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ABSTRACT CCS CONCEPTS

Finite-state machine (FSM) is a fundamental computation model
used by many applications. However, FSM execution is known to
be “embarrassingly sequential” due to the state dependences among
transitions. Existing solutions leverage enumerative or speculative
parallelization to break the dependences. However, the efficiency of
both parallelization schemes highly depends on the properties of the
FSM and its inputs. For those exhibiting unfavorable properties, the
former suffers from the overhead of maintaining multiple execution
paths, while the latter is bottlenecked by the serial reprocessing
among the misspeculation cases. Either way, the FSM parallelization
scalability is seriously compromised.

This work addresses the above scalability challenges with two
novel techniques. First, for enumerative parallelization, it proposes
path fusion. Inspired by the classic NFA to DFA conversion, it
maps a vector of states in the original FSM to a new (fused) state. In
this way, path fusion can reduce multiple FSM execution paths into
a single path, minimizing the overhead of path maintenance. Second,
for speculative parallelization, this work introduces higher-order
speculation to avoid the serial reprocessing during validations.
This is a generalized speculation model that allows speculated states
to be validated speculatively. Finally, this work integrates different
schemes of FSM parallelization into a framework—BoostFSM, which
automatically selects the best based on the relevant properties of the
FSM. Evaluation using real-world FSMs with diverse characteristics
shows that BoostFSM can raise the average speedup from 3.1x and
15.4x of the existing speculative and enumerative parallelization
schemes, respectively, to 25.8X on a 64-core machine.
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1 INTRODUCTION

As a basic computation model, finite-state machine (FSM) embodies
many important applications, ranging from intrusion detection [6,
27,53, 64] and data decoding [26, 52] to motif searching [11, 49], rule
mining [62], and textual data analytics [12, 15, 36]. However, the
execution of an FSM is known to be “embarrassingly sequential” [5,
67], due to the inherent dependences among state transitions—
in each state transition, the current state always depends on the
prior state !. These state dependences fundamentally limit the
performance of FSM-based computations on modern processors,
where parallelism plays an increasingly critical role.

To address the inherent dependences in FSM computations, prior
works [16, 24, 33, 41, 42, 66, 67] fall into two basic parallelization
schemes: (i) state enumeration and (ii) state speculation. Figure 1-(b)
summarizes them. Without loss of generality, assume the input
to an FSM (e.g., a binary sequence) is partitioned evenly into two
chunks, as shown in Figure 1-(a). Due to the dependences among
state transitions, the starting state for the second chunk would
be unknown, until the first chunk has been processed—the ending
state of the first chunk is the starting state of the second chunk. To
process the two chunks in parallel, one can choose:

(1) State Enumeration. As the unknown starting state must be
one of the states in the FSM, we can enumerate all of them
by forking an execution path for each state [16, 33], but
maintaining all the execution paths may bring significant

1Here, it refers to a deterministic FSM; Nondeterministic FSMs can be converted to
deterministic ones via a classic conversion algorithm [2].
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Figure 1: FSM Parallelization: Challenge and Schemes

overhead. To reduce it, prior work [33] checks if some paths
transition to the same state, known as path merging, in which
case only one of the merged paths needs to be kept. However,
the effectiveness of this approach highly depends on the
state convergence property of the FSM. When some of the
execution paths exhibit slow convergence or fail to converge,
the overhead of this scheme would be high.

(2) State Speculation. Instead of considering all the states, one can
guess the starting state of the second chunk [41, 42, 66, 67].
To ensure correctness, the predicted state must be validated
against the ending state of the prior chunk—the ground truth.
If the validation fails (i.e., misspeculation), the chunk needs
to be reprocessed. However, when the input is partitioned
into multiple chunks, the ending state of the prior chunk
may not be the ground truth until its own speculation has
been validated (with needed reprocessing). These serialized
validations form a fundamental scalability bottleneck in the
existing speculative FSM parallelization [42].

In addition, a hybrid scheme may choose to enumerate a subset
of states [23, 63], which in fact inherits both the advantages and
limitations of the above two schemes. In summary, the existing FSM
parallelization schemes face fundamental scalability challenges.

This work introduces two novel techniques: path fusion and
higher-order speculation, to address the scalability challenges in
the two basic FSM parallelization schemes, respectively. For state
enumeration, we propose to fuse different execution paths into a
single path. Note that, unlike path merging, path fusion is not based
on the state convergence. Instead, its idea stems from the classic
NFA to DFA ? conversion [2]—a way to remove the inefficiency of
nondeterministic NFA execution. Rather than mapping a subset of
NFA states to a DFA state, path fusion encodes a vector of states in
the original FSM into a fused state, based on which it generates a
fused FSM. Thus, a single execution path of the fused FSM simulates
multiple execution paths of the original FSM. In principle, the fused
FSM could be much larger than the original. To address this, we
also propose to dynamically generate a partial fused FSM which

2Nondeterministic finite automaton and deterministic finite automaton.
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captures the states and transitions only for the current input to
minimize the memory requirement.

For state speculation, to address the bottleneck of sequential
validations, we introduce the concept of speculation order and show
that the existing FSM speculation solutions are in fact of the first
order. By raising the speculation to higher orders, we find not only
that the validations can be naturally parallelized, because chunks
of higher-order speculation no longer need to wait for the ground
truth, but also that the speculation accuracy might get improved—
the validation of higher-order speculation may introduce a better
speculated state that is more likely to be the correct starting state
(see Section 4.2). Based on these findings, we propose a higher-order
iterative speculation scheme which organizes the FSM computations
into a series of iterations, gradually improving the accuracies of
speculation in a parallel fashion.

Finally, to cover FSMs exhibiting diverse properties, we integrate
different parallelization schemes into a multi-scheme paralleliza-
tion framework, called BoosTFSM. Based on a series of heuristics,
BoosTFSM automatically selects the best parallelization scheme
for the given FSM and its inputs. Using a set of FSM benchmarks
with various characteristics, our evaluation shows that path fusion
improves the speedup of enumerative parallelization from 15.4x
to 31.0x (static fusion ?) and 18.3x (dynamic fusion) on a machine
with 64 cores; for speculative parallelization, high-order speculation
raises the speedup from 3.1X to 19.5x. With parallelization scheme
selection, BoosTFSM achieves 25.8X speedup on average.

In summary, this work makes a three-fold contribution.

e First, it proposes static and dynamic path fusion techniques
to reduce the overhead of maintaining multiple execution
paths in enumerative FSM parallelization (Section 3).

e Second, it introduces higher-order speculation in the context
of FSM parallelization and designs an iterative speculation
scheme to address the serial validation bottleneck in the
existing speculative FSM parallelization (Section 4).

e Finally, this work offers a set of heuristics to help select the
parallelization scheme for the given FSM (Section 5) and
confirms the effectiveness of the proposed techniques with
a systematic evaluation (Section 6).

2 BACKGROUND
We first provide the background of this work.

2.1 FSM and Its Dependences

As shown in Figure 2-(a), an FSM can be represented as a directed
graph, where nodes represent states, edges represent transitions
among states, and labels on the edges indicate the conditions for the
transitions to happen. The transitions can be stored in the memory
as a transition table, as shown in Figure 2-(b). The size of the table
is N X |2|, where N is the number of states and || is the number
of symbols (2 is known as the alphabet).

As shown in Figure 2-(c), an FSM execution starts from the initial
state (Sp) and makes transitions by consuming input symbols one by
one. Once moving into an accept state (a node with double circles),
the FSM may trigger some action, like emitting a code in Huffman
decoding [26] or incrementing a counter in pattern matching [64].

3Note that static path fusion is not applicable to all FSMs.
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Figure 2: FSM Example

According to its execution model, every state transition in the
transition sequence depends on not only the corresponding input
symbol but also the prior state. Together, they form a dependence
chain, inherently preventing the FSM from running in parallel.
Many prior studies [16, 24, 33, 41, 42, 66, 67] tried to “break” the
dependence chain. Despite the differences in detail, they fall into
two basic categories: state enumeration and state speculation. Next,
we elaborate each of them with examples.

chunk_0
[1 1 o 1
S, =S, ~S,+S,+S5,—~S, S;—+S,—~S;—+S,*S, S,

connect > S1/
S,—+S;—+S,”

chunk_1
o] [0 1 1 o o

';Jath merging

Figure 3: State Enumeration

2.2 State Enumeration

Assume we partition the input to an FSM into two chunks, as shown
in Figure 3. For the first chunk, we start the FSM execution from
the initial state Sy. But, for the second chunk, we do not know its
starting state, as it depends on the processing of the first chunk.
The basic idea of state enumeration [16, 33] is to fork an execution
path for each state in the FSM. Certainly, one of the paths must
be correct. As demonstrated in Figure 3, S; is later found to be the
actual starting state, based on the ending state of chunk_0. Hence,
its execution path will be finally selected.

However, maintaining all execution paths may create significant
overhead, which compromises or even outweighs the benefits of
parallelization. Prior work [33] observed that, after certain number
of transitions, different execution paths may merge. As shown in
Figure 3, the paths started with Sp and S; both transition into Sy
after reading the first 0. Later, the path started with Sy also merges
with the rest. After path merging, only one of them needs to be
maintained, thus lowering the overhead. However, the effectiveness
of path merging highly depends on the state convergence properties
of the FSM. In fact, for many real-world FSMs, most states tend
to converge quickly, but a few states fail to converge after a large
number of transitions [33]. As an example, Figure 4 shows an FSM
slightly different from that in Figure 2, but no states in this FSM
would converge for any given input.

One way to address the limitation of poor state convergence is
to explore SIMD parallelism [33]—using different SIMD lanes for
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Figure 4: FSM Example with Poor Convergence

running different FSM execution paths. However, such fine-gained
hardware parallelism can be otherwise used to enable extra data-
level parallelization—partitioning the input into more chunks [41].
Moreover, its efficiency is restricted by the SIMD width.

Besides path merging, it is often beneficial to separate the state
actions into a second pass after the state enumeration, so that they
do not have to be “multi-versioned” [33]. However, this two-pass
processing introduces non-negligible overhead even when the FSM
shows ideal state convergence (see Section 6).

2.3 State Speculation

Instead of enumerating all the states, the other strategy is to predict
the starting state. As illustrated in Figure 5, state Sy is predicted to
be the starting state, from which chunk_1 is processed. However, if
the prediction turns out to be incorrect—misspeculation, the chunk
would need to be reprocessed. In the example from Figure 5, S; is
later found to be the correct starting state. As a result, chunk_1 gets
reprocessed. Luckily, path merging may be detected between the
reprocessing path and the speculated processing path. Once they
merge, the reprocessing can safely stop.

chunk_0
[1 1 o 1
S 7817852857578 $§-85785785>5 S
validate 481481 -5
i reprocessing

chunk_1
o] [0 1 1 0o o

Figure 5: Speculative Parallelization

To predict the starting state for chunk_i, prior work [41, 42] runs
state enumeration on a suffix of chunk chunk_i — 1, namely lookback,
then selects the ending state that appears most frequently among
the enumerated paths. More principled reasoning of probabilities
can further improve the accuracy [67].

| chunk_0 | |

chunk_1 | | chunk_2 | | chunk_3 |

—0—Q O—0—0 .-
A

ol

9.)—‘0 —

Figure 6: Sequential Validations

The scalability bottleneck in the speculative parallelization lies
in its sequential validations. When the input is partitioned into
multiple chunks, the validations have to be conducted in order from
the second chunk to the last, as shown in Figure 6, because, before
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Figure 7: NFA and Its Execution

the prior chunk is validated (and reprocessed as needed), we are not
sure if its ending state is correct. This is less a concern when the
speculation accuracy is high or the reprocessing lengths are short.
But, when the speculation accuracy drops or the reprocessing paths
fail to converge with their speculative paths quickly, the scalability
of speculative parallelization could be seriously limited.

In summary, the efficiencies of both FSM parallelization schemes
depend on the properties of the FSM and its inputs. For those
FSMs exhibiting unfavorable properties, they both suffer from high
overhead and poor scalability. In the following, we will introduce
two techniques to address the scalability issues in each of the two
schemes, namely path fusion and higher-order speculation. After that,
we will present a set of heuristics to facilitate the parallelization
scheme selection in the presence of FSMs that carry a wide range
of diverse properties.

3 PATH FUSION

This section presents path fusion, a technique that fuses different
FSM execution paths into a single path, to boost the efficiency of
enumerative parallelization. Note that, unlike path merging (see
Section 2), path fusion does not rely on FSM’s state convergence
property. Instead, its idea is inspired by the classic NFA to DFA
conversion [2]. Next, we first provide the intuition of path fusion,
then present its basic algorithm, and finally discuss how to adopt it
dynamically during the enumerative parallelization.

3.1 Intuition

An interesting observation we made is that the enumerative FSM
parallelization suffers from a similar kind of inefficiency as NFA
execution. As shown in Figure 7, an NFA execution in general needs
to track multiple current states (bounded by the total number of
states) due to its nondeterministic behaviors, which leads to poor
execution efficiency in a way similar to that of the enumerative
parallelization. Despite the similarities, there are a couple of key
differences between the two scenarios:

e First, state enumeration maintains a vector of states (i.e.,
ordered), each for an FSM execution path. The ordering is
essential to selecting the right execution path later during
the merging phase. By contrast, an NFA only maintains a
subset of states, without any ordering.

e Second, the number of current states in an NFA execution
may increase or decrease (see Figure 7), but the number of
current states in state enumeration may only decrease, which
happens in the cases of path merging.

A well-known solution to the inefficiency of NFA execution is to
convert the NFA to an equivalent DFA using the subset construction
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algorithm [2]. Thus, a natural question is: can we design a similar
technique to address the execution inefficiency in state enumeration?
Fortunately, we find that, by adopting a worklist-based strategy
like the one used in the subset construction algorithm [2], we can
generate a new FSM, called fused FSM, whose single execution path
simulates multiple execution paths of the original FSM. Next, we
explain how to statically (i.e., offline) construct the fused FSM.

3.2 Static Path Fusion

A state in a fused FSM corresponds to a vector of states in the
original FSM. Like NFA to DFA conversion [2], we can statically
construct a fused FSM without any actual inputs.

Algorithm 1 Static Fused FSM Construction

: Input: FSM with trans[S;][c;], j € [0, N),c; € Z
: Output1: Fused FSM with Trans[S;][c;], j € [0, M), c; € =
: Output2: Mapping from fused states S to state vectors V: map

: initialize Trans[][] and map

s Vo =[S0, S1, - -+, SN] /7 starting state of fused FSM *
: map.add(Vp, So) /* initialize the map *

: worklist = {Vp } /* initialize the worklist *

o B R LI V- R

. cnt = 1/* counter of fused states *

10: while worklist is not empty do

11: remove an item V from the worklist

12: S = map.find(V)

13: for each input symbol ¢; do

14: initialize Vyext[]

15: for each state S; in V do

16: Vaext[j] = trans[S;][c;]

17: if map.find(Vpexr) == null then /* first time meet it? *
18: map'add(Vnexta Scnt)

19: cnt =cnt +1

20: add Vyext to worklist

21: Snext = map.find(Vaext)

22: Trans[S][ci] = Snext /* record fused state transition *

23: reverse the key and value in map

Algorithm. Algorithm 1 presents a worklist-based strategy to
construct the fused FSM with states {So, S1,- - - , Spr} from a given
FSM with states {Sop, S1, -+, Sn'}. Initially, it maps Vp, a special
state vector [Sp, S1, - - - , SN] that corresponds to the N enumerated
execution paths, to the initial state of the fused FSM Sy (Line 6).
Then, it initializes a worklist with V. After that, the algorithm
iteratively removes state vectors from the worklist, computes their
next state vectors (Vyex:) for each symbol ¢; € ¥ (Lines 15-16), maps
new state vectors to new fused states (Line 18), and finally records
the fused state transitions (Line 20). In addition, the algorithm
creates a map from fused states to state vectors (Line 22) which will
be used to decode a fused state back to a state vector.

By only adding new fused states to the worklist (Lines 17 and
20), the algorithm will always terminate, as the number of states in
the fused FSM is bounded by the size of the N-dimensional vector
space NN However, in practice, the algorithm usually traverses
only a very small fraction of the entire vector space, as we will
demonstrate shortly after a quick example.
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Figure 8: Static Fused FSM for the FSM in Figure 4

Example. Figure 8 shows the fused FSM generated for the FSM
example in Figure 4. The fused FSM consists of 6 states, whose IDs
follow the order that the states are created. With the fused FSM, the
three execution paths on chunk_1 shown in Figure 4 can be reduced
to a single execution path of the fused FSM: Sg — S§; — S3 — S1
— Sp — ;. Later, if Sy turns out to be the actual starting state of
chunk_1, we can then immediately find that the actual ending state
of chunk_1is S1, the third element in the state vector that is mapped
to Si. This shows the importance of using vectors instead of subsets
as the states of fused FSM—preserving the correspondence between
the starting states and ending states. Note that, though the vector
space for the FSM example in Figure 4 is 3% = 27, the statically
generated fused FSM only consists of 6 states. Next, we show this
is not a special case, but a prevalent property of the fused FSMs.

Size in Practice. Similar to the NFA to DFA conversion [2], the
sizes of the fused FSMs for real-world FSMs are often significantly
less than the theoretical bound. To demonstrate this, 377 FSMs from
the Snort library [48] are chosen so that the fused FSM for each
consists of less than 10° states. Figure 9 reports the actual number of
fused states (note that logarithmic scales are used on both axes). We
find that the sizes of the fused FSMs are usually well below N* and
even below N2, where N is the number of states in the original FSM.
These results confirm the feasibility of static fused FSM generation
for many real-world FSMs. Correspondingly, the time complexity
of Algorithm 1 in practice is often below O(N* - |2|) and even
O(N? . |3|), because, for each fused state, there are |%| different
transitions, and for each fused state transition, the algorithm needs
N original FSM transitions.

 #Statesin Fused FSM - NA3  _NA2
1.0E+09

1.0E+06

1.0E+03

#Fused States

1.0E+00
1 10 100 1000
#States in FSM (N)

Figure 9: Number of States in Fused FSMs

Despite the promises of static fused FSM generation, we still
found that, for many FSMs, the algorithm fails to generate fused
FSMs in 3 minutes or generates fused FSMs with over 1 million
states. In general, the size of the fused FSM should fit into the given
memory budget. For this reason, we next explore the possibility of
dynamic fused FSM generation.
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3.3 Dynamic Path Fusion

Unlike static path fusion which builds the entire fused FSM for all
possible inputs, dynamic path fusion constructs a partial fused FSM
that only captures the states and transitions for a single input. In
this way, it may reduce the memory needs.

Algorithm. The application of dynamic path fusion resembles the
just-in-time (JIT) compilation strategy used in modern compilers.
It consists of two execution modes:

e basic mode. Given a vector of current states V and an input
symbol ¢, this mode makes individual transitions for each
state in the vector to obtain the next state vector Vyexs:

Vaext[i] = trans[V[i]][c],0 < i < N (1)

In addition, it generates fused states and transitions: Spex
= Trans[S][c], where S and S;ex; correspond to V and Vyex:,
respectively. Once it finds a visited state vector V, it will map
it to its fused state S and switch to the fused mode.

e fused mode. Given the current fused state S, this mode tries
to make a fused state transition Spex; = Trans[S][c]. If the
transition is unavailable, it switches to basic mode.

With dynamic path fusion, the state enumeration scheme starts
from the basic mode, then switches between the two modes based
on the availability of fused state transitions.

Cp C4 C C3 C
0 1 22 8 ™ struct
So .a S1lS5 SS FusedState{
S —1S; S: 1S5 o oo
1 0 1[92 int *stateVec;
* * *
S -* Sil |Sz2] [So| ¥

[k V]
[So, S1, S2, 3l Sg
[S1, S2 So, 3l S1
[S3, S1, S, Sol S5

int vecSize;

(a) Transitions (b) Fused State (c) Hash Map

Figure 10: Data Structures for Dynamic Path Fusion

(57 is a pointer to a fused state; [S;, - - -, S;] is a state vector)

Data Structures. A key design question in implementing the
dynamic path fusion is how to store the transition information
Trans[S][c]. A straightforward solution is to use a hash map, where
the key is a combination of S and c, and the value is the next fused
state Spexs. While being intuitive, it requires an invocation of a
hash function for each fused state transition. Comparing to the
transition table (Figure 2-b), we found the cost of hash-map-based
state transitions is about 7X higher. Instead, we store the fused state
transitions into a vector of arrays. As illustrated in Figure 10-a, each
array is of fixed length once allocated, but the vector is extensible at
the end—each time a new fused state is created, a “row” is added to
the vector of arrays. In addition, each “row” is indexed by the input
symbol ID while the vector is indexed by the fused state ID. Each
element in the “row” stores a pointer (like S7) to the target state for
an input symbol. In theory, if the transitions of an execution are
scattered sparsely across many fused states, this data structure may
waste space, similar to the transition table. However, in practice, we
found that, for a single input, the transitions are often concentrated
among a few “hot” states, leading to small memory footprints.

The FusedState shown in Figure 10-b consists of a state id and
a pointer to its corresponding state vector to quickly switch back
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to the basic mode once the fused state transition is unavailable.
To find the chances of switching to the fused mode, a hash map
from the state vectors to fused states (see Figure 10-c) is maintained.
The sizes of the vector and the hash map equal to the number of
generated fused states.

Figure 11: Example Execution with Dynamic Path Fusion

Example. Figure 11 illustrates an execution with dynamic path
fusion using the FSM from Figure 4. The thick arrows indicate the
switches between the two execution modes. Initially, the execution
starts from the basic mode, meanwhile it generates fused states
and transitions (in gray color) as it consumes input symbols. After
consuming the third symbol (‘1°), the execution switches to the
fused mode, as it finds that current state vector [Sy, S2, S1] has
been observed (after consuming the first symbol ‘0’)—its fused
state exits (S1). However, after reading the fourth symbol (‘0), it
notices that the fused transition for this symbol has not yet been
established (i.e., unavailable), so it switches back to the basic mode,
then records this fused transition. A similar process repeats until
all the input symbols are consumed.

Cost Analysis. In general, the longer the execution stays in fused

mode, the more efficiency benefits the dynamic path fusion brings.

In fact, we can capture how long the execution stays in basic
mode using the number of unique fused state transitions met in
the execution, denoted as Nynig, because (i) each unique fused state
transition has to be generated in basic mode; and (ii) basic mode
only generates each unique fused state transition once. On the
other hand, the time spent in the basic mode also depends on
the cost of state enumeration for processing each symbol, which is
proportional to the state vector size |V|. By default, |V| equals to the
number of states in the original FSM, but often can be significantly
reduced with some optimization (as we will show shortly). The
product between these two factors, Nyniq X |V| captures the total
cost of execution in basic mode.

In addition, there are also costs of generating the fused states
and transitions, as well as the cost of switching between the two
execution modes. However, our evaluation shows that they are
usually negligible thanks to the relatively small numbers of fused
states and unique state transitions.

Optimization. As mentioned earlier, path fusion is different from
the path merging optimization (Section 2). In fact, we can integrate
the latter into the former to further boost the efficiency. To achieve
this, we separate state enumeration into two phases: path merging
phase and path fusing phase. In the first phase, most paths tend to
merge quickly [33]. Once the number of execution paths is below
a threshold 7, or remains unchanged for 7; transitions, we move
to the second phase and start dynamic path fusion. In cases where
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the path merging reduces the size of the state vector, the following
dynamic path fusion will consume even less memory and make
faster switches between the two execution modes.

So far, we have presented the path fusion for improving the
scalability of state enumeration. Next, we move to the other FSM
parallelization scheme, state speculation, which also suffers from a
critical scalability issue related to the properties of FSMs.

4 HIGHER-ORDER SPECULATION

As explained in Section 2, the scalability issue in speculative FSM
parallelization lies in the sequential validations. In this section, we
address this issue by introducing the concept of speculation order.
Note that though we are not aware of any existing definition for it,
the ideas behind this concept have been intensively studied in the
literature, especially in the context of thread-level speculation. More
details of prior related work will be given in Section 7. Based on
this concept, we show that the existing FSM speculation solutions
belong to first-order speculation, and by raising the speculation to
higher orders, it is possible to validate different input chunks in
parallel, while ensuring the correctness.

4.1 Speculation Order
Formally, we denote the speculation at the beginning of chunk_i as:
Spec(i, S, C) (2)

where S is the predicted starting state and C is the corresponding
correct starting state, also referred to as the correctness criterion.
Speculation SPec(i, S, C) can be validated by replacing the predicted
state S with the correctness criterion C:

validate

Spec(i, S, C) Non-Spec(i, C) (3)

A validation makes the starting state of chunk_i non-speculative.

If we refer to the above speculation Spec(i, S, C) as the first-order

speculation, we can then generalize the concept of “speculation” to
higher-order speculation, recursively:

Definition 4.1. Speculation Spec(i, S, C) is of

o (k + 1)-th order, if and only if its validation leads to a k-th
order speculation, denoted as

validate
_—

Speck*1(i, S, C) Speck(i,C,C") (4)
where C’ is the new correctness criterion corresponding to
the new speculated state C;

o first order, if and only if its validation makes the starting
state non-speculative, denoted as

validate
_—

Seecl(i, S, C) Non-Spec(i, C) (5)

As shown in Equation 4, the predicted state in SPECk(i, C,C)is
in fact the correctness criterion from SPECk+1(i, S, C). In another
word, the correctness criterion C itself is speculative.

Based on the above formalization, it is not hard to find that all
prior FSM speculation techniques [24, 41, 42, 66, 67], in fact, belong
to first-order speculation, as the correctness criteria used in their
validations are always non-speculative. This is the root cause to the
sequential validations—first-order speculation requires all the prior
chunks to be non-speculative before it validates the current. Next,
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we show that by raising the speculation orders of different input
chunks, the sequential validation issue can be effectively alleviated.

4.2 Benefits of Higher-Order Speculation

In general, raising the speculation order could bring benefits to
speculative FSM parallelization in two aspects:

o Earlier & meaningful validation. To illustrate this benefit,
let us reexamine the conventional (first-order) speculation in
Figure 6, where the validation of chunk_3 has to wait for the
completion of chunk_2’s validation, in order to obtain the
non-speculative ending state of chunk_2, S¢q . However,
if we raise the speculation at chunk_3 to the 2nd order, as
shown in Figure 12, and use the speculative ending state of

chunk_2, Sé ud 2> 85 the correctness criterion, then we can
immediately start its validation and reprocessing, in parallel
with those of chunk_1.If Sénd , turns out to be the correct
ending state of chunk_2, like the case in the figure, then the
reprocessing of chunk_3 would be valid. In another word,
the sequential validations are optimistically parallelized.

chunk 0 ][ chunk 1 ][ chunk 2 |[  chunk 3 |
om—o —5 om—o —
9. SPEC?(3, S’start 3, S'end 2)

Figure 12: Earlier and Meaningful Validation

o Improved speculation accuracy. Besides extra parallelism,
the other benefit of higher-order speculation comes from the
improved speculation accuracy. Without loss of generality,
consider chunk_2 and chunk_3 in Figure 13, whose starting
states are predicted with some existing technique [24, 41, 67],

denoted as S, , ,and S}, , ;. Statistically speaking, their

probabilities of being the correct starting states are the same.

After the speculative processing of chunk_2, assume the

ending state is S 42 then the probability that S Q218

the correct starting state of chunk_3 might be higher than

Sl art 3 thanks to the potential state convergence during the

speculative processing of chunk_2. That is, even if S}, .. ,

is incorrect, its execution path may converge with the correct

path, resulting in a correct ending state. If the speculation
at chunk_3 is of second order (see Figure 13), where the

correctness criterion is S’ then after the validation (i.e.,

end_2’

replacing S7, . , with S é .4 2 the speculation accuracy can
potentially be increased.

To take the above benefits from the higher-order speculation, we

next present a new speculative FSM parallelization model, referred

to as iterative speculation.

4.3 Iterative Speculation

Unlike existing speculative FSM parallelization [24, 41, 42, 66, 67],
iterative speculation organizes the speculative FSM execution into a
series of iterations. Algorithm 2 summarizes its basic ideas. First, it
predicts the starting state for each chunk, just like the conventional
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| chunk_2 | | chunk_3 |

O—O0—0—0 ... ... o—»o—»o—»o—.o—.q 9—’0—’0—'0—’0 ...... O—O—O—0—0

; state convegence ’ B , ,
S'star 2 SO 958 S'ond 2 S'sers  SPECA(3, S'sart.3. S'end. 2)

| 1 Py(S'san 2) = P3(S'sir 3). then P5(St 2) = Ps(S'sers) |

Figure 13: Improved Speculation Accuracy
(P;(S): the probability that S is the correct starting state of chunk_i)

Algorithm 2 Iterative Speculation

1: for each chunk_i,0 < i < N do /* initialization *

2 if i == 0 then /" set up starting state for each chunk *

3 Si = Sinit

4 else

5: s; = predict(i) /* initial prediction of starting states *

6 active[i] = true /* all threads are active initially *

7: while some active[i] is true do /* iterations *

8 for each chunk_i do in parallel /* (speculative) execution *
9 if active[i] == true then

10: e; = process(chunk_i, s;) /* run with path merging *
11: barrier() /* synchronize *

12: for each chunk_i do in parallel /* validation *

13: if s; # ej—1 then /" e¢;_; is ending state of chunk i-1*
14: s; = ej—1 /" reset starting state *

15: active[i] = true

16: else

17: active[i] = false

18: barrier() /* synchronize *

speculation, except that it also sets up an active flag for each
thread (Line 6). After initialization, the algorithm enters into a
series of iterations. In each iteration, chunk_i is processed only
if active[i] is true (Lines 9-10). Note that the processing also
checks if its current path merges with that of the prior iteration and
stops when it happens. The values of active flags are set during the
validations (Lines 15 and 17): if the starting state of chunk_iin the
last iteration is different from the ending state of the prior chunk,
activel[i] is set to true; otherwise, active[i] is set to false.
The algorithm terminates once all active flags become false.

order increases

>

Il ron-spec chunk_0  chunk_1 chunk_2  chunk_3

I 7storder | lter.0 | _.—.:.:l

[—12nd-order| -

o o1
i i | I

[ skip
<—» validation

S9sealdsp Jsplo

Figure 14: Illustration of Iterative Speculation
(for better clarity, path merging is not illustrated)

Next, we explain how higher-order speculation is reflected in the
above algorithm and why the algorithm in fact always terminates
within #chunks iterations. Figure 14 uses different grayscale levels
to represent different orders of speculation, with the darkest used
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for non-speculative processing. Initially, we assume that chunks are
assigned with increasing orders of speculation: chunk_iis of i-th
order speculation. Then, during each iteration, the latest speculation
of each chunk is validated using the latest ending state from the
prior chunk. As a result, its speculation order gets reduced by at least
one. Once its speculation order becomes Oth (i.e., non-speculative),
a chunk will stay inactive, as no ending states of its prior chunks
are speculative. Obviously, the initial highest speculation order (of
the last chunk) determines the maximum iteration number, thus
the algorithm takes at most #chunks iterations.

So far, we have explained both path fusion and higher-order
speculation. Still, a remaining question is which scheme works the
best for a given FSM and its inputs. We address this next.

5 PARALLELIZATION SCHEME SELECTION

Including the two basic schemes (see Section 2), we have discussed
five FSM parallelization schemes in total, denoted as follows:

e B-Enum: basic state enumeration

e B-Spec: basic state speculation

e S-Fusion: state enumeration with static path fusion

e D-Fusion: state enumeration with dynamic path fusion

e H-Spec: higher-order (iterative) speculation

We also refer to the last three as augmented schemes. Which

scheme works the best depends on the characteristics of the FSM
and its inputs. Based on their designs, we focus the scheme selection
on four key properties: (i) state convergence rate, (ii) speculation
accuracy, (iii) the feasibility to generate a static fused FSM, and (iv)
the skewness factor of fused FSM, where the first and last properties
are defined below:

Definition 5.1. For an enumerative execution over [ symbols, the
state convergence rate conv(l) = 1/|V|, where |V| is the number of
unique current states at the end of the execution.

Definition 5.2. For a (fused) FSM execution over [ symbols, the
skewness factor skew(l) = 1/Nyniq, where Nypiq is the number of
unique (fused) state transitions met during the execution.

Note that our goal is NOT to precisely model the execution
time of each scheme, which could be extremely challenging given
the diverse and complex FSM transition behaviors. So, instead, we
intend to qualitatively reason about the conditions for each scheme
to work well in general, based on which we draw the heuristics to
guide the scheme selection.

The decision tree in Figure 15 summarizes the heuristics used
for selecting the parallelization scheme. It starts from the most
favorable scenario, then moves to the more challenging ones. For
speculative parallelization, the most favorable scenario is when the
speculation accuracy is high (according to a threshold 74¢). In this
case, B-Spec and H-Spec are the best choices for their negligible
overhead ¢ (@). By contrast, even in the most favorable conditions,
enumerative schemes still suffer from the overhead of two-pass
processing (see Section 2). If the speculation accuracy is not high
enough, the next heuristic is to check the state convergence rate
conv(l). Even with a low speculation accuracy, H-Spec could still
work well as long as the state convergence rate is higher than a

4 Assuming the cost of starting state prediction is negligible.
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Figure 15: Decision Tree for Scheme Selection

predefined threshold 7cony (@), thanks to its capability in improving
the speculation accuracy (Section 4). Further down the decision
tree, if none of the above conditions are met, the next step is to
check the feasibility of statically generating a fused FSM. In fact,
S-Fusion works the best among the enumerative schemes for its
single-path execution and offline fused FSM generation (€@). When
this condition is unavailable neither, the last resort is D-Fusion,
which works well when the skewness factor skew(l) of the fused
FSM is high and the state vector size is small (i.e., high conv(l)). In
fact, at this point, the state convergence rate is already unfavorable
(see the second heuristic). However, if the combined factor skew(l)x
conv(l) is sufficiently high, D-Fusion might become the best option
(@). According to their definitions, 1/(skew(l) X conv(l)) = Nynig X
|V], which captures the major cost of execution for D-Fusion, as
shown in its “Cost Analysis” (see Section 3.3). Finally, if none of
the above conditions are met (i.e., the least favorable situation),
one may choose among H-Spec, B-Enum, and D-Fusion(@)—the
best option depends on the specific values of the relevant FSM
properties. More detailed performance modeling may help break
the tie, but it would come with extra complexities.

Considering the cost of collecting the properties, we target the
scheme selection for the given FSM and a group of its inputs, rather
than a single input. That is, a few training inputs are (randomly)
selected to collect the properties offline, based on which a scheme
is selected and used online. In fact, we can instrument D-Fusion
and B-Spec to collect these properties, thus the costs of profiling
are slightly higher to their running time on the training inputs.
For situations where input sensitivity is concerned, we can run the
given FSM over a tiny portion (say 0.25%) of the actual input, though
this will pay for a proportional amount of runtime overhead.

6 EVALUATION

In this section, we evaluate the effectiveness of path fusion and
higher-order speculation, as well as the scheme selection heursitics.

6.1 Methodology

We implemented the five FSM parallelization schemes summarized
in Section 5, in C++ language and used Pthread for their parallel
executions. Then, we integrated these five schemes along with
the scheme selector into one multi-scheme FSM parallelization
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Table 1: FSM Benchmarks

(N #states; conv(l): state conv. rate; static: feasibility for static fusion;
skew(l): skewness factor; acc: spec. accuracy; time: profiling time)

FSM N conv(10®) conv(10%) acc static skew(10°) time(s)

M1 17 1/2 1/2 0%  Yes 1/843 0.87
M2 22 1/7.3 1/1 5% No  1/98790 1.31
M3 30 1/1.9 1/1.6 78%  Yes 1/1049 0.89
M4 31 1/5 1/5 0%  Yes 1/823 0.86
M5 31 1/5.7 1/1 4% No  1/73182 1.40
M6 34 1/7.9 1/1 4% No 1/108896 1.83
M7 53 1/3.8 1/1 9% No  1/30574  0.89
M8 65 1/2 1/2 100% Yes 1/795 0.84
M9 145 1/5 1/5 0% No 1/1089 0.89
M10 193  1/46.7 1/20.1 0% No 1/10145  3.79
Mi11 207 1/2 1/2 0%  Yes 1/925 0.90
Mi2 507 1/2 1/2 0% No 1/123618 5.38
M13 1045 1/2 1/2 0% No 1/541 1.15
Mi4 1179 1/2 1/2 33% No 1/1065 0.89
M15 2012 1/2 1/2 0%  No 1/819 0.93
M16 4736 1/1 1/1 100% No 1/3880 1.36

framework, called BoostFSM. The memory budget for static fused
FSM generation is set to 1GB/FSM, or equivalently 10° fused states.

Benchmarks. Table 1 lists the FSM benchmarks used in evaluation
with their relevant properties. The 16 benchmarks are collected
from the Snort library [48], a pool of signatures in PCRE format
used by the state-of-the-art Network Intrusion Detection Systems
(NIDS). We converted the signatures into FSMs using one of the
off-the-shelf regex2DFA tools [1]. They are chosen to cover the
diverse properties of FSMs.

The inputs to the FSMs are 20 traces of real-world network
traffics collected from a Linux server using tcpdump. Each trace
consists of 4 X 108 symbols (i.e., 400MB). For each FSM, five traces
are randomly selected and their first 10° symbols (i.e., 0.25%) are
used to collect the properties in Table 1 offline.

Platform. All experiments were performed on a 64-core machine
equipped with an Xeon Phi 7210 processor and 96GB RAM, running
Linux 3.10.0. All programs were compiled by GCC 4.8.5 with the “03"
flag. The timing results reported are the average of three repetitive
runs over 20 inputs (unless specified otherwise).

6.2 Performance

Table 2 reports the speedups of different FSM parallelization schemes
using 64 cores over the sequential FSM execution. Note that the
sequential FSM execution times are similar across FSMs (the second
column), despite their large variation in terms of the number of
states (see Table 1). This is because the inputs to different FSMs are
of the same size and also the frequently accessed state transitions
often well fit into CPU caches. In the following, we first compare
the three augmented schemes with each of the two basic schemes®,

then examine the effectiveness of the scheme selection.

Static Path Fusion. First, for benchmarks whose static fused FSMs
can be generated (M1, M3-4, M8, M11), S-Fusion significantly
raises the speedups comparing to B-Enum, from 12.9x to 31.0X

5We do not select the best of the two basic schemes for each individual FSM as our
baseline, since we are not aware of any prior work that can automatically select
between the two schemes for a specific FSM.
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Table 2: Speedup Comparison

(Baseline: sequential execution; #threads: 64; input size: 4 X 108)

Basic Schemes Augmented Schemes

FSM Seq(s) B-Enum B-Spec S-Fusion D-Fusion H-Spec BoostFSM

M1 745 13.7 1.9 30.9 25.1 17.8 30.9
M2 748 29.1 20 - 19.6 32.6 32.6
M3 739 14.2 1.4 30.8 25.1 18.3 30.8
M4 743 11.1 0.6 31.1 25.5 13.9 31.1
M5 743 28.5 229 - 13.1 30.1 30.1
M6 7.57 26.9 21.6 - 16.1 32.6 32.6
M7 749 29.8 29.7 - 25.5 32.7 32.7
M8 7.46 13.0 39.8 30.9 24.9 39.2 39.8
M9 744 11.6 0.6 - 23.9 10.4 23.9
M10 7.37 7.3 1.9 - 8.5 13.0 7.3

Mi11 747 12.9 0.6 31.2 23.6 17.6 31.2
Mi12 7.53 12.9 0.5 - 3.6 8.7 12.9
Mi13  7.40 12.2 0.6 - 22.5 16.7 22.5
M14 7.46 12.7 0.9 - 23.5 11.2 23.5
M15 7.35 13.0 0.6 - 234 17.1 23.4
M16 7.51 19.3 37.2 - 17.9 36.5 37.2
Geo - 15.4 3.1 31.0 18.3 19.5 25.8

Table 3: Statistics of Static Path Fusion

(N #states; Nyyseq: #fused states; time: construction time)
FSM' N Njygeq time(s)

M1 17 173 0.06
M3 30 2876 1.25
M4 31 486 0.22
M8 65 6655 4.80
M11 207 19899 37.1

on average, thanks to its (fused) single-path execution and offline
fused FSM generation. According to Table 1, after consuming 10°
symbols, there are still 2.3 paths left on average for these FSMs.
S-Fusion completely avoids such overhead. On the other hand,
for those FSMs whose static fused FSMs are too large to generate
(i.e., over the memory budget), static path fusion cannot help. In
addition, Table 3 reports the sizes of the static fused FSMs and the
construction time. More results about the sizes of fused FSM were
presented in Section 3.2 and Figure 9.

Dynamic Path Fusion. The speedups of D-Fusion vary a lot
across benchmarks, ranging from 3.6x to 25.5X. For some FSMs
(M2, M5-7, M12, M16), D-Fusion performs worse than B-Fusion.
As discussed in Section 3.3, given an FSM execution with D-Fusion,
its efficiency depends on the size of state vector |V| in basic mode
and the number of unique fused state transitions Nyuiq encountered
in the execution, which are shown in the second and third columns
of Table 4, respectively. Note that the state vector size |V| is the
number of remaining active states after the path merging phase (see
“Optimization” in Section 3.3). The product Nynig X |V|—capturing
the cost in basic mode (see “Cost Analysis” in Section 3.3), roughly
inversely aligns with the speedups of D-Fusion. Note that M16 is
special in that its |[V| drops to one during the path merging phase,
so no path fusion is needed.

The 4th column of Table 4 lists the numbers of fused states
dynamically generated (ranges from 4 to 1209). For 10 out of 16
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Table 4: Statistics of Dynamic Path Fusion

(IV|: vector size; Nyniq: num. of unique fused state transitions;
Nfyseq: num. of fused states; Zperge: time in merging phase;
tpasic: time in basic; fpeeq: time in fused; £pggs: time in 2nd pass)

FSM V| Nuniq Nfused tmerge(s) Lpasic(s) tfused(s) tpassz(s)

M1 2.0 1140 7 0.0056 0.0005 0.0957 0.1554
M2 14 17260 131 0.0116 0.0205 0.0933 0.1486
M3 19 1323 11 0.0069  0.0007 0.0933 0.1547
M4 5.0 966 5 0.0069 0.0004 0.0955 0.1545
M5 1.2 11130 149 0.0110 0.0117 0.0871 0.1527
M6 14 21368 246  0.0125 0.0293 0.0975 0.1409
M7 11 887 57 0.0095 0.0003 0.0670 0.1523
M8 20 902 5 0.0060 0.0004 0.0954 0.1542
M9 50 1350 10 0.0077  0.0009 0.0956 0.1552
M10 11.8 10581 116  0.4028 0.0082 0.0772 0.1595
M11 2.0 1236 14 0.0155 0.0007 0.0957 0.1512
Mi12 2.0 163005 1209 0.0497 0.8116 0.7748 0.1639
Mi13 2.0 644 4 0.0592  0.0002 0.0951 0.1546
Mi14 2.0 1253 8 0.0186  0.0004 0.0956 0.1583
M15 2.0 1031 6 0.0177 0.0003 0.0955 0.1578
Mi6 1.0 - - 0.0156  0.0000 - 0.1795

FSMs, the numbers of fused states are even less than those in the
original FSMs, showing high space efficiency in practice.

The last four columns of Table 4 report the time breakdown of
D-Fusion, where the first three columns are the time of merging
phase (tmerge), the time spent in basic mode (tp;sic), and the time
spent in fused mode (¢fyseq). For most FSMs, tfceq is significantly
higher than tj,;, indicating that the FSM runs mostly in the fused
mode with a single transition path. M12 is the only FSM for which
tpasic is higher than tg,e4, Which aligns with its high Nypig—its
execution encounters many different fused state transitions, so it
has to frequently switch back to the basic mode. The summation
of tmerge, thasic> and tfseq roughly equals to the total time of the first
pass in a two-pass enumerative scheme (see "State Enumeration"
in Section 2). Note that the first pass also includes (partial) fused
FSM generation and switchings between the two execution modes,
however, as the number of dynamically generated fused states and
transitions are relatively small (comparing to the input length), the
cost is usually negligible, so as to the cost of mode switchings. The
last column of Table 4 reports the time spent in the second pass,
which counts the number of accept states encountered during an
FSM execution. As the second pass naturally runs in parallel, it
shows limited variation across FSMs.

Higher-Order Speculation. As shown in Table 2, H-Spec boosts
the speedups from 3.1x (B-Spec) to 19.5X on average. Specifically,
H-Spec offers better speedups across all benchmarks, except for
M8 and M16, in which cases, both H-Spec and B-Spec work very
well (over 36X speedups), with B-Spec showing marginally better
speedups. These results are consistent with our earlier discussion,
that is, H-Spec performs no worse than B-Spec in principle. The
improvements come from two benefits of higher-order speculation:
(i) earlier and meaningful validations and (ii) improved speculation
accuracy (see Section 4.2). Table 5 reports the speculation accuracies
of B-Spec and H-Spec. The initial speculation accuracies of H-Spec

(Iteration-1) are the same as those of B-Spec (24% on average).

But, over iterations, as it introduces new speculated starting states
(based on the new ending states of the prior chunks), the speculation
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Table 5: Speculation Accuracies

Higher-Order Speculation

FSM B-Spec Iteration-1 Iteration-2 Iteration-3 #Iterations

Mi1 61% 61% 100% - 1.9
M2 5% 5% 100% - 2.0
M3 0% 0% 100% - 2.0
M4 0% 0% 98% 100% 2.4
M5 5% 5% 100% - 2.0
Mo 5% 5% 100% - 2.0
M7 9% 9% 100% - 2.0
M8 100% 100% - - 1.0
M9 0% 0% 2% 100% 3.0
M10 62% 62% 97% 100% 2.6
M11 0% 0% 100% - 2.0
M1z 2% 2% 57% 100% 3.0
M13 0% 0% 100% - 2.0
M14 33% 33% 57% 100% 3.0
M15 0% 0% 98% 100% 2.1
Mi16 100% 100% - - 1.0
Avg  24% 24% 86% 100% 2.1

accuracies of H-Spec get improved quickly. By the third iteration,
all benchmarks reach 100% speculation accuracy. On average, it
takes 2.1 iterations for H-Spec to complete the processing.

In summary, the augmented schemes substantially boost the
speedups over the basic ones. However, their beneifts vary across
benchmarks. As shown in Table 2, the best schemes (in bolded font)
for the benchmarks scatter across different parallelization schemes,
which confirms the needs of scheme selection.

Scheme Selection. The FSM properties used for scheme selection
are shown in Table 1. Following the heuristics in Section 5, the
selector first checks the speculation accuracy against the threshold
Tace (95%) and finds that only M8 and M16 meet the requirement.
Thus, it selects B-Spec for these two FSMs. Then, it checks if the
state convergence rate conv(10°) is one (i.e., a single current state
is left). If so, it chooses H-Spec, which happens to M2 and M5-7.
For the remaining benchmarks, the selector further examines the
feasibility to generate a static fused FSM. It obtains positive answers
for benchmarks M1, M3-4, and M11, thus assigns S-Fusion to them.
Finally, the scheme selector compares the combined factor between
the skewness factor and the state convergence rate skew(I)x conv(I)
against the threshold (107%). As a result, the remaining benchmarks
who satisfy the requirement (M9 and M13-15) are assigned with
D-Fusion. At this point, there are still two benchmarks left: M10
an M12. Since our selector does not further examine the properties
based on their specific values, by default, it chooses B-Enum. The
last column of Table 2 shows the results of the scheme selection.
Out of 16 cases, it only fails to pick the best scheme for M10. The
failure is simply due to the fact that the heuristics stops reasoning
about the performance at more fined-grained levels, which can be
improved with more detailed performance modeling.

6.3 Scalability

In this section, we examine the scalability of different schemes in
terms of both the number of cores and the input size.

Varying Number of Cores. The scalabilities over different number
of cores for a subset of representative benchmarks are reported
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Figure 16: Scalability of Representative Cases
(M1, M2, M8, and M13 correspond to the cases where S-Fusion,
H-Spec, B-Spec, and D-Fusion are selected, respectively)

in Figure 16. In general, when desired properties are present (see
Section 5), all the five schemes can scale well. On the other hand,
when the properties are not ideal, some schemes suffer from worse
scalabilities than the others. Take B-Spec as an example, when the
speculation accuracy drops and the state convergence rate is low,
it scales poorly and may even run slower than the serial execution
(see the curves of B-Spec in the cases of M1, M2, and M13), due
to its serial validations. Another scheme that may not scale well is
D-Fusion, as shown in the case of M2. This is because when the
input is partitioned into smaller chunks, the number of unique state
vectors may not decrease proportionally, thus the overhead becomes
relatively higher, compromising the benefits of parallelization. Note
that, for some cases, the speedups at 64 cores drop slightly, which
is caused by some issue specific to the tested machine.

Varying Input Size. Figure 17 reports the speedups of the five
schemes under different input sizes: small (1x10%), medium (4x108),
and large (16 x 108). Overall, there are clear trends that the speedups
get improved as the input sizes increase for all the parallelization
schemes. The trends reflect the Amdhal’s law. In our context, the
sequential components include thread creation (64 threads), thread
synchronization (validations in speculative schemes or correct path
selections in enumerative schemes), and I/O operations (printing
out results). In addition, with larger inputs, H-Spec may also benefit
from better convergence with longer input chunk (see Figure 13).
For D-Fusion, as the input chunk becomes longer, the number of
switches between the two modes may become relatively less, thus
further improve the performance (happened to M7).

7 RELATED WORK

This section summarizes the related work into three categories:
speculative, enumerative, and FSM-related parallelization.

Speculative Parallelization. There exists a rich body of work in
realizing speculative parallelization using various methods, ranging
from architecture extensions [9, 38, 43, 54, 68] and transactional
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memory [32, 45], to compiler supports [4, 13, 25, 46, 57, 58] and
programming language constructs [39].

By modifying the architectures, thread-level speculation (TLS) [9,
29, 38, 43, 54, 68] spawns speculative threads along the dynamic
execution path of a single-threaded application. For correctness,
TLS must isolate the writes of “more speculative” threads from the
“less speculative” threads and detect the data dependence violations
at runtime [38]. As speculation contexts are typically established
in a nested way—a speculative thread spawns another speculative
thread, such architecture-based TLS schemes are naturally of the
higher-order speculation as we defined in this work.

More specifically, the idea of high-order speculation is akin to
some of the existing ideas like speculative data forwarding and
eager recovery from misspeculation [37, 44, 54], as well as parallel
ordered commits [18, 19]. Given the existence of these ideas, one
contribution of this work is to bring them to solve the scalability
problem of parallelizing FSM computations.

Software-based approaches [4, 13, 25, 46, 57, 58] achieve similar
goals with software-managed thread state isolation and runtime
data dependence analysis. For example, LRPD [46] speculatively
applies privatization and reduction to transform sequential loops
into DOALL loops, then validate them with runtime checks. Once
failed, the loops would be re-executed sequentially.

In comparison, BOP [13] allows programmers or profiling tools
to suggest possibly parallel regions (PPR) and leverages virtual
memory (i.e., process mechanism) to protect the address space.
Note that BOP defines “speculation depth”—a concept relevant to
our definition of “higher-order speculation”. The key difference is
that, in BOP, the k-th level speculation is checked after the first
k — 1 speculative processes commit, which makes itself essentially
first-order speculation. Tian and others [57] further separate the
speculative state from the non-speculative and propose a “copy
or discard” model to better manage the memory state in software
speculation. According to its thread execution model, a speculative
thread only synchronizes with non-speculative thread (called main
thread), which makes the solution also first-order speculation. On
the other hand, the above software speculation schemes may also
be augmented to support higher-order speculation.

Besides architecture and programming system supports, Prabhu
and others [39] propose two new language constructs: speculative
composition and speculative iteration, for programmers to express
speculative parallelism in programs declaratively.

In parallel discrete event simulation (PDES), several optimistic
mechanisms [17], such as time warp with lazy cancellation and lazy
rollback, also resemble the basic idea of higher-order speculation.

Enumerative Parallelization. By contrast, there are only a few
prior works on enumerative parallelization. One reason could be the
infeasibility in enumerating all the cases in general programs. Some
early works [3, 60] studied the potential of enumerating different
execution paths under control branches. If FSM transitions are hard-
coded, rather than being stored in a transition table, the enumerative
FSM parallelization would be similar to branch enumeration. In
comparison, N-way programming model [10] enumerates different
algorithms or implementations of the same tasks and selects the
one that finishes earliest. For more specific application areas, Malki
and others [31] leverage the rank convergence property of dynamic
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Figure 17: Speedups of Each Scheme with Inputs of Different Sizes

(For conciseness, for each scheme, we ranked the benchmarks by the speedup of Large input, then selected the bottom two, middle two, and top two,

but for S-Fusion only five are shown, because they are the only benchmarks for which static fused FSMs can be generated.)

programming to enable coarse-grained parallelization, which can
be viewed as a form of state enumeration. Similarly, Raychev and
others [47] use symbolic execution to parallelize the user-defined
aggregations in big data frameworks, where a symbolic value is an
abstraction of all the enumerative cases. More related to FSMs, there
are a series of works [21, 22, 35] on enumerative parallelization
of pushdown automata, which consist of an FSM and a stack, for
processing semi-structured data like XML and JSON.

Other FSM-related Parallelization. In addition to the related FSM
parallelization work mentioned in Section 2, there are other works
in parallel FSM computations. In particular, various hardware FSM
implementations, usually in a form of NFA-like automaton, have
been proposed, such as automata processors [14, 55, 61], cache
automata [56], and FlexAmata [51]. In comparison, some other
works choose to use GPUs to accelerate FSM computations [8,
30, 34, 59, 65, 69]. Like hardware FSMs, they also mostly focus
on NFAs rather than DFAs for better space efficiency. In a recent
work [63], Xia and others propose reduction-style validations to
address the scalability limitation in speculative FSM parallelization

on GPUs, which essentially is also of higher-order speculation.

Besides the conventional character-by-character FSM processing,
there are works that leverage bitwise parallelism and/or SIMD
operations to accelerate FSM-related applications [7, 20, 28] or
model bitwise/SIMD applications using FSMs to enable (speculative)
parallelization [40].

Besides parallelization, the state convergence property in FSMs
also makes their executions more tolerable to errors when they are
executed in unreliable environments [50].

8 CONCLUSION

This work targets the scalability issues inherited in the two basic
FSM parallelization schemes: (i) the cost of maintaining multiple
execution paths in enumerative parallelization and (ii) the serial
chunk-by-chunk validations in speculative parallelization. For the
former, we propose path fusion, which can fuse different execution
paths into a single one, either statically or dynamically, to lower
down the runtime cost of enumerative parallelization. For the latter,
we introduced higher-order speculation which allows a speculated
state to be validated speculatively to enable additional parallelism
and improve the speculation accuracy. Furthermore, we presented
a set of heuristics to help select the parallelization scheme for
practical use. Finally, we evaluated the proposed techniques using

real-world FSMs with diverse properties. The results confirmed the
effectiveness of the proposed techniques, substantially raising the
speedups for a spectrum of FSM benchmarks on parallel processors.
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A ARTIFACT APPENDIX
A.1 Abstract

This artifact contains the source code of BoostFSM, including the
five FSM parallelization schemes discussed in our paper and some
benchmarks along with their inputs used for evaluation. In addition,
this artifact provides bash scripts to compile the source code and
reproduce the key experimental results reported in the paper.

Considering the software dependencies, a software environment
with Linux Centos 7 or other similar Linux distributions, GCC, Bash,
Pthread, CMake and Boost library, is needed before the evaluation.
Moreover, to reproduce all results reported in the paper, especially
the speedup comparison and scalability analysis, the artifact needs
to run on Intel Xeon Phi processor (Knights Landing/KNL).

A.2 Artifact Check-List (Meta-Information)

o Algorithm: Five FSM parallelization schemes (see Section 5): B-Enum,
B-Spec, S-Fusion, D-Fusion and H-Spec.

e Program: The parallelization framework BoostFSM written in C++.

e Compilation: GCC 4.8.5.

o Binary: The source code of BoostFSM and compilation scripts are

included to generate binaries.

Data set: There are 20 input traces (around 400MB each) of network

traffics collected from a Linux server using tcpdump. They are the

inputs to network intrusion detection systems, and our FSMs.

e Run-time environment: The artifact has been developed and
tested on Linux (CentOS 7) environment, with source code compiled
by GCC using Pthread and Boost libraries.

e Hardware: To reproduce the results reported in our paper, the
artifact is supposed to run on Intel Xeon Phi 7210 Processor (Knights
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Landing/KNL, 1.3GHz), but it may also be compiled and run well on

other Linux machines (yielding different results).

Execution: Bash scripts are included for execution.

e Output: Results include FSM profiling information, speculation
accuracy and performance comparison.

e How much disk space required (approximately)?: At least
20GB is recommended, for downloading the 8GB input data and its
decompression.

e How much time is needed to complete experiments (approxi-

mately)?: It takes about 4 hours on the recommended KNL machine,

assuming all required tools and libraries have been installed.

Publicly available?: Yes

A.3 Description

A.3.1 How to Access. A file named ASPLOS21_AE. zip, containing
the source code, scripts, and data sets, are available as a public
repository on Zenodo (https://doi.org/10.5281/zenodo.4556045).

A.3.2 Hardware Dependencies. We recommend artifact evaluation
on an Intel Xeon Phi architecture (Intel Xeon Phi 7210 with 1.3GHz
in particular) to reproduce the results reported in the paper, but
it may also be compiled and run well on other Linux machines
(yielding different results). At least 20GB space is needed (mainly
for the data sets decompression).

A.3.3 Software Dependencies. We recommend that the artifact
runs on CentOS 7, but other similar Linux distributions should
also work. To compile and run the source code with scripts, users
need GCC 4.8.5, CMake 2.8 and Boost 1.66.0 library (or their later
versions).

A.3.4 Data Sets. Benchmarks are collected from an open-source
network intrusion detection system (Snort), where there is a pool
of signatures in PCRE format. The evaluated FSMs are converted
from the signatures with using a regular expression to DFA tool.
The corresponding data sets are included in this artifact for testing.
They are the traces of network traffics collected from a Linux server
using tcpdump and zipped into the artifact file. There are totally 20
inputs, with size of about 400MB each.

A.4 Installation

Please ensure software dependencies are met before evaluating the
artifact. Users need to download the source code and scripts which
are zipped into ASPLOS21_AE.zip from Zendo. There is a script
compile. sh under the directory ASPLOS21_AE/ which can be used
to compile the source code and generate the executables (please
run command bash compile. sh).

A.5 Experiment Workflow

We have provided a script run. sh to generate all the results in one
step, but we also support flexible evaluations or manual testing.
The total evaluation time of this artifact is about 4 hours (on the
recommended KNL machine).

To generate the results in Tables 1, 2, 3, 4, and 5, and Figure 16,
users can run the following commands:
# cd scripts/
# bash GetTablel.sh InputConf_five.in 64
# bash GetTable2.sh InputConf.in 64
# bash GetTable3.sh
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# bash GetTable4.sh InputConf.in 64
# bash GetTable5.sh InputConf.in 64
# bash GetFigurel6.sh InputConf.in 64

For Figure 17, users can repeat the evaluation of Table 2, but
over inputs with different sizes.

A.6 Evaluation and Expected Result

Results will be printed to the command console after finishing
the evaluation for a table or a figure. Following the experiment
workflow, users firstly get the properties of evaluated FSMs, then the
speedup comparison results among different schemes in BoostFSM.
After that, the statistics of path fusion and speculation accuracy
for B-Spec and H-Spec are produced. Finally, users can get the
scalability results (i.e., speedup curves) reported in Figure 16.

A.7 Experiment Customization

Please follow commands in the compilation and execution scripts
to customize the testing. For example, to test the scalability of
different parallelization schemes, users can follow the commands
in ASPLOS21_AE/scripts/GetFigure16.sh.
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