
0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3018029, IEEE
Transactions on Automatic Control

Synthesis of Provably Correct Autonomy Protocols
for Shared Control

Murat Cubuktepe, Nils Jansen, Mohammed Alshiekh, Ufuk Topcu

Abstract—We synthesize shared control protocols subject to
probabilistic temporal logic specifications. Specifically, we de-
velop a framework in which a human and an autonomy protocol
can issue commands to carry out a certain task. We blend
these commands into a joint input to a robot. We model the
interaction between the human and the robot as a Markov
decision process representing the shared control scenario. Using
inverse reinforcement learning, we obtain an abstraction of the
human’s behavior. We use randomized strategies to account for
randomness in human’s decisions, caused by factors such as the
complexity of the task specifications or imperfect interfaces. We
design the autonomy protocol to ensure that the resulting robot
behavior satisfies given safety and performance specifications in
probabilistic temporal logic. Additionally, the resulting strategies
generate behavior as similar to the behavior induced by the hu-
man’s commands as possible. We solve the underlying problem ef-
ficiently using quasiconvex programming. Case studies involving
autonomous wheelchair navigation and unmanned aerial vehicle
mission planning showcase the applicability of our approach.

I. INTRODUCTION

In shared control, a robot executes a task to accomplish the
goals of a human operator while adhering to additional safety
and performance requirements. Applications of such human-
robot interaction include remotely operated semi-autonomous
wheelchairs [13], robotic teleoperation [17], and human-in-
the-loop unmanned aerial vehicle mission planning [9]. A
human operator issues a command through an input interface,
which maps the command directly to an action for the robot.
The problem is that a sequence of such actions may fail
to accomplish the task at hand, due to limitations of the
interface or failure of the human operator in comprehending the
complexity of the problem. Therefore, a so-called autonomy
protocol provides assistance for the human in order to complete
the task according to the given requirements.

At the heart of the shared control problem is the design of
an autonomy protocol. In the literature, there are two main
directions, based on either switching the control authority
between human and autonomy protocol [26], or on blending
their commands towards joined inputs for the robot [7], [16].

One approach to switching the authority first determines
the desired goal of the human operator with high confidence
and then assists towards exactly this goal [8], [19]. In [12],
switching the control authority between the human and auton-
omy protocol ensures the satisfaction of specifications that are

M. Cubuktepe and U. Topcu are with the Department of Aerospace Engi-
neering and Engineering Mechanics, University of Texas at Austin, 201 E 24th
St, Austin, TX 78712, USA. Nils Jansen is with the Department of Software
Science, Radboud University Nijmegen, Comeniuslaan 4, 6525 HP Nijmegen,
the Netherlands. Mohammed Alshiekh was with the Institute for Computational
Engineering and Sciences, University of Texas at Austin, 201 E 24th St,
Austin, TX 78712, USA. email:({mcubuktepe,malshiekh,utopcu}@utexas.edu,
n.jansen@science.ru.nl). This work was partially supported by grants NSF
CNS-1836900, and NSF 1652113.

formally expressed in temporal logic. In general, switching of
authority may cause a decrease in human’s satisfaction, who
usually prefers to retain as much control as possible [18].

Blending incorporates providing an alternative command
in addition to the command of the human operator.B Both
commands are then blended to form a joined input for the
robot to introduce a more flexible trade-off between the human’s
control authority and the level of autonomous assistance. A
blending function determines the emphasis that is put on the
autonomy protocol in the blending, that is, regulating the
amount of assistance provided to the human [6], [7], [21].
Switching of authority can be seen as a special case of blending,
as the blending function may assign full control to the autonomy
protocol or the human. However, none of the existing blending
approaches provide formal correctness guarantees that go
beyond statistical confidence bounds. Correctness here refers
to ensuring safety and optimizing performance according to
the given requirements. Our goal is to design an autonomy
protocol that admits formal correctness while rendering the
robot behavior as close to the human’s commands as possible,
which is shown to enhance the human experience.

A human may be uncertain about which command to issue
in order to accomplish a task. Moreover, a typical interface
used to parse human’s commands, such as a brain-computer
interface, is inherently imperfect. To capture such uncertainties
and imperfections in the human’s decisions, we introduce
randomness to the commands issued by humans. It may not
be possible to blend two different deterministic commands. If
the human’s command is “up” and the autonomy protocol’s
command is “right”, we cannot blend these two commands
to obtain another deterministic command. By introducing
randomness to the commands of the human and the autonomy
protocol, we ensure that the blending is always well-defined.

Take as an example of a scenario involving a semi-
autonomous wheelchair [13] whose navigation has to account
for a randomly moving autonomous vacuum cleaner, see Fig. 1.
The wheelchair needs to navigate to the exit of a room, and the
vacuum cleaner moves according to a probabilistic transition
function. The task of the wheelchair is to reach the exit gate
while not crashing into the vacuum cleaner. The human may not
fully perceive the motion of the vacuum cleaner. Note that the
human’s commands, depicted with the solid green line in Fig I,
may cause the wheelchair to crash into the vacuum cleaner. The
autonomy protocol provides another set of commands, which
is indicated by the solid red line in Fig I, to carry out the task
safely without crashing. However, the autonomy protocol’s
commands deviate highly from the commands of the human.
The two sets of commands are then blended into a new set of
commands, depicted using the dashed red line in Fig I. The
blended commands perform the task safely while generating

Authorized licensed use limited to: Ufuk Topcu. Downloaded on April 18,2021 at 20:53:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3018029, IEEE
Transactions on Automatic Control

behavior as similar to the behavior induced by the human’s
commands as possible.

We model the behavior of the robot as a Markov decision
process (MDP) [25], which captures the robot’s actions inside a
potentially stochastic environment. Problem formulations with
MDPs typically focus on maximizing an expected reward (or
minimizing the expected cost). However, such formulations may
not be sufficient to ensure safety or performance guarantees in
a task that includes a human operator. Recently, it was shown
that a reward structure is not sufficient to capture temporal logic
constraints in general [15]. We design the autonomy protocol
such that the resulting robot behavior satisfies probabilistic
temporal logic specifications. Such verification problems have
been extensively studied for MDPs [2], and mature tools exist
for efficient verification [20], [5].

0.4

0.2

0.2

0.2

Fig. 1. A wheelchair in a shared
control setting with the human’s
perspective.

In what follows, we call a for-
mal interpretation of a sequence
of the human’s commands the
human strategy, and the sequence
of commands issued by the au-
tonomy protocol the autonomy
strategy. In [16], we formulated
the problem of designing the au-
tonomy protocol as a nonlinear
programming problem. However,
solving nonlinear programs is gen-
erally intractable [3]. Therefore,
we proposed a greedy algorithm
that iteratively repairs the human strategy such that the
specifications are satisfied without guaranteeing an optimal
solution, based on [24]. Here, we propose an alternative
approach for the blending of the two strategies. We follow the
approach of repairing the strategy of the human to compute an
autonomy protocol. We ensure that the resulting robot behavior
induced by the repaired strategy deviates minimally from the
human strategy, and satisfies safety and performance properties
given in temporal logic specifications. We formally define the
problem as a quasiconvex optimization problem, which can be
solved efficiently by checking the feasibility of a number of
convex optimization problems [4].

The question remains on how to obtain the human strategy in
the first place. It may be unrealistic that a human can provide
the strategy for an MDP that models a realistic scenario. To this
end, we create a virtual simulation environment that captures
the behavior of the MDP. We ask humans to participate in two
case studies to collect data about typical human behavior. We
use inverse reinforcement learning to get a formal interpretation
as a strategy based on human’s inputs [1], [28]. We model
a typical shared control scenario based on an autonomous
wheelchair navigation [13] in our first case study. In our second
case study, we consider an unmanned aerial vehicle mission
planning scenario, where the human operator is to patrol certain
regions while keeping away from enemy aerial vehicles.

In summary, the main contribution of this paper is to effi-
ciently synthesize an autonomy protocol such that the resulting
blended or repaired strategy meets all given specifications while
only minimally deviating from the human strategy. We present
a new technique based on quasiconvex programming, which

can be solved efficiently using convex optimization [4].
Organization. We introduce all formal foundations that we

need in Section II. We provide an overview of the shared
control problem in Section III. We present the shared control
synthesis problem and provide a solution based on convex
optimization in Section IV. We indicate the applicability and
scalability of our approach on experiments in Section V and
draw a conclusion and critique of our approach in Section VI.

II. PRELIMINARIES

In this section, we introduce the required formal models and
specifications that we use to synthesize the autonomy protocol,
and we give a short example illustrating the main concepts.

A. Markov Decision Processes

A probability distribution over a finite set X is a function
µ : X → [0, 1] ⊆ R with

∑
x∈X µ(x) = µ(X) = 1. The set

Distr(X) denotes all probability distributions over X .

Definition 1 (MDP). A Markov decision process (MDP)M =
(S, sI ,Act ,P) has a finite set S of states, an initial state
sI ∈ S, a finite set Act of actions, a transition probability
function P : S ×Act → Distr(S).

MDPs have non-deterministic choices of actions at states;
the successors are determined probabilistically via associated
probability distributions. A cost function C : S ×Act → R≥0
associates cost to state-action pairs. If there is only a single
action at each state, the MDP reduces to a Markov chain (MC).
We use strategies to resolve the choices of actions in order to
define a probability and expected cost measure for MDPs.

Definition 2 (Strategy). A memoryless and randomized strategy
for an MDP M is a function σ : S → Distr(Act). The set of
all strategies over M is StrM.

Resolving all the nondeterminism for an MDP M with a
strategy σ ∈ StrM yields an induced Markov chain Mσ .

Definition 3 (Induced MC). For an MDPM = (S, sI ,Act ,P)
and strategy σ ∈ StrM, the MC induced by M and σ is
Mσ = (S, sI ,Act ,Pσ), where

Pσ(s, s′) =
∑

α∈Act(s)
σ(s, α) · P(s, α, s′) for all s, s′ ∈ S.

In our solution, we use the occupancy measure of a strategy
to compute an autonomy protocol, which is introduced below.

Definition 4 (Occupancy Measure). [25] The occupancy
measure xσ of a strategy σ for an MDP M is defined as

xσ(s, α) = E
[∑∞

t=0
Pσ(st = s, αt = α|s0 = sI)

]
, (1)

where st and αt denote the state and action in M at time t.

The occupancy measure xσ(s, α) is the expected number of
times to take action α at state s under the strategy σ, and the
strategy gives the probability of taking action α at state s.

Authorized licensed use limited to: Ufuk Topcu. Downloaded on April 18,2021 at 20:53:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3018029, IEEE
Transactions on Automatic Control

B. Specifications

For an MDP M, the reachability specification ϕr =
P≥β(♦T) states that a set T ⊆ S of target states is reached
with probability at least β ∈ [0, 1]. The synthesis problem
is to find one particular strategy σ for an MDP M such
that given a reachability specification ϕr and a threshold
β ∈ [0, 1], the induced MC Mσ satisfies PMσ (sI |= ϕr) ≥ β,
which implies that the strategy σ satisfies the specification
ϕr. We note that linear temporal logic specifications can be
reduced to reachability specifications [2], therefore we omit a
detailed introduction. We also consider expected cost properties
ϕc = E≤κ(♦G), that restricts the expected cost to reach the
set G ⊆ S of goal states by an upper bound κ. The expected
cost of a strategy σ is given by∑

s∈S

∑
α∈Act(s)

xσ(s, α)C(s, α). (2)

Intuitively, for strategy σ the cost and the expected number of
taking action α at state s are multiplied. This multiplication is
summed up for all states and actions.

Example 1. Fig. 2(a) depicts an MDP M with initial state
s0. In state s0, the available actions are a and b. Similarly
for state s1, the two available actions are c and d. If action a
is selected in state s0, the agent transitions to s1 and s3 with
probabilities 0.6 and 0.4.

For a reachability specification ϕr = P≥0.30(♦s2), the
deterministic strategy σ1 ∈ StrM with σ1(s0, b) = 1 and
σ1(s1, s) = 1 induces a probability of 0.16 to reach s2.
Therefore, the specification is not satisfied, see the induced MC
in Fig. 2(b). Likewise, the randomized strategy σunif ∈ StrM

with σunif(s0, a) = σunif(s0, b) = 0.5 and σunif(s1, c) =
σunif(s1, d) = 0.5 violates the specification, as the probability
of reaching s2 is 0.25. However, the deterministic strategy
σsafe ∈ StrM with σsafe(s0, a) = 1 and σsafe(s1, c) = 1 induces
a probability of 0.36, thus σsafe |= ϕr.

s0 s1 s2

s3 s4

a

b

c

d

0.6

0.4

0.4

0.6

0.6

0.4

0.4

0.6

11

1

(a) MDP M
s0 s1 s2

s3 s4

0.5

0.5

0.5

0.5

11

1

(b) Induced MC Mσunif

Fig. 2. MDP M with target state s2 and induced MC for strategy σunif

III. CONCEPTUAL DESCRIPTION OF SHARED CONTROL

We now detail the general shared control concept adopted in
this paper and state the formal problem. As inputs, we have a
set of task specifications, a model M for the robot behavior,
and a blending function b. The given robot task is described
by certain reachability and expected cost specifications ϕ =
ϕ1 ∧ ϕ2 . . . ∧ ϕn. For example, it may not be safe to take the
shortest route because there may be too many obstacles in
that route. In order to satisfy performance considerations, the
robot should prefer to take the shortest route possible while

not violating the safety specifications. We model the behavior
of the robot inside a stochastic environment as an MDP M.

It may be unrealistic that a human grasps an MDP that
models a realistic shared control scenario. Indeed, a human
will likely have difficulties interpreting a large number of
possibilities and the associated probability of paths and
payoffs [11]. We obtain a human strategy as an abstraction of
a sequence of human’s commands using inverse reinforcement
learning [1], [28]. Specifically, we compute a formal human
strategy σh based on specific inputs of a human.

The shared control synthesis problem is then computing
a repaired strategy σha such that it holds σha |= ϕ while
deviating minimally from σh. The deviation between the human
strategy σh and the repaired strategy σha is measured by the
maximal difference between the two strategies in each state of
the MDP. We state the problem that we study as follows.

Problem 1. LetM be an MDP, ϕ be an LTL specification, σh
be a human strategy, and β be a constant. Synthesize a repaired
strategy σha ∈ StrM that solves the following problem.

minimize
σha∈StrM

max
s∈S,α∈Act

|σh(s, α)− σha(s, α)| (3)

subject to PMσha (sI |= ϕ) ≥ β. (4)

Using the repaired strategy, and the blending function b, we
compute the automomy strategy σa. The blending function
reflects preference over the human strategy or the autonomy
strategy in all states of the MDP. At runtime, we can then
blend commands of the human and the autonomy strategy.
The resulting “blended” commands will induce the same
behavior as the blended strategy σha, and the specifications are
satisfied. Note that blending commands at runtime according to
predefined blending function and autonomy protocol requires
a linear combination of real values and is thus very efficient.

IV. SYNTHESIS OF THE AUTONOMY PROTOCOL

In this section, we describe our approach to synthesize an
autonomy protocol for the shared control synthesis problem.
We start with the concepts of strategy blending and strategy
repair. We then show how to synthesize a repaired strategy
that deviates minimally from the human strategy based on
quasiconvex programming. Finally, we discuss how to include
additional specifications and discuss other measures for the
human and the repaired strategy that induce a similar behavior.

A. Strategy blending

Given the human strategy σh and the autonomy strategy σa, a
blending function computes a weighted composition of the two
strategies by favoring one or the other strategy in each state
of the MDP at runtime [17], [6], [7]. As a design choice, the
blending function weighs the confidence in the human strategy
and autonomy strategy at each state of the MDP.

Definition 5 (Linear blending). Given the MDP M =
(S, sI ,Act ,P), two memoryless strategies σh, σa, and a blend-
ing function b : S → [0, 1], the blended strategy σha ∈ StrM

for all states s ∈ S, and actions α ∈ Act is

σha(s, α) = b(s) · σh(s, α) + (1− b(s)) · σa(s, α). (5)

Authorized licensed use limited to: Ufuk Topcu. Downloaded on April 18,2021 at 20:53:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3018029, IEEE
Transactions on Automatic Control

For each s ∈ S, the value of b(s) represents the “weight” of
σh at s, meaning how much emphasis b(s) puts on the human
strategy at state s. For instance, if b(s) = 0.1, we infer that the
blended strategy in a state s puts more emphasis on σa. Note
that in our experiments, we design the blending function by
making use of the inherent verification result. For each state
s, we will compute the probability of satisfying the objective
under the human strategy σh. If that probability is too low, we
will put higher emphasis on the autonomy.

B. Solution to the shared control synthesis problem

We propose an algorithm to solve the shared control synthesis
problem. Our solution is based on quasiconvex programming,
which can be solved by checking the feasibility of a number
of convex optimization problems. We show that the result is
the repaired strategy as in Problem 1. The strategy satisfies the
specifications and deviates minimally from the human strategy.
We use that result to compute the autonomy strategy σa.

1) Dual linear programming formulation for MDPs: In this
section, we recall the dual LP formulation to compute a strategy
that maximizes the probability of satisfying a reachability
specification ϕr in an MDP [25], [10].

The variables of the dual LP formulation are following:
• xσha(s, α) ∈ [0,∞) for each state s ∈ S \ T and action
α ∈ Act defines the occupancy measure of a state-action
pair for the strategy σha, i.e., the expected number of
times of taking action α in state s.

• xσha(s) ∈ [0, 1] for each state s ∈ T defines the
probability of reaching a state s ∈ T .

maximize
∑

s∈T
xσha(s) (6)

subject to ∀s ∈ S \ T. (7)∑
α∈Act

xσha(s, α) =
∑

s′∈S\T

∑
α∈Act

P(s′, α, s)xσha(s′, α) + αs

∀s ∈ T.

xσha(s) =
∑

s′∈S\T

∑
α∈Act

P(s′, α, s)xσha(s′, α) + αs (8)

∑
s∈T

xσha(s) ≥ β (9)

where αs = 1 if s = sI and αs = 0 if s 6= sI . The
constraints in (7) and (8) ensure that the expected number
of times transitioning to a state s ∈ S is equal to the expected
number of times to take action α that transitions to a different
state s′ ∈ S. The constraint in (9) ensures that the specification
ϕr is satisfied with a probability of at least β. We determine
the states with probability 0 to reach T by a preprocessing
step on the underlying graph of the MDP. To ensure that the
variables xσha(s) encode the actual probability of reaching
a state s ∈ T , we then set the variables of the states with
probability 0 to reach T to zero.

For any optimal solution xσha to the LP in (6)–(9),

σha(s, α) =
xσha(s, α)∑

α′∈Act
xσha(s, α

′)
(10)

is an optimal strategy, and xσha is the occupancy measure of
σha, see [25] and [10] for details.

2) Strategy repair using quasiconvex programming: Given
σh, the aim of the autonomy protocol is to compute the
blended strategy, or the repaired strategy σha that induces
a similar behavior to the human strategy and yet satsifies the
specifications. We compute the repaired strategy by repairing
the human strategy resulting in the following formulation:

Lemma 1. The shared control synthesis problem can be
formulated as the following nonlinear programming program
with following variables:
• xσha as defined for the optimization problem in (6)–(9).
• δ̂ ∈ [0, 1] gives the maximal deviation between the human

strategy σh and the repaired strategy σha.

minimize δ̂ (11)
subject to (7), (8), (9), and (12)
∀s ∈ S \ T. ∀α ∈ Act (13)

|xσha(s, α)−
∑

α′∈Act

xσha(s, α
′)σh(s, α

′)| ≤ δ̂
∑

α′′∈Act

xσha(s, α
′′).

Proof. For any solution to the optimization problem above, the
constraints in (12) ensure that the strategy computed by (10)
satisfies the specification. We now show that by minimizing
δ̂, we minimize the maximal deviation between the human
strategy and the repaired strategy. We perturb σh to σha by

∀s ∈ S \ T.α ∈ Act . σha(s, α) = σh(s, α) + δ(s, α).

where δ(s, α) for s ∈ S, α ∈ Act is an perturbation function
subject to σha being a well-defined strategy. Using (10), we
reformulate the above constraint into

∀s ∈ S \ T.α ∈ Act . (14)

xσha(s, α) =
∑

α′∈Act
(xσha(s, α

′) (σh(s, α
′) + δ(s, α′))) .

Since we are interested in minimizing the maximal deviation,
we assign a common variable δ̂ ∈ [0, 1] for all state-action
pairs in M to put an upper bound on the deviation by

∀s ∈ S \ T.α ∈ Act . (15)

|xσha(s, α)−
∑

α′∈Act

xσha(s, α
′)σh(s, α

′)| ≤ δ̂
∑

α′′∈Act

xσha(s, α
′′).

Therefore, by minimizing δ̂ subject to the constraints in (12)–
(13) ensures that σha deviates minimally from σh.

The constraint in (15) is a quadratic and nonconvex constraint
due to multiplication of δ̂ and xha. However, we show that the
problem in (11)–(13) is a quasiconvex programming problem,
which can be solved efficiently using bisection over δ̂ [4]. We
give the formal definition of a quasiconvex function below.

Definition 6 (Quasiconvex functions [4]). A function f : D →
R is quasiconvex if its domain D and all its sublevel sets
Dµ := {y ∈ D : f(x) ≤ µ} for µ ∈ R are convex sets.

Lemma 2. The nonlinear programming problem in (11)–(13)
is a quasiconvex programming problem.

Proof. For a fixed δ̂, the set described by the inequality in (15)
is convex, that is, the sublevel sets of the function are convex [4,
Section 3.4]. Therefore, the constraint in (15) is quasiconvex

Authorized licensed use limited to: Ufuk Topcu. Downloaded on April 18,2021 at 20:53:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3018029, IEEE
Transactions on Automatic Control

and the nonlinear programming problem in (11)–(13) is a
quasiconvex programming problem (QCP).

We solve the QCP in (11)–(13) by employing bisection over
the variable δ̂. We initialize a lower and upper bound of the
maximal deviation between the human strategy and the repaired
strategy to 0 and 1 respectively. Then, we iteratively refine the
bounds by solving a number of convex feasibility problems. A
method to solve quasiconvex optimization problems is given
in [4, Algorithm 4.1]. Our approach is given in Algorithm 1
based on Algorithm 4.1 in [4]. We now state the main result.

Algorithm 1: Bisection method to synthesize an op-
timal repaired strategy σha for the shared control
synthesis problem.

given M = (S, sI ,Act ,P), σh, l = 0, u = 1, ε > 0.
repeat

1. Set δ̂ = (l + u)/2.
2. Solve the convex feasibility problem in (12)–(13).
3. if the problem in (12)–(13) is feasible, then

u := δ̂, σha(s, α) =
xσha(s, α)∑

α′∈Act
xσha(s, α

′)

else l := δ̂.
until u− l ≤ ε.

Theorem 1. The repaired strategy σha obtained from Algo-
rithm 1 satisfies the task specifications and it deviates minimally
from the human strategy σh, and is an optimal solution to the
shared control synthesis problem.

Proof. From a satisfying assignment to the constraints in (11)–
(13), we compute a strategy that satisfies the specification
using (10). Using Algorithm 1, we compute the repaired
strategy σha that deviates minimally from the human strategy

σh up to ε accuracy in
⌈
log2(

1

ε
)

⌉
iterations. Therefore,

Algorithm 1 computes an optimal strategy.

Algorithm 1 computes the minimally deviating repaired
strategy σha that satisfies the LTL specification. In [16], we
considered computing an autonomy protocol with a greedy
approach, which requires solving possibly a large number
of LPs to compute a feasible strategy that is not necessarily
optimal. On the other hand, using Algorithm 1, we only need to
check feasibility of a number of LPs that can be determined to
compute an optimal strategy. After computing σha, we compute
the autonomy strategy σa according to the Definition 5.

Computationally, the most expensive step of the Algorithm 1
is checking the feasibility of the optimization problem in (12)–
(13). The number of variables and constraints in the optimiza-
tion problem are linear in the number of states and actions in
M, therefore, checking feasibility of the optimization problem
can be done in time polynomial in the size of M with interior

point methods [22]. Algorithm 1 terminates after
⌈
log2(

1

ε
)

⌉
iterations, therefore we can compute an optimal strategy up to
ε accuracy in time polynomial in the size of M.

3) Additional specifications: The QCP in (11)–(13) com-
putes an optimal strategy for a single LTL specification ϕ.
Suppose that we are given another reachability specification
ϕr = P≥λ(♦B) with B ∈ S. We can handle this specification
by appending the constraint∑

s∈B
xσha(s) ≥ λ (16)

to the QCP in (11)–(13). The constraint in (16) ensures that
the probability of reaching T is greater than λ.

We handle an expected cost specification E≤κ(♦G) for G ⊆
S, by adding the constraint∑

s∈S\(T
⋃
G)

∑
α∈Act

C(s, α)xσha(s, α) ≤ κ (17)

to the QCP in (11)–(13). The constraint in (17) ensures that
the expected cost of reaching G is less than κ.

Algorithm 1 with addition of these constraints does run in
time polynomial in the size ofM, provided that the number of
additional objectives is in polynomial in the size ofM as each
objective adds another constraint to the QCP in (11)–(13).

4) Additional measures: We discuss additional measures that
can be used to render the behavior between the human and the
autonomy protocol similar based on the occupancy measure
of a strategy. Instead of minimizing the maximal deviation
between the human strategy and the repaired strategy, we can
also minimize the maximal difference of occupancy measures
of the strategies. We can minimize the maximal difference of
occupancy measures by minimizing ||xσha − xσh ||∞.

The occupancy measure of the human strategy can be
computed by finding a feasible solution to the constraints
in (12) for the induced MC Mσha . We can also minimize
other convex norms of the occupancy measures of the human
strategy and the repaired strategy, such as 1-norm or 2-norm.

V. NUMERICAL EXAMPLES

We present two numerical examples that illustrate the efficacy
of the proposed approach. In the first example, we consider a
wheelchair scenario from Fig. 1. The goal in this scenario is
to reach the target state while not crashing with the obstacle.
In the second example, an unmanned aerial vehicle (UAV)
mission is considered, where the objective is to survey certain
regions while avoiding enemy agents.

We require an representation of the human’s commands as
a strategy to use our synthesis approach in a shared control
scenario. We discuss how such strategies are obtained using
inverse reinforcement learning and report on case study results.

A. Experimental setting

We give an overview of the workflow of the experiments in
Fig. 3. In an simulation environment, we collect sample data
from the human’s commands. Based on these commands, we
compute a human strategy σh using maximum-entropy inverse
reinforcement learning (MEIRL) [28]. MEIRL maximizes the
likelihood of demonstrated paths by learning a cost function
and strategy directly from demonstrations. The key notion,
intuitively, is that an agent acts to optimize an unknown cost
function, which are assumed to be linear in the features, and

Authorized licensed use limited to: Ufuk Topcu. Downloaded on April 18,2021 at 20:53:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3018029, IEEE
Transactions on Automatic Control

Process data
via MEIRL

Shared control
synthesis

Simulation
environment

Blending
functionhuman

strategy autonomous
strategysample

data

Fig. 3. The setting of the case study for the shared control simulation. We
collect sample data from a simulation environment, and compute the human
strategy using maximum-entropy inverse reinforcement learning (MEIRL).

the objective of MEIRL is to find cost weights that maximizes
the likelihood of demonstrated paths.

After computing the human strategy, we synthesize the
repaired strategy σha using Algorithm 1. After synthesizing
σha, we compute the autonomous strategy σa using (5).

We model the wheelchair scenario inside an interactive
Python environment. In the second scenario, we use the
UAV simulation environment AMASE1, developed at Air Force
Research Laboratory. AMASE can be used to simulate multi-
UAV missions. The graphical user interfaces of AMASE allow
humans to send commands to one or multiple vehicles.

We use the model checker PRISM [20] to verify if the
computed strategies satisfy the specification. We use the LP
solver Gurobi [14] to check the feasibility of the LP problems
that is given in Section IV. We also implemented the greedy
approach for strategy repair in [16]. In this section, we refer
to the procedure given by Algorithm 1 as QCP method, and
the procedure from [16] as greedy method.

B. Data collection

We asked five participants to accomplish tasks in the
wheelchair scenario. The goal is moving the wheelchair to a
target cell in the gridworld while never occupying the same cell
as the moving obstacle. Similarly, three participants performed
the surveillance task in the AMASE environment.

From the data obtained from each participant, we compute
an individual randomized human strategy σh via MEIRL. [17]
uses inverse reinforcement learning to reason about the human’s
commands in a shared control scenario. However, they lack
formal guarantees on the robot’s execution.

In our setting, we denote each sample as one particular
command of the participant, and we assume that the participant
issues the command to satisfy the specification. Under this
assumption, we can bound the probability of a possible
deviation from the actual intent with respect to the number of
samples using Hoeffding’s inequality for the resulting strategy,
see [27] for details. Using these bounds, we can determine
the required number of commands to get an approximation
of a typical human behavior. The probability of a possible
deviation from the human behavior is given by O(exp(−nγ2)),
where n is the number of commands from the human and γ
is the upper bound on the deviation between the probability
of satisfying the specification with the true human strategy
and the probability obtained by the strategy that is computed
by inverse reinforcement learning. For example, to ensure an

1https://github.com/afrl-rq/OpenAMASE

TABLE I
SCALABILITY RESULTS FOR THE GRIDWORLD EXAMPLE.

States Greedy time δG QCP time
until δG

QCP time δQCP

2, 304 14.12 0.145 8.40 31.49 0.031
14, 400 250.78 0.339 90.50 452.27 0.050
40, 000 913.23 0.373 336.41 1, 682.05 0.048

upper bound γ = 0.05 on the deviation of the probability
of satisfying the specification with a probability of 0.99, we
require 1060 demonstrations from the human.

We design the blending function by assigning a lower
weight to the human strategy at states where it yields a lower
probability of reaching the target set. Using this function, we
create the autonomy strategy σa and pass it (together with
the blending function) back to the environment. Note that the
repaired strategy σha satisfies the specification, by Theorem 1.
In runtime, we blend the human commands with the commands
of the autonomy strategy σa.

C. Gridworld

The size of the gridworld in Fig. 1 is variable, and we
generate a number of randomly moving (e.g., the vacuum
cleaner) and stationary obstacles. An agent (e.g., the wheelchair)
moves in the gridworld according to the commands from a
human. For the gridworld scenario, we construct an MDP
where the states represent the positions of the agent and the
obstacles and the actions induce changes in the agent position.

The safety specification states that the agent has to reach a
target cell while not crashing into an obstacle with a certain
probability β ∈ [0, 1], formally P≥β(¬crash U target).

First, we report results for one participant in a gridworld
scenario with a 8 × 8 grid and one moving obstacle. The
agent and the obstacle have four actions in all states, namely
left, right, up and down. At each state, a transition to the
chosen direction occurs with a probability of 0.7, and the agent
transitions to each adjacent state in the chosen direction with
a probability 0.15. If a transition to the wall occurs, the agent
remains in the same state. The resulting MDP has 2304 states
and 36864 transitions. We compute the human strategy using
MEIRL where the features are the components of the cost
function, for instance the distance to the obstacle and the goal.

We instantiate the safety specification with β = 0.7, which
means the target should be reached with at least a probability
of 0.7. The human strategy σh induces a probability of 0.546
to satisfy the specification. That is, it violates the specification.

We compute σha using the greedy and the QCP approach,
and both strategies satisfy the specification with a probability
larger than β. On the one hand, the maximum deviation between
σh and σha is 0.15 with the greedy approach, which implies that
the strategy of the human and the autonomy protocol deviates
at most 15% for all states and actions. On the other hand, the
maximum deviation between σh and σha is 0.03 with the QCP
approach. The results show that the QCP approach computes
a repaired strategy that induces a more similar strategy to the
human strategy compared to the LP approach.

Authorized licensed use limited to: Ufuk Topcu. Downloaded on April 18,2021 at 20:53:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3018029, IEEE
Transactions on Automatic Control

(a) Strategy σh (b) Strategy σah (c) Strategy σa

Fig. 4. Graphical representation of the obtained human, blended, and autonomy
strategy in the grid.

We give a graphical representation of the human strategy
σh, repaired strategy σha, and the autonomy strategy σa in
Fig. 4. For each strategy, we indicate the average probability
of safely reaching the target with the QCP approach. Note that
the probability of reaching the target depends on the current
position of the obstacle. Therefore, the probability for satisfying
a specification could be higher or lower than shown in Fig. 4.
The darkest cell in the each figure is the target state. In Fig. 4,
the probability of reaching the target increases with a darker
color, and black indicates a probability of 1 to reach the target.
We observe that the human strategy induces a lower probability
of reaching the target in most of the states compared to the
repaired strategy. Note that the autonomy strategy induces a
very high probability of reaching the target in each cell, but the
autonomy strategy may not be similar to the human strategy.

To finally assess the scalability of our approach, consider
Table I. We generated MDPs for different gridworlds with a
different number of states and number of obstacles. We list the
number of states in the MDP and the number of transitions.
We report on the time that the synthesis process took with the
greedy approach (labeled as ”Greedy time”) and QCP approach
(labeled as ”QCP time”), which includes the time of solving
the LPs in the greedy method or QCPs measured in seconds. It
also includes the model checking times using PRISM for the
greedy approach. To represent the optimality of the synthesis,
we list the maximal deviation between the repaired strategy
and the human strategy for the greedy and QCP approach
(labeled as ”δG” and ”δQCP”). We also include the time for
the QCP approach (labeled as ”QCP time until δG”) when the
computed maximal deviation of the QCP approach is less than
δG. We observe that strategies obtained by the QCP approach
yield autonomy strategies with less maximal deviation from
the human strategy while having similar computation time
as the greedy approach. Furthermore, the QCP approach is
considerably faster than the greedy approach in all cases if we
run the QCP approach until we reach an objective value that
is similar to the greedy approach.

D. UAV mission planning

Similar to the gridworld scenario, we generate an MDP where
states denote the position of the agent and the enemy agents in
an AMASE scenario. Consider an example scenario in Fig. 5:
The specification (or the mission) of the agent (blue UAV) is to
keep surveilling the green regions (labeled as w1, w2, w3) while
avoiding restricted operating zones (labeled as ”ROZ1, ROZ2”)
and enemy agents (purple and green UAVs). We asked the
participants to visit the regions in a sequence, i.e., visiting the
first region, then second, and then the third region. After visiting

TABLE II
RESULTS FOR DIFFERENT SPECIFICATION THRESHOLDS FOR THE
PROBABILITY AND EXPECTED TIME IN THE AMASE EXAMPLE.

β κ Synthesis time δQCP

0.7 20 827.37 0.380
0.7 40 749.14 0.126
0.7 80 722.81 0.054
0.9 20 888.29 0.598
0.9 40 795.98 0.163
0.9 80 732.41 0.100

the third region, the task is to visit the first region. For example,
if the last visited region is w3, then the safety specification
in this scenario is P≥β((¬crash ∧ ¬ROZ) U target),
where ROZ is to visit the ROZ areas and target is visiting
w1.

Fig. 5. Snapshot of a simulation
using the AMASE simulator. The
objective of the agent is to keep
surveilling the green regions while
avoiding enemy agents and restricted
operating zones.

We synthesize the auton-
omy protocol on the AMASE
scenario with two enemy
agents. The underlying MDP
has 15625 states. The blending
function and threshold β =
0.7 are same as in the grid-
world example. The features
to compute the human strategy
are given by the distance to the
closest ROZ, enemy agents,
and the target region.

The human strategy σh vi-
olates the specification with
a probability of 0.496. Again,
we compute the repaired strategy σha with the greedy and the
QCP approach. Both strategies satisfy the specification. On the
one hand, the maximum deviation between σh and σha is 0.418
with the greedy approach, which means the strategies of the
human and the autonomy protocol are significantly different in
some states of the MDP. On the other hand, the QCP approach
yields a repaired strategy σha that is more similar to the human
strategy σh with a maximum deviation of 0.038. The time of
the synthesis procedure with the LP approach is 481.31 seconds
and the computation time with the QCP approach is 749.18
seconds, showing the trade-offs between the greedy approach
and the QCP approach. We see that the greedy approach can
compute a feasible solution slightly faster, however the resulting
blended strategy may be less similar to the human strategy
compared to the QCP approach.

To assess the effect of changing specifications, we use a
different threshold β = 0.9. The greedy approach did not
terminate within one hour, and could not find a repaired
strategy that satisfies the specification after 45 iterations. We
compute a repaired strategy σha using the QCP approach with
a maximum deviation of 0.093. The computation time with
the QCP approach is 779.81 seconds, showing that the QCP
approach does not take significantly more time even with a
higher threshold. We conclude that the greedy approach may
not be able to find a feasible strategy efficiently if most of the
strategies in an MDP do not satisfy the specification.

Authorized licensed use limited to: Ufuk Topcu. Downloaded on April 18,2021 at 20:53:29 UTC from IEEE Xplore. Restrictions apply.

0018-9286 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAC.2020.3018029, IEEE
Transactions on Automatic Control

We also assess the effect of adding additional constraints
to the task, i.e., surveilling the next green region within a
certain time step. We synthesize different policies for different
expected times until the UAV reaches the next region. We
summarize the results in Table II. For each different probability
thresholds (labeled as ”β”) and expected times to complete the
mission (labeled as ”κ”), we report the synthesis time and the
maximal deviation. The results in Table II illustrate that the
maximal deviation δQCP increases with increasing threshold
and decreasing expected time to complete the mission. For
example, with the threshold β = 0.9 and expected time κ = 20,
the maximal deviation between the human and the repaired
strategy is 0.598, which shows that the strategies of the human
and the autonomy protocol can be significantly different in
some states. On the other hand, with the threshold β = 0.7
and expected time κ = 80, the maximal deviation between
the human strategy and the repaired strategy is 0.054, which
is significantly smaller than the previous examples. We also
note that there is no significant difference in synthesis time
for different thresholds and expected times.

VI. CONCLUSION AND CRITIQUE

We introduced a formal approach to synthesize an autonomy
protocol in a shared control setting subject to probabilistic
temporal logic specifications. The proposed approach utilizes
inverse reinforcement learning to compute an abstraction of
a human’s behavior as a randomized strategy in a Markov
decision process. We designed an autonomy protocol such that
the resulting robot strategy satisfies safety and performance
specifications. We also ensured that the resulting robot be-
havior is as similar to the behavior induced by the human’s
commands as possible. We synthesized the robot behavior using
quasiconvex programming. We showed the practical usability
of our approach through case studies involving autonomous
wheelchair navigation and unmanned aerial vehicle planning.

There is a number of limitations and also possible extensions
of the proposed approach. First of all, we computed a
globally optimal strategy by bisection, which requires checking
feasibility of several linear programming problems. A convex
formulation of the shared control synthesis problem would
make computing the globally optimal strategy more efficient.

We assumed that the human’s commands are consistent
through the whole execution. This assumption implies the
human does not adapt the strategy to the assistance. In the
future we will handle non-consistent commands by utilizing
additional side information, such as task specifications.

Finally, in order to generalize the proposed approach to
other task domains, it is worth to explore transfer learning [23]
techniques that allow to handle different scenarios without
requiring to relearn the human strategy.

REFERENCES

[1] Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse
reinforcement learning. In ICML, page 1. ACM, 2004.

[2] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
The MIT Press, 2008.

[3] Mihir Bellare and Phillip Rogaway. The complexity of approximating
a nonlinear program. In Complexity in numerical optimization, pages
16–32. World Scientific, 1993.

[4] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, New York, NY, USA, 2004.

[5] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias
Volk. A storm is coming: A modern probabilistic model checker. In
CAV, pages 592–600. Springer, 2017.

[6] Anca D. Dragan and Siddhartha S. Srinivasa. Formalizing assistive
teleoperation. In Robotics: Science and Systems, 2012.

[7] Anca D. Dragan and Siddhartha S. Srinivasa. A policy-blending
formalism for shared control. I. J. Robotic Res., 32(7):790–805, 2013.

[8] Andrew Fagg, Michael Rosenstein, Robert Platt, and Roderic Grupen.
Extracting user intent in mixed initiative teleoperator control. In
Intelligent Systems Technical Conference, page 6309, 2004.

[9] Lu Feng, Clemens Wiltsche, Laura Humphrey, and Ufuk Topcu. Synthesis
of human-in-the-loop control protocols for autonomous systems. IEEE
Trans. Automation Science and Engineering.

[10] Vojtěch Forejt, Marta Kwiatkowska, Gethin Norman, David Parker, and
Hongyang Qu. Quantitative multi-objective verification for probabilistic
systems. In TACAS, pages 112–127. Springer, 2011.

[11] Roland Fryer and Matthew O Jackson. A categorical model of cognition
and biased decision making. The BE Journal of Theoretical Economics,
8(1).

[12] Jie Fu and Ufuk Topcu. Synthesis of shared autonomy policies with
temporal logic specifications. IEEE Transactions on Automation Science
and Engineering, 13(1):7–17, 2016.

[13] F. Galán, M. Nuttin, E. Lew, P. W. Ferrez, G. Vanacker, J. Philips,
and J. del R. Millán. A brain-actuated wheelchair: Asynchronous and
non-invasive brain-computer interfaces for continuous control of robots.
Clinical Neurophysiology, 119(9):2159–2169, 2016/05/28.

[14] Gurobi Optimization, Inc. Gurobi optimizer reference manual.
url=http://www.gurobi.com, 2013.

[15] Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh
Trivedi, and Dominik Wojtczak. Omega-regular objectives in model-free
reinforcement learning. In TACAS, pages 395–412. Springer, 2019.

[16] Nils Jansen, Murat Cubuktepe, and Ufuk Topcu. Synthesis of shared
control protocols with provable safety and performance guarantees. In
ACC, pages 1866–1873. IEEE, 2017.

[17] Shervin Javdani, J Andrew Bagnell, and Siddhartha Srinivasa. Shared
autonomy via hindsight optimization. In Robotics: Science and Systems,
2015.

[18] Dae-Jin Kim, Rebekah Hazlett-Knudsen, Heather Culver-Godfrey, Greta
Rucks, Tara Cunningham, David Portee, John Bricout, Zhao Wang, and
Aman Behal. How autonomy impacts performance and satisfaction:
Results from a study with spinal cord injured subjects using an assistive
robot. IEEE Transactions on Systems, Man, and Cybernetics-Part A:
Systems and Humans, 42(1):2–14, 2012.

[19] Jonathan Kofman, Xianghai Wu, Timothy J Luu, and Siddharth Verma.
Teleoperation of a robot manipulator using a vision-based human-robot
interface. IEEE Transactions on industrial electronics, 52(5):1206–1219,
2005.

[20] Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0:
Verification of probabilistic real-time systems. In CAV, volume 6806 of
LNCS, pages 585–591. Springer, 2011.

[21] Adam Leeper, Kaijen Hsiao, Matei Ciocarlie, Leila Takayama, and David
Gossow. Strategies for human-in-the-loop robotic grasping. In HRI, pages
1–8. IEEE, 2012.

[22] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial
algorithms in convex programming, volume 13. Siam, 1994.

[23] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE
Transactions on knowledge and data engineering, 22(10):1345–1359,
2010.

[24] Shashank Pathak, Erika Ábrahám, Nils Jansen, Armando Tacchella,
and Joost-Pieter Katoen. A greedy approach for the efficient repair of
stochastic models. In NFM, volume 9058 of LNCS, pages 295–309.
Springer, 2015.

[25] Martin L Puterman. Markov decision processes: discrete stochastic
dynamic programming. John Wiley & Sons, 2014.

[26] Jian Shen, Javier Ibanez-Guzman, Teck Chew Ng, and Boon Seng
Chew. A collaborative-shared control system with safe obstacle avoidance
capability. In Robotics, Automation and Mechatronics, volume 1, pages
119–123. IEEE, 2004.

[27] Brian D Ziebart. Modeling purposeful adaptive behavior with the principle
of maximum causal entropy. 2010.

[28] Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, and Anind K Dey.
Maximum entropy inverse reinforcement learning. 2008.

Authorized licensed use limited to: Ufuk Topcu. Downloaded on April 18,2021 at 20:53:29 UTC from IEEE Xplore. Restrictions apply.

