
RESEARCH ARTICLE Open Access

Impact of short-read sequencing on the
misassembly of a plant genome
Peipei Wang1,2, Fanrui Meng1,2, Bethany M. Moore1,3 and Shin-Han Shiu1,2,3,4*

Abstract

Background: Availability of plant genome sequences has led to significant advances. However, with few
exceptions, the great majority of existing genome assemblies are derived from short read sequencing technologies
with highly uneven read coverages indicative of sequencing and assembly issues that could significantly impact
any downstream analysis of plant genomes. In tomato for example, 0.6% (5.1 Mb) and 9.7% (79.6 Mb) of short-read
based assembly had significantly higher and lower coverage compared to background, respectively.

Results: To understand what the causes may be for such uneven coverage, we first established machine learning
models capable of predicting genomic regions with variable coverages and found that high coverage regions tend
to have higher simple sequence repeat and tandem gene densities compared to background regions. To
determine if the high coverage regions were misassembled, we examined a recently available tomato long-read
based assembly and found that 27.8% (1.41 Mb) of high coverage regions were potentially misassembled of
duplicate sequences, compared to 1.4% in background regions. In addition, using a predictive model that can
distinguish correctly and incorrectly assembled high coverage regions, we found that misassembled, high coverage
regions tend to be flanked by simple sequence repeats, pseudogenes, and transposon elements.

Conclusions: Our study provides insights on the causes of variable coverage regions and a quantitative assessment
of factors contributing to plant genome misassembly when using short reads and the generality of these causes
and factors should be tested further in other species.
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Background
The number of whole genome sequences has increased
dramatically in the last decades due to the development
of new generations of sequencing technologies and reduced
cost. The “first” generation was Sanger sequencing technol-
ogy [1], based on which a decade was taken to deliver a
draft genome of human [2]. The second-generation
technology—i.e., “Next generation sequencing” where
thousands to millions of DNA molecules are enabled

to be sequenced simultaneously dramatically shortens
the time required to obtain high genome coverage
[1]. However, due to the short length of these reads
(36 bp ~ 400 bp), there are many challenges for assem-
bling genome based on short reads, including the
difficulty in sequencing repetitive sequences [3], low
read coverages in GC-poor or GC-rich regions [4],
genome sequencing bias introduced by PCR amplifica-
tion during library construction [5], and polyploidy in
some species including most flowering plants [6]. The
advent of third generation sequencing, e.g., Pacific
Biosciences (PacBio) single molecule real time sequen-
cing [7] and Oxford Nanopore sequencing [8], has led
to another revolution in genome sequencing, where
long reads up to 100 Kb can be sequenced in a single
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run without PCR amplification or chemical labeling of
the sample. Although the much higher error rates
remain an issue [9], the third generation sequencing
still has merit for applicants more tolerant to error
rates, like structural variant calling [10] and, com-
bined with short-read sequencing, is overtaking pro-
jects that focus on short reads only.
Although the number of genome sequences which

take the advantages of both second and third generation
sequencing are increasing [11–14], the majority of
genome assemblies available from the National Center
of Biotechnology Information (NCBI) were generated
predominantly using short reads from the second-
generation technology. Before the third-generation
sequencing is more widely applied to improve these
genome assemblies, it remains important to assess the
quality of existing short-read based assemblies. Several
methods have been developed for this purpose, like
Scaffold N50, MaGuS [15], LTR Assembly Index [16],
SQUAT [17]. In addition to these methods, another
strategy is to assess how well an assembly is covered by
the reads used for building the assembly.
For an ideal genome assembly, the sequencing reads

would be uniformly distributed across the genome.
However, in the real world, when sequencing reads are
mapped back to the genome, the read coverage varies
across genome due to multiple reasons. First, regions
with extremely high or low GC content may not be
sequenced equally compared with other GC-balanced re-
gions, leading to low or even no coverage of reads [18].
Second, repetitive sequences are abundant in species
with larger genomes, and have always been a major
challenge for genome assemblies [3]. Repeats longer than
read length would lead to gaps in the genome assembly
due to uncertainty in assembly of these regions. This
would break down the genome into pieces, leading to
the loss of linkage information among genetic markers.
Third, repeats may also be led to misassembly where
two unlinked regions were joined together and resulted
in higher than usual read coverages. In the case of
repetitive sequences containing genes, such as tandemly
duplicated genes and retrogenes, such misassembly
would reduce the gene copy number estimation. These
missing genes not only make it challenging to account
for all the genes in a genome but also create problems
for functional genomic studies by impacting gene expression
level estimates or loss-of-function studies. For example, the
annotated SEC10a gene from Arabidopsis thaliana and its
recent tandem duplicate copy SEC10b, were assembled to-
gether and annotated as a single gene, which explains why
homozygous T-DNA insertion mutant of either copy has no
phenotypic change compared to wild-type [19].
Here, we use tomato (Solanum lycopersicum) as a

model to assess the extent to which its assembly has

variable coverage and the extent to which the misassem-
bly is associated with variable read coverage. Tomato is
chosen because assemblies built with short reads, as well
as PacBio long reads are both available. In addition, it is
an important crop and a major model species for study-
ing specialized metabolism, particularly considering
specialized metabolism genes tend to be duplicated
tandemly [20, 21] and may tend to be misassembled.
The idea of searching for regions with significantly high
or low read coverages has been extensively applied in
estimating copy number variation (CNV) among species
or populations [22–24]. Here, we aimed to investigate
whether the read coverage can be used in detecting
misassembled regions. Using CNV detection tools, we
identified genome regions with significantly high- and
low-coverage of sequencing reads compared to the
genome average (i.e., background). Based on genomic se-
quence information on regions with variable coverage,
our primary goals were to explore underlying factors in-
fluencing the read coverages though machine learning
approaches. Most importantly, assembly quality was
assessed through comparison between short and long-
read assemblies. Finally, factors (i.e., sequence features)
informative to predict misassembled regions were also
investigated.

Results and discussion
Abundance of tomato genomic regions with higher and
lower than average coverage
Two datasets were used to determine how well different
genomic regions were covered and to define variable
coverage regions: genomic regions with significantly
higher coverage (HC) or lower coverage (LC) than aver-
age (referred to as background, BG). The first, dataset1,
was generated with Illumina Genome Analyzer IIx
(GAIIx) sequencer with 90-bp paired-end and 54-bp
mate pair reads (~28x coverage) used in the original
genome assembly [25], and the second, dataset2, was
generated with Illumina HiSeq 2000 sequencer with
101-bp paired-end reads (~ 46-fold coverage). To assess
the qualities of these two datasets and to see if both
datasets should be analyzed, the tomato genome assem-
bly was split into 100 bp bins and, for each bin, the read
depth (RD) was determined using either dataset1 or 2
(see Methods). After correcting the RD values for GC
content bias [22], the median RDs for dataset1 and data-
set2 are 1.04 and 1.05, respectively (an example region
on chromosome 1, Fig. 1a). The RD values from these
two datasets are significantly correlated (Spearman’s ρ =
0.40, p < 2.2e-16), and consistently revealed bins with
substantial deviations from the median value in both di-
rections indicating the presence of HC and LC regions
(e.g., grey and black arrows in Fig. 1a). However, RDs of
dataset1 was significantly more variable across genome
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(variance = 0.25 using 0 ~ 99 percentile values) compared
to those of dataset2 (variance = 0.15, F-test, p < 2.2e-16,
Fig. 1a). This is not simply due to the higher genome
coverage of dataset2 (~ 46.3x) compared to dataset1 (~
28.6x), because a subset of randomly sampled reads from
dataset2 to ~30x genome coverage has much more
similar RD estimates as dataset2 (Spearman’s ρ = 0.87,
p < 2.2e-16, Fig. 1a).
The comparably higher RD variance in dataset1 may

be due to lower sequencing quality and shorter read
lengths that contribute to erroneous read mapping and
may lead to overestimates of HC and LC regions. Thus,
only results based on dataset2 were discussed further.
Based on the RD values, HC, LC, and BG regions were
identified with CNVnator (see Methods). However, we
found that RD distributions of HC, LC and BG regions
called by CNVnator were overlapping (Fig. 1b). Given
our goal is to identify HC and LC regions with high con-
fidence, two threshold RD values were chosen: 0.72 and
1.76 that minimize the overlap between LC and BG re-
gions (Fig. 1c), and that between BG and HC regions
(Fig. 1d), respectively. Thus, HC regions were defined as
regions with RD > 1.76, and LC regions were those with
RD < 0.72. BG regions had RD values between 0.72 and
1.76. This resulted in 1156 HC, 19,451 BG and 15,034
LC regions. The HC and LC regions account for 0.6%
(5.1Mb) and 9.7% (79.6 Mb) of the genome, respectively.

The regions that are not classified as HC, LC, or BG due
to this dual thresholding scheme are referred to as
“other” regions. As expected, 95.5% of LC regions con-
tain gaps filled with Ns, whereas only 18.2% of HC and
42% of BG contain Ns (Fig. S1a). In addition, the median
lengths for LC, BG, and HC regions are 1.70, 16.30, and
2.80Kb, respectively (Fig. S1b).

Prediction of HC, LC, and BG regions with a multi-class
model using seven genomic features
After the HC/LC/BG regions were defined, we estab-
lished machine learning model predicting which regions
would be HC, LC, or BG regions. By predicting HC/LC/
BG regions, we would have a better understanding of
what the contributing genomic characteristics were,
especially for HC regions where misassembly most likely
have occurred. Starting out, we used seven features (re-
ferred to as base features, yellow box, Fig. 2a), including
GC content, density values: all genes, tandem genes,
non-tandem genes, pseudogenes, transposable elements
(TEs), and simple sequence repeats (SSRs) of genomic
regions to build a 3-class (HC, LC, or BG) model (re-
ferred to as Model 1, Fig. 2a, Table S1) using the
Random Forest algorithm [26]. We should emphasize
that an independent, test set (10%) of HC, LC, and BG
regions were set aside that was not used for model
building. Thus, the test set was ideal for validating our

Fig. 1 Identification of high, low, and background coverage regions. a Normalized read depth (RD) of 100 bp bins using reads from dataset1,
dataset2, and a dataset2 subset at 30-fold coverage in regions 4.3 ~ 4.5 Mb on Chromosome 1. Black and grey arrows show regions with high
read coverage and low coverage, respectively. b RD distributions of high coverage (HC), background (BG), and low coverage (LC) regions called
by CNVnator. Dashed lines at RD = 0.72 and 1.76: threshold values defining the boundaries between LC and BG regions and between BG and HC
regions, respectively. c, d Proportion of called regions above or below RD value thresholds distinguishing LC and BG regions (c) and
distinguishing BG and HC regions (d). Vertical dashed line: threshold value
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models. Using Model 1, 61.9, 83.9, and 74.8% of HC, LC,
and BG regions, respectively, were correctly predicted
(Fig. 2b). Here the percentage true cases predicted
correctly is defined as the recall value. Importantly, the

testing set not used for model training were predicted
with a similar recall (Fig. 2b). To jointly consider both
recall and precision (% predictions that are correct), we
determined the F1-score that is the harmonic mean of

Fig. 2 Prediction of HC/LC/BG regions using features of genomic sequences. a Average F1 of prediction models using different feature sets. The
first two columns indicate feature sets used including Base features used in most models and additional features for model subsets. The third and
fourth columns indicate whether feature values were derived from sequences within HC/LC/BG regions and/or flanking regions (0.5 ~ 32Kb),
respectively. In the flanking region column, “all” refers to a combined set of values from all seven flanking regions. The fifth column contains
model number (#), where B indicates binary model. b Confusion matrices of cross-validation and testing datasets based on Model 1. Color scale:
% correct prediction. c Confusion matrices of cross-validation and testing datasets based on Model 34
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precision and recall. In our machine learning pipeline,
we started with equal numbers of training and testing
HC, LC, and BG regions (33% each). Thus, random
guess would lead to an accuracy of 33% and F1 = 0.33.
On the other hand, a perfect model would have an
accuracy and an F1 of 1. Model 1’s F1 = 0.73 (Fig. 2a),
while it was much better than random guess, the F1 was
far from perfect.

Defining HC, LC, and BG regions with additional features
To improve upon Model 1, we included additional
features from two sources. The first was the same seven
base features but with values from flanking regions. The
rationale was that the regions right next to HC, LC, and
BG regions may have similar properties which can
contributed to a better model. To assess this, we first
build prediction models using only sequences flanking
HC, LC, and BG regions by 0.5, 1, 2, 4, 8, 16, and 32kbs
to build seven models (Model 2–8) and found that the
performance of these models was worse than that of
Model 1 (accuracy = 46 ~ 58%, F1 = 0.46 ~ 0.58, Fig. 2a
and Table S1). In addition, as the sizes of the flanking
regions increased, the prediction performance decreased
(Fig. 2a) This is likely because flanking regions can be of
different types, i.e., a region flanking an HC region may
be LC and/or BG regions. However, this is not because
these regions are not important. When the features used
for building Model 1 were combined with those for
Model 2–8, the resulting model (Model 9) had a
substantially improved F1 = 0.82 (Fig. 2a) compared to
Model 1 (F1 = 0.74). This finding suggests that se-
quences flanking the HC/LC/BG regions, by themselves
insufficient, have information that are useful for the pre-
diction task.
In addition to flanking region, we focused on dissect-

ing if HC, LC, and BG regions have different sequence
composition—instead of compositions of much longer
sequences (genes and transposons) or single nucleotides
(GC content), we investigated whether specific SSRs
(repeats with 2–64 bp units, 156,444 features) and/or k-
mer (1-6 bp, 5460 features) may be prevalent in HC, LC,
or BG regions. Because the number of these SRR and k-
mer features was large, we first identified a subset of
SSR and k-mer features with p-value < 0.05 (Kruskal-
Wallis H test) among HC/LC/BG regions. Top 100 SSR
and k-mers were further selected with a feature selection
algorithm (see Methods). Feature selection is the prac-
tice of selecting the most informative features for model
building. Because of the number of features (over 160,
000) is much higher than the number of instances used
for model training, we run the risk of grossly overfitting
the model. Thus feature selection was applied, in
addition to the practice of cross-validation and setting
aside a testing set, to alleviate the issue of overfitting. By

incorporating these top SSR and k-mer features with
seven base features to predict HC/LC/BG regions
(Model 10), the performance of Model 10 (F1 = 0.84, Fig.
2a) was even better than the Model 9 (F1 = 0.82) that
did not consider SSRs and k-mers but flanking regions.
Thus, there exist substantial differences in the short
sequence compositions among HC/LC/BG regions. We
also included the top 500 and the top 1000 k-mers/SSRs
to create Model 18 and Model 26 that improved per-
formance further with F1 = 0.85 and 0.86, respectively
(Fig. 2a). Although additional k-mers/SSRs may further
improve predictions, they likely have diminishing contri-
bution judging from the small F1 differences between
Model 10, Model 18 and Model 26 (blue bars, Fig. 2a).
Next, we combined the features used in Model 9 and
those from used in Model 10 to establish an all-inclusive
Model 34 with 256 features that had F1 = 0.87 (Fig. 2a).
Importantly, > 84% BG, > 82% HC and > 96% LC regions
are correctly predicted in both training and test (not
used in model training) datasets (Fig. 2c).

Features important for the prediction of HC/LC/BG
regions
Model 34 has the highest F1 = 0.87 using 256 features
(56 base features from 8 regions, 100 top k-mers, and
100 top SSRs, Fig. 2a). We next evaluated which features
were among the most informative in distinguishing HC/
LC/BG regions (highest feature importance values, see
Methods). Table S2 lists the importance values of all 256
features. We found that three types of features stand
out: k-mers (median importance rank = 57), GC content
(median rank = 66), and density of TEs (median rank =
70). TEs have long been implicated in their contribu-
tions to misassembly due to their lengths and high
degree of similarities [3]. Interestingly, the HC regions
tend to have a significantly lower TE density compared
to BG regions (Fig. 3a), likely reflecting genomic regions
differing in recent transposition events. In contrast, LC
regions have the highest TE density, although distribu-
tion of LC regions across the genome is not correlated
with TE distribution (Spearman’s rho = 0.09, Fig. 3b).
Furthermore, when we randomly reshuffled HC/LC/BG
regions designations 1000 times and determined the
correlation distribution between prevalence of TEs and
random genomic regions, the observed correlation value
of LC regions was significantly lower than that of the
random expectation (z-score = − 3.0, Fig. 3c). One poten-
tial reason is that the assembler may be confused by the
repetitive nature of TE and short length of sequencing
reads to assemble sequences correctly, resulting in gaps
filled with Ns in LC regions (Fig. S1a) with TE sequences
at the breakpoints in one or both ends, which in turn
led to higher TE density in LC regions.
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As for GC content, it is well documented that,
specifically for short read sequencing with the Illumina
platform, GC-rich and GC-poor regions tend not to be
sequenced and thus contribute to regions with low
coverage or breakpoints in assemblies [4, 27]. Consist-
ent with this, LC regions have significantly higher GC
content compared to HC and BG regions (Fig. 3a). We
also found that a major reason that the top 100 k-mers
were important was because of their high AT content
(88% with AT content ≥80 and 100% with AT content
≥60%, Table S2). In addition, the top two SSRs with
highest importance in the prediction were “AT”
(ranked 152) and its reverse complement “TA” (ranked
153). Contrary to densities of individual SSRs which
generally had very low ranks (i.e., less important),
densities of all SSRs ranked in the middle (108), indi-
cating that it is more informative in distinguishing
HC/LC/BG regions to consider SSRs as a whole. Con-
sistent with this, when only the top 128 features were
used, where the density of all SSRs was considered but
no individual SSR feature, the model’s performance
didn’t decline (Model 34_4 in Table S1).
Pseudogenes (median rank = 131), all protein

coding genes (139), non-tandem duplicates (141),
and tandem duplicates (154) also ranked in the mid-
dle (Table S2). Densities of these genomic features

in flanking regions ranked similarly or even higher
than densities in HC/LC/BG regions (Table S2),
suggesting the differences in genomic environment
around HC/LC/BG regions. By determining the
correlations between the prevalence of HC/LC/BG
regions and the prevalence of genomic features in
corresponding regions, we found that genomic re-
gions with high densities of not only HC, but also
BG regions tend to have higher gene density, regard-
less if tandem and non-tandem genes were separated
or not (all ρ > 0.12, p-values < 2.0e-6, Fig. 3b and
Table S3). Because LC regions tend to contain Ns,
regions with higher LC density are expected to have
lower gene density (all ρ < − 0.17, p-values < 2.2e-11,
Fig. 3b and Table S3). Given that density of protein
coding genes is informative in distinguishing among
HC/LC/BG regions, we next asked whether the types
of genes, in terms of functional aspects (e.g., Pfam
domains, biological processes and metabolic pathways)
also impact RD. To test this, top 100 functional character-
istics (domains, biological processes and pathways) of
genes within HC/LC/BG regions (9869 features in total)
were also combined with Model 34 to build Model 35
(Fig. 2a, Table S1). However, there was no apparent
improvement compared to model 34 (model 35’s
overall accuracy = 87%, F1 = 0.87).

Fig. 3 Relationships between genomic features and HC, LC and BG regions. a Differences in density distributions of important features between HC/
LC/BG regions. ***: p < 1e-3. b Correlation between densities of HC/LC/BG regions and other genome features across the genome in bins of 500Kb.
Color scale: Spearman’s rank correlation coefficient (ρ). c Z-scores of observed ρ calculated using the distribution of 1000 random Spearman’s ρ as the
null distribution. First, regions were selected so they were the same number and length as true HC/LC regions (not overlapping with each other). The
remaining genomic regions not occupied by the selected random regions were taken as randomly expected BG regions. Then correlation between
densities of randomly selected regions and a genomic feature was calculated to establish the null distribution
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Features important in binary classification model
distinguishing HC and BG regions
Although the importance analysis allows us to pinpoint
the features crucial for Model 34’s performance, Model
34 is a 3-class model and thus it is not straightforward
to tell if a feature is important because it allows us to
distinguish HC from BG and LC regions or other
scenarios. Because we are mostly interested in assessing
why HC regions exist, we next establish a binary classifi-
cation model to distinguish HC from background
regions. Using the same features as in Model 1, we
established a new Model 1B (B = binary) with HC and
BG regions as classes and found that it has an accuracy =
84% and F1 = 0.76 (Fig. 2a). As expected, Model 34B
that used the same feature set as Model 34 for binary
classification had even better accuracy = 92% and F1 =
0.84 (Fig. 2a). Like Model 35 which didn’t lead to
improved classification among HC/LC/BG regions by in-
cluding functional features (Table S1), the comparable
binary Model 35B had the same performance as Model
34B (Fig. 2a, Table S1). However, models with only func-
tional features had accuracy = 58% and F1 = 0.69, which
is much better than random guess (Table S1), suggesting
that functional features are still informative in distin-
guishing HC from BG regions.
As expected, the important features for binary classifi-

cation of HC and BG regions differ from those for the 3-
class model. For example, densities of k-mer in Model
34B (median rank = 73) and in Model 35B (median
rank = 72) were no longer the most important feature
categories as in Model 34 (median rank = 57) and 35
(median rank = 55, Table S2,4,5,6). In contrast, GC
content, density of TE and SSRs had the highest median
ranks (12, 13, and 57 in Model 35B, respectively). For
HC regions, one hypothesis for their presence is due to
the presence of multiple copies of highly similar
sequences arranged in tandem that are misassembled. If
this is true, one would expect that SSRs and tandem
genes would tend to be co-localized with HC regions
compared to BG regions. Consistent with the above hy-
pothesis, although the density of SSRs in HC regions
was slightly lower than BG regions (Fig. 3a), it was sig-
nificantly higher than randomly expected (z-score = 3.81,
Fig. 3c). In contrast, density of SSRs in BG regions was
slightly lower than random expectation (z-score = − 0.69
Fig. 3c). In addition, the density of SSRs across genome
is positively correlated with HC, not BG, regions (Fig.
3b), and the flanking regions of HC also have higher
density of SSRs than those of BG regions (Fig. S2). These
results suggest the potential contribution of SSRs to mis-
assembly in HC regions, which resulted in underestima-
tion of SSRs density in HC regions. The situation is
similar for tandem genes, although it is not as important
as SSRs (median rank = 155). The observed correlation

value (ρ) for HC regions was significantly higher than
random expectation (z-score = 6.0) compared to that for
BG regions (z-score = 4.1, Fig. 3c). Note that, although
both have positive z-scores due to consideration of LC
regions also, the higher z-score for HC regions indicates
that tandem gene density is more prevalent in HC than
in BG regions. Conversely, compared to BG regions, HC
regions tend to have fewer non-tandem genes (Fig. 3c).
Thus, the presence of tandem genes also contributes to
misassembly.

Properties of genes located in HC regions
In earlier section, functional characteristics (domains,
biological processes and pathways) of genes within HC/
LC/BG regions were also combined with the seven base
features to build Model 35 and 35B (Table S1) that re-
sulted in no apparent improvement compared to model
34 and 34B that did not incorporate functional charac-
teristics (Fig. 2a). This may be because properties con-
tributing to the enriched presence of genes with certain
functional characteristics were already considered, it is
also possible that, due to the large number of features
considered and the fact that functional characteristics
tend to be lower ranked, the contribution of functional
characteristics was not apparent in Model 35 and 35B
because other features dominated. To assess the extent
to which functional characteristics could be used to pre-
dict whether a genomic region would be BG, HC, or LC,
we established three-class models using only functional
features and found that it had accuracy = 41% and F1 =
0.31, very close to random guess, no matter how many
features were selected (Model 36, Fig. 2a, Table S1).
However, binary model for classifying HC and BG re-
gions using only functional features had accuracy =
57.9% and F1 = 0.69, indicating that they were inform-
ative (Model 36B, Fig. 2a, Table S1).
To assess what types of genes tend to be located in BG

and HC regions, we first determined if the numbers of
different types of genes (Table S7) were over or under-
represented in HC compared to BG regions. By generat-
ing 10,000 datasets with randomized HC locations, we
established the randomly expected numbers of different
gene types and the resulting null distributions were used
to assess the statistical significance of observed numbers
of different gene types (Fig. 4a). In this analysis, two
types of genes stand out, specialized metabolism (SM)
protein coding genes and RNA genes. SM genes has a z-
score = 2.1, indicating that SM genes tend to be found in
HC regions and thus misassembled. This is consistent
with the findings that SM genes tend to belong to large
gene families, located in tandem clusters, and be recently
duplicated [20, 21]. However, genes in larger families are
not necessarily in HC regions (black arrow, Fig. 4a) and
number of SM genes that are tandemly duplicated is not
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Fig. 4 (See legend on next page.)
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significantly higher than random expectations (green
arrow, Fig. 4a). Thus, it is likely that the over-
representation of SM genes in HC regions is due to their
higher duplication rate, but not always through tandem
duplication, resulting in closely related copies that were
misassembled. It also can be because tandem duplicated
SM genes were misassembled together, which makes the
number of tandem duplicated SM genes underestimated.
In addition to SM genes, surprisingly, non-coding RNAs
(ncRNAs) tend to be enriched within HC regions (z-
score = 2.5, purple arrow, Fig. 4a). We speculate that to-
mato ncRNA regions may have a higher-than-average
rate of recent duplications, which would indicate there
are more ncRNA regions than annotated and ncRNA ex-
pression levels may be overestimated because multiple
ncRNA regions are assembled together.
Our finding that SM genes tend to be over-

represented in HC regions suggests that genes with
other functions may have similar behaviors. To address
this, we asked if there was enrichment of any Pfam do-
main family, Gene Ontology (GO) biological process cat-
egory, or TomatoCyc pathways. Given the number of
domain families (Table S8), categories (Table S9) and
pathways (Table S10) were large, multiple testing correc-
tion was applied and resulted in only one statistically
significantly enriched entry (salicylic acid catabolic
process). To assess if there are general patterns we may
have missed due to the stringency of the multiple testing
corrections, we examined the Log Likelihood Ratio
(LLRs, see Methods) between the numbers of genes with
or without a protein domain X and the numbers of
genes within or out of HC regions (inserted table,
Fig. 4b). Similarly, we examined the LLRs for bio-
logical processes (Fig. 4c) and pathways (Fig. 4d).
Here the HC regions were compared with the whole
genome. We have also conducted the same analysis
but between HC and BG regions that produced simi-
lar results (Table S11–13).
There are three general patterns that emerge. The first

is the prevalence of nuclear encoded proteins respon-
sible for mitochondrial and plastid functions among the
Pfam domains and the GO categories with the highest
LLRs—including ATP-synt_A: ATP synthase A chain,
NADHdh: NADH dehydrogenase, Photo_RC: photosyn-
thesis reaction center, and RbcS and RuBisCO_small:

Ribulose-1,5-bisphosphate carboxylase small subunit
(Fig. 4b), as well as mitochondrial proton transport and
RuBisCo biogenesis (Fig. 4c). The second general pattern
is the occurrence of domain/process related to transcrip-
tion and translations—including various translational
elongation factor G (EFG) domains, translational
elongation-related functions, ribosomal proteins, RNA
splicing (Fig. 4b,c). One outstanding property of genes
that fit these two general patterns is their extremely high
level of expression. Such high level of expression is
known to lead to the generation of retrogenes and
retro-pseudogenes with highly similar sequences that
littered around various parts of the genomes [28, 29]
thus higher coverage within genomes. Consistent with
this hypothesis, the average number of introns in
genes found in HC regions was significantly lower
than that in BG regions (2.13 vs. 4.38 in average,
Kolmogorov-Smirov test, p = 4.3e-09). The third gen-
eral pattern is revealed from the few metabolic path-
ways with LLR value > 1 where five out of nine were
SM pathways (Fig. 4d), as expected.

Evaluation of HC region misassembly by comparing
short-read and long-read assemblies
To assess the extent to which HC regions tend to be
misassembled, Short-read assembly (query) was aligned
to Long-read assembly (subject) using MUMmer [30]
(see Methods), and the aligned regions were shown in
Table S14–16. Aligned regions were classified into six
categories (see Methods, Fig. 5a): 1) non-duplicated,
Correctly assembled (C1, 681.0Mb); 2) non-duplicated,
misassembled (M1, 0.6 Mb); 3) locally duplicated (i.e., on
the same chromosome of the Long-read assembly), cor-
rectly assembled (C2, 11.5 Mb), 4) locally duplicated,
misassembled (M2, 8.2 Mb); 5) non-locally (on different
chromosome) duplicated, correctly assembled (C3, 29.5
Mb); and 6) non-locally duplicated, misassembled (M3,
4.9Mb). We found that 86.3 Mb of Short-read assembly
regions, mostly consisted of Ns, that could not be
aligned to the Long-read assembly. Since LC regions
tend to consist of Ns, it is not surprising that 93% of the
total length of LC regions had no match in Long-read
assembly (Fig. 5b). Thus, LC regions were not further
examined. Of the 5.1Mb HC regions, 0.03Mb (0.53%),
0.97Mb (19.1%) and 0.44Mb (8.7%) were in misassembled

(See figure on previous page.)
Fig. 4 Sequences found in HC regions and their functions. a Z-score calculated by comparing observed total number of features in true HC
regions (red dots) to normalized distributions (boxplots) of the numbers of different genomic features overlapped with 10,000 randomly sampled
BG regions (based on the number and length distribution of HC regions). b Top 20 Pfam domains with highest Log Likelihood Ratio (LLR, see
upper-left insert and Methods), indicating enrichment within HC regions. c Top 20 GO terms with highest LLR. d 9 metabolic pathways with
LLR > 1. Orange and magenta fonts indicate mitochondria/plastid and transcription/translation related processes, respectively, and green font
shows specialized metabolism pathway
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categories M1, M2 and M3, respectively (Fig. 5b). Com-
pared to HC regions, the proportion of misassembled re-
gions in BG were significantly lower (0.08, 0.9 and 0.5%
for M1, M2, and M3, respectively; Fisher’s Exact tests, all

p < 2.8e-09). Among the three categories of misassembled
regions, only 1.9% HC regions (M1) did not have dupli-
cated subject regions in the Long-read assembly. The ma-
jority of misassembly (67.4 and 30.8%) was due to

Fig. 5 Categories of correctly and mis- assembled regions based on alignments of Short- and Long-read assemblies. a Dotplots of example
genomic regions of six categories of regions aligned between Short- and Long-read assembly. Color boxes and lines: corresponding regions
between assemblies bound by the dotted lines. C1: regions correctly assembled and not duplicated; C2: locally duplicated regions, correctly
assembled; C3: non-locally duplicated regions, correctly assembled; M1: regions not duplicated but misassembled; M2: locally duplicated,
misassembled; M3: non-locally duplicated, misassembled. b Proportion of total length of HC, BG, or LC regions in each of six aligned region
categories in (a). c Proportion of the total number of Short-read assembly HC regions defined as HC, LC, BG regions in Long-read assembly for
each aligned region category. d Proportion of the total length of an aligned region category overlapped with HC, LC, BG, or other regions. For
each aligned region category, the values from HC, BG, LC, and other add up to be 1.0
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duplications (M2 and M3, respectively), suggesting that
HC regions were much more likely to be misassembled
due to duplications, especially when duplications occurred
on the same chromosome.
Thus far, HC regions were defined by mapping short

reads to the Short-read assembly. To evaluate whether
these Short-read assembly-based HC regions were still
classified as HC in the Long-read assembly, the short
reads were also mapped to the Long-read assembly to
determine variable coverage regions. This resulted in
297 HC, 4479 BG and 1971 LC regions based on the
Long-read assembly. Importantly, among 1156 Short-
read assembly-based HC regions, once we map the reads
to the Long-read assembly, only 88 (7.6%) overlapped
with the Long-read assembly-based HC regions. In
addition, among misassembled HC regions (coverage
defined using the Short-read assembly), 96.5 and 91.8%
of M2 and M3 were identified as BG based on the Long-
read assembly (Fig. 5c, Table S17). These findings
further suggest that higher than usual read coverage is a
good indicator of misassembly.
HC regions tend to be misassembled compared to BG

or LC regions (Fig. 5b). If we broke down the six aligned
region categories (Fig. 5a), it was clear that HC regions
have higher proportion of M2 (11.8%) and M3 (9.1%)
compared to other categories (0.3–4.4%, Fig. 5d). None-
theless, 74.6% of M2 and 75.7% of M3 were identified in
BG regions (Fig. 5d). One potential reason is that some
true HC regions were identified as BG in our analysis. If
that was the case, we would expect misassembled BG
regions (which presumably were HC) would have signifi-
cantly higher read coverage compared to correctly as-
sembled BG regions. Consistent with this expectation,
the median RDs of 100 bp BG region bins that were mis-
assembled (1.13 and 1.28 for M2 and M3, respectively)
were higher than the median RDs of correctly assembled
BG bins (1.03 and 1.06 for C2 and C3, respectively;
Wilcoxon signed-rank tests, both p < 2.2e-16, Fig. S3).
In addition to read coverage differences, we found that
misassembled BG regions tend to be much shorter
(median lengths = 698 bp for M2/M3 combined) than
misassembled HC regions (2328 bp; Fig. S1c; Wilcoxon
signed-rank test, p < 2.2e-16). This is likely because
CNVnator [22] merges adjacent bins based on read
depth similarity and in doing so, shorter regions with
variable coverage may not be identified. In any case, the
read coverage difference is small. Thus, if we relaxed the
HC detection threshold, it would significantly increase
the false HC calls by calling true BG regions as HC.
An example HC containing region, which is from

500Kb to 590Kb on chromosome 8, had further sup-
ported our assumption above (Fig. S4). In this region,
there are five tandemly duplicated genes for terpene
synthases (TPS) and four cis-prenyl transferase (CPT)

genes. By comparing the genomic sequences of the
short-read and long-read assemblies, and the Polymerase
Chain Reaction (PCR)-validated sequence in the tomato
variety M82 [31] (Fig. S4b), the two HC regions (Fig.
S4a) were identified as to be mis-assembled in the short-
read assembly (case 3 and 4 in Fig. S4c). In addition, two
BG regions (case 1 and 5, Fig. S4c), where the read cov-
erages were ~ 2 times higher than the background, were
also identified as misassembly, supporting the idea that
the number of HC regions were underestimated using
the current criteria. These results also suggest that for a
HC region, if the long-read assembly is not available,
one can validate the sequence in the region using the
genomic PCR approach, as stated in Matsuba et al.,
(2013) [31].

Genome features distinguishing correctly and mistakenly
assembled regions
To understand why some HC regions were not identified
as misassembled, using the same genome features as in
Model 35 for classifying HC, BG, and LC regions, a bin-
ary classification model (Model 37) was built to distin-
guish HC regions consisted of mainly M2/M3 (> 50%,
referred to as the HC_M2/M3 class) or mainly C2/C3
(> 50%, referred to as the HC_C2/C3 class). Model 37
resulted in an F1 = 0.79 (balanced positive and negative
classes, thus the background F1 was 0.5), indicating that
mis- and correctly assembled HC regions were signifi-
cantly distinct from each other in certain genome
features. Among the top 20 most important features
(Fig. 6a and Table S18, detailed distribution of feature
values was shown in Fig. S5), interestingly the most in-
formative ones were those of regions flanking the misas-
sembled regions. The flanking sequences of HC_M2/M3
regions tend to have higher densities of SSR, pseudo-
genes, TE, and non-tandem genes. At first it was surpris-
ing that it was the features in the flanking regions that
were informative. In hindsight, if a region was misas-
sembled, the distinguishing signature would likely be
buried with it. From the flanking regions, one can better
defined whether the sequence in between is problematic,
i.e., in our case, misassembled. Within HC_M2/M3
regions, there tend to be higher densities of four types of
k-mers including TATTTC, TGTAA, ATACTT, and
GATTTT. However, it is not clear why these k-mers are
informative.
In the above modeling exercise, we were able to distin-

guish HC regions that were likely misassembled from
those that were not. Recall that not only HC regions
contain misassembled sequences, in fact BG regions
have higher proportion of M2/M3 regions (Fig. 5d). To
further dissect their differences and to understand why
some misassembled regions were not detected as HC,
another model (Model 38) was built to distinguish HC_
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M2/M3 and BG_M2/M3 (> 50% of a HC or BG region
overlapped with M2/M3), using same features as in
Model 35. The resulting F1 was 0.77. Among the top 20
most important features (Table S19), BG_M2/M3 regions
tend to have higher GC content (41.3%) and TE density
(0.92) compared to HC_M2/M3 regions (GC = 33.6%, TE

density = 0.61, Fig. 6b, feature value distributions shown in
Fig. S6). This trend is also true when comparing BG_M2/
M3 and HC_M2/M3 flanking regions (Fig. 6b, Fig. S6).
Interestingly, the comparatively lower GC content in HC_
M2/M3 regions (33.6%) is more similar to the 36.6% over-
all GC content in the tomato genome. In addition, the GC

Fig. 6 Important features in Model 37 and Model 38. a Model 37 is for classifying HC_M2/M3 and HC_C2/C3 to assess the features important for
predicting misassembled HC regions. b Mode 38 is for classifying HC_M2/M3 and BG_M2/M3 to assess if misassembled HC and BG regions have
distinguishable features. Bar height: importance value in the Random Forest model. Blue, red, green: median values of features are higher in HC_M2/M3,
HC_C2/C3, and BG_M2/M3, respectively. The distributions of feature values were shown in Fig. S5 and Fig. S6 for Model 37 and Model 38, respectively
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content in genic region is at 42.4%, suggesting BG_M2/
M3 and HC_M2/M3 may be located in relatively gene-
rich and poor regions, respectively. Contrary to this
expectation, however, HC_M2/M3 regions tend to have
significantly higher gene density (average = 0.16, rank =
142) compared to BG_M2/M3 regions (average = 0.04,
Wilcoxon signed-rank test, p = 1.3e-15). This is also true
when comparing flanking regions (Fig. 6b and Fig. S6).
With regard to TE, we have already shown that HC
regions tend to have a significantly lower TE density
compared to BG regions regardless whether they are mis-
assembled or not (Fig. 3a). Taken together, these predict-
ive models perform well for distinguishing mis- from
correctly assembled HC regions and for predicting
whether a misassembled region lies in BG or HC regions.
Using model interpretation strategies, we are able to iden-
tify salient genome features underlying the models’ ability
to make good quality predictions.

Conclusions
Although the third-generation sequencing such as the
PacBio [7] and 10X [8, 32] are now available, the major-
ity of existing genome assemblies are currently derived
from short-read based technologies. With the goal of
evaluating genome assembly quality by assessing short
read coverage distribution, we identified 1156 HC and
15,034 LC regions in tomato genome assembly SL2.50
[25]. These variable coverage regions collectively
accounted for ~ 10% of the genome assembly, indicating
the severity of the issue. By applying machine learning
methods, we found that HC and LC regions can be pre-
dicted with high accuracy. High GC content and TE
density are the major factors contributing to the low
read coverage or the break point of assembly, while SSRs
and tandem duplicates, especially specialized metabolism
genes, tend to be in HC regions, potentially leading to
misassembly due to high sequence similarities. By com-
paring Short- and Long-read assemblies, 27.8% of HC
regions were potentially misassembled due to duplica-
tions. In addition, 91.8% of misassembled HC regions no
longer defined as high coverage when we mapped the
short reads to the Long-read assembly. Our results high-
light the extent to which variable coverage in a Short-
read assembly contribute to misassembly, particularly
when they are flanked by TEs and tandemly duplicated
sequences.
Misassembled regions that are duplicated were de-

tected in both HC and BG regions. It is straightforward
to appreciate why misassembled HC region strongly
correlated with duplication in the Long-read assembly—
higher read coverage is a strong indication that more
than one genome region are likely assembled together.
However, it is not as obvious why BG regions would be
duplicated. There are four explanations. First, HC

regions could be underestimated in our approach. Mis-
assembled BG regions tend to have slightly higher read
coverages compared to correctly assembled ones.
Second, related to the first explanation, after the parti-
tioning of the genome to HC/LC/BG regions, read depth
varies continuously across the genome, and there are no
sharp boundaries between HC and BG regions (as op-
posed to between LC and BG), we established a thresh-
old to define HC and BG regions. As a result, regions
with coverage near the defined threshold may be mis-
labeled. Third, we defined a genomic region into six
categories based on whether it is misassembled or not,
duplicated or not, and, if duplicated, locally or not. This
analysis is based on anchored matches of the Short and
Long-read assemblies and thus alignment methods and
their parameter choice is expected to impact our find-
ings. Finally, the current tomato Long-read assembly still
has scaffolds that cannot be mapped to any chromo-
somes, which may also contribute to an underestimate
of misassembled regions using read coverage. Although
there remain areas for further improvement, our results
highlight the utility of detecting HC regions in short-read
based assemblies for identifying potential misassembled
regions. Although not all HC regions have evidence of
misassembly based on the Long-read assembly, we showed
that, with the machine learning model, misassembled HC
regions can be readily distinguished from those that are
correctly assembled.
Unlike methods developed for evaluating genome

assembly continuity, like LTR Assembly Index [16] and
MaGuS [15], here we focused on identifying misas-
sembled regions based on variation in read coverage
across the genome, and uncovering the underlying con-
tributors in genome sequences using machine learning.
Using tools for identifying regions with significantly high
or low read coverages in estimating CNVs among
individuals [22] and comparison to Long-read assembly,
we discovered potential misassembled genomic regions.
Even though the repeats and tandem duplicated genes
were known to contribute to genome misassembly with
short reads, our study extensively explored the contribu-
tion of a large number of genomic and functional anno-
tation features through machine learning. The resulting
model provides a comprehensive, quantitative estimate
of our current state of understanding of factors contrib-
uting to variable genome coverage and assembly issues
in short read assemblies. These variable coverage regions
account for ~ 10% of tomato genomes. In addition, HC
regions tend to be misassembled. Our approach can be
used to assess the extent to which a region of a short-read
based plant genome assembly may be misassembled based
on read coverage. Considering that the presence of misas-
sembled regions can impact genome-wide studies signifi-
cantly, their detection prior to genome-wide analysis
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should be conducted to reduce the impact of misassembly.
Furthermore, the goal of our study is a cursory survey of
the potential issues using tomato as an example, it would
be meaningful to conduct such analysis thoroughly among
other organisms in the future to understand whether our
findings are tomato-specific or more general.

Methods
Genome assembly and sequencing reads
The genome sequence assembly SL2.50 of tomato
cultivar ‘Heinz 1706’ was downloaded from NCBI
(https://www.ncbi.nlm.nih.gov/). The genome was as-
sembled mainly using 454 reads, Sanger sequencing
reads of two sets of Bacterial Artificial Chromosome
(BAC) clone pools, and BAC and Fosmid clone end
sequences [25], and was referred to as the Short-read as-
sembly. Additional SOLiD and Illumina reads were used
for the base error correction. Among the scaffolds, 91 of
3223 were anchored to 12 chromosomes [33]. To evalu-
ate the extent of misassembly, tomato assembly SL4.0,
which was assembled using 80X PacBio sequences
(referred to as the Long-read assembly), was also down-
loaded from Solanaceae Genomics Network (SGN,
https://www.solgenomics.net).
There are two batches of Illumina genomic sequencing

reads available in tomato. The first batch of reads
(referred to as dataset1), used for base error correction
in genome assembly with a ~ 28-fold coverage of the
genome [25], was sequenced with an Illumina Genome
Analyzer IIx (GAIIx) sequencer, and obtained from the
SGN in the form of BAM file (version SL2.9). The other
read batch (dataset2) was sequenced with an Illumina
HiSeq 2000 sequencer, with a ~ 46-fold coverage of the
genome (SRP010718). Reads of these two datasets were
remapped to the Short-read assembly and Long-read as-
sembly using Burrows-Wheeler Aligner (BWA-MEM)
[34] with default parameters. BWA-MEM was selected
for read mapping because it is one of the most accurate
and time-efficient tools [35]. To eliminate the impact of
bias in PCR amplification on read coverage calling, du-
plicate reads (identical reads with same mapped loca-
tion) were marked and removed using Picard (http://
broadinstitute.github.io/picard). Due to concern of data
quality (see Results), dataset1 was not analyzed further.
Note that mapping and assembly tools both impact the
quality of assemblies. The reason we did not explore the
impact of these tools is because our goal is to assess
variable coverage in assemblies that already exist and
used by the communities.

Estimation of read depth and detection of variable
coverage regions
Regions with high/low read coverage were identified
using CNVnator [22] by determining Read Depth (RD)

for an optimally sized bin of the genome assembly as the
number of mapped reads with ≥50% of read lengths
overlapping with the bin boundaries [22]. The optimal
bin size was the bin size leading to a ratio of RD average
to RD standard deviation of ~ 4–5 as suggested [22]. For
dataset2, bin sizes from 50 bp to 300 bp were evaluated,
and 100 bp was chosen with a ratio = 5.18 (Table S20).
With bin size of 100 bp, 20,071 and 1385 regions were
identified in Short-read assembly as low-coverage (LC)
and high-coverage (HC) regions by CNVnator, respect-
ively. The remaining 20,743 regions were treated as
background (BG). The RD values from this CNVnator
run for further analysis is referred to as “analysis RD”
values.
To assess the sensitivity and accuracy of HC/LC region

detection, reads were resampled with three strategies to
generate simulated RD values that were used to run
CNVnator. For each strategy, the resultant RD for each
100 bp bin was compared to the simulated RD values
(ground truth). In the first strategy, reads were
resampled for HC, BG and LC regions, based on ideal-
ized RD values (input RDs for HC, BG and LC regions
were assigned as 2, 1 and 0, respectively, no decimal
point values) (Fig. S7a,b). In the second strategy, reads
were resampled for HC, BG and LC regions based on
the rounded analysis RD values (e.g., for regions with
analysis RD values of 0.88 and 2.31, 1x and 2x reads
were resampled for these two regions, respectively) (Fig.
S7c). In the third strategy, reads were resampled for HC,
BG and LC regions based on the analysis RD values (Fig.
S7d). For all three strategies, we observed very high cor-
relation between simulated, ground truth RD and RD
values resulted from simulated reads (PCC≥0.97), indi-
cating that detection of HC/LC/BG regions using
CNVnator is robust.

Impact of genome coverages on RD values
As shown in Fig. 1a, subset of dataset2 at ~ 30-fold
coverage had very similar RD distribution as dataset2.
To assess the extent to which read coverage impacts the
detection of HC/LC/BG regions, we randomly resampled
reads at 5-fold, 10-fold, 20-fold coverages from dataset2.
The resultant RDs of all subsets of dataset2 (5 ~ 30-fold
coverage) were compared to analysis RDs using all reads
in dataset2 (~ 46-fold coverage). The correlation de-
creased as the read coverage decreased (PCC from 0.99
to 0.89; Fig. S7e-h). Genome sequencing reads at ≥20-
fold coverage may provide very similar information for
HC/LC/BG region detection (PCC = 0.98, ρ ≥ 0.92), while
reads at 10- or 5-fold coverage likely have some error
rates in HC/LC/BG region detection (PCC ≤ 0.95, ρ ≤
0.86). These results also suggest that the RD variation in
detected HC/LC/BG regions reflect potential assembly
issues or sequencing bias, instead of being noise
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introduced by random sampling of reads. To test this, a
fake dataset, where the reads were randomly sampled
from tomato genome to ~ 46-fold coverage, was used,
and as expected, there is no LC or HC region detected.
In addition, to address the impact of artifacts produced

by read mapping using BWA-MEM on RD values, the
original reads (~ 46-fold) were re-mapped to the Short-
read assembly and the resultant RD values were almost
the same as original values (both PCC and ρ = 1.0; Fig.
S7i), suggesting that the impact, if any, is negligible.

Choice of q-value threshold in HC/LC/BG region detection
To get HC/LC/BG regions with high confidence, regions
with q0 (proportion of reads with multiple matches
across genome in a region) > =0.5 [22] were filtered out
because they likely represented repetitive sequences. F
measure (F1) values were used to measure the consistency
between true HC/LC/BG region designations and new
HC/LC/BG regions determined using resampled reads. F1

were calculated as: F-measure = 2�precision�recall
precisionþrecall , where pre-

cision = TP
TPþFP; recall =

TP
TPþFN; TP = true positive, FP = false

positive, FN = false negative (Fig. S8). P-values of identified
HC and LC regions were adjusted to account for multiple
testing [36]. To choose an adjusted p-value (q-value) to
maximize F1 scores, HC and LC regions identified using
reads resampled by three strategies and reads at 30-fold
coverage as Fig. S7 were compared to HC and LC regions
detected using dataset2. F1 score varies when different q-
values were used as thresholds to call HC/LC/BG regions
(Fig. S8). In Fig. S8a-c and e-g, F1 fitted curve arrives a
platform after q-value > 0.06, whereas in Fig. S8d and h,
the break point of q-value is 0.08. Therefore, only regions
with q-value < 0.08 were retained, resulting in 1227 HC
and 15,095 LC regions.

Genome and functional annotations, definitions of
genome features, and gene set enrichment analysis
Tomato gene annotation version SL2.50 was down-
loaded from NCBI (https://www.ncbi.nlm.nih.gov/).
Aside from gene annotations, we defined or obtained
additional genome features including pseudogenes,
transposable elements (TE), simple sequence repeat
(SSR; stretch of DNA, 2 ~ 64 bp, repeated > 1 time and
the repetitions are immediately adjacent to each other),
and tandemly duplicated genes. Pseudogenes were de-
fined as genomic regions with significant similarity to
protein-coding genes had premature stops/frameshifts
and/or were truncated as described in [37]. Transposable
element (TE) annotation was based on SGN ITAG2.4 re-
lease. SSRs were detected using Tandem Repeats Finder
with recommended parameters with Match = 2, Mis-
match = 7, Delta = 7, PM = 80, PI = 10. Minscore = 50,
Maxperiod = 500 [38]. Tandemly duplicated genes were

identified using MCScanX-transposed [39], as described
previously [37], where paralogs are directly adjacent to
each other, or separated by ≤10 nonhomologous genes.
Three types of functional annotation data were used

including Gene Ontology (GO) terms, Metabolic
pathway annotation, and Pfam domain annotation. GO
terms were inferred using blast2go [40], where protein
sequences were searched against NCBI nr protein data-
base using BLASTP [41] with an E-value cut-off of 1e-5.
Tomato metabolic pathway annotation V3.0 was down-
loaded from Plant Metabolic Network (https://pmn.
plantcyc.org/). Genes in specialized metabolic pathways
were annotated as specialized metabolism (SM) genes.
Pfam domains in tomato annotated protein sequences
were identified by searching against Pfam Hidden Mar-
kov Models (https://pfam.xfam.org, v.29.0) using HMME
R3 (http://hmmer.org) with the trusted cutoff.
Gene set enrichment analysis was performed using

Fisher’s exact test and Likelihood Ratio test, p-values
were adjusted for multiple testing [36]. Log likelihood

ratio was calculated as: log10(
a=b
c=d), where a, b, c and d are

the numbers in a 2 × 2 contingency table as in Fisher’s
exact test. For example, for testing whether genes with
the GO term G tend to be in HC region: a - the number
of genes with GO term G in HC regions, b - the number
of genes that don’t have GO term G but are in HC re-
gions, c - the number of genes with GO term G but not
in HC regions, and d - the number of genes that don’t
have GO term G and are not in HC regions.

Multi-class machine learning models for predicting
whether a genomic region has high, low, or background
coverage
To classify a genomic region into one of the following
three classes: HC, LC, and BG, three-class models were
established using Random Forest [26], implemented in
the python package Scikit-learn [42]. ~ 7000 properties
of genomic sequences within HC, LC and BG regions,
and in their corresponding flanking regions (in bins of
0.5, 1, 2, 4, 8, 16, and 32 Kb, including both upstream
and downstream) were used as features for building
machine learning models. There were three types of fea-
tures. The first was GC content. The second includes
densities of: (1) all genes, (2) tandemly duplicated genes,
(3) non-tandem genes, (4) pseudogenes, (5) transposable
elements, (6) all SSRs (without considering each, specific
SSR sequence), (7) specific SSR (2-64 bp repeats, e.g., 2
bp repeat: ATATATATATAT), and (8) specific k-mer
(1-6 bp, e.g., 5-mer, GGCGG). Density was calculated as
the proportion of each HC/LC/BG region occupied by
the feature in question. The last type was presence/
absence of genes with a particular functional annota-
tion in a given region. These functional annotations
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include: GO term, Pfam domain, and metabolic path-
way annotations.
In addition to presence/absence, numbers of annotated

entries were also used as features to build models, which
didn’t differ significantly in performance from models
built with presence/absence features and were not
discussed further. Kruskal-Wallis H test was done to de-
termine if there are statistically significant differences of
each density among HC/LC/BG regions using SciPy
[43]. Feature selection was conducted using the Ran-
domForestClassifier function in Scikit-learn [42], and
potentially informative features were selected based on
their importance determined by the entropy criterion
which measures the quality of tree split according to the
information gain when each feature was used. For each
class, 10% of the regions were held out from the model
training/validation process to serve as independent test
data. The rest 90% were used as training/validation data
for model training.
To avoid the potential data leakage in the model

training (i.e., accidental sharing of information be-
tween the data for training the model and the data
for evaluating/testing the model), we assessed whether
the distances between regions of test and training sets
would impact the model performance by creating two
training/test sets. The first is by randomly selecting
10% of regions from the whole set, thus some regions
in test set can be close to regions in training set. The
second is by randomly selecting two genomic spans
from each of the 12 chromosomes. We then selected
test HC/LC/BG regions from within the genomic
spans (24 total). In the meantime, the training HC/
LC/BG regions were selected outside of the 24 spans.
Thus, regions in test set were close to each other, but
distant from regions in the training set. In the second
data set, the distances of HC regions between training
and test set had a median of 1081.2 kb (interquartile
range of 73.2 ~ 2686.8 kb), LC regions with a median
of 1176.9 kb (interquartile range of 528.1 ~ 2080.4 kb),
and BG regions with a median of 1239.6 kb (inter-
quartile range of 486.0 ~ 2083.1 kb). For Model 34 trained
and evaluated with the first dataset, the model perform-
ance was F1CV = 0.87, F1test = 0.79. In the model trained
and evaluated with the second dataset that maximized dis-
tance between training and test sets, the performance was
nearly identical (F1CV = 0.87, F1test = 0.80). Thus, it is un-
likely that test data is contaminated by adjacent training
sequences. Therefore, only models based on the first data-
set was reported throughout.
For model training, we used equal numbers of in-

stances from each class (HC, LC, or BG) to create bal-
anced datasets that facilitate interpretation of model
performance. Because HC regions were in the minority
(1156), LC and BG regions were randomly sampled till

they were the same numbers as HC regions. In total, 100
random balanced datasets were generated. Using each of
the first 10 balanced dataset, the grid search approach as
implemented in the GridSearchCV function in Scikit-
Learn was used to determine the best combination of
parameters. In this approach, each balanced dataset was
split into training (90%) and validation (10%) subsets fol-
lowing the 10-fold cross-validation scheme. The best set
of parameters for Random Forest (max_depth, max_fea-
ture, and n_estimators) were identified according to the
mean of F1-macro (average F1 score for three classes)
across the 10 GridSearchCV runs. Then each of the 100
balanced datasets was used to establish a three class
(HC/LC/BG) prediction model using the best parameter
set with 10-fold cross validation to assess the robustness
of classification results. The average true positive rate
and the average F1 score across 100 runs were used to
evaluate model performance.

Identification of potentially misassembled regions
The Short-read assembly (query) was aligned to the
Long-read assembly (subject) with the NUCmer algo-
rithms using default settings (−-mumreference --delta
--breaklen 200 –mincluster 65 –diagfactor 0.12 –max-
gap 90 –minmatch 20), as implemented in MUMmer
4.0.0beta2 [30]. Chromosome coordinates and sequence
similarity of aligned regions were produced by mummer-
plot utility. Only aligned regions with identities ≥95%
were used for the downstream analysis which may lead
to false negatives.
Before identifying if a Short-read assembly region is

misassembled, we first ask, in the MUMmer alignment,
if a query region of the Short-read assembly was dupli-
cated in the Long-read assembly or not. A query region
was classified as having duplicated subjects if it had ≥
two aligned subject regions in the Long-read assembly,
regardless of these regions are on the same chromosome
or not. Otherwise, it is regarded as non-duplicated. A
query region without duplicated subject was defined as
misassembled if the subject region it aligned to was in a
different location on the same or on different chromo-
some compared to the location of query region. A query
region with duplicated subject regions was defined as
misassembled if it was: 1) ≥ 100 bp, and 2) the lengths of
overlaps between duplicated subject regions < 50% of the
query, and 3) the subject regions aligned to only one
Short-read assembly region. We considered misas-
sembled regions that had one copy in Short-read assem-
bly while ≥2 in Long-read assembly. Thus, misassembled
regions with ≥2 copies in Short-read assembly and even
more copies in Long-read assembly were not analyzed
because they were minor cases and the challenges in de-
fining additional unifying categories for these cases.
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Additional file 1: Figure S1. Properties of HC/LC/BG regions with high
confidence. a Proportion of Ns in HC/LC/BG regions. b Length
distribution of HC/LC/BG regions. c Length distribution of overlapped
regions between HC/LC/BG and M2/M3 regions.

Additional file 2: Figure S2. Genomic feature distributions in flanking
regions of HC/LC/BG regions of different length (0.5 ~ 32Kb). Violin plots
showing distributions of GC content, and densities of genes, tandemly
duplicated genes, pseudogenes, transposable element and SSRs in HC,
BG, and LC regions. Red line indicates median value.

Additional file 3: Figure S3. RD distribution of 100 bp BG bins
overlapped with aligned region categories. For each plot, left Y-axis: num-
ber of BG bins in correctly assembled category (C1, C2 or C3); right Y-axis:
number of BG bins in mis-assembled category (M1, M2 or M3). The cat-
egories are defined in Fig. 5a.

Additional file 4: Figure S4. Example mis-assembled HC regions. a
Normalized RD in a region containing an SM gene cluster on Chromo-
some 8. Normalized RD was calculated for each 100 bp bin. Two black
brackets indicate identified HC regions, with RD around 2. Valley regions
with RD = 0 indicate gaps in genome assembly filled up with Ns. b Syn-
tenic alignments (colored regions between black lines) and gene annota-
tion (colored boxes) of the same region in (a) between short-read and
long-read assemblies of Heinz and the PCR-validated sequence in M82.
Corresponding positions in (a) and (b) were delineated with grey dashed
lines. Colored regions: BLASTn matches between Heinz and M82, with E-
value <1e-20 and alignment length > 50 bp. AOX: alcohol oxidase; TPS:
terpene synthases; P450: cytochrome P450; CPT: cis-prenyl transferase; ψ:
pseudogene. c Dotplot of the region in (a) between Short- and Long-
read assemblies. Five cases were indicated using arrow heads, and all
these five short regions were identified to be in BG regions in long-read
based assembly (➔ BG).

Additional file 5: Figure S5. Important features in model
distinguishing HC_M2/M3 and HC_C2/C3. Violin plots show distributions
of each features or GC contents within regions or in flanking regions.
Lines within violin plots indicate median values.

Additional file 6: Figure S6. Distributions of important features in
model distinguishing HC_M2/M3 and BG_M2/M3. Violin plots show
distributions of each features or GC contents within regions or in flanking
regions. Lines within violin plots indicate median values.

Additional file 7: Figure S7. Sensitivity and accuracy of CNVnator in
RD value calculation, and impact of genome coverages on RD values. a
RD distribution of new CNVnator runs by mapping re-sampled reads from
the tomato genome based on simulated input RD, where the only pos-
sible RD values were 0 (LC), 1 (BG), or 2 (HC). b-d Correlation between
known, simulated input RDs and new RD values from new CNVnator run
using the resampled reads. In (b), the simulated RD values were gener-
ated as in (a). In (c), the analysis RD values (those generated with CNVator
by mapping dataset2 reads on to the tomato genome, see Methods)
were first discretized (rounded) to their closest integers, then the
rounded RD values were used for resampling reads for determining new
RD values. In (d), the analysis RD values were directly used for resampling
reads for determining new RD values. e-i Correlation between RD values
using all reads (46X coverage) and RD values using subsets of reads at
variable coverage: (e) 30X, (f) 20X, (g) 10X, (h) 5X, (i) 46X.

Additional file 8: Figure S8. F1 of HC/LC/BG region calling. a-d
CNVnator runs were conducted using resampled reads based on different
starting RD values as in Fig. S7 using read dataset 2. As in Fig. S7, the
simulated RD values include: (a) possible RD values of only 0 (LC), 1 (BG),
or 2 (HC); (b) analysis RD values discretized/rounded to integers; (c)
analysis RD without discretization; (d) analysis RD without discretization
but down-sampled to 30X (note the y-axis range is much smaller com-
pared to (a-c)). Each dot indicates an F1 value (y-axis) at a given q-value
threshold (x-axis), where F1 was calculated using: (1) numbers of nucleo-
tides in overlapping regions between the HC/LC region designations
based on the analysis RD and new HC/LC regions determined using

resampled reads (True Positive), (2) numbers of nucleotides in true HC/LC
regions but determined as BG regions in new run (False Negative), and
(3) numbers of nucleotides in true BG regions but determined as HC/LC
regions in new run (False Positive, see Methods). Orange line: LOESS fit-
ted curve. e-h Same as (a-d) except that the F1 was determined based
on numbers of regions as opposed to numbers of nucleotides.

Additional file 9: Table S1. Performance of 3-class or binary prediction
models. Table S2. Importance values and Kruskal test of features in
Model 34. Table S3. Correlation among densities of HC/LC/BG regions
and genomic features. Table S4. Importance values of features in Model
35.Table S5. Importance values of features in Model 34B. Table S6. Im-
portance values of features in Model 35B. Table S7. Number of anno-
tated sequences in HC regions and 10,000 randomly sampled BG regions
(based on the number and length distribution of HC regions). Table S8.
Gene set enrichment analysis for Pfam domains for HC regions vs. whole
genome. Table S9. Gene set enrichment analysis for GO terms for HC re-
gions vs. whole genome. Table S10. Gene set enrichment analysis for
metabolic pathways for HC regions vs. whole genome. Table S11. Gene
set enrichment analysis for Pfam domains for HC regions vs. BG regions.
Table S12. Gene set enrichment analysis for GO terms for HC regions vs.
BG regions. Table S13. Gene set enrichment analysis for metabolic path-
ways for HC regions vs. BG regions. Table S14. Aligned regions between
Short-read assembly and Long-read assembly. Table S15. Categories of
regions in Short-read assembly. Table S16. Corresponding variable
coverage regions between two assemblies. Table S17. HC regions in
Short-read assembly and corresponding variable coverage regions in
Long-read assembly. Table S18. Importance values of features in Model
37. Table S19. Importance values of features in Model 38. Table S20.
Choice of bin size.
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