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Semianalytical Solutions to the
Lighthill-Whitham—Richards Equation With
Time-Switched Triangular Diagrams: Application
to Variable Speed Limit Traffic Control

Yang Shao

Abstract— This article proposes a new approach for computing
a semiexplicit form of the solution to a class of traffic flow
problems encoded by a Hamilton-Jacobi (HJ) partial differen-
tial equation (PDE), with time-switched Hamiltonian. Using a
characterization of the problem derived from viability theory,
we show that the solution associated with the problem can be
formulated as a minimization problem involving the trajectory of
an auxiliary dynamical system. A generalized Lax—Hopf formula
for the switched Hamiltonian problem is derived, which enables
us to compute the solution associated with affine initial or
boundary conditions as a linear program involving the control
function of the auxiliary dynamical system. This formulation
allows us to compute the solution to the original problem exactly,
unlike dynamic programming methods. In addition, this method
allows one to very efficiently recompute the boundary conditions
associated with an initial condition problem, allowing large-scale
variable speed limit traffic control problems to be solved.

Note to Practitioners—Most dynamic speed limit control tech-
niques used to manage traffic flow on highways rely on dis-
cretizations of partial differential equations, which require one
to compute the solution on a computational grid. This article
focuses on an alternate solution method that does not require
the solution to be found on all grid points, potentially saving
computational time on large-scale problems.

Index Terms—Linear programming, speed control, switched
fundamental diagrams.
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I. INTRODUCTION
A. Background and Motivation

NTELLIGENT transportation systems have proposed a

variety of traffic control devices that induce time-dependent
traffic behaviors to reduce congestion. Examples include vari-
able speed limits (see [1]-[12]) and dynamic lanes reversal
(see [13], [14]). Several of these devices have the common
effect of causing different flow—density relationships at differ-
ent time intervals on a section of road. For instance, variable
speed limits change the shape of the uncongested region
(see [15], [16]) due to the different free-flow speeds.

Of the three levels of traffic flow models (macro-
scopic, mesoscopic, and microscopic), macroscopic models
offer tractability for studying larger networks while includ-
ing time-varying changes in flow caused by these control
devices. Macroscopic models are typically based on the
Lighthill-Whitham—Richards (LWR) partial differential equa-
tions (PDEs) of traffic flow [17], [18]. There are several
well-known approximation methods for solving the LWR
PDE, such as the cell transmission model (CTM) [19], [20]
and the link transmission model [21]. Although effective for
dynamic network loading, these approximations nevertheless
contain numerical errors and/or limitations that motivate find-
ing an exact solution. For instance, cell lengths in the CTM
are determined by free-flow speeds, which causes numerical
errors in the propagation of waves (both in free flow and
congestion) as well as reducing its suitability for modeling
variable speed limit situations. In contrast, the LTM (as the
algorithm introduced in this article) does not exhibit such
limitations. The LTM is a very powerful solution method that
has been widely used in network loading applications [22].
While extremely efficient computationally, the LTM is usu-
ally restricted to situations in which initial conditions are
increasing over space (no expansion waves), while this article
considers general initial conditions.

B. Problem Statement

The LWR PDE with a fixed, triangular flow—density
relationship has been solved exactly using a Lax—Hopf
method [23], [24]. The main difference between this article
and [23] is the hybrid model used. Claudel and Bayen [23]
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considered hybrid solution components, corresponding to the
solutions of the LWR model with constant (in space and time)
model parameters, but associated with target functions defined
on a set of nonempty interior. While these target functions can
describe another dynamic on their domain of definition (for
example, an LWR model with different model parameters or a
model that is not LWR), they have to be prescribed in advance
and are cumbersome to use. In the present case, we consider
classical initial and boundary condition functions (with empty
interior) and consider instead switched model parameters.

The contributions of this article are to extend the Lax—Hopf
method to a triangular switched (in time) flow—density rela-
tionship (the Hamiltonian when writing the LWR model
as its equivalent Hamilton—Jacobi (HJ) PDE). The switched
flow—density relationship may take a different form at different
time intervals. Specifically, we solve the following mathemat-
ical problem.

Given an HJ PDE with switched (in time) triangular Hamil-
tonian, given an initial condition, and given upstream and
downstream boundary conditions, how can the solution to
this equation at any point in space and time be exactly and
efficiently computed in a single step?

Control theory (and in particular viability theory) provides
the appropriate tools (an exclusively constructed semianalyt-
ical solution by using a Lax—Hopf formula) to solve this
problem.

For any single boundary condition (initial, upstream,
or downstream), the solution to the HJ equation [25]-[27]
with switched Hamiltonians is found through a linear program.
The solution for a set of initial boundary conditions is the
minimum of the solutions to a set of linear programs that
exhibit similar constraint structure and may be solved in
parallel. After developing the solution method, we explore the
characteristics of solutions and application to variable speed
limits.

The rest of this article is organized as follows. Sec-
tions II and IIT provide background information on the LWR
model and viability episolutions to this model, respectively.
Section IV provides a generalized Lax—Hopf formula asso-
ciated with our model, and Section V shows how the case
of affine initial and boundary conditions can be handled with
linear programming. Section VI discusses the generalization to
piecewise affine initial and boundary conditions. Section VII
discusses solution validity, and Section VIII shows how the
model and solution method developed in this article can be
applied to variable speed limit control. Finally, Section IX
concludes this article.

II. BACKGROUND
A. Lighthill-Whitham—Richards Traffic Flow Model

For the remainder of the article, we will assume that the
spatial domain representing the highway section is [x’, x%],
where x” and x!, respectively, represent the upstream and
downstream boundaries of the domain. Traffic flow on this
section can be described by the density function, denoted as
p (-, -). The density function represents an aggregated number
of vehicles per space unit and can be modeled by the LWR
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The function (-, -) is named the flux function, which we
assume to be a function of both density and time. It depends
on several empirical parameters (e.g., the maximal speed,
the number of lanes, and the drivers habits). Different models
have been proposed for y, in particular the triangular model
defined next, this model that is widely used in the literature
[19], [20], [28], [29]

1)

o(D)p, it p < pet)

) (2)
w(t)(pm(t) — p), otherwise.

w(p, 1) :[

In (2), the parameters p,,, p., v(t), and w(¢) are all positive.
We assume that the fundamental diagram is a continuous
function of density, which implies the condition

(1) pm (1) = (1) + (1) pe (). 3

In the remainder of this article, we assume that the flux
function is triangular and given by (2). Triangular diagrams are
extremely common in the transportation literature since they
are robust and require only three parameters, v(z), p.(t), and
w(t) for their calibration, which is assumed to be piecewise
constant in time. v(¢) is the free-flow speed, w(t) is the
congested wave speed, and p.(¢) is the critical density at which
the maximum flow is achieved. p,, () is the jam density and
can be deduced from the other three parameters. In this article,
the fundamental diagram is assumed to be switched in time,
that is, the parameters v(¢) and p.(t) are piecewise constant
functions of time. These time switches can, for example, model
time-varying changes of the properties of the physical domain,
most often a change in the maximal velocity allowed on
the domain o(¢) or a change in the number of lanes of the
domain [which affects p.(¢)], by closing or opening a lane to
traffic. Since the LWR model is a first-order traffic flow model
with instant adaptations to flow or density changes, such time
switches have an instant effect on traffic, leading to somewhat
unrealistic behavior (e.g., abrupt discontinuities in speed when
a new free-flow speed is imposed). Such discontinuities are a
feature of the LWR model and occur even if parameters are
not switched in time, for example, when traffic speed jumps
from zero to critical velocity instantly when clearing a traffic
jam [30].

B. Hamilton—Jacobi Equation

Equivalently, the state of traffic can be described by a
scalar function M(-,-) of both time and space, known as
the Moskowitz function [31], [32]. The Moskowitz function
is a macroscopic description of traffic flow, which appears
naturally in the context of traffic. It can be interpreted as
follows. Let consecutive integer labels be assigned to vehicles
entering the highway at location x = x”. The Moskowitz
function M(-, -) is assumed to be continuous and satisfies
[M(¢,x)] = n, where n is the label of the vehicle located
in x at time ¢ [20], [28].
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The density function p(:, ) is related [32] to the spatial
derivative of the Moskowitz function M(-, -) as follows:
OM(t, x)
plt,x) =——. (4)

ox

If the density function is to be modeled by the LWR PDE,
the Moskowitz function satisfies an HJ PDE obtained [20],
[23], [33], [34] by integration of the LWR PDE
OM(t, x) ( oM(z, x) )
——y|l———, 1) =0.

ot O0x )

Equation (4) can also be interpreted as the flow—density
relationship ¢(¢,x) = w(p(t,x),t), where p(t,x) is given
by (3) and ¢(¢, x) = (6M(¢, x))/ot.

In this article, we focus on the Moskowitz function rather
than the density function since the Moskowitz function is con-
tinuous and is the solution to the HJ equation (4) that is easier
to deal with numerically. Several classes of weak solutions
to (4) exist, such as viscosity solutions [24], [35], [36] or
Barron—Jensen/Frankowska (B-J/F) solutions [28], [37]. For
the problem investigated in this article, these solutions are
equivalent and can be computed implicitly using a Lax—Hopf
formula. The equivalence arises from the fact that the initial
and boundary conditions are continuous functions (with no
internal conditions) and that no lower viability constraints are
present (unlike in [38] for instance). In this situation, the via-
bility episolution to (4), which is only lower semicontinuous in
general, becomes continuous, and the representation formulas
of the solution, which can be found in [21], [24], and [28],
are all identical.

The fact that the solution is continuous (instead of only
lower semicontinuous) is also very important since the exper-
imental cumulative number of vehicles function [see (4)] is
continuous [21].

C. B-J/F Solutions to HJ Equations

In order to characterize the B-J/F solutions, we first need
to define the convex transform of the Hamiltonian w (-, -) as
follows.

Definition 1 (Convex Transform): For an upper semicontin-
uous (with respect to its first argument) Hamiltonian y (-, ),
the convex transform ¢*(-, -) is given by

sup [P'u+ l//(p’t)]. (6)

* Py—
D) = peDom(y (1)

In the present case, the convex transform ¢*(u, t) is given
by a switched triangular Hamiltonian ¢*(u,t) = (u + v) *
pe, and the convex transform ¢*(u,t) is a piecewise linear
function of u, with time-varying (switched) coefficients. Note
that the definition of the convex transform is derived from
the Legendre—Fenchel transform modulo a sign change and
was introduced in [33]. The pseudocontrol u corresponds to
the optimization variable in the Lax—Hopf formula, which
continuously varies between —v and +w (represented here
as [0 »%]). When solving the optimal control problem,
the value that the pseudocontrol takes is usually the forward
or backward wave speed (—v or w due to our negative sign
convention), though not always, for example, when calculating
the solution in an expansion wave (fan).

Solving the HJ PDE (5) requires the definition of value
conditions, which encode the traditional concepts of initial,
boundary, and internal conditions.

Definition 2 (Value Condition): A value condition ¢(¢, x)
is a lower semicontinuous function defined on a subset of
[0, tmax] x [x7, x7].

For formulation purposes, it is convenient to refer to a value
condition outside of its domain. We expand the value condition
by defining the extended value condition ¢(-, -) as follows:

S = [E(t,x), if (+,x) € Dom(¢) -
+00, elsewhere.

A value condition can encode any constraint on the value of
the Moskowitz function that we need to encode, for instance,
a constraint on its value at the initial time (also known as an
initial condition), a constraint of its values at the upstream or
downstream boundaries of the domain (called upstream and
downstream boundary conditions), or a constraint of its value
inside the computational domain (internal condition, which
corresponds to a fixed or moving bottleneck for practical
purposes, though other types of conditions are possible such
as hybrid conditions [39]).

III. VIABILITY EPISOLUTIONS

In the present context, we recall a specific control frame-
work based on viability theory [33], [40], [41]. This con-
trol framework is identical to the framework developed
in [33]. We then extend this framework to piecewise con-
stant (switched) triangular diagrams, which was not inves-
tigated in [33]. We first recall a definition from viability
theory [33], [40], [41], which we later use in the article.

Definition 3 ( [40], [41] Capture Basin): Given a dynami-
cal system F and two sets /C (called the constraint set) and
C (called the target set) satisfying C C K, the capture basin
Capt(IC,C) is the subset of states of K from which there
exists at least one evolution solution of F' reaching the target
C in finite time while remaining in /C.

Definition 3 will be used throughout this article. Note
that there are several ways to compute the capture basin
Capt . (IC, C) numerically, in particular using the capture basin
algorithm [42], [43]. We now introduce the auxiliary dynami-
cal system used to compute B-J/F solutions to the HJ PDE (5).

Definition 4 (Auxiliary Dynamical System): Given  a
Hamiltonian y(-) with convex transform ¢*(-), we define an
auxiliary dynamical system F associated with the HJ PDE (5)

T'(t) = -1
x'=u) ®)
y =—¢"u@®),T —1)

where u(t) € Dom(¢*(-, T —t)) is called auxiliary control of
the dynamical system Fy.

The controls u(-) associated with the dynamical system are
integrable functions with values in U;cjo -1 Dom(p* (-, T —1)) X
{T — t} (they can be noncontinuous). Furthermore, the above
system of differential equations is valid for all + > 0 except
possibly for a set of zero measure. We now introduce specific
expressions for the viability domain X and the target set C,

FT =
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which play a role in the definition of the proper capture basin
used to define the solution to the HJ PDE.

Definition 5 (Constraint Set Associated With an HJ PDE):
For an HJ PDE (5) defined in the set R, x [x?, x¥], we define
the constraint set K as K := R, x [x”, x!] x R.

We refer the reader to [33] for the construction of solutions
associated with general epigraphical environment sets (where
K is the epigraph of a given lower constraint function), and
the mathematical interpretation of the resulting solutions. The
target set encodes boundary measurement data as follows.

Definition 6 (Target Set Associated With an HJ PDE):

For an HJ PDE (5) defined in Ry x [x°, x*], we define a
target function as a lower semicontinuous function ¢(-, -) in
a subset of R, x [x’, x*]. The target function ¢ defines an
epigraphical target set as C := Epi(c). This set is the subset
of triples (t,x,y) € R, x [x”, x*] x R such that y > ¢(z, x)
(it is the epigraph of the function c).

Definition 1 of the capture basin can now be applied to the
specific target C given by Definition 6 in the constraint set X
given by Definition 5 with the dynamics (8).

Definition 7 (Viability Episolution): Given a characteristic
system F., a constraint set /C, and a target set C, respectively,
defined by Definitions 4-6, the viability episolution M is
defined by

M(z, x) := inf y. )
(t.x.y)eCapt,, (£.C)

Note that by definition, the capture basin Capt(/C,C) of a
target C viable in the environment /C is the subset of initial
states (¢, x, y), for which there exists a measurable control
u(-) such that its associated evolution

s> (t—s,x—i—/s u(r)dr, y—/s(p*(u(r), t— T)dT) (10)
0 0

is viable in I until it reaches the target C. Here, 7 is a pseudo
time that runs backwards in time, whereas 7 is fixed. It is called
“episolution” of the HJ PDE (5) because it is defined by its
epigraph, i.e., by (9), which states that the graph of M(., -)
is the lower envelope of the capture basin Capt, (X, C). The
viability episolution M defined by (9) is shown in [33] to be a
B-J/F solution to (5). If furthermore M is differentiable, then
it is a classical solution to (5).

IV. GENERALIZED LAX—-HOPF FORMULA

A. Semiexplicit Expression of the Viability Episolution

In this section, we use this concept of viability episolu-
tion to construct a semiexplicit Lax—Hopf formula associated
with this solution. This Lax—Hopf formula characterizes the
solution to the HJ PDE (5), for any type of time-varying
Hamiltonian. In Sections V and VI, we will derive the simpli-
fied formula allowing the computation of solutions to (5), for
arbitrary switched (in time) triangular Hamiltonians.

Theorem 1 (Generalized Lax—Hopf Formula): The viabil-
ity episolution M, associated with a target C := Epi(c), for
a given lower semicontinuous function ¢, and defined by (9)
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can be expressed as

T
M (t,x) = (u(_%fle)eR[c(t —T,x +/0 u(r)dr)
T
+ / o * W(r), t — r)dri| (11)
0

for some set R. Since ¢(,x) is generally defined, it may
represent both initial and boundary conditions.
Proof: Tt appears in the Appendix.

Although y does not play a direct role in the quantity to be
minimized, it indirectly intervenes in fact that the evolution
has to be viable in K until it reaches the target C. The
viability in K constraints (r — s,x + [ u(z)dz) to be in
the space—time domain, whereas the constraint of reaching a
target C imposes a lower bound on the value of y, since the
epigraph corresponding to the target C has a lower boundary
(corresponding to the graph of ¢).

B. Semiexplicit Representation for Switched (in Time)
Hamiltonians

We now assume that the Hamiltonians (fundamental dia-
grams) are switched in time, which is of the form y(p,t) =
wi(p) fort € (t;_1,t;], where 1y, ..., t, are given. The Hamil-
tonians have the corresponding convex transforms ¢; (u).

1) Switched Lax—Hopf Formula: We first define the gen-
eralized Lax—Hopf formula for an initial condition ¢(0, x)
valid on x € [0,x*] (elsewhere, c(f,x) = o00). Accord-
ing to the Lax—Hopf formula, the density p4 is conserved
across the switching boundary. Indeed, the solution resulting
from the Lax—Hopf formula is continuous (due to the dynam-
ical model used to generate the Lax—Hopf formula) outside of
the domain of the target set, which is located at the boundaries
of the computational domain (z,x) € ({0} X [*min, Xmax]) U
(R+ X {-xmina -xmax})-

For simplicity, let us first consider the case in which the
Hamiltonian has a single switch in time

wi(p), ift <1

ya(p), if t =1

where y(-) and y,(-) are concave functions, associated with
the convex transforms ¢} (-) and @3 ().

Proposition 1: Let the initial condition ¢(0, x) be defined
for all x. Then

M (t,x)= inf c(t—Tr—t, x+tiu;+Thuy)

(ul,uz,Tz)E[v’,ui]zx[7f],t—f]]
+ flgoik(ul) + ngo;‘(ug).
Proof (Trivial for t < f;): Consider t > f;. By definition

y(p,t) = [ (12)

13)

T
M,(t,x) = inf c(t —T,x +/ u(s)ds)
(u(),T)e[v’ vt ]x[0,1] 0

T
T /0 0" w(s)ds  (14)

where ¢*(-) is piecewise defined by ¢ (u),i € 1,2. For T > f

T I3 T
/0 0" (u(s))ds = /0 07 (u(s))ds + / ou(s)ds. (1)

)
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By Jensen’s inequality

hn T
/ o1 (u(s))ds + / 03 (u(s))ds
0

|

7 T
. ! d R ; u(s)ds

Set u; = (fof1 u(s)ds)/f; and up = (ftlT u(s)ds)/(T —1;). Then

fi T
fll/tl + (T - fl)uz = / u(s)ds +/ u(s)ds
0 f
T
= / u(s)ds.
0

c(t—T,x+f1u1+(T—f1)u2)

A7)

Then

M (t,x)= inf
(ur,u2,TYe[0? 08 ] x[0,1]

+ho} ) + (T — 1) g3 (u2).
Let 7, =T —f,. Since T € [0,¢t], T» € [f;,t — #;]. Then

(18)

M, (t, x)
= inf
(1,12, To)e[v? 08 x 1,1 —11 ]
+ 1197 (1) + Tap; (12).
Corollary 1: For t > fy, for all x, let c(f;, x) = Mc(f], x).
Then

c(t — 1t =T, x + fiuy + Tzuz)

19)

M, (t, x) = inf

ct—T,x +Tu) + To;(u).
(u2,T)e[v”,08 ] x[0,1~7 ] ( 2) #3(2)

(20)

Using Corollary 1, we can generalize Proposition 1 to n time
intervals. Let u = (uy,...,u,) and £(T) = (f, —to, . .
fn72, T - fn71)~ Let (p*(ﬁ) = ((oT(ul); B @:(un))

Proposition 2: Consider n time intervals of controls. Then,
fort > t,

R Iy—2—

M (t,x) = inf

c(t —T,x + T - ﬁ)
(i, T)e[v,vf]" x[0,1]

FH(T) - @*@). (1)

Proof: By induction on Corollary 1.

V. STRUCTURE OF THE SOLUTIONS ASSOCIATED WITH
AFFINE INITIAL, UPSTREAM, AND DOWNSTREAM
BOUNDARY CONDITIONS

We now develop a system of mathematical programs to
solve the switched Lax—Hopf formula given affine initial,
upstream, and downstream boundary conditions. These math-
ematical programs are linear if ¢(u) is a linear function
of u so that the term 7(¢) - ¢*(u) is linear. This is satisfied
if the fundamental diagram for each switch is triangular.
Therefore, we assume in this section that the fundamental
diagram is triangular. Triangular fundamental diagrams are
used in several well-known solution methods for the kinematic
wave theory [21], [44].

In order to show the significant improvement of our method,
we compared the LP method in this article and the popular

-
-w
0 Pe Pm Vp
(@)
Vo'W
pe
= {v -
(b)

Fig. 1. (a) Triangular fundamental diagram, described by three independent
parameters v, w, and p,,. (b) Associated convex transform.

CTM. The upstream and downstream boundary conditions
are analogous to the demand and supply of CTM. While the
algorithm requires the iterative construction of the boundary
conditions, CTM requires the computation of the solution
inside the computational domain too, which increases the
computational time [22]. Unlike the CTM, the LTM does not
require discretization in space and is not constrained by the
CFL condition. It is a very efficient numerical scheme that has
a wide variety of applications; however, its main limitation
is in the integration of initial conditions. Since we want to
encode general initial conditions in this article, we focus on
an alternate method that we now outline.
For triangular fundamental diagrams, ¢ () is linear

o' @) = (i) + w)p. ).

If ¢7(u) is not linear, the mathematical programs will still
have linear constraints but will have general convex objectives
(not necessarily linear) and will thus not be linear programs.
The pseudocontrol u corresponds to the optimization variable
in the Lax—Hopf formula, which continuously varies between
—v and 4w (represented here as [0™, v*]). When solving
the optimal control problem, the value that the pseudocontrol
takes is usually the forward or backward wave speed (—v or
w due to our negative sign convention), though not always,
for example, when calculating the solution in an expansion
wave (fan) in Fig. 1.
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Fig. 2. TIllustration of the solution associated with a single initial condition

block. (a) Colormap representation of the Moskowitz function associated with
a given affine initial condition block and (b) its corresponding density.

A. Affine Initial Condition

The switched Lax—Hopf formula yields the following linear
program to solve M, (7, x) with n control intervals with
a linear initial condition ¢,. This initial condition defines
¢,(0,x) for x € [xZ,xlE]. (Note that [xZ,xlE] is the range of
a boundary condition, whereas [0, L] is the spatial range of
the entire link.) Let b be defined on {0} x [x;,xlt,]. Then,
the capture time T satisfies T = ¢ since ¢, (t — T, x) = oo for
T < t. The linear program is

min C(O, X+ ?(t) . ﬁ) + t:(t) - @) (22)
st.o’ <u; <ot Vi<i<n (23)
0p < x+10(t)-ii <xt. (24)

This linear program must be solved for each initial condi-
tion. To reduce computation time, these linear programs could
be solved in parallel or the similar structure of the polyhedrons
may be exploited.

We illustrate the computation of the solution associated with
a linear initial condition in Fig. 2.

B. Affine Upstream Boundary Condition

For upstream boundary conditions, assume without loss of
generality that each upstream boundary condition b is linear
and defined between some f, and tb such that there exists an
s with 7, < tb < tg < f#y41. This is not limiting as upstream
boundary conditions are given as piecewise linear functions
in general and thus can be separated as linear blocks per
the inf-morphism property. Only values (¢, x) € [z,, tlf] x {0}
are defined for the upstream boundary condition. Elsewhere,
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c(t, x) oo for x > O ort ¢ [tZ,tlf]. This results in
decision variables u thgough ug_1 unused. Therefore, define
I/_is,,, = (Lts, ey I/t,,) and fs,n(T) = (t —T, fs+1 — fs, e fn,1 —
fn2,t — f,—1) for s > 1. However, taking the product
fs.n(T) - U5, as currently defined will result in the product
of two decision variables in the first term (because 7 is also
a decision variable). To address this, we prove that 7 and u;
are fixed under the assumption that c(z, 0) is nondecreasing
in ¢ on its domain. Since c¢(z,0) is a cumulative count, this
assumption holds for any well-defined boundary condition for
the kinematic wave theory. Let

Xs —)C+Mn tn 1 +Z [,+1 - i (25)

which is the x coordinate at the intersection of the path with 7;.
In addition, it is necessary that the x coordinate of the wave
path remains within the link. Therefore

0<(t—ftpt)un <L (26)
and
0<(t—t,,1u,,+z —fi)u; < L
Vs+1<i<n—1. (27)

Proposmon 3 Suppose that c(¢,0) is nondecreasing on
(t,x) € [tb, tb] x {0} and oo elsewhere. Then, u, =
max[o’, x;/(fy — 1°)] and T =1 — fy + (x;/us).

Proof: This follows from the nondecreasing property of
c(t, x). Assume that 0° (7, — t*) < x, < vf(f; — ¢"). If not,
then there is no u € [0, »*] that will result in a (t — T, x) €
[z, tg] x {0} that also satisfies u, = x;/(fy — (t — T)) and,
therefore, will result in ¢(r — T, 0) = o0

From Proposition 2, solving the Lax—Hopf formula for
upstream boundary condition ¢(# — T, 0) involves finding the
t — T that minimizes c(t — T,0). Because c(t — T,0) is
nondecreasing, the optimal ¢t — T is the smallest r — T € [¢’, ]
that also satisfies u; € [0°, v*]. Since u; = x,/(f; — (t —T)) by
deﬁnition the minimum ¢ — 7 is either ¢* if x,/(f, — ") > v’
ort—1 = ts (x5 /us).

This results in the following linear program for the upstream
boundary condition b:

min C(t -T,x + l?s,n(T) : ﬁs,n) + l?s,n(T) : (0* (ﬁs,n) (28)

st <u; <ot Vi<i<n (29)
n<tT<i (30)
X+ i (T) - iign =0 31)
O<Q—&4Wn<L (32)
0<(f—fnlun+z t]—l ui <L
W+1§l§n—L (33)

We illustrate the computation of the solution associated with
an affine upstream boundary condition in Fig. 3.
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Fig. 3. Ilustration of the solution associated with a single upstream
boundary condition block. This figure shows a colormap representation of
the Moskowitz function associated with a given linear upstream boundary
condition block (a) and its corresponding density (b).

C. Affine Downstream Boundary Condition

The downstream boundary condition is similar, except that
the x value corresponds to the end of the space, denoted
by L. Only values (¢,x) € [t;, tlf] x {L} are defined for
the downstream boundary condition. Elsewhere, c(z, x) = co.
We can write an analogous statement to Proposition 3 for the
downstream boundary condition.

Proposition 4: Suppose that c(z,0) is nondecreasing on
(t,x) € [tZ, tg] x {0} and oo elsewhere. Then, u;, =
min[o”, (xs — L)/(fy — ") and T =t — 75 + (xs — L) /us.

Proof: Analogous to the proof of Proposition 3.

The linear program for the downstream boundary condition

b is

min C(l‘ -T,x+ ;;',n(T) . ﬁs,n) + ;\.;,n(T) . ‘/’>k (’Zs,n) (34)

st.o’ <u; <of Vi<i<n (35)
n<tT<i (36)
X+ B (T) it = L (37)
0< (t—fpt)u, <L (38)

n—1
0< (l — fn—l)un + Z(fj — fj—l)ui <L
Jj=i
Vs+1<i<n-—l. (39)

This is identical to the linear program for an upstream bound-
ary condition, except that x + & ,(T) - its,, = L instead of 0
since L is the downstream end.

Let B be the set of initial conditions, B* be the set of
upstream boundary conditions, and B¢ be the set of down-
stream boundary conditions, with B = B’ U B* U B¢. Finding
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0 50 100 150 200 250 300
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Fig. 4. Tlustration of the solution associated with a single downstream

boundary condition block. (a) Colormap representation of the Moskowitz
function associated with a given linear downstream boundary condition block
and (b) its corresponding density.

the minimum value of Mc(¢, x) requires finding the minimum
solution to the linear program for any boundary condition in 5.

We illustrate the computation of the solution associated with
an affine upstream boundary condition in Fig. 4. The proposed
algorithm is indeed exact but is here used to compute the
solution on a rectangular grid (for visualization). The visu-
alization software interpolates between the grid points, which
causes these artifacts. Hence, the method remains grid-free but
requires a grid (any grid would work, even, for example, a set
of random points of the space—time domain) to visualize the
function itself as a colormap. Consequently, the boundaries of
the domain of definition do not appear sharp.

VI. SOLUTION TO ARBITRARY PIECEWISE AFFINE
INITIAL, UPSTREAM, AND DOWNSTREAM
BOUNDARY CONDITIONS

In general, our objective is to compute the solution asso-
ciated with general piecewise affine initial, upstream, and
downstream boundary conditions. This solution can be com-
puted using the solution components associated with a single
affine initial, upstream, and downstream boundary condition,
introduced in Section V. The following inf-morphism prop-
erty, which we now outline, states that the actual solution
to the problem is the pointwise minimum of each solution
component.

The inf-morphism property is crucial, in which it allows
us to separate computations and focus only on computing
partial solutions associated with initial and boundary blocks,
which correspond to solving LPs. Without this property, the LP
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formulation of the solution could not be written and would
instead result (in general) in a nonconvex formulation.

It is well known [40], [41] that for a given environment /C,
the capture basin of a finite union of targets is the union of
the capture basins of these targets

CaptFT(IC, U c,-) = J Capt, (K.C)

iel iel

(40)

where [ is a finite set. This property essentially states that by
capturing a union of targets by a dynamical system, we have
to capture at least one of these targets. This property can be
translated in an epigraphical form as follows.

Proposition 5 (Inf-Morphism Property): Let ¢; (i belongs
to a finite set /) be a family of functions whose epigraphs
are the targets C;. Since the epigraph of the minimum of the
functions ¢; is the union of the epigraphs of the functions
¢;, and the target C := | J,, C; is the epigraph of the function
¢ := inf;¢; ¢;. Hence, (40) implies the following property [33]:

V=0, x €[x’,x], Mc(t,x) = irelchi(t,x). 41)

VII. VALIDITY OF SOLUTIONS
A. Fundamental Diagrams Used for Solving HJ Equations
An important assumption, highlighted in [40], is that the
Hamiltonian (-) used in the HJ PDE (5) is not identical to

the fundamental diagram f(-) as commonly defined. In fact,
we have that

v-p, if p <0
w(p) =1 fp), if0<p=pnm (42)
—w(p = pm), if p> pu.
In 42, » = (df(p)/dp)p=0 and w =

—((df(p))/dp)y=p,- If the initial and boundary conditions
are Lipschitz continuous functions that range in [0, p,]
and [0, gmax], respectively (where p,, denotes the maximal
density and gmax denotes the capacity of the highway section),
then the solution of the HJ PDE (5) is the integral of the
classical LWR solution. However, if an initial density is
outside of the domain [0, p,], it imposes a negative flow
given by (42), which is nonphysical. In practice, this limits
the applicability of lane-based control to situations in which
the maximal density of the highway, following lane closure,
is not exceeded.

B. Invalid Solutions

In the nonswitched Hamiltonian case, it was shown in [20]
that the solution associated with an initial, upstream, and
downstream boundary condition problem satisfies a Lipschitz
property. In addition, if the initial condition is associated with
densities that are in the domain of the fundamental diagram
and if, furthermore, the flows associated with the upstream
and downstream boundary conditions are in the image of the
fundamental diagram (i.e., the flow is nonnegative and less or
equal to the capacity), then the densities and flows associated
with the solution are within the domain of the fundamental
diagram and within the image of the fundamental diagram,
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respectively. Thus, one cannot obtain unreasonable results,
provided that the initial, upstream, and downstream boundary
conditions are physically meaningful.

Note that being under the capacity will not guarantee that
the flow will apply at a particular time step if a queue spills
back (downstream boundary) or if there is insufficient demand
(upstream condition). Since the proposed approach iteratively
computes the flow at the boundaries, the actual flow may be
less than the desired flow. A sufficient condition to ensure that
the flows are nonnegative and densities are within the domain
of definition of the fundamental diagram in each time zone is
that the boundary flows are nonnegative and less or equal to
the capacity in the corresponding time domain. This condition
does not ensure that the flow condition will strictly apply, but
it ensures that the solution itself does not have negative flow
or density values or density values above the maximal density
in the considered region.

For any type of fundamental diagram (switched or not),
viability theory [33], [45] implies that at any point (¢, x) of
the computational domain, the optimal control uy (, x) sat-
isfies uopi(t, x) € 04y (p(t, x), 1), that is, the optimal control
belongs to the superdiferential of the fundamental diagram,
taken at the point p(f,x) corresponding to the density of
traffic at (¢, x). In particular, when the fundamental diagram is
differentiable, we have that uqy (¢, x) = — (0w (p(t, x), 1))/0p.
This property is well known, in which it states that the speed
of characteristics (—uop (¢, x)) is equal to the derivative of the
fundamental diagram, corresponding to the density associated
with the characteristics.

In the present situation, the fundamental diagram is nondif-
ferentiable. Since uop (f,x) € Dom(p*(-,¢)) by construction
of the problem, we can only say that the characteristics can
be associated with some densities of the fundamental diagram,
but nothing more. A point should be noted that the problem
of switching a lane is more a limitation in applicability than
a problem with model parameters.

In particular, the problem of switching a lane is more a lim-
itation in applicability than a problem with model parameters.

If the domain of definition [0, p,,] of the fundamental
diagram is independent of time, then the densities and flows
associated with all points of the solution will fall in the
allowable range (respectively, [0, p,,] and [0, gmax]). Indeed,
in this situation, we can view the switched fundamental
diagram forward simulation problem as a collection of forward
simulation problems, with initial densities for time section i
identical to the final densities of time section i — 1. Since
the final densities of time section i — 1 belong to [0, p,],
the densities in time section i will also belong to [0, p,,], and
by induction, all densities in all time sections belong to [0, p,].
In the following variable speed limit control problem, we are
in this situation since we only vary the speed limit parameter v,
without affecting the parameter p,,, and therefore do not have
to worry about well-posedness.

VIII. APPLICATION TO VARIABLE SPEED LIMIT CONTROL

A. Problem Definition

In this section, we are interested in controlling the flow
of traffic on a single highway section, using the linear
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TABLE 1
PARAMETERS
Time sections 0-30  30-60 60-90 90-120  120-150  150-180  180-210 210-240  240-270  270-300
Free flow speed (m/s) 30 25 20 40 23 35 38 27 24 32
Congestion speed (m/s) 4 3 4.5 2.5 3 2.7 4.1 2.3 3.6 3.2
Critical Density (vehicle/m) 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2
Q 0.9
b 8
Demand (vehicle/s) 0.02 2.0 0.05 0.5 0.3 0.3 0.5 0.3 0.3 0.4
Supply (vehicle/s) 0.4 0.1 0.1 0.4 0.1 0.1 0.4 0.1 0.1 0.2
programming solver shown earlier. We assume that the traffic Define evand)
on the section of highway is modeled by the LWR model with @
triangular Hamiltonian. We further assume that the maximal ] ]

density p,, and the congested velocity w are identical on the
computational domain. Because of condition (3), a change
in free-flow velocity thus causes a corresponding change in
critical density p.. The free-flow speed v(¢) is assumed to be
piecewise constant across the domain, with switches occurring
at times ty,..., 4, withf; <th <--- <1,

vy, if t €0, ]
vy, ift € t, ]

o(1) = 43)

Opy i 1€ [tact, 1)

B. Solution Method

To solve the abovementioned problem, we choose a gradient
descent approach based on the fast forward simulation scheme
introduced earlier as follows. We first initialize the initial
velocity guess [vf,...,0,] In [Omin, Umax]”, Where v, and
Omax» Tespectively, correspond to the minimum and the maxi-
mum free-flow velocity allowed by the controller. We consider
the cost function as follows:

f=x i]il (Mupslream (i ) — Maownstream (@ ))

+ A- Mdownstream (l) +K Z V. (44)

i=l1

The first term corresponds to a minimization of the average
accumulation of vehicles at all times, whereas the second term
corresponds to a maximization of the cumulated outflow (the
initial condition of the problem being fixed). The third term
penalizes the use of high free-flow speeds and represents a
“budget” for the traffic controller. To ensure realistic control
inputs, we set a lower limit of 15 m/s and an upper limit
of 45 m/s on all free-flow speeds.

Using the fast forward simulation scheme introduced earlier,
we compute the cost f associated with a given vector of
free-flow speed [vy, .. ., v,] and numerically compute the gra-
dient g of f by perturbing each of the velocities independently.
We then use a gradient descent approach, with an update
equation [01(k), ..., v,(k)] = [vi(k—=1),...,0,(k—1)]—gov.
For simplicity, we choose a constant v as a step size. This is
motivated by the fact that precision is not extremely important
since vehicles do not precisely track the free-flow velocity

Compute upstream
boundary supply
at time t; (using LP)

Compute downstream
boundary demand
at time t; (using LP)

Gradient-based
Optimization

Update
Iterate from (Va,VapooVo)
i=lton

Compute actual
upstream boundary flow
between t;; and t;
(minimum of upstream
demand and supply)

Compute actual
downstream boundary flow
between t; and t;
(minimum of downstream
demand and supply)

Compute objective function
(using the Lax-Hopf
Algorithm, based on the LP
formulation)

Define actual
boundary conditions

Fig. 5. Gradient-based speed control process on a highway section. The
velocity optimization algorithm is based on a gradient descent approach: a
set of velocities (vy,...,v,) is first set. The LP formulation of IV is then
used to compute the boundary demands and supplies and the corresponding
actual boundary flows. Once these flows are computed, the same formulation
is used to compute the objective function, by computing the solution on the
points of the space—time domain that are relevant to the objective. A gradient-
descent approach is then used to update the value of (vy,...,v,) until the
algorithm converges.

(an error of 1 m/s on each free-flow velocity is acceptable).
The complete process is summarized in Fig. 5.

For this specific problem, we choose the parameters
in Table L.

The results are shown in Fig. 6. Fig. 6 refers to the
components of the gradient vector associated with the chosen
objective function. Since the decision variable has only three
elements in this application, the gradient vector has three
components.

One of the greatest benefits of the proposed approach is its
ability to solve the problem without having to compute the
solution over an entire computational grid. By construction,
the algorithm only needs to determine the actual boundary
conditions of the problem (using the upstream demand and
downstream supply data) and set the corresponding boundary
conditions. Once this is done, the algorithm only needs to
compute the solution at the points of the space—time domain
required by the objective function, which can require signif-
icantly fewer operations than classical variable speed limit
control methods based on the variational theory [46]-[48] or
on the CTM.

C. Comparison With CTM

The CTM is a popular numerical method proposed by
Daganzo [19] to solve the kinematic wave equation [17], [18].
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Switched free-flow speed control. In this problem, we want to compute the optimal free-flow velocities to apply during three time intervals

[0, 1], [t1, 2], and [t2, t3] to minimize the objective f defined earlier. (a) Evolution of the objective function. (b) Evolution of the free-flow speeds. (c)
Gradient components. (d) Moskowitz function corresponding to the optimal free-flow velocities sequence. (e) Corresponding density associated with the
Moskowitz function. (f) Flow associated with the Moskowitz function. As can be seen in this subfigure, speed limit changes can cause discontinuities in

the flow.

Lebacque [49] later showed that the CTM is the first-order
Godunov discretization of the LWR model [50].

The CTM predicts macroscopic traffic behavior on a given
corridor by evaluating the flow and density at a finite number
of intermediate points at different time steps. This is done
by dividing the corridor into homogeneous sections (hereafter
referred to as cells). The length of each cell is lower con-
strained by the time step and the free-flow speed, through the
CFL condition [19], [51]. The traffic behavior is evaluated
every time step starting at + = 1,2,...,m. The solution is
evaluated at every time step for every cell. The initial and
boundary conditions are required to iteratively compute the
solution over each cell.

For fairness of comparison, we assume that the CTM time
step is as high as possible, under the constraint that it satisfies
the CFL condition. Since the maximum free-flow speed is
40 m/s and the chosen discretization of the initial condition is
100 m, the time step has to be less than 2.5 s. In CTM, the only
restriction is cell size/time step > maximum free-flow speed
(40 m/s in this article). The number of cells and the number of
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Fig. 7. Comparison of the computational time of the CTM and the Lax—Hopf
approach. The horizontal axis represents the problem of time horizon and the
vertical axis represents the computational time. The CTM performs better than
the Lax—Hopf approach for short time horizons but is outperformed for larger
horizons.

time steps have minimum multiple relationships when given a
maximum free-flow speed.

Fig. 7 shows the comparison between the computational
times required to optimize the free-flow speed across the
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(t —T,x+ fOT u(z)dr,y — fOT o (u(r), t — T)dr) € Epi(e)

and

< (47)

=z<y

(t —T,x+ fOT u(z)dr,z — fOT p*(u(r), t — r)dr) € Graph(c)

highway section (given the demands of initial conditions
outlined earlier), in the function of the chosen time horizon.
As can be seen from Fig. 7, the computational time of
the proposed approach is approximately independent of the
time horizon required, whereas the CTM has an increas-
ing computational time with the chosen time horizon. The
results were obtained on a ThinkPad T470-20HD002TCD over
Windows 10 Home Basic 1803, running MATLAB version
R2016a. Each computational time was averaged over ten
instances for reliability.

Being based on linear programs, the computational time
associated with the proposed method is highly dependent
on the implementation of the LP solver, and we believe
that more streamlined implementations could greatly accel-
erate the computational time of the simulation, given that
most LPs start with identical constraint matrices (but dif-
ferent right-hand side vectors), and thus, the overhead asso-
ciated with the redefinition of each LP makes most of the
observed computational time, with little time spent solving the
actual LP.

IX. CONCLUSION

This article presents a formulation for solving the LWR
model associated with switched (in time) triangular funda-
mental diagrams. We first introduce a formulation based
on the viability theory, in which the problem involves the
capture of targets (defined in an epigraphical form) by a
time-dependent dynamical system. We show that the solution
at any point in space and time can be computed by solving a
linear program, which we introduce. Being semianalytical, this
numerical scheme is exact. While less efficient than dynamic
programming if the solution has to be computed on an entire
computational grid, this method allows one to compute the
solution at specific points in the domain very quickly, which
is particularly useful when solving the optimization problem.
This framework naturally applies to switched traffic flow
control, such as dynamic speed limit control or dynamic lane
control.

APPENDIX//LAX-HOPF DERIVATION

Proof of Theorem 1: We fix (t,x) € Ry x [x",xf] and
define R as the set of elements (u(-),T,y) belonging to
L'(0, oo; Dom(p*(-, 1)) x Ry x R and satisfying viability
property (45)

Vs e [0, T]

(t —5,X +/S u(r)dr,y — /s 0" (u(r), t — r)dr) e K.
0 0
(45)

Equations (9) and (10) thus imply the following formula:

M, (z, x)
= inf y.
(), T,y)eR such rhat(x—r,x+j;f w(oyde,y— [ (ﬂ*(u(r),l—r)dr)efpi(c)
(46)
Since the graph of the target function ¢ [denoted Graph(c)]
is the lower boundary of £pi(c), we have that z < y as shown

at the top of the page.
Since Graph(c) C Epi(c), (47) and (46) imply

M, (t, x)

= inf y.
(u(-),T,y)eR such that (th,xffOT u(z)dr,yﬁfOT ga*(u(z),tfz)dz)eGraph(c)
(48)

Since c¢ is infinite outside of its domain of definition and
given the definition of Graph(c), (48) can be expressed as
follows:

M.(t,x) = inf

T
|:c(t —T,x +/ u(r)dr)
(), T,y)eR ;

T
+/ q)*(u(r),t—r)dr] (49)
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