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Summary

e Plant metabolites from diverse pathways are important for plant survival, human nutrition and
medicine. The pathway memberships of most plant enzyme genes are unknown. While co-
expression is useful for assigning genes to pathways, expression correlation may exist only under
specific spatiotemporal and conditional contexts.

e Utilizing >600 tomato (Solanum lycopersicum) expression data combinations, three strategies for
predicting memberships in 85 pathways were explored.

e Optimal predictions for different pathways require distinct data combinations indicative of
pathway functions. Naive prediction (i.e., identifying pathways with the most similarly expressed
genes) is error prone. In 52 pathways, unsupervised learning performed better than supervised
approaches, likely due to limited training data availability. Using gene-to-pathway expression
similarities led to prediction models that outperformed those based simply on expression levels.
Using 36 experimental validated genes, the pathway-best model prediction accuracy is 58.3%,
significantly better than that for predicting annotated genes without experimental evidence (37.0%)
or random guess (1.2%), demonstrating the importance of data quality.

e Our study highlights the need to extensively explore expression-based features and prediction
strategies to maximize the accuracy of metabolic pathway membership assignment. The prediction
framework outlined here can be applied to other species and serve as a baseline model for future

comparisons.
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Introduction

Metabolites are products of pathways consisting of a linked series of enzymes (Berg et al.,
2002). Plants produce diverse metabolites essential for growth and survival (Stitt ef al., 2010). Some
metabolites are also important for human nutrition and medicine (Martin & Li, 2017; Schlapfer et al.,
2017). Although there is an increasing body of knowledge about plant metabolic pathways (Verpoorte,
1998; Pichersky & Gang, 2000; Kim & Buell, 2015), many enzyme genes in known pathways remain
to be identified and there are likely unknown pathways (De Luca et al., 2012; Schlapfer et al., 2017).
A key challenge in understanding plant metabolic pathways is that genes encoding metabolic enzymes
tend to exist as members of large gene families. In addition, experimental assessments of metabolic
pathway membership can be laborious. Therefore, it is important to prioritize candidate genes for
functional analyses using computational predictions.

Substantial effort has been devoted to predicting pathway membership of plant enzyme genes.
One approach is to first identify candidate genes within a genome, and then assign them into
pathways according to the reactions catalyzed by the encoded enzymes (Karp et al., 2011; Chae et al.,
2014; Schlapfer et al., 2017). This approach was utilized by the Plant Metabolic Network with
pathway annotations for 125 plant and green algal species; here the prediction of unknown genes is
mainly based on sequence similarity to experimentally evaluated enzyme genes. Another approach
utilizes the physical colocalization of enzyme genes to identify biosynthetic gene clusters (Nutzmann
et al.,2016; Mao et al., 2020), which tend to contain specialized metabolic pathway genes (Osbourn,
2010; Medema et al., 2015). But the colocalization criterion by itself can be error prone (Wisecaver et
al., 2017). Chemical-chemical, chemical-protein, and protein-protein interactions (Gao et al., 2012)
and information integrated from other methods (e.g., chemical transformations, thermofluor screening,
metabolic endpoints) (Calhoun et al., 2018) have also been used for prediction. In addition,
localization in the same subcellular compartments was used to identify functionally related genes
(Huh et al., 2003), and to reconstruct metabolic networks (Forster ef al., 2003). While the above
information is useful, not all of them is readily available except in well studied model organisms.

In contrast, transcriptome data have become available for a growing number of plants and
have been used to predict metabolic pathway genes based on the assumption that genes from the same

pathway are co-expressed (Segal ef al., 2003; Kim & Buell, 2015). Considering the ease of generating
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transcriptome data, these data are an important resource for computational inference of gene function.
There are three general strategies for leveraging expression data for functional inference. First, “naive
prediction” (because it is the simplest approach) is to ask, for a gene of unknown function, which
genes with known functions have the highest expression similarities to that gene. The utility of this
strategy has been shown in a number of single-gene studies (Hirai et al., 2007; Righetti et al., 2015),
but its accuracy on a genome-wide scale is unclear. The second strategy is unsupervised machine
learning, where genes are first grouped into co-expression clusters and then genes of unknown
function are assigned functions based on genes with known functions over-represented within the
same cluster (Mutwil et al., 2011; Uygun et al., 2016; Gupta & Pereira, 2019). The third strategy is
supervised machine learning where the function of a gene is predicted using models learned from the
expression profiles of genes with known functions. While supervised learning has been applied to
predict functions (Kaundal et al., 2010; Lloyd et al., 2015; Ni et al., 2016; Moore et al., 2019), it has
not been used to predict plant metabolic pathway membership using transcriptome data. Thus, it is
unknown which of these three strategies is more effective and whether their accuracy varies
depending on the pathway.

In addition, it is unresolved how transcriptome data should be used in pathway membership
prediction. One approach is to use as many different expression samples as possible (Aoki et al., 2016;
Obayashi et al., 2018), but expression similarities measured using distinct subsets of expression data
can be more accurate for inferring functional relationships (Usadel et al., 2009; Uygun et al., 2016).
Thus, it is important to optimize the use of specific expression data in pathway prediction. Here, we
utilized tomato as a model to optimize pathway prediction because there is considerable knowledge of
the diverse metabolic pathways in this species and availability of a large collection of transcriptome
data. We investigated the effect of expression dataset, expression value, and gene expression
similarity measure on the ability to predict pathway membership using three strategies: naive

prediction, unsupervised learning, and supervised learning.
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Materials and Methods

Gene functional annotation

Metabolic pathway annotations of genes in Solanum lycopersicum were from TomatoCyc
V3.0 (Plant Metabolic Network, PMN 12.0, https://www.plantcyc.org/) (Schlapfer et al., 2017); the
gene annotations were from Solanaceae Genomics Network (SGN) V3.2 (https://solgenomics.net/). A
gene in SGN_ V3.2 was considered a match to an NCBI_V2.5 entry if the alignment identity score
was 100% with no gaps using the BLAST-like alignment tool (Kent, 2002); the matches are in Table
S1. We assigned EC numbers and/or reactions to 11,036 tomato genes using PMN Ensemble Enzyme
Prediction Pipeline V3.0 (https://gitlab.com/rhee-lab/E2P2/) with default settings; 2,395 genes with
ECs/reactions were in 485 TomatoCyc pathways (Table S2). Genes not expressed (Fragments Per
Kilobase Million, FPKM=0) in all 372 experiments (see next section) and pathways with <5
annotated genes were excluded, resulting in 2,171 genes in 297 pathways. For pathway membership
prediction, 1,050 genes annotated to more than one pathway were removed as well as pathways with

< 5 genes after this filtering step, resulting in 972 genes in 85 pathways (Table S3).

RNA-seq data and processing

RNA-seq data were obtained from 47 studies (Table S4,5). Reads were trimmed using
Trimmomatic (Bolger ef al., 2014), and mapped to the tomato genome (NCBI_V2.5) using TopHat2
(Kim et al., 2013). Samples with an overall read mapping rate <80% were discarded, and only reads
uniquely mapped to the genome were used for the calculation of FPKM using cufflinks (Trapnell et
al., 2010). See Table S6 for software parameters. Read count was calculated using HTSeq v 0.11.2
(Anders et al., 2015), and Transcripts-Per-Million (TPM) was calculated using the calculateTPM
function of the R package scater v1.0.4. Fold change (FC) in gene expression level between two
samples was calculated using edgeR (Robinson et al., 2010). Median FPKM or TPM value among
replicates was used as the expression level estimate for a gene in an experiment.

Samples from the 47 studies were assigned to 41 “datasets”: 36 individual and five combined.
The 36 individual datasets were 36 studies with > 3 experiments. The five combined sets were as
follows: 1) tissues/stages/circadian—wild-type plants taken from different tissues, at different

development stages, or at different times of day; 2) genetic background—comparison studies of wild
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type, mutant, or knocked down or overexpression transgenics; 3) hormone treatment—plants treated
with hormones and control; 4) stress treatment — plants treated in various stress conditions and control;

5) all experiments (372 total) (Table S4).

Gene expression similarity measure

Eight similarity measures were evaluated. Pearson correlation coefficient (PCC) and
Spearman’s rank correlation coefficient (Spearman) between expression values of two genes, were
calculated with the scipy.stats module (Virtanen et al., 2020). Mutual information (MI), was
determined using the sklearn.metrics.cluster module (Pedregosa et al., 2011). Partial correlation
(partCor) was determined with the corpcor R package (Schafer & Strimmer, 2005). Mutual rank (MR)

was calculated for each of these four measures (thus generating four more measures) as follows:

MR = +Jrank(genel—gene2) X rank (gene2—genel)
Where rankgene->gene2) and rank genes->gener) indicate the rank of expression similarity between genel
and gene2 among all expression similarity values calculated between gene2 and other genes and
between genel and other genes, respectively. Thus, a smaller rank indicates higher expression

similarity.

Splitting data for testing and modeling and measuring prediction performance

To assess how well the approaches predict pathway membership, five genes from each of the
six pathways with > 25 genes expressed in > 1 sample were held out as test data and never used in any
“model” building process. The remaining genes in these six pathways as well as all genes from the
remaining 79 pathways were split into five groups. Genes in four of the five groups were referred to
as “training” genes for all three approaches: naive prediction, unsupervised, and supervised. Genes in
the remaining, fifth, group were used as “validation” genes to evaluate the prediction performance of
the three approaches. This split was repeated five times to ensure that every gene was placed in a
validation subset once.

F-measure (F1) was calculated by comparing the annotated and predicted pathway

membership for validation genes in a pathway (referred as Flcv), using the equation: 2 X

precision X recall L. TP
where precision = ;p T P

recall = TP: true positive, i.e., number of genes

T
precision + recall’ TP + FN°
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annotated and predicted as being a member of the pathway. FP: false positive, i.e., number of genes
mis-predicted as being in the pathway. FN: false negative, i.e., number of genes annotated but not
predicted as being in the pathway. The reported F1cy for each pathway in a model built with a
specific data combination is the average F1 across all five folds mentioned above. F1 ranges from 0

and 1, with 1 indicating a perfect model.

Unsupervised learning

Unsupervised clustering was conducted using the “KMeans”, “AffinityPropagation”, “Birch”
and “MeanShift” functions in sklearn.cluster (Pedregosa ef al., 2011), which have the “predict”
method option. The hyperparameter space for each algorithm is in Table S6. To make predictions, we
first asked genes in which pathways were enriched statistically (p<0.05, Fisher’s exact test) in a
cluster C. Then, among this set of enriched pathways, genes in C were predicted as in pathway P if P

had the highest enrichment value (£) for cluster C defined as:

Pc
E = loge(P—A),

Where P is the number of cluster C genes in pathway P divided by the total number of cluster C
genes; and P, is the number of pathway P genes divided by the total number of genes analyzed (i.e.,
randomly expected overlap). Although enrichment values are negatively correlated with p-values, the
enrichment value was used because it conveyed information about effect size. For validation genes
not used for generating clusters, the cluster memberships were predicted using the “predict” function
in sklearn.cluster. The same prediction procedure was used to predict pathway memberships for test

genes.

Supervised learning

RandomForestClassifier (RF), AdaBoostClassifier (AB), LinearSVC (SVC),
KNeighborsClassifier (KNN), and MLPClassifier (neural network, NN 1) from sklearn, and
Sequential API (NN_2) from Keras (https://keras.io/) were used to establish multi-class models using
training genes. Hyperparameters were determined by performing a grid search using the five-fold

cross-validation scheme, with the goal of maximizing F1¢y for each of the 82 Set A or 656 Set B data
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combinations. A final model for a data combination was built with the best hyperparameter identified
and used to predict pathway memberships of validation and test genes. The hyperparameter space is in
Table S6.

To balance the numbers of genes among pathways, the training data of smaller pathways (i.e.,
those < 56) were up-sampled to 56 genes per pathway using the SMOTE function from
imblearn.over sampling (Blagus & Lusa, 2013), with sampling_strategy='not majority’,
random_state=42, k neighbors=3. The impurity-based feature importance was used to compare the
relative degrees of contribution of features to the RF model—the higher the feature importance, the
higher the relative contribution to the models—and was determined using the attribute

feature_importances_ of RandomForestClassifier with criterion=gini.

Results
Relationship between gene expression similarity and metabolic pathway membership

To assess the extent to which genes within the same metabolic pathway have similar
expression profiles, we collected annotation data for 2171 tomato genes from 297 pathways, each
with > 5 annotated genes (Table S1,2), and transcriptome data from 372 experiments (each with
multiple biological/technical replicates, Table S4,5). Using PCC calculated from enzyme transcript
levels (in FPKM) from all 372 experiments as the expression similarity measure, for 124 out of 297
pathways (41.8%) there was significantly higher gene expression similarity between pairs of genes
from the same pathway than between pairs randomly chosen from different pathways (Wilcoxon
signed-rank test, p < 0.05; Fig. 1a, Table S7). When the maximum expression similarity between a
gene and all other genes in the same pathway was examined, genes in 202 of 297 pathways (68.0%)
had significantly higher expression similarities within a pathway than between pathways (Fig. Sla,
Table S7,8). This finding was not simply due to paralogs that might have higher expression
similarities than non-paralogous pairs (Fig. S1d), indicating that the maximum expression similarity
within a pathway was more useful for distinguishing genes within and between pathways than the
median similarity (Fig. S1b,c¢). However, using maximum PCC as a criterion, 72.7% of genes did not
have above-threshold within-pathway PCC values (PCC=0.66, the 95 percentile value of between-
pathway gene pairs) (Fig. S1a).
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We next asked how similarity measures should be generated to best identify pathway
membership by considering: (1) expression datasets, e.g., all data or a subset; (2) expression values,
i.e., expression levels (in FPKM) or contrasts (FC); and (3) similarity measures, e.g., PCC vs.
Spearman’s Rank. For a pair of genes in a pathway, we were interested in how their expression
similarity compared with a distribution of between-pathway gene similarities, which we treated as the
background, null distribution. Thus, in all subsequent analyses, we determined the median percentile
value of similarity for all within-pathway pairs in the between-pathway similarity distribution

(hereafter referred to as percentilegp). The higher the percentilegp, the higher the similarity.

The effect of expression dataset on expression correlation among pathway genes

To evaluate the effect of dataset on the pathway percentilegp, we used 41 expression datasets:
36 from individual studies and five combined sets (see Methods). Using FPKM as the expression
value and PCC as the similarity measure, the datasets that produced the highest percentilegp differed
substantially between pathways (13 example pathways shown in Fig. 1b, results for all pathways in
Table S9). Some pathways (labeled (1) through (6) in Fig. 1b), such as those relevant to
photosynthesis, tended to have high PCC percentilegp values for most datasets. For example,
expression of genes in the 3,8-divinyl-chlorophyllide a biosynthesis I pathway (labeled (1) in Fig. 1b)
was well correlated in all datasets except fungal inoculation, cold treatment and treatment with
paclobutrazol and gibberellic acid (proGRAS dataset, Table S4), consistent with the finding that
photosynthesis is disrupted under stress conditions (Nouri et al., 2015). Expression of genes in
methylerythritol phosphate (MEP) pathway II ((5), Fig. 1b) are correlated except when the
FRUITFULLI/2 (FUL1/2) and RIPENING INHIBITOR (RIN) mutants, MutS HOMOLOG I gene
silencing and Pseudomonas inoculation datasets were used. It is known that carotenoid biosynthesis
pathway genes downstream from MEP are regulated by FUL1/2 and RIN (Fujisawa et al., 2014). This
indicates that, when FUL/1/2 and RIN are mutated, MEP II genes may not be properly regulated and
thus not co-expressed.

In contrast, genes in pathways 7 through 13 were either correlated in a highly dataset-specific
manner or are not correlated. For example, expression of genes in the fatty acid a-oxidation I pathway

((8), Fig. 1b) and chlorogenic acid biosynthesis II pathway ((9), Fig. 1b) was only correlated when
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the stress combined dataset was used, consistent with the role of these pathways in protecting plants
against environmental perturbations (De Leon et al., 2002; Niggeweg ef al., 2004). These results
demonstrate the need to consider datasets that best reflect the biological processes in which different
pathways participate.

Using FC values instead of FPKM to determine PCC led to improved percentilegp values for
all example pathways (Fig. 1¢, Table S10); 250 of 297 pathways had higher percentilegp when using
FC (Fig. 1d), demonstrating the importance of expression value format. We should note that the
crocetin ester biosynthesis pathway in crocus (Carmona et al., 2006) and the 3p-hydroxysesquiterpene
lactone biosynthesis pathway in feverfew (Majdi et al., 2011) (A1) and @3) in Fig. 1b,c) are not
expected to be present in tomato. The nonrandom degree of co-expression between genes in these
pathways observed for FC values (Fig. 1¢) may reflect the existence of similar as yet uncharacterized
pathways in tomato.

Thus far, we used PCC as a similarity measure to assess linear correlation. Because gene
expression correlation can be non-linear or context dependent, we explored three additional similarity
measures—Spearman’s rank, MI, and partCor—as well as the MR for each of the four measures.
Genes in some pathways only displayed high similarity when specific measures were used (Fig. 1e,
Table S11)—e.g., the similarity scores of genes from 19 pathways were in the highest quintile only
when MI was used (left panel, Fig. 1e). Using MR of MI, an additional four pathways had similarity
scores in the highest quintile (right panel, Fig. 1e). The same patterns are illustrated by the three
pathways shown in Fig. S2. Our findings highlight the importance of exploring expression datasets,
expression values, and similarity measures when evaluating gene expression similarity for different
pathways. Thus, in subsequent analyses, we determined expression correlations using 41 datasets, 2

types of expression values, and 8 similarity measures, yielding 656 possible data combinations.

Naive prediction of pathway genes

We next asked what approaches should be used to predict pathway memberships based on
expression similarity by exploring three general approaches: naive prediction, unsupervised learning,
and supervised learning. For naive prediction, we explored two methods: 1) naive median: If gene X

has the highest median expression similarity with genes in pathway A, then gene X is predicted to be
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in pathway A; and 2) naive maximum: If gene X has the maximum expression similarity with gene Y
and gene Y is in pathway B, then gene X is predicted to be in pathway B (Fig. 2a). A gene was not
predicted to be in any pathway if it had > 2 pathway assignments using either approach.

The ultimate goal for pathway prediction is to predict pathway membership of unknown genes.
Thus, we split annotated genes in a pathway into two subsets: (1) a “known” subset consisted of
“training” genes used for building prediction “models”, which here were simply the naive median and
naive maximum rules for naive predictions and (2) an “unknown” subset consisted of “validation”
genes—for which annotation information was actually available—used to validate the models in a
five-fold cross-validation scheme (Fig. 2, Methods). Both naive approaches were applied to all 656
data combinations, resulting in 2x656 naive prediction models. To evaluate model predictions, the
average F1 was calculated for each pathway based on prediction of validation genes across all five
CV folds (referred to as F1cy with 1 indicating a perfect model, Fig. 2a). The end results were two
F1cy matrices, one for the naive medium and one for the naive maximum, that were each 656
(number of data combinations) by 85 (number of pathways) in dimension (Table S12,13).

We first asked whether one data combination was particularly useful for predicting pathway
membership (overall best, red box, Fig. 2a). The best data combination had an average F1.y=0.04 (all
experiments, FPKM as the expression value, MR of PCCs as the similarity measure, using the naive
maximum method). Although better than a random guess (F1=0.01, dotted line, Fig. 2b, and Table
S14), the prediction is suboptimal. Because different data combinations affect pathway membership
recovery (Fig. 1), we next identified the data combination that led to the highest F1¢y scores for each
pathway (pathway best Flcy, purple boxes, Fig. 2a). Genes in a pathway were better predicted when
the pathway-specific optimal data combination was used instead of the overall best combination; the
median pathway best F1cy values using the naive median and the naive maximum methods were 0.08
and 0.11, respectively (Fig. 2b). In nearly all cases, the pathway F1¢y values obtained using the
overall best data combination were substantially lower (in many cases 0) than the pathway best Flcy
values (Fig. 2¢,d). These findings demonstrate the need to identify the optimal combinations of
datasets, expression values, and similarity measures when making predictions for different pathways.

We also found that the naive maximum method generally performed better than the naive

median (Fig. 2e), consistent with our finding that maximum expression similarity yields higher
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percentilegp values (Fig. S1). This is likely because genes in the same pathway can be regulated at
multiple levels beyond transcription and/or function in different branches of the pathway, resulting in
relatively lower median expression similarity within pathways. Nonetheless, even for the naive
maximum method, the median value of pathway best F1cy among the 85 pathways was only 0.11.
Thus, despite the usefulness of the naive prediction approach for assigning enzyme genes to pathways,

there remains substantial prediction errors (Fig. S3).

Prediction of pathway genes using unsupervised learning methods

Unsupervised learning in the form of clustering is one of the most widely used methods to
aggregate genes with similar functions, but the effects of using different datasets and types of
expression values are mostly unexplored. To investigate the effect of clustering algorithms and
parameters on prediction performance, we focused on four algorithms with “predict” functions: .-
means, Affinity Propagation, Birch, and MeanShift. Clusters built using training genes can be used to
predict the cluster membership (and pathway membership) of “unknown” genes. For each algorithm
and each of the 82 data combinations (41 datasets and two expression values), two types of input
matrices were generated for clustering. The first type was simply the expression value matrix (FPKM
or FC, referred to as Set A, Fig. 3a). The second type was generated by first determining the
expression similarities of each gene to other genes and then calculating the median and maximum
similarities (8 measures) of genes in pathways to the gene in question (Set B, Fig. 3b). There were

656 Set B data combinations (41 x2x8), with each combination consisting of 170 variables (2

similarity values x 85 pathways). Note that the same training/validation data used for naive
predictions were also used for unsupervised learning.

To predict pathway membership for a gene, we first assigned each cluster C to a pathway P
based on enrichment values (see Methods). Next, a gene in the validation set was assigned to
pathway P if the distance between the gene in question and the cluster C centroid was less than that
between the gene and other cluster centroids. Because these clusters were used in making predictions,
they are referred to as “clustering models”. The above process was repeated for each of the 82 Set A
and 656 Set B data combinations to identify the dataset that led to clusters yielding the best

predictions (i.e., highest F1cy) for each pathway. Independently of algorithm or dataset, clustering-
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based, unsupervised learning greatly outperformed naive approaches (Fig. 3¢). This may be because
the naive approaches only considered one expression correlation value (maximum or median), while
the unsupervised approach utilized multiple expression correlation values between a gene and many
other genes in multiple pathways.

Nevertheless, like the naive approaches, no single clustering model yielded good predictions
for most pathways; the best overall F1¢y averaged across pathways was only 0.09 (Fig. S4). Although
MeanShift had the highest overall F1¢y, i~-means performed best in terms of pathway best F1cy, while
Affinity Propagation was least effective (Fig. 3¢,d and Fig. S4). In addition, k~-means models using
Set B outperformed those using Set A for 57 of 85 (67%) pathways (Fig. 3e). This may be because
there were too few features in some Set A datasets for clustering; the median number of features
(expression values or contrasts) was 8 for Set A, whereas each Set B dataset had 170 features (median
and maximum gene-to-pathway expression similarities). Consistent with this, there was a significant
positive correlation (Spearman’s tho=0.47, p=6.4e-6) between the pathway best F1¢y and the number
of features in the corresponding Set A dataset (Fig. S5). Another possibility is that gene-to-pathway
expression similarity provided more information than the gene expression profiles for most pathways,

allowing the structures of the metabolic pathway/network to be captured by the unsupervised methods.

Prediction of pathway genes using supervised learning methods

Different from unsupervised methods, where pathway information is not used for clustering,
supervised machine learning methods build predictive models by learning from pathway annotations.
Pathway prediction was framed as a multi-class learning problem, i.e., predicting which of the 85
pathways (classes) a gene belongs to using the Set A and Set B datasets (Fig. 4a,b). We first started
with RF, which typically performs well in bioinformatic applications (Boulesteix et al., 2012; Qi,
2012). Because supervised learning methods directly associate the pathway labels with the underlying
data, our expectation was that RF models would outperform clustering-based predictions. Contrary to
our expectation, the RF models had an overall lower performance (median pathway best F1¢y =0.23
for Set A and 0.3 for Set B data) compared with A&~-means models (0.33 for Set A and 0.37 for Set B;
Fig. 4c, Table S14).
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One potential reason for the difference in performance is that there were too few genes in most
pathways (median pathway size=8 after filtering out small pathways with size<5) for RF to
effectively generalize the features shared by genes in a pathway. Consistent with this, the differences
between pathway best F1cy values of RF models and k-means models were weakly, but significantly
correlated with pathway size, with rho=0.41 (Set A, p-value=1.1e-4) and 0.28 (Set B, p-value=0.01;
Fig. SS). These results suggest that when there are too few genes in each pathway, k-means may be
superior to RF. Nonetheless, the weak correlations between pathway size and F1cy differences
suggests that other factors may explain the poorer performance of RF models.

Upon examination of the confusion matrices (i.e., matrices showing the proportion of genes in
a pathway predicted as being in each of the 85 pathways) for k-means and RF models (Fig. 5a,b,
Table S15,16), we found that 260 genes from 64 pathways and 84 genes from 42 pathways were mis-
predicted to be in two pathways with the most annotations, which jointly contributed to 12.6% of the
training instances: triacylglycerol degradation (LIPAS-PWY, 75 genes) and homogalacturonan
degradation (PWY-1081, 54), respectively (Table S3). These mis-predictions were a major reason for
the poorer performance of RF models. To alleviate the impact of sampling bias on model performance,
we balanced the training data by randomly up-sampling the minority pathways to the size of the
largest pathway in the training subset so that all 85 pathways were the same size (n=56) in the training
subset. The instances in the validation subset were kept unchanged for performance comparisons
against models based on unbalanced data. Only six and 15 genes from three and nine pathways were
mis-predicted as being in LIPAS-PWY and PWY-1081, respectively, and the prediction errors were
relatively evenly distributed across pathways (Fig. Sc, Table S17). The resulting median pathway best
Flcy for balanced RF Set B models was 0.33, higher than that of unbalanced RF Set B models (0.30),
but still lower than that of k-means Set B models (0.37) (Fig. 4¢, and Fig. 5d-f). Only balanced RF
models are further discussed.

In addition to the differences in pathway best F1cy, the best data combination also differs for
k-means and RF Set B models—only 16 of the 85 pathways had the same best data combinations
(Table S18). Nonetheless, the prediction performances for the same data combinations were
significantly correlated between k-means and RF models (Fig. Sg,h, and Fig. S6), suggesting that

there are some commonalities in how k-means and RF models learn from the gene-to-pathway
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expression similarity. The RF models allowed us to ask what expression features contributed the most
to predicting memberships in different pathways. By examining the feature importance in RF Set B
models, we found that for a gene in pathway P, its expression similarity to other genes in pathway P
(gene-to-target-pathway) tend to be more important for predicting membership in pathway P than its
similarity to genes in other, non-P pathways (gene-to-other-pathways) (Fig. S7). However, expression
similarities between genes in one pathway and genes in the other pathways are also required for the
predictions. This is supported by the finding that in 81 out of 85 pathways, the most important
features were not the gene-to-target-pathway features. This result explains why naive prediction
models based solely on gene-to-target-pathway expression correlation performed poorly (Fig. 2b).
We also examined five other supervised learning algorithms that support multi-class
classification: Support Vector Classification (SVC), k-nearest neighbors (KNN), Adaptive Boosting
(AB) and two neural network approaches (NN 1, NN 2, see Methods). KNN, and AB models had
similar performances as RF models. However, SVC models and the two neural network algorithms
performed worse (Fig. 4¢), which in the latter case may be due to the relatively larger sample sizes
required for training neural network models (Liu ef al., 2017). We next examined the performance of
supervised learning algorithms in predicting membership in individual pathways and found that the
predictions were the best in 41, 33, 24, 20, 3, and 1 pathways (some pathways have the best F1 for >1
algorithms, so total is larger than the number of pathways) when using KNN, RF, AB, SVC, NN 1,
and NN_2, respectively. This finding indicates that the choice of supervised learning algorithms can

impact predictions of specific pathways.

Additional factors influencing pathway membership predictions

Thus far, metabolic pathway membership prediction has been treated as a multi-class
classification task (i.e., one prediction—whether a gene belongs to one of 85 pathways) rather than
multiple binary classification (i.e., 85 predictions—genes in a pathway vs. those in the other
pathways). This is due to the relatively small sizes of most pathways (only 35 pathways have > 10
genes). To assess the impact of classification scheme (multi vs. binary), we used the LinearSVC
approach, which supports both “crammer_singer” (one multi-class classification) and “ovr” (multiple

one-vs-rest binary classifications) strategies. Better performances were obtained using
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“crammer_singer” for 46 (56%) Set A and 276 (42%) Set B data, indicating that the classification
scheme may also impact predictions.

In addition, we also explored the effect of expression level estimation measures (FPKM vs.
TPM) and normalization of feature data on predictions. We found that FPKM and TPM values were
highly correlated (median PCC= 0.95, Fig. S8a). Although the performances of k-means and balanced
RF models using FPKM and TPM values were statistically indistinguishable (p=0.58 and 0.49,
respectively, Wilcoxon signed-rank test, Fig. S8b-e), improved performances for 38 and 36 pathways
were obtained using FPKM values in k-means and RF models, respectively, while increased
performances for 41 and 42 pathways were obtained using TPM for k-means and RF models,
respectively (Fig. S8b-e). Because some distance metrics used in unsupervised learning (e.g.,
Euclidean distance used in k&-means) may be sensitive to different value scales, feature standardization
can affect model performance. The original and standardized FPKM-based k-means models had
statistically indistinguishable performances (p=0.67, Wilcoxon signed-rank test, Fig. S8f). However,
pathway best F1s were improved for some pathways (Fig. S8g), indicating that expression value
scales affect pathway membership prediction, although normalized values are not always better.

Thus far, model prediction performance has been based on cross-validation. Given that most
pathway memberships in tomato are annotated computationally, we examined the prediction of 36
benchmark genes (among 942 annotated genes in the training set) that have been experimentally
validated (Table S19) using 85 pathway best models. Here, the pathway best model is the model with
highest pathway F1cy among k-means/RF and data Set A/B-based models. Only k-means and RF
models are discussed here, as other unsupervised and supervised algorithms had similar or poorer
performances. Among these 36 benchmark genes, 21 (58.3%) were correctly predicted, which is
substantially better than the random guess accuracy of 1.2% (1/85). We should also emphasize that
the benchmark accuracy is significantly better than 37.0%, the accuracy for predicting the remaining
906 annotated genes that do not have experimental data support (p=0.01, Fisher’s exact test)
indicating that annotation quality affects predictions. In addition, by further assessing the cause of
mis-predictions and excluding eight pathways with an unusually high number of genes annotated for a

single reaction, significantly improved performance was obtained (Fig. S9, Table S20),
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demonstrating the impact of annotation quality on predictions. Thus, our current models can be

regarded as “baseline” predictions that can be further improved as pathway annotation improves.

Optimizing pathway predictions by identifying optimal data and method combinations

To provide optimal predictions for different pathways, we summarized the pathway best
predictions when different data combinations were used. Because the naive prediction models
performed poorly (Fig. 3¢ and Fig. 4¢), they are not discussed here. The pathway optimal F1 values
ranged from 0.19 to 0.73 (median=0.4 (Fig. 6). An F1=0.4 may seem low at the first glance, but it is
much higher compared with the background median F1=0.01 (achieved by randomly guessing, Table
S14). To recover 10 genes for a pathway with 20 members with F1=0.4, 30 predictions would need to
be made where 10 (33%) predictions are true positives and 20 (67%) are false positives. But for
F1=0.01, 2000 predictions would need to be made with 0.5% being true positives and 99.5% being
false positives. Thus, while there is room for improvement, the optimal predictions are substantially
better than background and facilitate hypothesis development for experimental testing.

We next asked whether the optimal prediction tends to be achieved when particular data
combinations are used. The “condition-independent” dataset (including all experiments) provided
optimal predictions for seven pathways (Fig. S10, Table S21), which are involved in general cellular
processes, including the thioredoxin pathway, which is important for maintaining cellular redox status.
In contrast, the remaining 78 pathways (91.8%) were better predicted using “condition-dependent”
datasets (Fig. S10), echoing our findings on the impact of dataset on expression correlation (Fig.
1b,c). Pathway membership tended to be better predicted when datasets for related biological
processes were used. For example, the galactolipid biosynthesis I pathway (PWY-401), had the
highest F1s when samples with ABA treatment were used (Table S21), consistent with the finding
that Arabidopsis PWY-401 genes respond to phosphate starvation in an ABA-dependent manner
(Woo et al., 2012). Similarly, the optimal F1 for the trichome monoterpenes biosynthesis pathway
(PWY-6447) was obtained when a pathogen treatment dataset was used (Table S21), supporting a
role of monoterpenes in the defense against pathogens (Lackus et al., 2018). These results not only

illustrate the importance of the data set used for prediction, but also highlight the possibility of using
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the prediction framework described here to identify connections between pathways and biological

processes.

Discussion

Gene co-expression analysis is widely used to associate genes with specific functions. We
assessed the utility of transcriptome data for predicting metabolic pathway membership by
considering 82 expression values, 656 gene-to-pathway expression similarity data combinations, and
three prediction strategies (naive prediction, unsupervised and supervised learning). We demonstrated
that the optimal data combination and prediction strategy should be identified for each pathway.
Among the 85 pathways examined, 90 different data combinations (=1 data combination may lead to
an optimal prediction for a pathway) led to optimal membership predictions. Our examples
demonstrate that optimal pathway membership predictions tend to be achieved when pathway
function-associated datasets are used, although in many cases, it is not obvious why a data
combination is optimal for a pathway.

We show that machine learning approaches out-perform naive methods. The unsupervised
learning approach tended to outperform supervised learning when the pathway size was small, likely
because there were insufficient data for supervised learning to be effective. However, 39 of 85
pathway best predictions were made by supervised learning approach. The substantial number of
pathway best predictions made by supervised approach indicates the importance of exploring both
data combinations and prediction approaches. It will be helpful to dissect the prediction models using
model interpretation methods (Azodi et al., 2020) to further identify which data features are
particularly important for predicting pathway membership; this will facilitate strategies for identifying
optimal data combinations for modelling.

While the prediction performance was better than random guessing, the error rates of some
pathways were relatively high no matter which data or algorithms were examined (Fig. 6). There are
three potential reasons for this. First, a prediction model relies on the quality of the input. However,
the current pathway annotation in tomato mainly relies on sequence similarity to genes in other model
species. The composition of metabolites varies across species due to repeated metabolic innovation

via gene duplication and subsequent sub- or neo-functionalization (Pichersky & Gang, 2000),
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recruitment of genes to new pathways (Shoji & Hashimoto, 2011), and loss of pathway genes (Cutter
& Jovelin, 2015; Baggs et al., 2020). Thus, membership of genes in lineage-specific pathways may
not be readily inferred using information from model organisms based on sequence similarity. In
addition, we found that model accuracy for the experimentally validated gene set was higher than for
those without such validation. Thus, as annotation improves, the accuracy of predictions is expected
to increase.

Second, we removed genes with multiple pathway annotations to simplify pathway assignment,
further reducing the sizes of training data sets. To overcome this issue, multilabel learning approaches
(Herrera et al., 2016) can be used in which multiple pathways can be assigned to a gene. Third,
additional features may be needed to improve the pathway predictions. For example, pathways can
have interwoven reactions, and pathway genes can have negatively correlated expression profiles
(Zeng & Li, 2010). Thus, the nature of reactions that enzymes catalyze could be used to hypothesize
interactions and be incorporated as features. In addition, only transcriptome-based features were used
in this study. Considering that enzymes in the same pathway may be located in tandem clusters (Field
et al., 2011) and interact genetically and/or physically (Gao et al., 2012; Weissenborn & Walther,
2017), clustering and interaction data could be informative.

Another consideration is that our models can only predict genes in these 85 pathways. In the
future, an additional, “other” class could be included in supervised learning models so a gene
belonging to another pathway would not be forced into one of the 85 pathways. To assign genes into
the “other” class, one approach is by holding out one or more known pathways and designate them as
“other”, which is conceptually the same as the multi-class framework used here. For unsupervised
learning models, the “other” class is baked into the approach because some clusters may not be
associated with any pathway, and genes in these clusters are not predicted to belong to any pathway.

Together, this study provides quantitative measures of the usefulness of expression data in
predicting metabolic pathway memberships, and lays the foundation for further method comparison
studies that seek to improve the use of expression data for similar purposes. Although this prediction
exercise focused on annotated enzyme genes, the k~-means and RF models can be applied to unknown
genes and provide pathway membership predictions with estimated likelihood scores. Most

importantly, our study underscores the feasibility and limitations of solely using transcriptome data
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for predicting metabolic pathway membership. The exploration of methods and data subsets in this
study provides a baseline for future modeling efforts and highlights the need for further exploration,

particularly of the causes of mis-predictions, for improving future models.

Figure legends

Fig. 1. Impact of expression dataset, expression values, and similarity measures on expression
similarities between genes in the same pathway in Solanum lycopersicum. (a) Gene expression
similarity (in terms of Pearson correlation coefficient, PCC) within and between pathways. Boxplot
showing expression similarity between genes within individual pathways. Blue line: median value;
light blue box: interquartile range. Gray violin plot shows the PCC distribution of all gene pairs
between different pathways (between-pathway distribution), where median value and interquartile
range are marked with red and orange dashed lines, respectively. Circled numbers indicate example
pathways in (b). (b) Examples showing the effect of dataset on gene expression similarity. Fragments
Per Kilobase Million (FPKM) was used to calculate the PCCs. X-axis: 41 datasets, y-axis: example
pathways. Color scale: percentile of the median PCC within a pathway in the between-pathway
distribution (percentilegp). The percentilegp values were scaled to 0—1 here and hereafter, where 1
indicates the 100%™ percentile. Pathway names in green are those relevant to photosynthesis. (¢) Same
as (b), except that fold change (FC) was used in PCC calculation. (d) Scatter plot showing the
differences between percentilegp of median PCC calculated using FPKM (x-axis) and FC (y-axis). (e)
Gene expression similarity calculated using different similarity measures. Color scale: percentilegp of
median expression similarity calculated using different similarity measures (left) and 1 _ percentilegp
of the mutual rank of similarity values (right). For mutual rank, 1 _ percentilegp was used because
lower ranks (lower percentiles) indicate higher degrees of expression correlation. Yellow and cyan
rectangles indicate pathways with high (red) and median high (light red) expression similarities,

respectively, only when a specific similarity measure was used.

Fig. 2. Naive prediction of metabolic pathway genes in Solanum lycopersicum. (a) Methodology. For

each of the 82 (41 expression datasets x 2 expression values) expression matrices, five genes (blue)
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were randomly held out from each pathway containing > 25 genes. The remaining data (gray) were
used to determine expression similarities among genes using 8 similarity measures, resulting in 656
expression similarity matrices (m1-m656). Genes within each pathway were further split into
“training” (80%, gray) and “validation” (20%, magenta) subsets, and the data splitting was conducted
five times. The example validation gene 1 is predicted to be in pathway A using the naive median
method because it has the highest median expression similarity with training genes in pathway A;
however, it is predicted to be in pathway B using the naive maximum method because it has the
maximum expression similarity with gene 3, which belongs to pathway B. The thickness of the arrow
and number beside the arrow indicate the degree of expression similarity. All 656 expression
similarity matrices were used for both methods, and the F1¢y score was calculated for each of the 85
pathways, resulting in two 656x85 F1 score matrices. The prediction with the highest Fl¢y for a
pathway (purple) was referred to as the pathway best prediction. The average F1cy across 85
pathways for each naive model (made using one of the 656 matrices) was calculated to measure the
overall prediction performance, and the model with the highest average F1 (red) was referred to as the
overall best model (dashed box). (b) Distribution of pathway best F1¢y obtained using the naive
median (orange) and naive maximum (pink) methods. Distribution of background pathway F1 scores
is shown as a gray violin plot, with the median value indicated by a dashed line. ***: p-value < 0.001,
Wilcoxon signed-rank test. (¢,d) Performances of naive median (¢) and naive maximum (d) models.
X-axis: Flcy values for the overall best model—values in the dashed box in the table on the right in
(a). Y-axis: pathway best F1cy across all 656 models—values in the purple cells in the table on the
right in (a). (e¢) Comparison of pathway best F1¢y for naive median (x-axis) and naive maximum (y-
axis) predictions. Three example pathways in (c-e) show the differences in pathway predictions made
by the two approaches and are shown in the table on the right in (a) as Pathway A (CHLOROPHYLL-
SYN, 3,8-divinyl-chlorophyllide a biosynthesis I), B (PWY-841, superpathway of purine nucleotides
de novo biosynthesis I), and C (PWY-6773, 1,3-B-D-glucan biosynthesis).

Fig. 3. Prediction of pathway genes using unsupervised clustering methods in Solanum lycopersicum.

(a) Workflow for clustering using gene expression profiles in the form of 82 matrices (41 expression

datasets x 2 expression values, Set A). Data splitting was conducted in the same way as for naive
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prediction approaches (Split data and five-fold cross-validation steps). The pathway annotations
(colored circles, i.e., Pathways A, B, and C) were removed from the expression matrices before
clustering. Clusters (blue closed lines, C1-C4) built using expression values of “training” genes
(“Clustering without validation data’) were assigned to pathways based on enrichment analysis
(“Assign clusters to pathways”, see Methods). Then the validation genes were assigned to clusters
(blue arrow, see Methods), and then were assigned to the pathways the clusters were assigned to
(“Assign validation genes to clusters”). Red arrow indicates mis-prediction of a gene. The average F1
scores of validation genes across the five training/validation splits (F1cy) were calculated to evaluate
the predictions. The test genes were assigned to pathways using the same method used for the
validation genes, and the average F1 of test genes from five clustering models (F1 based on holdout
data, F1g) were calculated. (b) Similar to (a), except that clusters were built using gene-to-pathway
co-expression matrices (Set B), i.e., the maximum and median expression similarity of a training gene
to all other training genes in each pathway, which was calculated using eight different similarity
measures, resulting in 656 (82x8) matrices and clustering models. For a validation or test gene, the
expression similarity was calculated between the gene and the training genes in each pathway, and the
maximum and median values were used in the matrix. (¢) Distribution of pathway best F1cy obtained
from clustering models, performed using the k-means (KM), Affinity Propagation (AP), Birch, or
MeanShift (MS) method, and the expression matrix (Set A, light green) or gene-pathway co-
expression matrix (Set B, green). Orange, pink and gray dashed lines indicate the median pathway
best F1cy from naive median and naive maximum prediction models, and the median background
pathway F1 (as in Fig. 2b), respectively. **: p-value < 0.01, ***: p-value < 0.001, Wilcoxon signed-
rank test. (d) Comparison of pathway best F1¢y for k-means and MeanShift clustering models, using
Set A (left panel) or Set B (right panel). Dots: individual pathways. Two examples showing
performance differences between two clustering methods: CHLOROPHYLL-SYN (3,8-divinyl-
chlorophyllide a biosynthesis 1) and PWY-6823 (molybdenum cofactor biosynthesis). p-values are
from Wilcoxon signed-rank test. (¢) Comparison of pathway best F1¢y for k-means models using Set

A or Set B data.
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Fig. 4. Prediction of pathway genes using supervised machine learning methods in Solanum
lycopersicum. (a) Workflow for supervised machine learning using Set A as features. Gene pathway
membership information (i.e., labels) was merged with the expression matrix. Data splitting was
conducted in the same way as for naive and unsupervised approaches (Split data and five-fold cross-
validation) in Fig. 2, 3. A grid search was conducted to get the best combination of parameters
(hyperparameters) that yielded the maximum Fl¢y (see Methods). The final model was built using
the same cross-validation scheme with the hyperparameters and was applied to validation and test
genes (“Apply”). (b) Same as (a), except that gene-to-pathway expression similarity matrices (Set B)
were used as features. (¢) Distribution of pathway best F1¢y from unbalanced RandomForest (RF),
balanced RF, Support Vector Classification (SVC), k-nearest neighbors (KNN), Adaptive Boosting
(AB), and two neural network (NN _1, NN 2, see Methods) models using Set A (light blue) or Set B
(blue). Light green and green dashed line: median pathway best F1¢y from k-means models using Set
A and Set B, respectively (as in Fig. 3¢); orange and pink dashed line: median pathway best Flcy
from naive median and naive maximum prediction models, respectively (as in Fig. 2b); gray dashed
line: median background pathway F1. (d) Comparison of pathway best F1¢y from balanced RF
models when Set A and Set B were used. Dots: individual pathways. p-value is from Wilcoxon

signed-rank test.

Fig. 5. Performance difference between k-means clustering and Random Forest models in Solanum
lycopersicum when Set B was used. (a-c) Confusion matrix, which shows the proportion of genes that
are predicted in each pathway for pathway best k-means models (a), unbalanced RF models (b) and
balanced RF models (¢). Color scale: proportion of genes in a pathway (y-axis) predicted as being in
one of the 85 pathways (x-axis) by the pathway best model. (d-f) Comparison of pathway best Flcy
between k-means, unbalanced RF and balanced RF models when Set B was used. p-value is from
Wilcoxon signed-rank test. (g-h) Pathway F1cy from k-means (x-axis) and balanced RF models (y-
axis) when the pathway best k-means Set B data (g) or the pathway best balanced RF Set B data (h)

was used. Dots: individual pathways.
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Fig. 6. Summary of pathway membership prediction using unsupervised and supervised models in
Solanum lycopersicum. Pathway best Flcy in k-means models using Set A (orange) and Set B (pink),
in balanced RF models using Set A (blue) and Set B (purple), and the background pathway F1 (black).
The largest six pathways with test genes are marked using different colored fonts. Fl. values of
these six pathways in the pathway best models are shown in Supporting Information Fig. S4b and

Table S22.
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