often found within loops. This is
because rounding errors can accumulate in each loop iteration,
which ultimately may cause a numerical inconsistency in the
final result. Thus, the nature of loops makes them susceptible
to compiler optimizations.

4An error threshold can be used when comparing the results.

a b c

d e f

Fig. 5: Illustration of loop structure.

Here we consider while-do and for loops that do not
contain goto statements. A loop itself is a valid region defined
in Section III-A2. We analyze the source code of a function to
collect all such loops, which can overlap if nested. We organize
the loops into a list of trees. Each node of a tree indicates a
loop, and an edge denotes direct nesting.

Figure 5 shows an example of the tree structures of loops.
In this example there are six loops a-f , while loop d and e
are nested in loop a, and loop f is nested in loop b. In the
search for loop isolation, we first perform binary search on
the list of outermost loops (roots of trees, i.e., a b c in the
example). Once a loop is identified as problematic, we zoom
into its inner loops and repeat the process until the problematic
loop is no longer divisible or no inner loops exist. As shown
in the second and third rows in Figure 4, for function Fun2,
we first isolate Loop2 from the outermost loops and iteratively
zoom into inner loops until we reach inLoop1. Transforming
all inner loops of inLoop1 does not remove the numerical
inconsistency and therefore inLoop1 is returned at this stage.

Basic Block Isolation. A basic block (BB) consists of a
straight-line code sequence with single entry and exit points. A
function can be decomposed into one or more BBs. Specific to
our algorithm, we may further break a BB into two depending
on the last statement in the BB. If the last statement is a
condition statement in an if or while-do statement, e.g., if
(a > 0), we simply divide the BB so that the last statement
is a separate BB. This is to facilitate region transformation
when inserting synchronization statements at the exit point of
a BB. We then organize the BBs as a list for binary search.

Before the search, if a minimal list of problematic loops
is returned from the Loop Isolation phase, we use it to filter
the BBs so that we only search from BBs that are within
the problematic loops. As shown in Figure 4, the problematic
loop inLoop1 in function Fun2 is further decomposed into
four BBs and binary search in Basic Block Isolation identifies
BB1 and BB2 to be problematic. Specifically, if transforming
all BBs in the search space to high precision at once does not
remove the numerical inconsistency, it indicates that the region
transformation on the problematic loop cannot be divided into
multiple BB transformations. This is because at the end of
a BB transformation, all floating-point values are truncated
back to the original precision, and the truncation among
BBs contributes to the inconsistency in the result. In this
case, the hierarchical search terminates and returns the list
of problematic loops. If no loops are identified, it returns the
whole function as problematic.

Line Isolation. Finally, we break the problematic BBs into



TABLE II: Size characteristics of Varity programs. Column “# FP Operations” gives the number of floating-point arithmetic operations and
calls to math functions (e.g., sqrt). Column “#Parameters” shows the number of floating-point parameters, and load/store operations with
a floating-point variable involved. Lastly, column “#Stmts” shows the number of if-else and for-loop statements.

#FP Operations #Parameters #Stmts
LOC Arithmetics MathCalls Parameters Loads Stores if-stmts for-stmts

average 48.2 17.8 5.4 13.6 30.4 31.8 1.3 1.9
min 29 2 1 3 6 7 0 1
max 83 48 20 34 81 80 5 5

lines5 and apply an algorithm similar to the Basic Block
Isolation phase to identify the problematic code lines. If the
line isolation succeeds, it returns the minimal code lines that
induce the discrepancy, and if it fails, the minimal list of BBs
isolated from the above phase is returned.

IV. IMPLEMENTATION

PLINER comprises two main modules: (1) program trans-
former and (2) search-&-test engine. The program transformer
is implemented as a Clang tool built with LibTooling [2], a li-
brary for writing standalone Clang tools. This module analyzes
the Abstract Syntax Tree (AST) of C/C++ programs to perform
source-to-source transformation via a Clang rewriter buffer.
The search-&-test engine is implemented in Python. The
search component divides the program (based on functions,
loops, blocks, and lines) to perform a systematic search to
isolate the code region responsible for the observed numerical
inconsistency. The testing component launches the program
transformer module to increase the precision of the specified
code regions, compiles the transformed program and evaluates
it on inputs known to cause numerical inconsistencies to
determine whether the problem persists. PLINER is publicly
available on GitHub.6

V. EXPERIMENTAL EVALUATION

Our evaluation aims to answer the following questions:
RQ1 How effective is PLINER at isolating code responsi-
ble for compiler-induced numerical inconsistencies?

RQ2 How does PLINER compare to the state of the art in
finding the root cause of numerical errors?

A. Experimental Setup
In the evaluation, we use a set of 100 floating-point synthetic

programs, the SNU NPB Suite [26] (a set of the NAS Parallel
Benchmarks (NPB) [5] implemented in C, OpenMP C, and
OpenCL), and a real-world case of compiler-induced incon-
sistency in a hydrodynamics application—Laghos, [1, 11].
All programs use uniform double precision. The program
transformer emulates reals via long double precision. The
floating-point synthetic programs were automatically gener-
ated by Varity [4, 17], a framework to generate random
floating-point programs that produce numerical variations

5The source code of the given program is normalized so that there are no
multiple BBs in a single line.

6https://github.com/LLNL/pLiner

when compiled with different optimization levels. We compare
PLINER with the baseline Herbgrind [23], the state-of-the-art
tool to identify root causes of floating-point errors. Below we
provide more details on our experiment with Varity programs
and Herbgrind.
Varity Programs. First, we used Varity to generate 50

floating-point programs that yield inconsistent results when
compiled by IBM XL C/C++ compiler (xlc, Version: 16.01)
with -O3 optimization level in contrast to -O0. These 50
programs were generated and tested on a workstation with
160 POWER8 2.06GHz CPUs and 250GB RAM. Second, we
used Varity to generate 50 programs on a workstation with 40
Intel(R) Xeon(R) 2.20GHz CPUs and 250GB RAM. These 50
programs produce inconsistent results when compiled by the
GCC compiler (Version: 5.4) on the Intel platform with -O3
-ffast-math options in contrast to GCC -O0.
All the test programs are written in C. In addition to the

source code, each program is associated with a test input,
i.e., a set of floating-point numbers that induce a numerical
inconsistency in the program. When executed with the given
input, the program will produce inconsistent results.
Each program consists of two functions: main and compute.

Function main transforms the program arguments passed from
the command line into floating-point values (occasionally
to integer values for a few arguments), and calls function
compute with all floating-point (and integer) values as param-
eters. Function compute performs computation over the pa-
rameters and outputs a single floating-point number in double
precision. The computation involves very intensive floating-
point arithmetic operations and math library calls such as
sqrt and sin. Moreover, there can be multiple if-else and
for-loop statements in function compute. Loop iterations
are bounded by an integer parameter. Table II presents size
characteristics of the Varity programs used in our evaluation:
number of lines of code (LOC), floating-point operations,
parameters, conditionals, and loops.
In our experiment with Varity programs, PLINER com-

piles each transformed program both with -O0 and -O3 (or
-O3 -ffast-math), and compares their results. If the results
match, then the transformed program is considered free of the
numerical inconsistency.
Baseline: Herbgrind. To the best of our knowledge, PLINER

is the first tool that identifies the origin of compiler-induced
numerical inconsistencies at a fine granularity, i.e., lines of
code. However, tools that identify the root cause of floating-



TABLE III: PLINER and Herbgrind Results for the Varity Programs. Column “# Programs Isolated” indicates number of programs for which
the tool successfully isolated the origin of inconsistencies. The total running time is presented in Column “Time”. For PLINER, Columns
“Isolated Region Granularity” shows the number of programs with regard to the granularity of lines of code that PLINER isolated (line, basic
block (BB), loop and function). Column “Avg #Trans” indicates the number of transformations PLINER performed on average.

Varity Programs PLINER Herbgrind
#Programs Isolated Region Granularity Avg #Programs

Platform Compiler #Programs Isolated Line BB Loop Function #Trans Time Isolated Time

Power8 xlc 50 41 37 1 3 0 6.55 5m24s - -
Intel gcc 50 46 37 0 5 4 6.64 4m02s 3 0m58s

point errors could potentially be used to identify such nu-
merical inconsistencies. Therefore, to validate this hypothesis,
we compare PLINER to Herbgrind, the state-of-the-art tool
to identify root causes of floating-point errors. Herbgrind
performs an error analysis on the binary code of a floating-
point program to find the root causes of floating-point errors.

B. Effectiveness of PLINER on Synthetic Programs

PLINER successfully isolated the origin of compiler-induced
inconsistency for 87 out of 100 programs: 41 programs on
the Power8 platform and 46 programs on the Intel platform.
Table III shows these results. With regard to the granularity of
lines of code that PLINER isolated from the programs (shown
in column “Isolated Region Granularity”), for 74 out of 87
successful cases, PLINER isolated a single line of code. In
one case PLINER isolated a basic block, in 8 cases a loop,
and in the remaining 4 cases a function. This indicates that in
most cases, the developers only need to use high precision or
rewrite a few lines in their code, and after that, they can enable
aggressive compiler optimizations to speed up their code.
Column “Avg #Trans” shows the average number of trans-

formations performed by PLINER to isolate the origin of
inconsistencies in the programs. PLINER applied six transfor-
mations on average. Note that each program transformation
leads to two program runs, i.e., running both the optimized
and unoptimized versions of the transformed program. The
total running time of PLINER is shown in column “Time”.

PLINER did not isolate code in 13 programs (9 on Power8
and 4 on Intel platform). In these cases, precision enhancement
failed to remove the inconsistency in the result, i.e., the
transformed program with high precision yields inconsistent
results in the same manner as the original program. To under-
stand why precision enhancement is insufficient, we manually
examined the root causes of the numerical inconsistencies. We
observed that, in 11 out of 13 programs, the inconsistencies
are related to operations on signed zeros and NaNs.
Table IV shows examples in which PLINER failed to isolate

the origin of the compiler-induced inconsistency. Column “Op-
eration” indicates the floating-point operation on which -O0
and -O3 (-O3 -ffast-math for gcc) produce inconsistent
results and column “Output” shows the specific outputs given
by the two compiler optimization levels. As shown, the first
four logical/arithmetic expressions operate on +0, -0, or NaN.
In these operations, xlc -O3 and gcc -O3 -ffast-math

TABLE IV: Examples of origin of compiler-induced inconsistency
that PLINER failed to isolate.

Output
Operation -O0 -O3 [-ffast-math]

a comparison with NaN false true
-1.38e-322 / -0.0 * -0.0 NaN 0
0.1 + -0.0 * NaN NaN 0.1
+0 - -0 0 NaN
atan2(-1.4801e+305 / -1.8131e-319, 1.5708 NaN
-1.0247e+305)

violate the IEEE 754 rules while -O0 in both compilers yields
IEEE 754 compatible results.7

Precision enhancement cannot fix the above inconsistencies
because +0, -0, and NaN are fixed floating-point special num-
bers irrespective of precision, and the operations on floating-
point special numbers follow IEEE 754 rules. In the last row
of Table IV, -O0 and -O3 of the xlc compiler produce incon-
sistent results in a call to the math library atan2. Specifically,
in the computation of atan2’s first parameter, -O0 and -O3
generate inf and NaN, respectively regardless of precision.
The atan2 math call further amplifies the inconsistency by
producing a normal floating-point number for parameter inf
and propagating NaNs to the result.8

Finding 1: PLINER proves to be effective at isolating
the origin of compiler-induced numerical inconsistencies
in synthetic programs. PLINER isolated the origin in 87
out of 100 programs, and in 85.1% of the cases PLINER
isolated a single line. Finally, PLINER uses approximately
6 transformations on average to isolate the origin of the
numerical inconsistency.

7Unsurprising since xlc’s manual states that the compiler can generate
non-IEEE 754 compatible instructions in -O3 optimization. For gcc, the
-ffast-math option enables optimizations that violate IEEE 754 rules.

8We use long double in precision enhancement, which is represented in
xlc by an ordered pair of doubles. The value of the long double quantity
is the sum of the two doubles, therefore, the magnitude of the representable
number in long double is the same as in double precision. In this case,
the divisor -1.8131e-319 is a very small subnormal number and the dividend
-1.4801e+305 is an extremely large number in double, so the high precision
we adopted cannot help -O3 optimization in producing the correct result.



TABLE V: Compiler-Induced Inconsistencies in NPB and PLINER Results. The inconsistencies in NPB programs appear when compiled with
gcc -O3 --ffast-math in comparison to gcc -O0. Column “Epsilon” indicates the error threshold used in the result verification process,
which has been reduced intentionally. Column “LOC” shows the number of lines of code for each program. Column “Isolated Region”
indicates the code region PLINER identified as the origin of the inconsistency. Column “#Trans” denotes the number of transformations
PLINER performed to isolate the code region. Lastly, the total running time of PLINER is presented in Column “Time”.

NPB Inconsistency Cases PLINER
Isolated Region

Program Input Class Epsilon LOC File Function Line(s) #Trans Time

CG B 3.0e-14 900 cg.c sparse - 16 31m43s
SP A 1.2e-11 3242 ninvr.c ninvr 59 23 11m07s
SP B 1.0e-12 3242 exact solution.c exact solution 44 - 47 17 39m22s

C. Comparing PLINER with Herbgrind on Synthetic Programs

While we evaluated the effectiveness of PLINER on 50
programs on the Power8 platform and 50 programs on the
Intel platform, we only compared PLINER to Herbgrind on
the 50 programs on Intel —unfortunately, Herbgrind failed
to install on our Power8 system, and its authors confirmed
that Power8 is not officially supported. The 50 programs on
the Intel platform produce inconsistent results when compiled
with gcc -O3 -ffast-math compared to gcc -O0. We use
Herbgrind to detect floating-point errors for the executable file
of each program compiled with gcc -O3 -ffast-math.
Herbgrind only reported the root cause of errors for 5 out

of 50 programs—in three programs, Herbgrind reports the
same lines as PLINER; in one program, Herbgrind reports a
different line than PLINER; and in one program, Herbgrind
reports a line while PLINER fails to isolate the origin of the
inconsistency. For the two programs for which Herbgrind and
PLINER disagree, we manually transformed the operations on
the line that Herbgrind reported to long double precision
and both transformations failed to remove the inconsistencies.
The line that PLINER isolated, however, was shown to be the
origin of the inconsistency; the inconsistency disappears when
the line is transformed to high precision. For the program for
which PLINER does not report a line, we found that the reason
was signed zeros, as discussed in Section V-B.
In summary, Herbgrind successfully isolated the origin of

compiler-induced inconsistencies in 3 programs. We believe
that Herbgrind cannot identify all floating-point errors because
it only traces a limited number of operations for root cause
identification. Also, Herbgrind performs its analysis at the
binary level where the compiler optimizations have been per-
formed, and therefore is not able to directly identify compiler-
induced problems—Herbgrind has no notion of the behavior
of the unoptimized code.

Finding 2: PLINER outperforms Herbgrind (the state-
of-the-art tool to identify root-causes of floating-point
errors) in isolating compiler-induced numerical inconsis-
tencies in the synthetic programs. PLINER isolated the
origin of inconsistencies in 87 out of 100 programs while
Herbgrind only isolated the origin in 3 programs.

D. SNU NPB Suite

We investigated the serial C version of the SNU NPB Suite
[26] (Version 3.3) to identify compiler-induced inconsisten-
cies. The suite consists of 10 programs—BT, CG, DC, EP, FT,
IS, LU, MG, SP, and UA, and is derived from the serial Fortran
code in “NPB3.3-SE” developed by NAS [5]. Each program
includes 6 input classes—S, W, A, B, C, D. We compiled all
NPB programs both with gcc -O3 -ffast-math and gcc
-O0 on the Intel platform described earlier, and did not find
any inconsistencies between the two compiler options for any
of the input classes.
However, we observed that 6 out of the 10 NPB programs

use an error threshold in their verification routine—BT, CG,
FT, LU, MG, and SP. Specifically, the verification routine
computes the relative error of the program results comparing
to the ground truth for an input class; if the relative error
is within the specified error threshold ✏, then the verification
is successful, otherwise the verification fails. Using the orig-
inal error thresholds, the verification is successful for both
the programs compiled with gcc -O3 -ffast-math and the
programs compiled with gcc -O0.
In an attempt to trigger compiler-induced inconsistencies in

the NPB programs, we tested various error-threshold values
for each of the 6 programs. In other words, we searched for
a smaller error-threshold for which the program compiled
with gcc -O3 -ffast-math failed to verify whereas the
the program compiled with gcc -O0 verified successfully.
Specifically, we iterated through error-threshold values starting
with the original error threshold (1.0e-08 in MG, LU, BT and
SP; 1.0e-10 in CG; 1.0e-12 in FT) down to 1.0e-16 by reducing
the exponent by 1 each time. We tested each program with
input classes A, B and C, and identified three compiler-induced
numerical inconsistencies between gcc -O3 --ffast-math
and gcc -O0 with the modified error thresholds.
Specifically, when the error threshold is 1.0e-14 or

1.0e-15, program CG with input class B (abbreviated as
CG.B) produces an inconsistent result when compiled with
gcc -O3 --ffast-math compared to gcc -O0. We also ob-
served an inconsistency for SP with input class A (abbreviated
as SP.A) when the error threshold is 1.0e-11 or 1.0e-12
and SP with input class B (abbreviated as SP.B) when the
error threshold is 1.0e-12. We manually maximized the error



threshold for each inconsistency case, and the results are
shown in Column “Epsilon” in Table V.
We evaluated PLINER on the 3 NPB numerical incon-

sistencies. As described on the right of Table V, PLINER
successfully isolated a code region for each inconsistency in
10 to 40 minutes. PLINER isolated a function in CG.B out of
7 functions in file cg.c (900 LOC), one line in file ninvr.c
of SP.A, and an assignment statement broken into 4 lines in
file exact_solution.c of SP.B out of 17 files (3242 LOC).

Finding 3: We triggered three compiler-induced incon-
sistencies in the SNU NPB Suite—CG.B, SP.A and SP.B
by modifying the error threshold used in the verification
routine. PLINER successfully isolated the origin of nu-
merical inconsistency for each program within minutes.

E. Laghos Case Study

Finally, we applied PLINER to the Laghos [1] case described
in Sections I and II. PLINER successfully isolated the root-
cause line of code in the function where the numerical incon-
sistency originates within 19 minutes. In other words, after
transforming from double to long double the precision of
the operation at the line pinpointed by PLINER, the numerical
inconsistency disappears. The transformed program produces
129664.9230609672 for the computed |e| in contrast to
144174.9336610391 that is yielded by the original program
compiled by xlc -O3. Using clang, gcc and xlc -O2 as
the ground truth (|e| = 129664.9230611104), the transformed
program satisfies the accuracy threshold 10�12 that is given
to PLINER for isolation.

We created a test case to showcase this inconsistency in
Laghos (see Figure 6), where Line 6 is isolated by PLINER. We
use input values for variables gradv11, gradv00, gradv10
from program profiling. Compiling the test using xlc with
optimization level -O2 yields output �1.3507 while compiling
the same test using xlc -O3 outputs -inf. By examining the
assembly code of Laghos, we found that xlc -O3 converts
the division operation from Line 6 to a reciprocal operation
and a multiplication. This optimization introduces a floating-
point exception because the value of gradv10 is a subnormal
number that is close to zero and the reciprocal of 2*gradv10
overflows. We propose two possible fixes: (1) using higher
precision such as long double for the operations; or (2) using
a threshold � instead of 0 on Line 127 in Figure 1 to exclude
the floating-point values whose reciprocal overflow.

Finding 4: PLINER successfully isolated a line that the
compiler-induced inconsistency originates in the real-
world application, Laghos. We manually transformed the
isolated line to a test case. It shows that the inconsistency
appears because xlc -O3 converts a division operation to
a reciprocal operation and a multiplication which causes
a floating-point exception in program execution.

1 # i n c l ud e<s t d i o . h>
2 i n t main ( ) {
3 doub l e gradv11 =�3.935e�309;
4 doub l e gradv00 =1.430 e�309;
5 doub l e gradv10 =1.986 e�309;
6 doub l e z e t a = ( gradv11�gradv00 ) / ( 2 * gradv10 ) ;
7 p r i n t f ( ” z e t a = %.5g\n” , z e t a ) ;
8 r e t u r n 0 ;
9 }

Fig. 6: Test case extracted from Laghos.

F. Discussion and Threats to Validity

Compiler-induced inconsistencies are not uncommon in the
real world. Besides the Laghos case that is discussed in this
paper, there are other compiler inconsistency cases reported in
the literature [7, 24]. We tried to use the MFEM case reported
in [7], but we were not able to reproduce the numerical
inconsistency in our system. As code is run in heterogeneous
architectures, we believe the existence of compiler-induced
inconsistencies will become even more frequent among com-
pilers for different architectures.
In addition to the Laghos case and SNU NPB Suite pro-

grams, PLINER was evaluated on 100 synthetic programs
to investigate its applicability to many different compiler
inconsistencies. In program generation, Varity explores many
combinations of floating-point operations (including math
function operations), conditionals and loops. These program-
ming constructs are common in HPC codes. The program and
the input space are very large, and it is unlikely that two
Varity programs are equivalent. As shown in Table II, the code
characteristics (LOC, number of floating-point operations and
parameters, etc.) of the programs vary widely. Moreover, to
avoid pure randomness, the programs are generated based on
the code structure of existing benchmarks such as the NAS
Parallel Benchmarks [5]. We believe that the Varity programs
used in our evaluation include a representative set of code
patterns that expose compiler-induced inconsistencies, which
are likely to occur in real-world programs.

PLINER may not always be effective at isolating code when
the computation involves inf -inf, 0, -0 and NaNs. Compiler
optimizations that violate the IEEE 754 rules could yield a
different result for operations on the above values, such as
a comparison to a NaN. From our observation in the 100
synthetic programs across two architectures and compilers,
there are 13% such cases that PLINER cannot handle.

PLINER is currently implemented to transform
float/double precision uniformly to a higher precision
type that the user specifies, such as long double in our
evaluation. PLINER provides a command-line argument for
the user to specify what precision should be used to emulate
reals. For code that originally uses long double or higher
precision types, we recommend to use float128 or arbitrary
precision. We leave it, however, to the user to make sure
that the specified precision type is available. Finally, PLINER
does not explore mixed-precision configurations, such as



enhancing precision in the order of float, double, and
long double. If the program uses mixed precision, PLINER
uniformly transforms all floating-point types to the precision
type used to emulates reals.

VI. RELATED WORK

Floating-Point Testing. FLiT [7, 24] investigates the impact
of compiler optimizations on floating-point programs by test-
ing various compiler flags and identifying result variations—it
supports several compilers, such as gcc, clang, the Intel com-
piler, and CUDA. FLiT can detect compiler-induced numerical
inconsistencies that impact files/functions, but unlike PLINER
it cannot detect inconsistencies at a fine granularity, such as
code lines. It is worth mentioning that if the origin of an
inconsistency is a very small function, and FLiT identifies that
function, FLiT would be as effective as PLINER; however, in
our experience with several realistic HPC programs, functions
that induce inconsistencies can be large, in which case PLINER
can identify the exact line that originates the inconsistency.
Finally, FLiT and PLINER could be used together, where
FLiT could first find functions/files that induce inconsistencies
and PLINER could be used to identify at a fine granularity
which specific regions are the origin of the problem in those
files/functions identified by FLiT.
Herbgrind [23] performs an error analysis on the binary

code of a floating-point program to find the root causes
of floating-point errors. Herbgrind instruments the binaries
using Valgrind [3] to perform each floating-point operation
in both the original and higher precision to calculate the error.
Function calls, conditional branches, and conversions from
floating-point values to integers are referred as spots. The error
is dynamically traced through operations that have an influence
on a spot. However, for the sake of performance, Herbgrind
only traces a limited number of operations (5 by default),
and therefore is not able to report all problematic operations.
Moreover, Herbgrind identifies root causes of floating-point
errors at the binary level, and thus it is difficult to recognize
the errors that are induced by compiler optimizations. In
our evaluation, Herbgrind is not as effective as PLINER at
identifying the origin of compiler-induced inconsistencies.
Similar to Herbgrind, both FpDebug [8] and Verrou [12] use

Valgrind to detect floating-point errors. FpDebug also performs
high-precision execution in the shadow to calculate errors.
Verrou perturbs the floating-point rounding modes to generate
an output variation for each run of the instrumented code. A
statistical analysis on the output variations can be performed
to estimate the error in the result. However, Verrou does not
report the root causes of the floating-point errors.
Lee et al. [19] identify output variations by executing the

program using multiple copies of the floating-point values
varied by rounding errors. Fu et al. [13] consider the backward
error besides the forward error, and automate the calculation
of backward error and condition number, which can be used
to measure how sensitive the code is to errors in the input
and rounding errors in the finite precision arithmetic. Bao
and Zhang [6] monitor the program execution on-the-fly to

detect and track cancellation errors until their propagation
is cut off or a critical execution point such as a predicate
is reached. FPDiff [27] automatically identifies equivalence
classes of function synonyms from a chosen ensemble of
numerical libraries and performs testing to discover points of
divergence. Moreover, some efforts [10, 15, 28, 30] have been
made to generate high error-inducing inputs which provide
a conservative estimation of the error and, more importantly,
testing inputs for code debugging and optimization.
Floating-Point Program Transformation. AutoRNP [28]

detects floating-point errors by approximating the condition
number of the program to guide a search for high error-
inducing inputs, and provides a patch that satisfies a given
accuracy threshold for these inputs. However, AutoRNP is
limited to transforming numerical programs with one floating-
point input. It is therefore not applicable to our problem
in which most applications and tests have multiple floating-
point inputs. Herbie [20] uses a database of rewrite rules and
performs series expansion to rewrite floating-point expressions
to improve floating-point accuracy. Rewrite candidates are
generated for different input regions and combined to pro-
duce a single program that improves accuracy across input
regions. Herbie complements our work by providing a rewrite
suggestion for the code lines that PLINER isolates.
A large portion of transformation work focuses on mixed

precision tuning (e.g., [9, 14, 18, 21, 22, 25]). Instead of using
one precision type uniformly, the program is transformed to
use mixed precision with the aim to improve performance.

VII. CONCLUSION

Diagnosing compiler-induced floating-point inconsistencies
can be difficult and can significantly impact the productivity
of programmers of HPC systems. With HPC systems moving
to heterogeneous architectures with multiple compilers and
platforms, it becomes crucial to have diagnosing tools to
isolate such issues quickly. Our new framework, PLINER is
able pinpoint lines of code that originate compiler-induced
variability. Our approach uses a novel method that combines
precision enhancements at different levels of code granularity
and an efficient guided search to identify locations that can
be affected by numerical inconsistencies. In the course of
developing PLINER, we have used it to isolate floating-point
inconsistencies that affected real-world applications. In our
evaluation with 100 synthetic programs, PLINER isolates the
affected lines 87% of the time.
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Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED
We run Laghos v1.1 on a PowerNV 8335-GCAworkstation compiled
with IBM XL C/C++ compiler v16.01; we run Varity tests v0.1.0
on both a PowerNV 8335-GCA workstation with IBM XL C/C++
compiler v16.01 and an Intel(R) Xeon(R) workstation with GCC
compiler v5.4.

ARTIFACT AVAILABILITY
Software Artifact Availability: All author-created software arti-

facts are maintained in a public repository under an OSI-approved
license.

Hardware Artifact Availability: There are no author-created hard-
ware artifacts.

Data Artifact Availability: There are no author-created data
artifacts.

Proprietary Artifacts: No author-created artifacts are proprietary.

Author-Created or Modified Artifacts:

Persistent ID: DOI: 10.5281/zenodo.3963164 URL:

https://github.com/LLNL/pLiner↪→

Artifact name: pLiner

BASELINE EXPERIMENTAL SETUP, AND
MODIFICATIONS MADE FOR THE PAPER

Relevant hardware details: PowerNV 8335-GCAworkstationwith
160 POWER8 2.06GHz CPUs and 250GB RAM; a secondworkstation
with 40 Intel(R) Xeon(R) 2.20GHz CPUs and 250GB RAM

Operating systems and versions: Red Hat Enterprise Linux Server
release 7.6 running Linux kernel 3.10.0-957.21.3.1chaos.ch6.ppc64le

Compilers and versions: IBM XL C/C++ compiler v16.01; gcc v5.4;
LLVM/clang v9.0.1

Applications and versions: Laghos v1.1; NAS Parallel Benchmarks
v3.3 - C version

Libraries and versions: JSON for Modern C++ v3.5.0

Key algorithms: bisection algorithm

Input datasets and versions: Varity Tests v0.1.0


