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Large, comprehensive collections of single-cell RNA sequencing
(scRNA-seq) datasets have been generated that allow for the full
transcriptional characterization of cell types across a wide vari-
ety of biological and clinical conditions. As new methods arise
to measure distinct cellular modalities, a key analytical challenge
is to integrate these datasets or transfer knowledge from one
to the other to better understand cellular identity and func-
tions. Here, we present a simple yet surprisingly effective method
named common factor integration and transfer learning (cFIT)
for capturing various batch effects across experiments, technolo-
gies, subjects, and even species. The proposed method models the
shared information between various datasets by a common factor
space while allowing for unique distortions and shifts in genewise
expression in each batch. The model parameters are learned under
an iterative nonnegative matrix factorization (NMF) framework
and then used for synchronized integration from across-domain
assays. In addition, the model enables transferring via low-rank
matrix from more informative data to allow for precise identifica-
tion in data of lower quality. Compared with existing approaches,
our method imposes weaker assumptions on the cell composition
of each individual dataset; however, it is shown to be more reli-
able in preserving biological variations. We apply cFIT to multiple
scRNA-seq datasets of developing brain from human and mouse,
varying by technologies and developmental stages. The successful
integration and transfer uncover the transcriptional resemblance
across systems. The study helps establish a comprehensive land-
scape of brain cell-type diversity and provides insights into brain
development.

single-cell RNA-seq | data integration | transfer learning | brain cells

Individual single-cell RNA sequencing (scRNA-seq) experi-
ments have been used to discover new cell states and recon-

struct cellular differentiation trajectories. Recent studies have
shown that cellular features can be preserved across experimen-
tal systems from related biological contexts (1). The information
learned from different data sources can improve the analysis
and interpretation of diverse biological systems. However, the
advantages of integrated data can be compromised by differ-
ences due to experimental batch, sampling (sample acquisition
and handling, sample composition, reagents or media, and sam-
pling time), or technology (sequencing depth, sequencing lanes,
read length, plates or flow cells, protocol) (2). The challenge
is exacerbated when technical differences in data sources are
confounded with biological heterogeneity. Many methods have
been established to integrate scRNA-seq studies across multi-
ple experiments. Some methods employ supervised cross-domain
transfer learning (3–6) to remove domain effects with mod-
els learned from labeled datasets. These methods rely heavily
on data labeling, thus failing to capture novel cell types and
continuous trajectories. In contrast, unsupervised methods are
less restrictive and therefore, more widely applied to integrate
data from multiple resources (7–11). However, many of these
methods tend to prioritize uniformity of mixing across different
batches over preserving biological variation (2). Such a principle
can lead to a loss in biological heterogeneity and interpretability,

especially when integrating collections of datasets with consid-
erable differences in cellular composition. Also, most existing
methods work on the assumption that all datasets share most cell
types or that the within-domain biological variance defining dis-
tinct cell types dominates the cross-domain effects (10, 12); such
assumptions do not hold when integrating biologically heteroge-
neous datasets or data consisting of continuously transitioning
cell types or refined subtypes.

Here, we present an effective unsupervised integration and
transfer learning model, called cFIT (common factor integration
and transfer learning). The model assumes a shared common
factor space across datasets but with location-scale shifts on
genewise expression unique by domain. Our model is motivated
from the machine-learning subdomain of transfer learning (13–
17), assuming that information is shared across different tasks,
and common data representations can be learned and general-
ized to other unseen tasks. In this framework, the shared latent
space represents the underlying biological processes across sys-
tems, such as common cell-type compositions and developmen-
tal trajectories across measurements, samples, or even species.
After the robustness of a biological process is established, these
learned latent spaces enable varied learning tasks across data
platforms, modalities, and studies, through transfer learning.

The proposed model is capable of capturing various batch
effects and integrating across various domains by employing a
linear model that is more parsimonious than existing methods
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such as Linked Inference of Genomic Experimental Relation-
ships (LIGER) (11). cFIT is powerful as it corrects for technical
variation but does not remove biological heterogeneity, provid-
ing both flexibility and interpretability. For implementation, we
derived an algorithm for inferring model parameters under an
iterative nonnegative matrix factorization (NMF) framework.
The algorithm is also applicable for synchronized integration of
cross-domain assays. Finally, the learned biological signatures
can apply transfer learning to allow for precise inference for data
with lower quality or smaller sample size.

cFIT enables successfully integration of two independent
datasets derived from the developing human cortex (18, 19). The
integration disentangled the domain-specific technical effects
with the biological processes unique to each dataset, where the
latter is preserved and depicted in the recovered developing
trajectories. The learned latent biological signatures were then
transferred to several previously published datasets from fetal
brain (20–23)—allowing for finer characterizations of cell identi-
ties and the biological process they are involved in, which would
not be feasible otherwise. In addition, the resilience to overcor-
rection facilitates the detection of possible contaminations in the
data source. By integration of data across species, we identified
transcriptomic heterogeneity between mouse and human cells
during the embryonic stage of interneuron (IN) development.
The findings shed light on similarities and differences in IN fate
between species. In aggregate, these analyses highlight the util-
ity of the proposed method to borrow strength across multiple
datasets and to transfer information between related datasets.

Results
Methods Overview. cFIT models the scRNA-seq expression of
individual cells using its cellular identity and domain-specific fac-

tors. Here, domain refers to any standalone dataset profiled at
a single laboratory using a single technology from one batch
(Fig. 1). Specifically, we are given a total number of N cells, and
each cell i is associated with a p-dimensional feature vector xi
corresponding to its gene expression values (SI Appendix has data
preprocessing steps). Each cell comes from a specific domain
with a known domain identification. Given M different domains,
we use mi ∈{1, 2, . . . ,M } to denote the domain identification of
cell i . We model the scRNA-seq data via a high-dimensional lin-
ear model with a latent low-dimensional structure. Let xi be the
observation of cell i that is generated from

xi =Λmi Whi + bmi + εi , i =1, . . . ,N . [1]

Here, we use the diagonal (p× p) matrix Λmi = diag(λmi ) to
control the discrepancy of individual gene expression resulting
from domain-specific technical effects. The matrix W denotes a
(p× r) nonnegative factor matrix shared across all samples and
domains representing the gene expression profiles (signatures)
associated with the cells; each vector hi is a cell-specific nonneg-
ative vector of length r representing the factor loading vector
of cell i . The domain-specific vector bmi is a nonnegative vector
of length p that captures the domain-associated shift. The noise
terms {εi}Ni=1 are modeled as independent, normally distributed
random vectors with mean 0 and variance σ2Ip to account for
measurement error from various sources.

Let nj denote the number of cells from batch j and N =∑M
j=1 nj the total number of cells. Concatenating the scRNA-

seq expressions of all cells from each domain j as an (nj × p)
matrix X j , then model Eq. 1 in matrix form is

A B C

D E

Fig. 1. cFIT integration and transfer approach overview. (A) cFIT performs integration or transfer among scRNA-seq datasets from different batches,
technologies, and across species. (B) Data integration takes in two or more datasets from different domains, where some cell-level biological processes are
shared. Each dataset is modeled by a low-dimensional latent space corresponding to gene-level features (gene expression signatures), W , shared across
domains, domain-specific factor loading Hj characterizing cell composition, and domain-unique scaling, λj , and shift, bj , capturing the technical distinction.
(C) The integration algorithm estimates the set of parameters through iterative NMF. The integrated data can be obtained by eliminating the technical
distinctions and projected onto a common subspace, where downstream analysis can be performed, such as clustering and trajectory inference. (D) The
transfer process takes a reference factor matrix representing the gene-level signature profiles and a target dataset sharing the signature space. (E) The
transfer algorithm estimates the target-specific parameters to project the target data onto the same low-dimensional space as inferred from reference data.
Cell labels can be assigned directly with unsupervised learning in low-dimensional space or querying reference data.
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X j =Hj W>Λj + 1nj b>j +Ej , j =1, . . . ,M . [2]

Here, Hj is a nonnegative factor loading matrix, and Ej is the
noise matrix (Fig. 1B).

Note that Hj captures the biological heterogeneity originating
from disparate cell-type compositions, and {Λj , bj} are domain-
specific parameters that accommodate domain differences such
as batch effects from samples and libraries, different sequencing
technologies, and even species, whereas W is the common fac-
tor space—the information shall be extracted and shared among
datasets. The above model (Eq. 2) hinges upon the rationale that
all of the samples belong to, after proper shift and rescaling, the
same lower-dimensional linear subspace, which makes it possible
to leverage information from diverse datasets.

The set of unknown parameters is estimated by minimizing
the objective function provided in Methods. Then, one can use
the integrated, low-dimensional representation of each dataset
HiŴ

>
for downstream analysis, as well as leverage the com-

mon factor matrix Ŵ for efficient transfer to a target dataset as
detailed in Methods and SI Appendix.
Comparisons with other methods. LIGER (11) is a popular
linear method that employs a similar matrix factorization: it fac-
torizes each batch expression matrix into a shared factor matrix
W and a batch-unique factor matrix with p× r parameters to
describe the domain effects. By contrast, we consider a different
modeling approach using only 2p parameters based on pat-
terns of technical variations. By imposing a structural constraint
on the dataset-specific effect in cFIT, we restrict the domain-
specific effects to the deviation by location and scale but rely on
the shared factor matrix to model the relative signature matrix.
The remaining orthogonal effects are preserved as biological
distinctions; thus, the corrected batch effects are less likely to
confound with biological effects. Although our model is com-
paratively conservative, we shall show in our data analyses that
the structured model is often sufficient to capture and remove
the domain effects from various sources. Nonlinear methods,
on the other hand, typically allow higher flexibility and have
shown superior power and performance in blending multiple
sources of data sharing similar compositions. These methods typ-
ically involve the identification of mappings between datasets
and remove the differences accordingly. It can be achieved
by finding the mutual nearest neighbors (MNNs), as used in
MNNcorrect (12) and Seurat v3 (10), where the target data are
mapped to the query data, guided by the pairwise points iden-
tified by MNN. Other types of nonlinear method leverage the
alignment between clusters (distinct cell types) (8) to eliminate
the batch effects within the clusters and/or between mapped
clusters. The success of MNN relies heavily on the assump-
tion that the batch effect is almost orthogonal to the biological
subspace, and there is a substantial overlap of the cell composi-
tions between the source and target data. As such, cluster-based
methods require relatively well-separated clusters mapped across
datasets. Apart from that, both types of approaches assume that
the biological differences dominate the domain effects; how-
ever, this assumption is likely violated when cells are obtained
along a continuous developmental trajectory with transitioning
subtypes. These nonlinear methods eliminate the pairwise dis-
tinctions regardless of the source of distinctions. Therefore, they
tend to overcorrect the biological variance. Alternatively, our
method imposes less assumption on the distinctions of biolog-
ical and domain effects by parsimoniously modeling the most
likely generative source of domain effects. When our model
assumptions are violated, it is likely that cFIT does not remove
the batch effects that are unexplained by the model rather
than falsely erasing signals. In this sense, cFIT is less prone to
overcorrection.

Simulation Studies: Differential Expression Analysis and Robustness.
The performance of cFIT was first evaluated on differential
expression gene (DEG) discovery, a key downstream analy-
sis. The comparison assessed the integration methods’ ability
to remove domain-specific factors while preserving biological
signals. We compared with two widely used single-cell integra-
tion methods Seurat v3 (10) and MNNcorrect (12), which per-
formed well in a benchmarking study (24). We do not compare
with LIGER because this method does not produce a recon-
structed scRNA expression matrix. We performed simulations
with single-cell simulator under five settings with a combina-
tion of balanced/unbalanced batches, regular/high-dropout rates,
and two/multiple biological groups. After obtaining the recon-
structed expression matrices, we used the two-sided Wilcox rank-
sum test for DEG detection and reported the false discovery rate
(FDR) among top 50 and 100 discoveries. All three methods
are effective in capturing the biological signals in some settings.
Seurat v3 has advantages in the unbalanced batch/multiple group
settings, while MNNcorrect shows better performances in the
balanced batch scenarios. Overall, cFIT has the smallest FDR
for most settings and is most robust across different parameter
settings (SI Appendix, Fig. S1A).

We then evaluated the robustness of cFIT with respect to tun-
ing parameters. In SI Appendix, we show that, with our proposed
penalty term and parameter constraints, cFIT is identifiable and
guaranteed to converge; furthermore, performance is enhanced
using our initialization process. Hence, the only key tuning
parameter remaining is r , the number of latent factors. Here, we
demonstrate that our results are robust when r is chosen from
a reasonably wide range. By construction, the latent dimension
r corresponds to the number of biological groups. We consid-
ered two simulation designs such that the expression matrices
follow model Eq. 2 with r =5, and 1) all five cell groups pre-
sented in both domains, 2) three cell groups presented in both
domains, and each domain has a unique cell group. A Uniform
Manifold Approximation and Projection (UMAP) visualization
revealed the impact of severe batch effects (SI Appendix, Fig. S1
B and C). Provided r ≥ 5, cFIT performed well, successfully inte-
grating cells in each biological group into one cluster. Note that
the second setting was challenging for most current integration
methods, but cFIT was still able to recover the “unique cell
groups.” In practice, when we do not have prior knowledge about
the number of biological groups, taking into consideration the
complexity of real datasets and computation cost, we recommend
a choice of r between 10 and 50.

Applications to Single-Cell Data.
Integration of scRNA-seq datasets from multiple technologies.
Next, we evaluated our approach on human pancreatic islet cell
datasets produced across five technologies, CelSeq, CelSeq2,
Fluidigm C1, SMART-Seq2, and InDrop. After applying the
cFIT integration procedure, technical distinctions that originally
grouped cells by batch were effectively removed, so that cells
belonging to the same cell type, regardless of data sources, were
well mixed (SI Appendix, Fig. S2). In addition to detecting all
major cell classes (alpha, beta, delta, gamma, acinar, and stel-
lar), we also identified some rare cell types (schawann and mast)
with the integrated data that could not be reliably detected with
a smaller number of cells through individual clustering analysis.
We benchmarked the performance of cFIT against two popu-
lar methods: LIGER (11) and Seurat v3 (10). The integration
results were compared using the alignment score, a measurement
of how well different datasets mix (Methods and SI Appendix),
and the accuracy for preserving the cell-type structure measured
by the Adjusted Rand Index (ARI) on clustering. Methods that
perform well in both metrics effectively matched populations
across datasets without blending distinct populations. Results
show that cFIT achieved comparable high alignment scores and
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clustering accuracy as Seurat, indicating the effectiveness of our
method relying on a simpler linear model compared with the
nonlinear multistep procedure employed by Seurat. LIGER pro-
duced lower clustering accuracy, due to overcorrection of the
domain-specific effects that falsely removed the biological gene-
level distinctions between cells from different cell types. LIGER
promoted the use of a postquantile normalization step to further
align the quantiles of the batches within obtained clusters. Sim-
ilarly, we show that this step can also be coupled with cFIT and
produces higher alignment scores, despite the increased risk of
mixing distinct cell types.
Integration of datasets consisting of distinct cell types. To exam-
ine the robustness of the proposed method on integrating popu-
lations with different cell-type compositions, we removed all cells
of one prechosen type from each pancreas islet cells dataset. The
cell type was randomly chosen as the largest or second-largest
major cell type for each dataset (SI Appendix). The integration
procedure was applied to these perturbed datasets to compare
performance. cFIT successfully integrated the datasets without
blending distinct cell types. As with the original data, cFIT
achieved high clustering accuracy (ARI ≈ 0.9) and alignment
score (Fig. 2 and SI Appendix, Fig. S3). In contrast, LIGER and
Seurat integration failed to preserve the cell-type structure, and
cells from different cell types were mixed together. Specifically,
in both LIGER and Seurat results, a fraction of ductal cells was
clustered with acinar cells, and beta, delta, alpha, and gamma
cells became entangled. The clustering accuracy (ARI) dropped
to approximately 0.6 (SI Appendix, Fig. S3C). In summary, cFIT
successfully characterized the domain-specific effects and was
robust to the perturbation in relative cell-type compositions.

To further ensure that cFIT was able to distinguish between
the technical and biological effects when they were confounded,
we jointly analyzed profiles of hippocampal oligodendrocytes
and interneurons (INs) (25). The two cell classes share a com-
mon origin in mouse development, but they are born in distinct
time frames and have very different functions in the mature
brain. Therefore, we expected the two sets of mature cells to
share few, if any, common cell populations. Compared with
LIGER and Seurat, cFIT generated the minimum false align-
ment, which is apparent visually in the UMAP display of inte-
grated data and by comparing the alignment scores (SI Appendix,
Fig. S4).
Integration of human fetal cortical scRNA-seq data. Several stud-
ies, all following a unified set of protocols, have dissected multi-
ple regions of human fetal brain and sequenced single cells (18–
23). These studies enable the study of cellular programs in early
development, comparisons of regional differences in cell-type
compositions and expression profiles, and mining associations
between brain cell types and neurological disorders (19, 26).
However, challenges remain to integrate these datasets, which
have been produced using disparate technologies, providing dif-
ferent coverage of developmental stage and brain regions. As a
first step, we integrated the two largest scRNA-seq datasets from
fetal cortex: 1) the Polioudakis scRNA-seq data (19) (Drop-seq)

of 33,976 cells from cortical anlage at gestation week 17 or 18 and
2) the Nowakowski data (18) (Fluidigm C1) of 4,261 cells from
multiple brain areas and ranging in age from 5.85 to 37 post-
conception weeks (PCW). We aimed to borrow the advantages
from both datasets via their integration, thus providing a more
comprehensive characterization of human neocortical develop-
ment. By applying our proposed algorithm on these datasets,
we obtained integrated data with good overlap from initially
divergent data sources, as indicated via UMAP visualization and
alignment score (Fig. 3 A–C). Similar cell types matched per-
fectly, including oligodendrocyte progenitor cells (OPCs), radial
glia, progenitor cells, and excitatory neurons (ENs), while oth-
ers were unique to Nowakowski data, including IN progenitors
(medial ganglionic eminences radial glia [MGE-RG], medial
ganglionic eminences intermediate progenitor cell [MGE-IPC],
newborn IN [nIN]) and unlabeled types (U1, U2). The IN pro-
genitors were sampled from a brain region not included in the
Polioudakis dataset; the unknown types could be other unrep-
resented cell types or artifacts. It was notable that cFIT did
not force these cells to overlap with closely related cell types
present in the larger Polioudakis dataset. Moreover, two mat-
uration trajectories of ENs were revealed in the Nowakowski
data. One ends at prefrontal cortex (PFC) maturing excitatory
cells, and the other ends at primary visual cortex (V1) matur-
ing excitatory cells; while the mature cells sampled from the two
different brain regions were clearly differentiated, the imma-
ture cells were not. The Polioudakis data spanned this same
space, but this study did not distinguish cells by region. Thus, by
aligning the two datasets and noting the two trajectories appar-
ent in the Nowakowski data, we can infer the regional origin
of a portion of the Polioudakis cells (Fig. 3D). In addition, we
were able to assign labels to previously unannotated cells and
likely misidentified cells. For instance, a group of unlabeled
cells (NA) in the Nowakowski data was identified via nearest
neighbor matching as ENs due to their substantial overlap with
migrating and maturing ENs in the Polioudakis data. A sub-
set of 39 OPCs in Polioudakis data are likely astrocytes (ASTs)
given they are matched to ASTs from the Nowakowski data and
expressed ASTs markers GFAP, SOX9, and EGFR. Compared
with the initial attempt to integrate the same datasets (19) using
Seurat, cFIT results exhibited superior alignments, especially
among ENs, while preserving the batch unique profiles in medial
ganglionic eminences (MGE) lineage that were eliminated by
Seurat integration.
Transfer the learned signature from a dataset with a larger num-
ber of human cortical cells to a dataset with a smaller number
of human cortical cells. The learned factor matrix from the inte-
gration of the Nowakowski and Polioudakis data can serve as
a comprehensive reference that characterizes the cellular pro-
cesses in the fetal brain, covering a wide range of developmental
stages (6 to 37 PCW) and major and more specialized cell types.
Thus, we applied our proposed transfer learning methods and
used this comprehensive reference to enable cell-type identifi-
cation for 2,309 PFC cells from the Zhong dataset (23), which

Fig. 2. UMAP plots of integrated data from per-
turbed pancreas islet datasets, created by moving
one major cell type from each dataset, comparing
results from three methods: cFIT (Left), LIGER (Cen-
ter), and Seurat (Right). Cells are colored by cell
types.
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D E F

Fig. 3. (A–D) Integration of two scRNA-seq datasets from the fetal brain (Nowakowski and Polioudakis data). (A) UMAP plot of two datasets before inte-
gration. (B) Match of the identified clusters in Nowakowski data with major types identified from the Polioudakis data. The alignment score demonstrates
how well each cluster in the Nowakowski data are aligned with cells from the Polioudakis data visualized in the color bar above. A higher score means
the cells are well matched with cells from the other dataset. The bar plot shows the top matched cluster from the Polioudakis data for each cluster of the
Nowakowski data. (C) UMAP of scaled factor loadings obtained from data integration. In Left, only cells from the Polioudakis data are colored into 16 major
cell types. Similarly, in Right, only cells from Nowakowski data are colored according to the 48-cell-type label (see SI Appendix, Tabel S2 for detailed cell-type
annotations from respective studies). (D) UMAP of integrated Polioudakis and Nowakowski data, colored by brain area annotated for the Nowakowski data,
including prefrontal cortex (PFC), primary visual cortex (V1), medial ganglionic eminence (MGE), and lateral ganglionic eminence (LGE). (E and F) Transfer
results on 2,309 cells from the Zhong data. (E) UMAP of 2,309 cells (colored by Zhong labels, SI Appendix, Table S2) overlaying on cells from the Polioudakis
and Nowakowski (reference) datasets, among them a group of cells outside the range of reference cells and previously identified as possible doubletons
(27). (F) The composition of cells based on matched cell types in reference datasets for each major group, with the alignment score computed for each major
group measuring how well it matches with reference data.

contains 2,309 single cells from the human embryonic PFC from
8 to 26 PCW. Using the Seurat package, the authors identified six
major clusters: neural progenitor cells (NPCs), ENs, INs, ASTs,
OPCs, and microglia (MIC); these will be referred to as Zhong
labels. Through the transfer procedure, we obtained the follow-
ing results. First, the 2,309 cells, represented in low-dimensional
space using estimated factor loadings, overlay substantially with
cells from the Polioudakis and Nowakowski datasets. We were
able to identify finer structure within each major group by match-
ing group labels from the reference datasets. Among them, NPC
consisted of cycling progenitors, intermediate progenitors, and
radial glia. EN cells contain both migrating and maturing ENs.
IN matched perfectly with MGE and caudal ganglionic emi-
nence (CGE)-derived INs, OPC and MIC aligned perfectly with

OPC and MIC from reference data, and AST aligned partially
with ASTs and partially with outer radial glia (oRG). Most
groups showed high alignment scores, except for the AST clus-
ters, which while laying adjacent to each other, were not well
mixed. This analysis showed that by transferring rich informa-
tion, we were capable of delineating finer structures within each
major type in another dataset. Second, we were able to identify
cells from rare types that were likely misclustered in the Zhong
analysis. For instance, previously labeled as INs, five cells were
relabeled as endothelial, and another five cells were relabeled
as pericytes. This finding was supported by the UMAP visu-
alization, where these cells lie in clusters corresponding to
endothelial and pericytes that were well separated from other
types. Third, the migrating and maturing ENs align well with the
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PFC branch as identified from the Nowakowski data (the branch
extends downward in the UMAP visualization), while the upper
branch displays maturing ENs from the visual cortex. Fourth, we
observed a fraction of EN cells that align poorly with the refer-
ence data (outside the gray range in the UMAP plot); among
them, some were labeled as NPC. This was indicative of the
underrepresentation of these cells in the reference. It was not
clear whether these were unknown neuronal signatures charac-
teristic of these cells or were mischaracterized cells. The latter is
more likely because previous work (27) discovered a cluster of
cells as possible doubletons (i.e., transcripts captured from two
cells rather than one).

Transfer learning is particularly valuable when applied to
much smaller datasets. We conducted similar transfer analysis
on a variety of scRNA-seq datasets of human cortical cells (20–
22), covering different technologies and populations. The Li data
(22) contain 762 cells collected from nine brains ranging in age
from 5 to 20 PCW. Applying cFIT, the cells were transferred
to the reference data in the low-dimensional factor space and
showed good alignment of most cell labels (SI Appendix, Fig. S5
A and C). The alignment was further validated by the incremen-
tal age along the trajectory observed (SI Appendix, Fig. S5B).
By transferring onto well-characterized developmental trajecto-
ries, we were also able to identify some likely mislabeled cells,
which likely arose due to having too few cells per type available
originally: for instance, the rainbow points along the matura-
tion trajectory of ENs and CGE/MGE INs. We next examined
an even smaller scRNA-seq dataset from the fetal brain, with
220 cells sampled between 12 and 13 PCW (20). Guided by
marker genes, these single cells were previously labeled into
seven types in the original paper: two subtypes of apical pro-
genitors (AP1, AP2), two subtypes of basal progenitors (BP1,
BP2), and three subtypes of neurons (N1, N2, N3). By trans-
ferring these cells onto the reference data, we were able to
validate the cell labels (SI Appendix, Fig. S5D). As a further
step, we identified the finer structure within each cell group
(different types of radial glia within apical progenitor cells and
different progenitor cells within the basal progenitor group) (SI
Appendix, Fig. S5E). We also revisited a widely studied dataset
composed of both fetal and adult brain cells (21) (134 fetal cells
and 334 adult cells from cortical tissues at 16 to 18 PCW). The
transfer procedure evenly distributed the fetal cells along the ref-
erence trajectory, where labels were easily inferred (SI Appendix,
Fig. S5F). By contrast, the transfer process projected all adult
neurons outside of the fetal developing trajectory (SI Appendix,
Fig. S5G).
Integrate cell expressions across species. We further examined
the performance of the proposed algorithm for integrating mouse
and human brain cells. Although we expect differences between
the two species, similarities have also been noted in some tran-
scriptomic patterns (28), and once understood, shared features
are likely to provide a deeper insight into the fundamental archi-
tecture underlying cellular development and physiology. Diverse
subsets of cortical INs have vital roles in higher-order brain func-
tions. Due to the limited number of profiled early inhibitory
precursors from human, we leveraged several mouse scRNA-
seq datasets collected along a developmental time course using
multiple technologies (29, 30) and integrated them with human
MGE progenitors and INs (18). We first examined the hetero-
geneity within the early development in MGE (mainly composed
of mitotic progenitors within MGE before migrating to cor-
tex). By integrating the 733 Nowakowski cells collected from
MGE (age between 5 and 21 PCW) with 5,622 mouse cells from
Drop-seq data (embryonic day 13.5), we identified a common
mitotic developmental trajectory shared between the two species
(SI Appendix, Fig. S6 A and B). In their prior work (29, 30),
each mouse cell was assigned a maturation score (a continu-
ous value quantifying the extent of cell development), allowing

the cells to be divided into mitotic and postmitotic stages. We
mapped this maturation score to human cells by averaging over
the scores of neighboring mouse cells (among the 30 nearest
neighbors). We observed a match between the maturation score
and the reference labels of human cells, starting from the two
subtypes of MGE-RG, followed by the dividing MGE progeni-
tors, subtypes of MGE-IPC, and ending with newborn INs (SI
Appendix, Fig. S6C). Seurat clustering analysis was performed,
which identified eight major clusters, each composed of both
mouse and human cells (SI Appendix, Fig. S6D). Clusters A to
F are composed of mitotic cells concordant with the reference
labels (SI Appendix, Fig. S6E). Meanwhile, the two clusters of
postmitotic cells aligned with the reference branch labels. The
newborn INs fell in branch 1 cluster, which was conjectured to
give rise of cortical INs (29). The alignment score calculated
per cluster demonstrates that the human cells were evenly dis-
tributed in each cluster, except for F (SI Appendix, Fig. S6E).
Cluster F contained a fraction of newborn INs from a later
developmental stage (>20 PCW), beyond the range covered by
mouse cells.

Next, we investigated the full developmental process start-
ing from mitotic progenitors in MGE, which differentiate and
migrate to the cortex to become mouse mature INs, and exam-
ined whether the human MGE-derived INs developmental tra-
jectory could be aligned. We integrated six datasets, a human
dataset containing 733 cells from MGE and 271 MGE-derived
cortical INs (18) (5 to 22 PCW) and five from mouse at differ-
ent ages, and sequenced by different technologies (29, 30) (SI
Appendix). We observed a continuous developmental trajectory
from the integrated data (SI Appendix, Fig. S6F) starting from
the mitotic cells, followed by those transitioning into the post-
mitotic stage where progenitors diverge and differentiated by
distinct transcriptional states. The states aligned with the previ-
ously identified three branches (SI Appendix, Fig. S6H). Along
branch 1, new subbranches emerged and ultimately arrived at
distinct types of mature INs (Sst, Pvalb, Nos1, and Th) (SI
Appendix, Fig. S6I). The human cell development largely resem-
bled the mouse cells, where the human cells ranged from early
mitotic to relatively mature INs along branch 1. In another tra-
jectory endpoint, striatal INs (IN-STR) were blended with mouse
cells from branch 2 (SI Appendix, Fig. S6J). This analysis identi-
fied 12 major groups, including three clusters of mitotic cells (1,
4, 11) and branch 1 clusters of four different subbranches: an
Sst branch (cluster 3, 9); a Pvalb (cluster 2, 10); an Nos1 branch
(cluster 7); and an unknown branch (cluster 8; expressing mark-
ers such as BmT7, Col2a1, Notch2, Cd9) (SI Appendix, Fig. S6 K
and L). The human cells were grouped with mouse cells in cor-
responding clusters (SI Appendix, Fig. S7B). Particularly, a group
of human cells in cluster 3 was identified as relatively mature pre-
cursors of Sst INs (SI Appendix, Fig. S7B). Our analyses revealed
that transcriptional profiles underlying INal fate specification
are largely conserved between mouse and human. It also high-
lighted the power of cFIT to capture and integrate the shared
biological processes across different systems effectively. These
are important steps toward the goal of harnessing information
across species to understand mammalian neurodevelopment and
its relevant physiology.

Discussion
We develop a method for integrating single-cell datasets and
transferring knowledge to target settings that is robust and inter-
pretable. cFIT assumes a shared common factor space across
datasets, but it models distortions and shifts on genewise expres-
sion that are unique to each source. In doing so, it captures
the advantages without the disadvantages of existing methods.
Similar to LIGER, the nonnegativity constraint of NMF yields
interpretable factors that can be biologically meaningful. While
the shift in cFIT corresponds to the batch-specific factor in
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LIGER, their scaling is applied to all of the shared factors con-
currently. Therefore, our model takes a different approach to
characterize the impact of domain effects originated from differ-
ent experimental tools and measurements employed. Nonlinear
methods typically allow for higher flexibility and superior power
to correct the varying sources of batch effects, while it comes
with a much higher risk of false correction of biological effects.
This can cause reduced power of downstream analysis such as
identifying DEG. Seurat v3 intrinsically assumes batch effects
being orthogonal to biological effects and a substantial over-
lap of cell-type compositions between target and source datasets
and produces results dependent on the order of pairwise inte-
gration. By contrast, our method makes no assumptions on
cell populations in individual data and can perform integration
simultaneously across all data sources. Our method also does
not depend on the degree of domain effects relative to biolog-
ical differences (e.g., between cell types), as required to ensure
the success of methods such as MNNcorrect (12). Notably, far
fewer parameters are required by our model, and yet, it retains
the power to capture domain effects. It maintains identifiability
and robustness through the choice of tuning parameters. Like
Seurat v3, our method also provides an estimate of a corrected
expression matrix, which can be used as input for downstream
analyses such as pseudotime or differential gene expression anal-
ysis. There are notable advantages to having access to corrected
versions of both gene expression and lower-dimensional factor
loadings, which can be used to reveal interesting biological fea-
tures. We would also like to point out the possibility of using
cFIT as a first step to eliminate major batch effects and then
applying alternative methods to remove more subtle effects in
a subsequent iteration.

Unlike many competing approaches, cFIT is less prone to
removing biological heterogeneity, which facilitates combining
datasets with strong biological heterogeneity and capturing the
advantages of each source into a single dataset. We show this in
simulations and several scRNA-seq datasets. Consequentially, in
our analysis of fetal brain development, we were able to com-
bine datasets sampled from widely divergent protocols, spanning
different developmental epochs with both mouse and human
cells. The resulting integrated analysis delineated closely related
neuronal subtypes, drew inferences about developmental trajec-
tories, and correctly classified rare cells from datasets with small
numbers of cells sampled. These insights could not be obtained
from any single dataset, nor with an integration approach that
minimized biological differences between datasets.

Methods
To integrate multiple datasets, we start with selecting those infor-
mative genes and then normalize the expression of each cell by
the library size and a log transformation (SI Appendix has more
details). The set of unknown parameters {W , {Hj ,Λj , bj}Mj=1} is
estimated by minimizing the following objective:

1

N

M∑
j=1

∥∥∥X j − (Hj W>Λj + 1nj b>j )
∥∥∥2

+ γ

p∑
l=1

(
M∑
j=1

nj

N
Λj (l , l)− 1

)2

, [3]

subjecting to the nonnegative constraints for parameters
W ,Hj ,Λj , bj . Here, we use X(i , j ) to denote the (i , j )-th entry of
matrix X . The positive parameter γ determines how much penal-
ization is imposed on the batch-specific parameter Λj , which
ensures the identifiability of the learned model.

To optimize the above nonconvex objective function, we adopt
the widely used block coordinate descent approach (31, 32),

with the details deferred to SI Appendix. Having eliminated
the domain-related factors, the integrated scRNA-seq expres-
sion matrices are ready for downstreaming analysis, such as
clustering and trajectory inference with the low-dimensional rep-
resentation Hj and inference of differentially expressed genes
with the scaled cell by gene matrix Hj W>. With the esti-
mated common factor matrix W , one can rapidly transfer the
learned pattern to a target dataset through a transfer algorithm
(detailed below). The dataset-specific factor loading Htarget,
scaling Λtarget, and shift btarget are estimated with fixed refer-
ence factor matrix through a similarly block coordinate descent
procedure. Ultimately, the proposed algorithm projects the tar-
get data onto the low-dimensional space estimated from the
reference dataset. This procedure capitalizes on available infor-
mation gleaned from prior analyses to optimize the value of small
and low-quality datasets. Below, we briefly describe the steps
for data integration and transfer tasks, with details deferred to
SI Appendix.

Data Integration. Given the solution
(

Ŵ , {Ĥj , Λ̂j , b̂j}Mj=1

)
to

the aforementioned optimization problem, one can obtain the
estimated data matrix in the shared lower-dimensional factor
space as

X̂ =

 X̂1

...
X̂M

=


Ĥ1Ŵ
>

...
ĤM Ŵ

>

=
 Ĥ1

...
ĤM

Ŵ
>
= ĤŴ

>
,

and one can obtain the intrinsic low-dimensional representa-
tion as the estimated factor loadings Ĥ. As is seen in our
real data examples, these batch-adjusted observations are par-
ticularly useful for downstreaming analysis, such as cell-type
identification.

Data Transfer. We transfer the knowledge to a target dataset that
is potentially of lower quality or contains smaller numbers of
cells. Specifically, given the target expression matrix Xtarget and
the factor matrix Wref obtained from reference datasets, the goal
is to recover parameters (Htarget,Λtarget, btarget) for the target
dataset. Similarly, these parameters can be estimated through
the following optimization problem:

min
H,Λ,b

G(H,Λ, b;Wref) :=
∥∥∥Xtarget− (HW>refΛ+ 1 b>)

∥∥∥2
F
, [4]

subject to the nonnegative constraints H,λ, b≥ 0 and row
stochastic constraint H1= 1. The low-dimensional factor load-
ings Ĥtarget can be directly used for further data analysis.

Scalability and Algorithm Speedup. The computation complexity
of cFIT scales linearly with the number of cells (SI Appendix,
Fig. S8A). It can accommodate tens of thousands of cells within
reasonable run time on a standard personal computer (depend-
ing on the number of genes p and the number of factors r). To
speed up the processing of millions of cells, we implemented
a fast version of the algorithm employing the idea of random
sketching (33) and stochastic proximal point (SPP) method (34).
In each iteration, a random projection matrix Sj ∈Rñj×nj is gen-
erated for each batch independently. Then, the parameter sets
are updated solving the sketched problem

J
(
Θ; {Sj}Mj=1

)
=

1

N

M∑
j=1

∥∥∥Sj X j − Sj (Hj W>Λj + 1nj b>j )
∥∥∥2 [5]
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with the same constraints and penalty. For each coordinate
descent subproblem, SPP is employed to ensure the solution
stays close to the previous updates, thus encouraging consistency
across different sketched problem. This is achieved by adding
additional penalty in updating each block of parameters

θ(t+1) =argmin
θ≥0

[
J
(
θ; S(t), (Θ\θ)(t)

)
+

1

2µt

∥∥∥θ−θ(t)
∥∥∥2],

[6]

where µt controls the diminishing step size. This procedure
enables reduced run time roughly proportional to the fraction
of subsample size (SI Appendix, Fig. S8B). More details can be
found in SI Appendix.

Data Availability. There are no data underlying this work.
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