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ABSTRACT: Machine learning methods have enabled the low-
cost evaluation of molecular properties such as energy at an
unprecedented scale. While many of such applications have focused
on molecular input based on geometry, few studies consider
representations based on the underlying electronic structure.
Directing the attention to the electronic structure offers a unique
challenge that allows for a more detailed representation of the
underlying physics and how they affect molecular properties. The
target of this work is to efficiently encode a lower-cost correlated
wave function derived from MP2 to predict a higher-cost coupled-
cluster singles-and-doubles (CCSD) wave function based on correlation-pair energies and the contributing electron promotions
(excitations) and integrals. The new molecular representation explores the short-range behavior of electron correlation and utilizes
distinct models that differentiate between two-electron promotions from the same molecular orbital or from two different orbitals.
We present a re-engineered set of input features that provide an intuitive description of the orbital properties involved in electron
correlation. The overall models are found to be highly transferable and size extensive, necessitating very few training instances to
approach the chemical accuracy of a broad spectrum of organic molecules. The efficiency and transferability of the novel
representation are demonstrated on a series of linear hydrocarbons, the potential energy surface of the water dimer, and on the
GDB-9 database. For the GDB-9 database, we found that data from only 140 randomly selected molecules are adequate to achieve

chemical accuracy for more than 133 000 organic molecules.

1. INTRODUCTION

Machine learning (ML) methods continue to have an
increasingly prominent role in many scientific fields including
chemistry. Such techniques have been widely applied for
evaluating potential energy surfaces (PES),' ™" drug discov-
ry,”7*" and material and molecular design.”*”** The
application of ML to the prediction of quantum-mechanical
energies or properties provides massive computational savings
by encoding a molecular structure via a fingerprint or
molecular representation,”**™*" where a popular strategy is
to use the structural properties to predict energetics, typically
at the density functional theory (DFT) level.”**’

‘While most ML applications in chemistry have been directed
toward connecting physical structure to desired properties, a
significant effort toward developing ML methods that directly
improve the electronic structure description of molecules and
materials has been explored.”’ For example, ML has been
adopted to improve density functionals or bypass the Kohn—
Sham equations altogether.*”~** Lei and Medford have used
convolutional neural networks to map Maxwell—Cartesian
spherical harmonic kernels for functional construction.*’
Chandrasekaran et al. have introduced a representation to
map atomic environments of grid points to generate electron
charge densities, and therefore bypassing the Kohn—Sham
equations altogether.”” Similarly, wave function-based ML
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approaches have been developed, which largely focus on the
reduction of their substantial computational cost. Coe has
developed an ML method to learn a selective configuration
interaction (CI) expansion more efficiently than the conven-
tional perturbative or Monte Carlo-based sampling,”’ a
method that has been applied to potential energy curves.”’
Additionally, Yang and co-workers have developed an artificial
neural network (ANN)-based ansatz to solve complete active
space (CAS)-CI wave functions.’” Schiitt and co-workers have
also shown a remarkable technique to predict quantum-
mechanical wave functions using a localized basis of atomic
orbitals based on atoms and atom pairs, which can be used to
accelerate the convergence of the self-consistent field
procedure.”

In particular, efforts have been made to model the coupled-
cluster methods, as the coupled-cluster singles-and-doubles
with perturbative triples [CCSD(T)] has been denoted the
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“gold standard” in computational chemistry for its accuracy in
systems well-described by a single reference state.”* Nudejima
and co-workers performed an ML-based energy density
analysis and were able to predict complete-basis-limit-
extrapolated CCSD(T) energetics with Hartree—Fock (HF)
densities obtained from small basis sets. McGibbon et al.
predicted CCSD(T) interaction energies using Moller—Plesset
perturbation theory (MP2) and symmetry adapted perturba-
tion theory (SAPTO) as features for an artificial neural
network. Margraf and Reuter developed a method to predict
CCSD correlation energies utilizing a representation based on
the MP2 amplitudes.”> Miller et al. have developed a
transferable molecular-orbital-based approach for the calcu-
lation of CCSD(T) energetics using Fock, Coulomb, and
exchange matrices obtained from HF theory using Gaussian
Process Regression (GPR).’>®” More recently, they have
demonstrated that regression clustering can be used to
significantly reduce the training times of GPR by producing
an ensemble of smaller models.”® Lastly, there have been
efforts to extend the approach of using HF orbitals to predict
correlated energies using density matrices.””*’

In our previous work, we introduced the prediction of
CCSD wave function parameters, the two-electron amplitudes,
based on properties of the MP2 wave function.®” In this work,
we expand on the previous study to provide a new method
based on the MP2 wave function and accurately predict CCSD
energies, with a particular focus on the role of localization of
the electron correlation and its performance on machine-
learned energetics. With traditional post-HF methods, the
effective correlation space grows with molecular size, which is
cost prohibitive for methods that incur harsh computational
scaling such as coupled-cluster.”” However, the short-range
locality of electron correlation has been targeted to reduce
computational expense since its introduction to correlated
methods in the 1980s,°® in realization that the electron
promotions (excitations) associated with correlation energy
should not grow with molecular size. Localized correlation
methods omit unimportant electronic configurations from the
correlated domain or approximate them with a lower level of
theory to capture correlation at a fraction of the computational
expense.”*"® However, a perhaps underutilized property of
localized orbitals is the transferability of correlation contribu-
tions,””~"* which has been utilized within machine learning of
correlation,”® ™" but its role in the success of such methods
has not been fully explored. Our goal is to introduce a novel
representation to accurately predict correlation energies within
chemical accuracy of the respective method (1 kcal mol™) that
are chemically transferable with respect to changes in
molecular structure and system size based on the underlying
MP2 wave function. In Section 2, the construction of the
representation is explained, and its properties are explored in
Section 4.1. The transferability with respect to size and system
are examined in Sections 4.2 and 4.5, respectively. The
examination of the performance of the model when the
underlying MP2 performs poorly is examined on the carbon
dimer in Section 4.3. The potential energy surface of water
dimer computed by the new methodology is discussed in
Section 4.4, while basis set effects are presented in Section 4.6.
Finally, the conclusions from this study are summarized in
Section S.
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2. THEORY AND IMPLEMENTATION

In CCSD theory, the projected CC equations are solved to
determine the converged cluster amplitudes, which subse-
quently determine the energy
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where {ij} and {ab} correspond to indices of the occupied and
virtual molecular orbitals, respectively, and t?,ti“jb correspond to
the one- and two-electron cluster amplitudes, respectively. An
initial guess to two-electron amplitudes t?]-b is usually provided
by the MP2 promotion (excitation) amplitudes. Therefore, to
circumvent the solution of the CC equations, one needs to
generalize a representation that can effectively map between
the two-electron promotions of MP2 to the converged cluster
amplitudes. One way to accomplish this is to rewrite eq 1 in
terms of Nesbet’s theorem as

Ecorr = Z eij
i>j @)

where each ¢; is the total pair-correlation energy correspond-
ing to the occupied orbital-pair ij. Each ¢; is composed of a

square matrix containing elements from eq 1, or more explicitly

b

& = Z %
a>b (3)
el = (ijllab) ('] — tt} + 4)

where {ab} run over the indices of the number of virtual
orbitals. In principle, eq 2 would correspond to the CCSD
correlation energy if the exact coefficients comprising the two
electrons coefficients were known (#, t}’, ijb). While the basis of
our approach to predict pair energies was inspired by the work
of Miller et al,’® our approach is to focus on using the
properties of the underlying MP2 wave function. By exploiting
the locality and transferability of electron correlation, we aim
to find a systematic, learnable connection between MP2 and
more accurate correlated methods. We hypothesize that it is
possible to learn the connection between the MP2 and CC
wave functions and provide a consistent methodology for the
accurate prediction of CC energies by circumventing the
solution of the projected CC equations.

In this paragraph, we turn our attention to the development
of the new representation for correlation-pair energies &;.
Based on the notion that electron correlation is local (short-
range) and transferable, we introduce a A-ML implementa-
tion,”* where the MP2 pair-correlation energies, 8,1-]‘-“)2, and their
associated promotions and integrals were used to predict the
CCSD pair-correlation energies that are summed to produce
the total CCSD electronic energy. Therefore, the goal is to
learn the systematic connection between MP2 and CCSD
correlation. With these aims in mind, the resulting
representation aims to capture as much of the full MP2
correlation energy as possible while keeping a compact feature
matrix for computational tractability. In our implementation,
diagonal and off-diagonal ¢;; elements were predicted on two
independent models (dual model), an approach that enhances
model flexibility and increased accuracy. The rationale behind
this selection is that the correlation energy term &; of two
electrons promoted from the same molecular orbital i has a
higher contribution to the total CCSD energy than the off-
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diagonal terms & Overall, the CC correlation-pair energies, €

were predicted from the following features

ij

® Ejmp2}

il

Eg {MP2} matrix

(ijllab) matrix

(ii||aa) matrix

(jjl|bb) matrix

{aal|bb) matrix

MP2 t, amplitude matrix

Missing €;(np2) correlation in representation (vide infra)

where all of the matrices have been sorted with respect to
the energy contributions of e?]‘l{]Mpz}. The two-electron integrals
were added in to indirectly provide additional information
about the energy contributions e?jl{’Mpz} and their corresponding
orbitals. For the diagonal elements, &, the (iilljj) were
excluded (since i = j), and thus, their corresponding model
has one less feature. In the spirit of localized correlation
methods, each of these matrices was truncated to a fixed
number of elements. Specifically, the most positive and most
negative contributions were included in the representation to
ensure that the representation does not contain a correlation
exceeding the MP2 value. This truncation parameter is chosen
based on the chemical application (vide infra) but can be
considered a hyperparameter; however, a general consideration
is that larger basis sets will require more elements from these
matrices as the electron correlation becomes more delocalized
over a greater number of virtual orbitals. This study uses 20
two-electron promotions, since larger feature spaces did not
lead to increased accuracy and utilized more computational
resources in model training. The final feature, the missing
€jqmpy correlation, contains the truncated MP2 energy not
contained in the 20 e?f{’Mpz} values. In the construction of a
model based solely on electronic structure, the produced
model is invariant with respect to molecular rotations,
translations, and permutations.

3. COMPUTATIONAL DETAILS

All HF calculations were performed in the Psi4 program.’
MP2 and CCSD calculations for training used a modified
Psi4Numpy’® spin-factored CCSD implementation.”® The
Psi4 program package was used for the computation of
CCSD energies for evaluating the accuracy of the trained
models. MP2 and CCSD calculations utilize the frozen-core
approximation. Orbital localization was performed with a
threshold of 10™'* on both the occupied and virtual orbital
sub-blocks. In this study, the Boys’” and Pipek—Mezey ® (PM)
orbital localization schemes were used. All calculations were
performed with the 6-31G’” basis set excegt where the basis
set effects were explored, where STO-3G™ and cc-pVDZ*'
were used as representative smaller and larger basis sets than
the 6-31G, respectively.

All features were scaled using MinMaxScaler in the Sci-Kit
Learn®” module, and the XGBoostRegressor in the xgboost
package was used for regression due its scalability, efficiency,
and accuracy.” While kernel-based methods such as kernel
ridge regression and Gaussian process regression were also
tested and often provided superior performance for smaller
training sets, their N° scaling with respect to training instances
was impractical for larger training sets. For consistency, we
have chosen to use xgboost throughout this study, which
follows N X log(N) scaling. Neural networks were also tested

4
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but did not produce greater accuracy for this application.
Hyperparameters were selected via a threefold training cross
validation among training examples to optimize the depth and
child weight, and L2 regularization for the models. The
optimized hyperparameters are located in the Supporting
Information.

4. RESULTS AND DISCUSSION

4.1. Properties of the New Representation. As
previously discussed, in the generation of the representation
for each pair energy, ¢; the corresponding orbital space
comprising e:-‘jb was truncated to a fixed number of electron
promotions. Thus, the model only considers a fraction of the
promotions containing the full 83-/[1)2. In principle, localizing the
orbitals should concentrate the e,-“)-b terms such that the electron
correlation can be captured with significantly fewer terms. We
have chosen to examine the behavior of the representation on
hexane because its size is large enough so that the benefits of
localization can be assessed, while it sets the stage for the
exploration of transferability toward other larger hydrocarbons
(Section 4.2). To evaluate the behavior of orbital localization
on the aforementioned feature space, the fraction of the full
MP2 energy was plotted with respect to the number of
promotions included in the representation of each pair energy,
which is shown for hexane in Figure la. Canonical orbitals
include the least amount of correlation within the representa-
tion at approximately 20% of the total MP2 correlation. Both
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Figure 1. (a) Fraction of the total MP2 correlation energy included in
the representation of hexane versus the number of promotions from
e}}?MPZ} (eq 4) in the 6-31G basis with canonical, Boys, and Pipek—
Mezey orbitals. (b) Fraction of MP2 correlation energy included in
the representation of hexane with PM-localized orbitals versus the
number of promotions with the STO-3G, 6-31G, and cc-pVDZ basis.
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Boys and PM orbitals significantly increased the total MP2
energy contained in the representation, capturing more than
70% of the total MP2 correlation energy using only 20
promotions for each &; PM orbitals outperform Boys with
respect to capturing MP2 correlation in fewer promotions.

All data shown on Figure la were obtained with the 6-31G
basis set, but as the basis set is expanded, the egl’ matrix grows
substantially, and the correlation contained within the
representation is subsequently diminished. This is shown for
hexane with PM orbitals for STO-3G, 6-31G, and cc-pVDZ,
corresponding to 44, 82, and 154 basis functions, respectively
(Figure 1b). STO-3G quickly captures the complete MP2
correlation, due to the small number of virtual orbitals.
Subsequently, 6-31G and cc-pVDZ representations contain
substantially less of the overall MP2 correlation, as the
increasing virtual orbital space creates a sparser e;-h matrix. The
same behavior can be seen for the canonical and Boys orbitals.
Therefore, this suggests larger basis sets may be increasingly
difficult as much of the correlation is not contained in the
representation. However, as the basis set size increases, 8};@ 2 s
a better approximation to 81-]C-CSD, which may offset this
challenge. The results found in Figure 1 provide intuition
about the representation and should be considered as a guide
for a reasonable selection for the number of promotions to be
included. The accuracy of the method is not significantly
affected if a reasonable number is selected, as it is
demonstrated in the next sections. The performance impact
of increasing the basis set size is further investigated in Section
4.6.

4.2. Hydrocarbon Series and Size Extensivity. An
important consideration for a useful application of ab initio-
based ML applications is the extrapolation of system size, i.e.,
where systems can be trained on smaller systems and have
transferable accuracy to larger systems. Such extrapolations are
essential due to the poor scaling with respect to a system size
of electronic structure theory methods, and therefore benefit
from training on small systems to predict the properties of
large systems and have shown promising results for the ML-
based force fields and previous ML-based ab initio studies.

In order for system size extrapolation to be effective, the
representation must show systematic treatment for both small
and large molecules. By considering that larger molecules have
more pair-correlation terms, the method should be extensive in
its treatment toward molecule size. A lack of size extensivity
has been highlighted as a weakness for molecular representa-
tions that feature global feature sets for a molecule.””’
However, given that the representation is centered on the MP2
pair-correlation energies and sorted contributions, one must
determine whether the representation will have a learnable
behavior as the correlation about the molecule becomes more
delocalized. Therefore, the properties and performance of the
new representation with increasing system size were evaluated
on saturated linear chain hydrocarbons.

The fraction of the total MP2 correlation captured within
the truncated promotion space for ethane to decane with 20
promotions that were used throughout this study is shown in
Figure 2. The evolution of captured correlation throughout the
promotion space is monitored in Figures S3—S5 in the
Supporting Information. With canonical orbitals, the amount
of correlation contained within the representation decreases
with system size. Ethane contains approximately 66% of the
total MP2 correlation energy, whereas decane contains only
13%. Using either Boys or PM localization schemes, the
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Figure 2. Fraction of MP2 correlation energy contained within the
representation of hydrocarbons ethane through decane considering 20
pair promotions.

correlation contained within the representations remains
relatively static. For both sets of localized orbitals, moving
from pentane to decane results in an approximately 1%
reduction in the total MP2 correlation within the representa-
tion. PM orbitals showed the highest efficiency, with 82% of
the correlation captured for decane at 20 promotions, followed
by Boys with 74%, and lastly canonical with only 13%.

Using a single conformation of propane through heptane
hydrocarbons (C,H,,,,, n = 3—7), a model was made to
predict the CCSD energies of the lengthier octane through
octadecane (n = 8—18) for canonical, Boys-localized, and PM-
localized orbitals, respectively (Figure 3). For the canonical
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Figure 3. Predicted CCSD energy error for hydrocarbons octane
through octadecane (n = 8—18) based on the model trained on single
configurations of propane through heptane (n = 3—7). In the inset,
the CCSD energy errors computed with canonical errors are shown in
greater detail.

orbitals, the error was near chemical accuracy relative to the
reference for octane and nonane. However, for the larger
molecules, the errors increase significantly due to the
decreasing correlation contained in the representation. For
both Boys and PM-localized orbitals, the models achieved
accuracy within the 1 kcal mol™ threshold for the entire
hydrocarbon series, with mean absolute errors (MAE) of 0.67
and 0.57 mE,, respectively. This result suggests that the PM
orbital localization scheme is the best choice when the aim is
molecular size extrapolation.

4.3. C, Dissociation. The behavior of the new model on
cases with challenging electronic structure is discussed in this
section. For that purpose, we investigate the dissociation of the
carbon dimer (C,), which remains a challenge for many
theoretical methods as it contains many near-degenerate
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electronic configurations even close to the equilibrium
geometry.”* C, presents an unusual ground-state bonding
configuration since it contains two 7 bonds with little or no & . : : - : : :
bonding.”> While C, has been extensively studied using full CI 0.003 . i » .
and a plethora of multireference methods,**~"° it has been . :’h";;
selected herein because MP2 fails to describe its dissociation coe ® Boys
while CCSD performs reasonably well.*” By selecting a case 0.002 4 . Ty 1
where MP2 is a Poor descriptlon for CCSD’ it evaluates . ......................; .............................................
whether the model is robust even when the initial S ’ ]
representation is a poor approximation to the target CCSD. 5 .
The C, dissociation was modeled by uniform sampling 20 2
points from 0.8 to 3.7 A for training and to reproduce the full 5 0000 1
. . . . . . . =
dissociation, which is shown in Figure 4. CCSD and MP2 are =
2
-75.0 E =0.001 4 1
&
Sad U L | ] e
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755 1 Figure S. Predicted CCSD energy error versus the true correlation
energy with their respective distributions for Boys and PM-localized
~75.6 1 orbitals using the 6-31G basis set. The dotted black lines represent the
1 kcal mol™ limit.
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Figure 4. C, dimer dissociation using MP2 (red), CCSD (black), and
a Boys-localized ML model (blue) utilizing the 6-31G basis set. The
black points represent training points for the ML model.

in relative agreement until approximately 2.5 A, when MP2
begins to fail considerably and the correlation energy becomes
unphysical. Despite this failure, the ML model is still able to
qualitatively regenerate the CCSD dissociation. From the
region of 3.0-3.7 A, MP2 shows an absolute average deviation
from CCSD of 108 mE;, whereas the ML model was 6.7 mE,.
While the results are not quantitatively accurate, they
demonstrate that the model is able to qualitatively reproduce
the CCSD result on a challenging electronic structure when
the underlying MP2 representation is a poor description of
CCSD.

4.4, Potential Energy Surface of Water 2510. As a
second example, we have examined the performance of the
method in predicting energies on a complex data set of
interacting systems to evaluate a full potential energy surface
(PES). To demonstrate this capability, the Water 2510 data
set”"”? was utilized, which contains 2510 water dimers at a vast
array of distances and conformations. Although the database
focuses only on water dimers, it contains a diverse set of
noncovalent interactions, including highly repulsive short-
range electrostatic interactions (up to +150 kcal mol™
interaction energy).”> More specifically, this application is
particularly challenging due to the broad distribution of
interaction energies, which is shown in Figure S6. For this
application, 10% of the dimers were used for training and 90%
for testing. The results for Boys and PM-localized orbitals are
found in Figure S, which shows a mean absolute error (MAE)
of 9.7 X 107° E;, and 1.1 X 107* E,, respectively, whereas
canonical orbitals had a substantial MAE of 7.67 X 10™* E,
(Figure S7). The mean absolute percentage error (MAPE) for
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Boys and PM is 0.0392 and 0.0457%, respectively. For the
Boys-localized orbitals, of the 2259 molecular dimers in the
testing set, only seven had an error exceeding 1.0 kcal mol™".
Figure S shows the systems predicted most poorly were those
that are at the edges of the distribution of correlation energy.
This error can be ameliorated with a more sophisticated
strategy such as active learning.39’94’95

4.5. Examination of Transferability. With the previous
models having demonstrated promising applicability with
respect to accurate CCSD energies for PES mapping that is
scalable to larger systems, we considered the transferability
between different chemical systems. For this, we utilize the
GDB-9 database,”® which contains 133885 small organic
molecules optimized at the DFT level. The performance of
CCSD energy predictions was evaluated using 0.01, 0.1, 1, and
10% of the database, respectively, to test the remaining
approximately 121 000 molecules (90%) and is shown for each
orbital localization scheme in Figure 6.
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Figure 6. Learning curves for the models based on canonical, Boys-
localized, and Pipek—Mezey-localized orbitals in the evaluation of
CCSD energetics on the GDB-9 database using the 6-31G basis set.
The horizontal black dashed line represents the 1 kcal mol™ limit.
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In agreement with the previous applications, canonical
orbital model accuracy is poorer than those trained with
localized orbitals. In the GDB-9 screening, the Boys local-
ization has lower error across all training set sizes. Both Boys
and PM model mean absolute errors are below 1 kcal mol™!
using only 140 molecules for training. The Boys localization
model had MAEs of 0.78 and 0.49 mE;, for 1 and 10% of the
database as training, respectively, while the MAEs from PM are
0.86 and 0.53 mE,, respectively. This is a substantial
improvement over MP2, which averaged a 56.8 mE,, difference
from CCSD, as it is shown in Figure S8. The predicted and
actual correlation energies for the model using Boys-localized
orbitals of 10% of the GDB-9 (i.e., 13 388 molecules used as
input data) for training are shown in Figure 7. The correlation
between predicted and exact data is perfectly linear, with a
slope of 1.0012 and a Pearson’s correlation coefficient (R?) of
0.9998.
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Figure 7. Predicted CCSD correlation energy versus the true CCSD
correlation energy for 120 493 molecules in the GDB-9 database using
the Boys localization method (data from the 10% of the GDB-9
database were used for training). Results obtained from the canonical
model are shown in the inset for comparison. The R* and MAE (in
Ey) values are provided for both models using the 6-31G basis set.

A PM7-based geometry-featurized method to compute
coupled-cluster energetics needed approximately 20k training
instances from the GDB-9 data set to reduce the MAE to 1
kcal mol™!, which is over 100 times the number of training
instances of our method to achieve such accuracy (0.1% or 140
molecules for our model).”” However, using DFT energies and
a geometry-based representation, sub 1 kcal mol™" error was
achieved in just 500 training points. An electronic structure-
theory-based representation using HF features, named the
MOB-ML model,”” predicts coupled-cluster energies on a 350
K thermally sampled QM7b data set with mean absolute errors
of approximately 1.25 kcal mol™" with 140 training structures,
which is impressive given the small training set size and small
basis set (cc-pVDZ), as well as the addition of perturbative
triples E(ry correction. However, extrapolating to the larger
molecules of the GDB-13 data set, the errors were increased to
3.88 mE, (2.4 kcal mol™).

4.6. Basis Set Effects. Lastly, the model was examined to
determine the performance deprecation in the expansion of the
basis set. As shown in Figure 1b, the electron correlation
becomes more delocalized over a larger number of orbital
promotions as the virtual space grows, leading to a sparser
representation. Therefore, less of the total MP2 energy is
contained within the truncated promotion space, which
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comprises our models. To examine the implications of
expanding the basis set, we have generated models for
predictions on a subset of the GDB-9 data set. Each model
was trained on the same set of molecules that spanned 1% of
the full data set and used to predict the energies of 6100
randomly selected molecules using models trained and tested
on the STO-3G, 6-31G, and cc-pVDZ basis sets, respectively,
and are shown in Figure 8. For each subset of orbital types,
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Figure 8. Mean absolute errors on a subset of the GDB-9 data set
utilizing different basis set sizes for canonical and the Boys- and PM-
localized orbitals. The black horizontal dotted line represents an error
of 1.0 kcal mol™".

there is a systematic decrease in model performance upon
expansion of the basis set. For the Boys-localized models in
increasing basis set size from STO-3G to 6-31G the MAE goes
from 0.69 to 0.77 mE,. Further increase of the basis set size to
the substantially larger cc-pVDZ increases the MAE to 1.09
mE,, which is still below the 1 kcal mol™ threshold. Similar
relative increases in error are shown for the canonical and PM-
localized orbitals. While the performance remains reasonable
for these basis sets, it is clear that further model development
may be necessary to utilize routinely applied basis sets for
coupled-cluster methods. These improvements may be found
by further investigating the locality of the electron correlation
or providing a more global representation of each orbital
through the use of persistent images’>”*”” and is a target for
future studies.

5. CONCLUSIONS

This study introduced a new representation of the MP2 wave
function for ML that allowed for accurate prediction of CCSD
energies using localized orbitals. The generated representations
require no additional calculations, and since they are based on
the electronic structure, they are invariant with respect to
translation, permutation, and rotation. A re-engineered set of
input features that provide an intuitive description of the
orbital properties involved in electron correlation were
introduced. The pair energy representation contains a subset
of the largest contributions to the MP2 energies and properties
of those respective promotions. A combination of this
approach together with orbital localization and the dual
training model showed that the representation essentially
converges its contained correlation with respect to size, and
therefore was able to predict CCSD energies within chemical
accuracy of larger linear chain hydrocarbons based on smaller
ones. The new method also shows promising results on
evaluating potential energy surfaces and was able to map a
complex data set containing many unique conformations of
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water dimers, yielding a MAE of 0.06 kcal mol ™. The chemical
transferability was also examined through the evaluation of the
GDB-9 database. The localized models were able to accurately
provide CCSD correlation energies with mean absolute errors
below 1.0 kcal mol™" using as few as 140 molecules for
training. The Boys localization model using approximately 10%
of the GDB-9 database for training provided a mean absolute
error of 0.31 kcal mol™". We believe that this work is a step
toward building a general-purpose and transferable model to
accurately predict coupled-cluster energies across the periodic
table. While methods that circumvent the MP2 step have a
significantly reduced cost at the time of testing, ultimately,
timings will also depend on the amount and size of molecules
included for training. Finally, we envision that the new
representation, together with recent advances in localized
equation-of-motion coupled cluster,'”” can be used for
accelerating the computation of excited states with machine
learning.”"~'*® Future works will expand the applicability with
the inclusion of the perturbative triples term (T) and an
unrestricted wave function implementation.
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