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A B S T R A C T

The vulnerability of face recognition systems to different presentation attacks has aroused increasing con-

cern in the biometric community. Face presentation detection (PAD) techniques, which aim to distinguish

real face samples from spoof artifacts, are the efficient countermeasure. In recent years, various methods

have been proposed to address 2D type face presentation attacks, including photo print attack and video

replay attack. However, it is difficult to tell which methods perform better for these attacks, especially

in practical mobile authentication scenarios, since there is no systematic evaluation or benchmark of the

state-of-the-art methods on a common ground (i.e., using the same databases and protocols). Therefore,

this paper presents a comprehensive evaluation of several representative face PAD methods (30 in total) on

three public mobile spoofing datasets to quantitatively compare the detection performance. Furthermore,

the generalization ability of existing methods is tested under cross-database testing scenarios to show the

possible database bias. We also summarize meaningful observations and give some insights that will help

promote both academic research and practical applications.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Owing to the high efficiency and accuracy in identity authentica-

tion, face recognition technology has gained rapid development and

broad applications in recent years, from daily uses like smartphone

unlocking and access control, to high-security applications like pay-

ment systems, e-government affairs, and counter terrorism. This

popularity, however, also makes face recognition systems become a

major target of spoofing attack [1] (also known as presentation attack

in ISO/IEC 30107-1). An impostor may gain authorized access to an

unprotected face recognition system simply by presenting a face arti-

fact of a legitimate user, which can be easily generated based on a

person’s face images or videos from the ‘open’ social networks.

Based on the way to generate the face artifact, face presenta-

tion attacks can be classified into two categories: one including face

modalities in 2D, such as printed/digital photographs and recorded

videos on the mobile/tablet; another category using 3D by making

a mask or presenting face models [2,3]. These types of face arti-

facts have been proved to be easy and effective to fool different face

� This paper has been recommended for acceptance by Sinisa Todorovic.
* Corresponding author.
E-mail addresses: jias@whu.edu.cn (S. Jia), guodong.guo@mail.wvu.edu (G. Guo),

xuzq@whu.edu.cn (Z. Xu), qw0007@mix.wvu.edu (Q. Wang).

recognition systems. For example, the access control systemwithout

protection measures can be tricked by the photo attack (see Fig. 1

(a)). Printed photos can also fool Windows 10’s Hello face authen-

tication (see Fig. 1 (b)). Even the APPLE’s iPhone X has been proved

by researchers from Bkav that the Face ID can be unlocked when

pointed at a 3D mask (see Fig. 1 (c)).

The vulnerability of face recognition systems (FRSs) to such pre-

sentation attacks has raised increasing concerns in recent years.

Developing presentation attack detection (PAD) methods to deter-

mine whether the face at sensor level is real or fake is the efficient

countermeasure. Different software-based approaches have been

proposed over the last decade, which mostly focus on 2D face spoof-

ing because of its cheap and easy implementation in practice.

We classify existing methods against 2D presentation attacks

into five categories: texture based, image quality based, dynamic

approaches, learned features based, and hybrid methods. Texture

based schemes mainly explore the microtextural pattern differences

of real faces and artifacts with the help of different texture descrip-

tors, such as the widely used Local Binary Patterns (LBPs) [4] and

Local Phase Quantization (LPQ) [5]. Image quality based methods

[6,7] rely on the fact that fake faces, especially in 2D, are always vul-

nerable to image distortions caused by the recapture effect of faces

(with paper-based photos or glass-based video screens). Dynamic

approaches, exploit the temporal information to detect motion pat-

terns across the video frames [8,9]. This kind of methods performs

https://doi.org/10.1016/j.imavis.2019.11.004

0262-8856/© 2019 Elsevier B.V. All rights reserved.
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Fig. 1. Face recognition systems are vulnerable to presentation attacks. (a) Spoofing the access control system1 Picture is taken from https://www.youtube.com/watch?v=1ndPi-

I_f3A. (b) Microsoft system fooled by printed photo2 Picture is taken from https://www.engadget.com/2017/12/21/windows-10-face-authentication-printed-photos-spoof/. (c)

iPhone X Face ID unlocked with 3D mask3 Picture is taken from https://www.dailydot.com/debug/face-id-mask-fail/.

well in photo attacks, but lacks robustness to replayed video attacks.

Inspired by the detection success of deep learning in several vision

tasks [10], learned features based PAD methods are proposed to

extract adaptive features which describe trainable texture to distin-

guish real faces from fake ones [1]. Another trend now is to develop

PAD methods based on hybrid techniques, which combine different

features to benefit from the strengths of each field.

With the increasing growth of different face PAD methods, there

is a critical need to overview these methods for both academia

researchers and industrial developers to have a deeper understand-

ing of the existing techniques. Some recent surveys [1,11-13] tried

to summarize the advances of face presentation attack detection

over the past decade. They all provided systematic analyses of the

recent work on both spoofing databases and detection methodolo-

gies. In addition, three face PAD competitions have been organized

[14-16] to challenge researchers to create and evaluate new counter

measures on the same spoofing database. Although these surveys or

competitions have approached various aspects of the state-of-the-

art research in face presentation attack detection, they are still faced

with the following challenges:

1. Lack of quantitative evaluation. Most existing surveys com-

pare different algorithms by simply listing the reported results,

without carrying out a quantitative evaluation on a common

ground. Therefore, based on the results on different databases

with different protocols, it is still difficult to understand how

differently the existing methods can perform andwhichmeth-

ods perform better for common 2D presentation attacks.

2. Limited algorithms and results. The competitions and the

survey in [13] presented a common evaluation framework

for comparing different detection methods on the same face

spoofing database. However, the gatheredmethods and results

on only one database are limited and not thoroughly ana-

lyzed [1].

3. Lack of generalization ability evaluation. These surveys or

competitions, and some existing detection schemes as well,

pay more attention to PAD performance based on intra-

database testing or controlled environment. The robustness

and generalization ability1 have not been carefully evaluated

to show how well the state-of-the-art methods can perform

in more challenging conditions, such as mobile scenarios or

1 We use ‘robustness’ to describe the performance stability of PAD methods on dif-

ferent databases in known conditions, while use ‘generalization ability’ to describe the

performance of the method against different types of unknown attacks.

cross-database testing scenarios, which can reflect the real-

world applications by providing high-resolution images and

diverse attacks.

These challenges imply that a comprehensive evaluation of the

state-of-the-art PAD methods is in a high demand to establish a bet-

ter understanding of different detection techniques. Therefore, the

aim of this paper is to take the above three problems into considera-

tion, and present a quantitative evaluation of several representative

PAD algorithms on a common ground. Our main contributions are as

follows.

• Based on the overview of the recent advances in face PAD

methods, 30 representative methods from different categories

are collected and re-implemented using the original codes

or codes from the third party. They are quantitatively com-

pared on a common ground, i.e., using the same databases,

pre-processing operations, classifiers and evaluation metrics.

This helps show what are the real differences between these

methods.

• For the same PAD method, we evaluate its performance using

different pre-processing operations, databases, classifiers, and

evaluation metrics, to find what are the influencing factors to

its performance.

• We focus on presentation attack detection in more realistic

conditions. Three recently published face spoofing databases,

all created in mobile scenarios under some real-world varia-

tions, are used in the experiments. Both the intra-database and

cross-database testing are considered for each PAD method.

This helps show what performance each face PAD method can

achieve inmore challenging conditions withmore variations or

unknown attacks.

• Some meaningful observations are obtained and summarized

based on extensive experiments. We also give some deep

insights into the issues that will help promote both academic

research and practical applications.

The rest of the paper is organized as follows. In Section 2, we

overview several representative PAD methods. Section 3 introduces

the details of three mobile face spoofing databases used in our

experiments. The evaluation experiments and results are presented

in Section 4. We discuss the detection performance of evaluated

algorithms in Section 5, followed by conclusions in Section 6.
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2. Representative methods

Unlike hardware-based face PAD analysis, which always requires

additional hardware components or user interaction, software-based

methods are more efficient with low cost by designing an algorithm

to tell the difference between a real face and a spoofed presentation.

In this section, we first review state-of-the-art software-based face

PAD methods of different categories, and then give a summary of 30

representative methods that will be evaluated in our experiments.

2.1. Texture based methods

This kind of approach is very successful in detecting face pre-

sentation attacks, mainly because it can efficiently discriminate the

artifact characteristics such as the presence of pigments (due to

printing defects), shade deformation (due to a display attack), and

specular reflection (by the spoof medium). The most famous and

widely used approaches are based on the LBP descriptor and its

variations, including multi-scale LBP [4], grayscale LBP [17], local

binary pattern variance (LBPV) [18], modified LBP (MLBP) [19], tran-

sitional (tLBP) and direction-coded (dLBP) [19], color LBP [20], guided

scale based LBP (GSLBP) and local guided binary pattern (LGBP) [21].

These LBP based methods have shown outstanding performance

in 2D type and 3D mask attack detection. The LPQ is also popu-

lar, which has a structure similar to LBP but encodes some phase

information extracted through a short-time Fourier transform of

the local patch, rather than gradients [22]. Different types of LPQ

have achieved promising detection performance against photo and

video attacks, such as multi-level LPQ (ML-LPQ) [5], multi-block LPQ

(MB-LPQ) [16], and pyramid multi-level LPQ (PML-LPQ) [16]. Other

texture descriptors were also exploited for presentation detection.

Histogram of oriented gradients (HOG) [23-25] based methods cap-

ture the edge or gradient structures of the facial image to distinguish

real faces from artifacts. Zhang et al. [26] used the Difference of Gaus-

sian(DoG) to remove lightning variations while preserving the high

frequency information. In [27], Radon transform is used to extract

features about contrast, luminosity and shapes for face presentation

attack detection. The gray level co-occurrence matrices (GLCM) fea-

ture also achieved discriminant global representation in detecting

presentation attacks in [28]. Agarwal et al. [29] applied block-wise

Haralick features for both 2D attacks and 3D mask attacks detection.

Boulkenafet et al. [30] proposed a PAD method based on speeded-

up robust features (SURF) and Fisher vector (FV) encoding, which

yielded promising generalization capability.

Texture-basedmethods generally have low computation cost and

perform especially well on 2D type attacks. However, their perfor-

mance depends heavily on image qualities, and the generalizability

remains to be improved.

2.2. Image quality based methods

Image quality analysis has achieved outstanding performance in

image manipulation detection [31] of the forensic field. Face presen-

tation attack by displaying a printed photo or replayed video, can

be regarded as a type of image manipulation. Therefore, Galbally

et al. [6,32] first extracted several image quality features to distin-

guish between real access and impostor samples. It not only achieved

promising performance for both multi-biometric and multi-attack

protection, but also showed high efficiency and low cost. Wen et

al. [7] proposed another face PAD method based on image distortion

analysis (IDA). They summarized four kinds of distortions introduced

in the reflecting and capturing process, namely specular reflection,

image blurriness, chromaticity distortion, and color diversity distor-

tion. The proposedmethod also achieved better detection robustness

and lower computational complexity than texture features.

2.3. Dynamic approaches

Dynamic methods exploit the temporal information from videos

to detect the relative motion across frames. One motion pattern

occurs due to the intra-face variations, such as subconscious eye

blinking, head rotation, and facialmusclesmovements.Wei et al. [33]

introduced optical flow (OF) vectors to detect subconscious head

movements for face presentation attack detection. The histogram

of oriented optical flow (HOOF) and histogram of magnitudes of

optical flows (HMOF) were extracted to represent the facial motion

directions and magnitudes in [15]. In addition, some texture-motion

descriptors extracted texture features from three orthogonal planes

combining spatial and temporal information, such as LBP-TOP [9],

Weber Local Descriptor (WLD-TOP) [34], and Local Derivative Pat-

tern (LDP-TOP) [35]. These methods have showed effectiveness in

describing both the appearance and horizontal and vertical motion

patterns in face presentation detection.

Another way is to analyze the motion consistency of the user

interaction within the environment. The motion intensity between

face and background regions were computed in [8,36,37] to detect

photo and video attacks, which tend to have a high motion correla-

tion.

Dynamic methods are usually highly effective in detecting photo-

attacks, but they will require more computational effort in process-

ing video sequences comparedwith a static approach. Besides, videos

having low motion patterns or with replayed video attacks do not

give good detection results.

2.4. Learned features based methods

Following a recent trend in computer vision, deep learning mod-

els are applied and trained to provide adaptive features for face pre-

sentation attack detection. Yang et al. [38] first exploited deep convo-

lutional neural network (CNN) for face presentation attack detection

using the architecture of AlexNet [39]. Thismethod achieved remark-

able improvement in 2D attacks compared with methods based on

hand-crafted features. Menotti et al. [40] investigated two deep rep-

resentation approaches (for architecture optimization (AO) and filter

optimization (FO)) to detect presentation attacks in multi-bimetric

modalities. Both 2D attacks and 3Dmask attacks were considered for

faces, and the results indicated the detection robustness of convolu-

tional networks. Lucena et al. [41] detected photo, video and mask

attacks based on transfer learning using a pre-trained CNN model

(VGG-16). Tu and Fang [42] also proposed a fully data-driven ultra-

deep model based on transfer learning. They used the pre-trained

network, ResNet-50, to discover highly discriminative features, and

combined it with the Long Short-TermMemory (LSTM) units to learn

temporal features for classification.

These schemes are more capable of learning discriminative fea-

tures in a data-driven manner to classify real faces and impostor

samples. They also tend to achieve a better generalization ability for

both 2D and 3D type attacks detection.

2.5. Hybrid methods

This kind of methods fuses different features at the feature level

or score level to further improve the detection performance. Com-

bining different texture features is one direct way for feature fusion.

Maatta et al. [43] combined texture (LBP) and local shape features

(Gabor wavelets and histogram of oriented gradients (HOG)), for

printed photo attack detection. Kose et al. [44] also proposed a simple

approach against photo attacks using DoG filters and LBPV features.

Binarized Statistical Image Features (BSIF) and Cepstral featureswere

combined in [46] to extract the statistical features that can capture

the micro-texture variations, while densely sampled SIFT (DSIFT)
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features were fused with multi-scale LBP in [47] to detect Moire

Patterns caused by photo and video attacks.

Hybrid methods using texture and image quality measures also

illustrate promising performance with low computational complex-

ity. Patel et al. [48] used a fusion of LBP (effective for face texture

analysis) and color moments (effective for image quality analysis),

and Kim et al. [49] combined MLBP, GLCM, and image distortions

analysis for robust face presentation detection. Fusion methods

of motion and texture features were exploited in [37,45] using

motion correlation/magnification and LBP features. These meth-

ods improved the limitations of motion-based methods but have a

higher computation cost. In [16], two learned features based meth-

ods were fused with hand-crafted LBP features, showing outstanding

performance for face presentation attack detection in mobile sce-

narios. One fine-tuned the pre-trained network SqueezeNet [50] and

another was based on the Inception-v3 model [51].

Fusion of different methods is important in designing comple-

mentary and extensible countermeasures, and studying how differ-

ent features can be combined to construct more effective and robust

PAD frameworks, which becomes increasingly popular in recent

years.

To sum up, there are both strengths and weaknesses in each cat-

egory of the PAD methods. To quantitatively show the performance

differences, we collect several methods to carry out evaluation on a

common framework. Totally 30 methods are selected when taking

the following three factors into consideration.

1) Different from the benchmark in [52], which focuses on PAD

methods based solely on color texture analysis, we select diverse

algorithms from all the above-mentioned categories to provide a

comprehensive comparison and evaluation.

2) In each category of the methods, we try our best to include

methods with outstanding detection performance or using represen-

tative feature descriptors, such as the LBP and LPQ features in texture

analysis, the image distortion features in image quality based meth-

ods, themotion intensity analysis in dynamic approaches, andvarious

combination of different features in the category of hybrid methods.

3) Considering the challenge in re-implementing various face PAD

methods, especially some depth or liveness based methods (most

relying on special hardwares or without original code available to

the public), we limit the performance evaluation to software based

approaches with the original code or the code provided by the third

party. At the end, 30 methods were collected (among them, 20 with

the original code). The details of these methods are summarized in

Table 1.

3. Face spoofing databases

Several databases with different face presentation attacks have

been proposed to promote the development of new detection

schemes. Some surveys [12,13] have provided detailed information

of existing face spoofing databases. However, with the increasing

popularity of face recognition on mobile phones, new databases

focus more on generating face presentation attacks in mobile sce-

narios, where the faces are captured by high-resolution cameras on

modern smartphones. Therefore, we aim to carry out the evalua-

tion on mobile databases to compare and show how well existing

PAD methods can work in a more realistic condition. Taking both

the database size and spoofing diversity into consideration, we select

three recently released mobile spoofing databases, namely, Oulu-

NPU DB, Replay-Mobile DB, and MSU-USSA DB. Table 2 provides a

brief overview of these databases.

3.1. Oulu-NPU DB

This database consists of 4950 real access and presentation attack

videos of 55 subjects. The videos were recorded using the front

Table 1

Brief overview of the evaluated face PAD methods.

Method Reference Year Features Attacks Performance (classifier) Type

A01 Anjos and Marcel [8] 2011 Motion intensity Photo HTER = 8.98% (MLP) Dynamic

A02 Maatta et al. [4] 2011 Multi-scale LBP Photo EER = 2.90% (SVM) Texture

A03 Chingovska et al. [17] 2012 Per-image LBP Photo, video HTER = 15.16% (SVM) Texture

A04 Maatta et al. [43] 2012 LBP+Gabor+HOG Photo ACER = 1.10% (SVM) Hybrid

A05 Zhang et al. [26] 2012 DoG Photo, video EER = 17.00% (SVM) Texture

A06 Pereira et al. [9] 2012 LBP-TOP Photo, video HTER = 7.60% (LDA) Dynamic

A07 Kose et al. [44] 2012 DoG+LBPV Photo EER=11.97% (chi-square dissimilarity metric) Hybrid

A08 Bharadwaj et al. [45] 2013 Motion+multi-scale LBP Photo, video HTER = 3.94%a (SVM) Hybrid

A09 Komulainen et al. [37] 2013 Motion+LBP Photo, video HTER=5.11% (Complex) Hybrid

A10 Galbally and Marcel [6] 2014 Image quality Photo, video HTER = 23.80%a (LDA) Quality

A11 Raghavendra and Busch [46] 2014 BSIF+Cepstral Photo, video ACER = 10.21% (SVM) Hybrid

A12 Wen et al. [7] 2015 Image distortions Photo, video EER = 10.15%a (SVM) Quality

A13 Patel et al. [47] 2015 Multi-scale LBP+DSIFT Photo, video HTER = 4.87%a (SVM) Hybrid

A14 Benlamoudi et al. [5] 2015 ML-LPQ Photo, video EER = 11.39% (SVM) Texture

A15 Boulkenafet et al. [20] 2015 Color LBP Photo, video EER = 3.30%a (SVM) Texture

A16 Mei et al. [34] 2015 WLD-TOP Photo, video Accuracy=74.12%b (SVM) Dynamic

A17 Albu [27] 2015 Radon transform Photo Accuracy = 97.20% (/) Texture

A18 Menotti et al. [40] 2015 cf10-11 based Photo, video, mask HTER = 0.38% (SVM) Learned

A19 Patel et al. [48] 2016 LBP+color moment Photo, video EER = 3.84% (SVM) Hybrid

A20 Kim et al. [49] 2016 MLBP+GLCM+distortions Photo, video HTER = 4.28%a (SVM) Hybrid

A21 Agarwal et al. [29] 2016 Haralick features Photo, video, mask EER = 2.03%a (SVM) Texture

A22 Phan et al. [35] 2016 LDP-TOP Photo, video HTER = 6.04%a (SVM) Dynamic

A23 Boulkenafet et al. [16] 2017 MB-LPQ Photo, video ACER=36.70%c (Softmax) Texture

A24 Boulkenafet et al. [16] 2017 PML-LPQ Photo, video ACER=37.50%c (SVM) Texture

A25 Boulkenafet et al. [30] 2017 Color SURF Photo, video EER = 1.70%a (Softmax) Texture

A26 Peng et al. [21] 2017 LBP+GSLBP Photo, video EER = 5.54%a (SVM) Hybrid

A27 Peng et al. [21] 2017 LGBP Photo, video EER = 4.88%a (SVM) Texture

A28 Boulkenafet et al. [16] 2017 SqueezeNet based+color LBP Photo, video ACER=22.50%c (/) Hybrid

A29 Lucena et al. [41] 2017 VGG-16 based Photo, video, mask HTER = 0.60%a (Sigmoid) Learned

A30 Tu et al. [42] 2017 ResNet-50 based Photo, video HTER = 1.20%a (Softmax) Learned

a Using the average result of different databases.
b Using the result on cross-database.
c Using the result of the most challenging protocol.
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Table 2

Brief overview of used face spoofing databases.

Database Year #Subjects #Real/fake Attacks Captured Sample

Oulu-NPU 2017 55 990/3960 Photo, video 6 phones Video

Replay-Mobile 2016 40 550/640 Photo, video iPad, LG phone Video

MSU-USSA 2016 1040 1040/8320 Photo, video Google phone Image

cameras of six mobile devices, including Samsung Galaxy S6 edge,

HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie, Sony XPERIA C5

Ultra Dual, and OPPO N3. Three sessions with different illumination

conditions and background scenes were considered to create printed

photo attack (using two printers) and replayed video attack (on two

display devices). The whole database was divided into three subsets

for training, development, and testing, with four protocols.

3.2. Replay-Mobile DB

It contains 1190 video sequences of photo and video attack

attempts to 40 clients. These videos were recorded with an iPad

Mini2 and a LG-G4 smartphone under different lighting conditions.

The attacks were created using two spoof mediums, fixed matte-

screen and paper which was either hand-held or fixed-support.

3.3. MSU-USSA DB

This database was specifically created to simulate presentation

attacks on smartphones with diversities of environment, image qual-

ity, image acquisition device. It consists of a subset (1000 subjects)

of the web faces database [53] with celebrity images, and the MSU-

MFSD dataset (40 subjects). This database provides both live faces

and 2D presentation attacks (printed photo and replayed video

attacks) in still-images. The front and rear facing cameras with dif-

ferent resolutions on the Google Nexus 5 was used to capture the

spoofed attacks, while four kinds of spoof mediums, including Mac-

Book, Nexus 5, Tablet screens, and paper, were used to show the live

face images. Totally, 8320 images were created.

4. Evaluation

In this section, 30 representative face PAD methods are evalu-

ated and compared following a unified framework. We first test the

attack abilities of three face spoofing databases using different face

recognition systems. Then we introduce the database protocols and

evaluation environment. The influence of some pre-processing fac-

tors in detecting face presentation attacks are also demonstrated.

After that, we evaluate and analyze the detection robustness and

generalization ability of the 30 methods through intra-database and

cross-database testing.

4.1. Attack abilities of face spoofing databases

We considered three FRSs to show the vulnerability towards

detecting spoofed faces using the three mobile spoofing databases,

so that the attack abilities of these databases can be demonstrated.

For our experiments, we used a commercial systemNeurotechnology

Table 3

IAPMR of three face recognition systems.

FRS Threshold Oulu-NPU Replay-Mobile MSU-USSA

VeriLook 36a 99.39% 97.61% 99.04%

Openface 0.99b 98.23% 94.94% 99.41%

Face++ 1e-5c 100% 99.45% 99.57%

a Using the matching score when FAR=0.1%.
b Using a squared L2 distance threshold.
c Using the confidence threshold at the 0.001% error rate.

VeriLook SDK [54], and two publicly available FRSs: OpenFace [55]

and Face++ [56]. The Impostor Attack Presentation Match Rate

(IAPMR) metric was used to report the results, which can be con-

sidered as an indication of the attack success chances if the FRS is

evaluated regarding its PAD capabilities [57]. It is defined as the

proportion of impostor attack presentations using the same Presen-

tation Attack Instrument (PAI) species in which the target reference

is matched in a full-system evaluation of a verification system [58].

The IAPMR values of the three FRSs on the Oulu-NPU, Replay-Mobile,

and MSU-USSA databases are provided in Table 3.

Table 3 shows that over 94% of the images in the three mobile

face presentation attack databases were successfully compared using

the three FRSs. Lower values of IAPMR can be seen for images in

the Replay-Mobile database, which is attributed to the lower image

quality resulting from the recording and printing process in this

database.

4.2. Evaluation protocols and environment

We followed the original evaluation protocols of each database

to evaluate the performance of the different PAD methods (as sum-

marized in Table 4). Three classifiers, namely, the Softmax classifier,

Support Vector Machine (SVM) with linear and RBF kernels, were

used to show the influence of classifiers on detection performance.

Based on the ISO/IECmetrics, we reported the results on all databases

using three evaluation metrics, the Attack Presentation Classification

Error Rate (APCER), Bona Fide Presentation Classification Error Rate

(BPCER), and the Average Classification Error Rate (ACER). They are

calculated as follows:

APCER =
1

Na

Na∑

i=1

(1 − Resi) (1)

BPCER =

∑Nr
i=1

Resi

Nr
(2)

ACER =
APCER+ BPCER

2
(3)

where Na is the total number of attack presentations, and Nr is the

number of real samples. Resi equals to 1 if the ith presentation is clas-

sified as an attack and 0 if classified as real. Lower values of these

metrics indicate better performance of the PAD algorithms.

In addition, two recent metrics for PAD methods defined within

the ISO/IEC FDIS 30107-3 [58]: the BPCER20 and BPCER10 (which

represent the BPCER for a fixed APCER of 5% and 10%, respectively)

were reported.

All the PAD methods were re-implemented based on the original

codes or codes realized by the third party according to the descrip-

tion in the original papers. Most methods were evaluated under

Table 4

Evaluation protocols of used face spoofing databases.

Database #Train #Dev #Test #Protocols Face size

Oulu-NPU 1800 1350 1800 4 64*64

Replay-Mobile 312 416 302 3 64*64

MSU-USSA 7488 / 1872 1* 120*120

∗ Using fivefold subject-exclusive cross validation.
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Fig. 2. Detection results under different frame numbers. (a) EER; (b) Overall ACER.

Matlab R2016b on a Windows 10 system with an Intel(R) Core(TM)

i7-7500U CPU, 2.70GHz with a 16GB RAM. Twomotion based meth-

ods (A01 and A09), image quality analysis based (A10 and A12), and

four learning based methods (A18, A28-30) were run in Python 2.7

under Ubuntu Linux 16.04 LTS with an Intel(R) Core(TM) i7-6850K

CPU, 3.60GHz×12.

4.3. Influence of pre-processing

We first studied the influence of some pre-processing factors

on the detection performance, including the number of frames for

feature extraction, the way to select frames from videos, and the

interpupillary distance (IPD) to crop face regions.

The evaluation was carried out using the Softmax classifier on

the Oulu-NPU database, which provides relatively large-size video

data. We randomly selected five algorithms from different categories

(except the motion and learning features based methods, whose

performance is not affected by the frame number or face size) as

examples to show the influence. These methods are A02 (using

multi-scale LBP), A11 (a hybrid method combining BSIF with Cep-

stral features), A12 (an image quality based method), A15 (color LBP

features based), and A20 (a hybrid method combining MLBP, GLCM,

and image distortions features). We illustrate the detection perfor-

mance in terms of the EER in the development set and the overall

ACER (corresponding to the attack with the highest APCER) in the

testing set. For simplicity, only the detection results of Protocol 4 are

shown, which combines the previous three protocols and is the most

challenging scenario.

4.3.1. Influence of the selected frame number

We studied the effect of feature extraction from different frame

numbers on face PAD performance, including randomly selected 1,

10, 30, and 50 frames. The final score for each video was computed

by averaging the output scores of all frames. We cropped the faces

based on the original codes2 using the provided eye location infor-

mation and IPD value (32pixels). The results including the detection

accuracy and calculation efficiency are shown in Fig. 2 and Table 5,

respectively.

As shown in Fig. 2, the EER and ACER values decrease when

frame number increases from 1 to 10 in most cases because more

frames make the extracted features more stable. When the number

of frames is 10, 30, and 50 respectively, there is little difference of the

performance. However, larger frame number leads to higher compu-

tational cost. Taking both the detection accuracy and efficiency into

2 https://sites.google.com/site/oulunpudatabase/.

consideration, we extract features from 10 frames in the following

experiments.

4.3.2. Influence of the way to select frames

Existing PAD methods select frames from video sequences in dif-

ferentways, including successive frames selection, random selection,

and equal interval sampling. Therefore, we studied how these frame

selection schemes can affect the detection performance. The results

in Fig. 3 show that the overall performance of successive frames

selection (by extracting the first 10 frames) is slightly worse than

random selection and equal interval sampling (which tend to con-

tain frames with more diversity). Considering the different length

of video sequences in the database, we choose to randomly select

frames for simplicity in the following experiments.

4.3.3. Influence of face size

Most published methods extract features from cropped face

regions, which are always based on the eye or face location provided

by databases. We varied the cropping of the facial region by altering

the IPD (i.e. 24, 28, 32 and 36pixels). Fig. 4 gives an example of the

normalized face images of one subject with different IPD values.

As shown in Fig. 5, using larger IPDs to crop the face leads to

smaller EER and ACER values, therefore better performance than

smaller IPD values. This is because more background area can be

removedwhile larger face region is retained when increasing the IPD

values; therefore, more discriminative features can be extracted to

distinguish live and spoofing images. As the faces are cropped into a

square shape, to guarantee the structural integrity of faces, we use

an IPD of 32pixels to report results in all other experiments.

4.4. Robustness evaluation in mobile scenarios

With the same pre-processing operations, 30 face PAD meth-

ods were then re-implemented and evaluated on the same spoofing

databases to show how well they can work in practical mobile

authentication scenarios. Besides the Oulu-NPU database, two other

recently published mobile spoofing databases, Replay-Mobile DB

and MSU-USSA DB, were used to assess the robustness of existing

algorithms.

Table 5

Calculation time* of five algorithms under different frame numbers (/s).

#Frame A02 A11 A12 A15 A20

1 40.88 38.50 49.18 36.03 59.50

10 162.76 60.03 56.75 109.35 222.77

30 432.414 114.65 895.27 257.99 531.30

50 676.764 159.06 1868.89 408.75 845.99

∗ Calculation time only includes the detection process after feature extraction.
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Fig. 3. Detection results with different frame selection schemes. (a) EER; (b) Overall ACER.

Fig. 4. Example of face images with different face IPDs. (a) 24pixels; (b) 28pixels; (c) 32pixels; (d) 36pixels.

4.4.1. Results on the Oulu-NPU DB

The Oulu-NPU database provides four protocols to evaluate the

performances of the face PAD methods. They are designed to eval-

uate the effect of different environmental conditions (Protocol 1),

different presentation attack instruments (PAI) (Protocol 2), different

acquisition devices (Protocol 3), and combining all these variations

(Protocol 4). We first list the quantitative results of Protocol 4 under

Softmax classifier in Table 6 to show the detailed detection perfor-

mance of 30 algorithms under the most challenging protocol.

It can be seen that the detection results vary wildly among differ-

ent methods on this database. A30 based on ResNet-50 model [42]

performed significantly better than other methods for both photo

print and video replay attack. Besides, the learning based methods

(A28, A29 and A18) and some texture based methods, including the

LPQ based (A23 and A24), LBP based (A15 and A26) and Haralick fea-

tures method (A21), also achieved better detection results, with the

BPCER20 between 5% and 35.33%, the BPCER10 between 1.67% and

29.17%, and the overall ACER between 26.25% and 36.25%. By con-

trast, the overall performance was worse in some dynamic methods

(A22 and A16), DoG based methods (A05 and A07), and Radon trans-

form based method (A17), whose BPCER20 and BPCER10 were over

70% and ACER higher than 50%. For the dynamic methods, the reason

for performance degradation is the low speed motion of real access

videos in the Oulu-NPU database, leading to small differences from

the spoofing ones, while the DoG filters used to exclude the low fre-

quency information and noise of frames or the Radon transform used

to enhance the low frequency components will perform poorly in

high quality images taken on modern smartphones, which reached

a similar conclusion with [26]. By comparing the ACER values in the

two middle columns, we can also observe that the detection per-

formance against replay attack is better than print attack for most

algorithms. This suggests that the nature of print attacks may vary

more and therefore makes it difficult to detect. In addition, the per-

formance of the 30 algorithms reported using the BPCER20 and

Fig. 5. Detection results with different face IPDs. (a) EER; (b) Overall ACER.
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Table 6

Evaluation results (%) of Protocol 4 on Oulu-NPU DB under Softmax classifier.

Method Features Feature size Dev_EER Print Replay Overall Rank

ACER ACER BPCER20 BPCER10 ACER

A01 Motion intensity [8] 1*70 31.89 36.67 31.25 67.50 56.67 42.92 16

A02 Multi-scale LBP [4] 10*833 9.83 40.42 33.33 63.33 50.83 42.92 16

A03 Per-image LBP [17] 10*59 16.72 35.41 30.00 60.00 55.00 37.91 12

A04 LBP+Gabor+HOG [43] 1*12225 18.50 41.25 36.67 65.83 58.33 42.08 15

A05 DoG [26] 10*4096 29.83 44.17 51.25 92.50 85.00 51.25 29

A06 LBP-TOP [9] 1*177 10.17 44.17 34.58 61.67 51.67 47.08 21

A07 DoG+LBPV [44] 10*59 36.28 41.67 49.17 95.83 91.67 50.00 24

A08 Motion+multi-scale LBP [45] 10*361 17.17 43.75 33.75 66.67 56.67 44.58 18

A09 Motion+LBP [37] 1*129 26.06 44.58 31.67 69.17 54.17 47.08 21

A10 Image quality [6] 10*18 36.39 46.25 41.67 92.50 91.67 50.00 24

A11 BSIF+Cepstral [46] 10*2657 29.61 45.42 46.25 89.17 89.17 48.75 23

A12 Image distortions [7] 10*121 12.06 43.33 32.08 60.83 55.00 45.42 20

A13 Multi-scale LBP+DSIFT [47] 10*4057 20.11 49.17 46.25 64.17 63.33 50.83 27

A14 ML-LPQ [5] 10*3587 12.33 41.67 41.25 80.83 74.17 44.58 18

A15 Color LBP [20] 10*354 5.06 22.92 25.83 23.33 16.67 30.00 5

A16 WLD-TOP [34] 1*3072 25.00 55.00 35.83 84.17 80.83 55.00 30

A17 Radon transform [27] 10*1800 28.67 47.91 50.41 99.17 99.17 50.41 26

A18 cf10-11 based [40] 10*40000 4.89 35.00 17.92 15.83 8.33 36.25 9

A19 LBP+color moment [48] 10*540 11.72 31.67 30.83 46.67 35.00 36.25 9

A20 MLBP+GLCM+distortions [49] 10*1047 13.78 35.42 30.83 60.83 53.33 38.33 13

A21 Haralick features [29] 10*624 10.56 30.00 25.83 5.00 1.67 35.42 8

A22 LDP-TOP [35] 1*21504 26.89 45.83 41.67 75.00 64.17 50.83 27

A23 MB-LPQ [16] 1*6912 4.56 26.25 21.67 26.67 19.17 26.25 2

A24 PML-LPQ [16] 1*23040 2.44 23.33 24.17 16.67 8.33 30.00 5

A25 Color SURF [30] 1*24576 6.94 35.42 30.83 13.33 8.33 37.50 11

A26 LBP+GSLBP [21] 10*6372 4.17 24.58 29.17 10.00 5.83 31.67 7

A27 LGBP [21] 10*3186 9.11 37.92 32.08 37.50 20.83 40.00 14

A28 SqueezeNet+color LBP [16] 10*1354 6.17 16.67 25.41 22.50 15.83 27.92 3

A29 VGG-16 based [41] 10*4096 15.05 25.41 25.00 35.33 29.17 29.16 4

A30 ResNet-50 based [42] 10*2048 3.71 2.50 7.50 2.50 0.83 8.33 1

BPECR10 show good agreement with the results reported using the

ACER. However, most algorithms show higher error rates under this

most challenging protocol on the Oulu-NPU database.

We further give the evaluation details on the Oulu-NPU database

to show the influence of protocols and classifiers. Fig. 6 (a–c) presents

the overall ACER of 30 PAD algorithms of four protocols under dif-

ferent classifiers. It indicates that although the ACER of different

methods using the Protocol 1, 2 and 3 with only one kind of varia-

tion is generally smaller than that of Protocol 4 (the purple columns),

the detection performance differences are almost consistent in four

protocols. By contrast, the classifiers have a relatively large influ-

ence on the detection performance. From the average ACER curves

of four protocols in Fig. 6 (d), it can be seen that for most methods,

the SVM classifiers achieve lower ACER than the Softmax classifier,

and the linear SVM performs slightly better than RBF-SVM classifier.

Overall, the average ACER values are higher than 20% for most algo-

rithms, except some recently published methods based on texture

or deep models (A23-28 and A30), which show higher robustness in

detecting face presentation attacks on this mobile database.

4.4.2. Results on the Replay-Mobile DB

The Replay-Mobile database designs three protocols for perfor-

mance evaluation, namely mattescreen attack of photo and video

(Protocol 1), print fixed-support and hand-held attack (Protocol 2),

and a grandtest protocol for global performance evaluation (Proto-

col 3, which is the sum of the above attacks). Table 7 indicates the

Fig. 6. Detection results of 30 algorithms on Oulu-NPU DB. (a) Overall ACER of four protocols under Softmax classifier; (b) Overall ACER of four protocols under Linear-SVM

classifier; (c) Overall ACER of four protocols under RBF-SVM classifier; (d) Average ACER of all protocols under different classifiers.
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Table 7

Evaluation results (%) on Replay-Mobile DB under RBF-SVM classifier.

Method Features Feature size Mattescreen (ACER) Print (ACER) Grandtest Rank

Photo Video Fixed Hand Dev_EER BPCER20 BPCER10 ACER

A01 Motion intensity [8] 1*100 1.14 1.14 1.14 17.61 9.38 14.55 11.82 9.55 20

A02 Multi-scale LBP [4] 10*833 5.30 1.04 3.13 2.08 4.37 0 0 7.03 16

A03 Per-image LBP [17] 10*59 49.03 47.90 48.56 47.80 20.31 27.27 25.45 20.02 27

A04 LBP+Gabor+HOG [43] 1*12225 1.14 1.14 2.08 0 4.69 0.91 0 0.71 4

A05 DoG [26] 10*4096 26.04 22.82 23.86 25.47 24.37 46.36 35.45 26.92 29

A06 LBP-TOP [9] 1*177 7.29 2.18 3.22 4.36 7.81 5.21 4.55 4.88 13

A07 DoG+LBPV [44] 10*59 27.65 15.06 17.05 14.77 29.37 33.64 24.55 18.15 25

A08 Motion+multi-scale LBP [45] 10*361 12.59 7.39 11.74 12.50 9.37 12.73 7.27 6.69 15

A09 Motion+LBP [37] 1*159 2.27 1.14 1.14 10.23 6.25 15.45 9.09 7.28 17

A10 Image quality [6] 10*18 33.05 10.89 17.05 11.65 22.50 28.18 20.00 16.59 23

A11 BSIF+Cepstral [46] 10*2657 17.33 9.75 9.75 9.75 18.12 0.91 0 24.22 28

A12 Image distortions [7] 10*121 2.27 4.36 3.13 2.08 2.50 0 0 2.54 9

A13 Multi-scale LBP+DSIFT [47] 10*4057 38.54 26.04 34.37 31.25 7.50 0 0 4.17 12

A14 ML-LPQ [5] 10*3587 9.37 4.17 2.08 2.08 1.95 0 0 2.86 10

A15 Color LBP [20] 10*354 1.14 0 1.04 0 0 0 0 0.26 1

A16 WLD-TOP [34] 1*3072 14.96 12.78 14.20 8.43 8.20 7.27 0.91 8.79 19

A17 Radon transform [27] 10*1800 13.26 18.47 10.04 10.89 16.41 33.64 21.82 10.72 21

A18 cf10-11 based [40] 10*40000 5.68 2.08 1.04 2.27 3.52 1.82 0 1.62 5

A19 LBP+color moment [48] 10*540 4.17 3.12 4.17 2.08 2.50 0 0 5.99 14

A20 MLBP+GLCM+distortions [49] 10*1047 0 0 0 0 1.56 0 0 2.34 8

A21 Haralick features [29] 10*624 50.00 50.00 3.41 50.00 50.00 0 0 50 30

A22 LDP-TOP [35] 1*21504 25.76 23.48 22.06 11.84 21.09 45.45 35.45 18.65 26

A23 MB-LPQ [16] 1*6912 2.08 1.04 1.04 1.04 0.39 0 0 2.02 6

A24 PML-LPQ [16] 1*23040 1.04 0 0 0 1.87 1.82 0 2.27 7

A25 Color SURF [30] 1*24576 0 0 0 1.14 2.50 0 0 3.13 11

A26 LBP+GSLBP [21] 10*6372 0 0.17 0 0 0 0 0 0.26 1

A27 LGBP [21] 10*3186 4.26 4.17 2.18 2.18 3.75 0.91 0 7.75 18

A28 SqueezeNet+color LBP [16] 10*1354 1.13 2.27 4.54 1.14 3.13 0 0 0.26 1

A29 VGG-16 based [41] 10*4096 15.15 10.04 14.30 20.64 24.37 31.82 30.00 17.16 24

A30 ResNet-50 based [42] 10*2048 1.14 3.12 15.24 5.30 16.41 22.73 20.00 14.11 22

detection performance of 30 algorithms with all protocols under the

RBF-SVM classifier.

For the Mattescreen protocol, the methods A20 combining MLBP,

GLCM and image distortions, and A25 based on color SURF achieve

0% ACER for both displayed photo and video attacks. The LBP based

methods (A15 and A26) also demonstrate outstanding performance.

It is worth noting that compared with the results in Table 6 of

the Oulu-NPU database, the performance of some dynamic methods

(A01, A09, A06, and A16) improves significantly under this protocol

because the capturing mobile device was supported on a fixed sup-

port when recording mattescreen attacks, so that the motion pattern

is distinguishable from the real access videos with relatively large

movement. Besides, the detection performance against video attack

is better than photo attack as a whole. We attribute this difference

to the fact that displaying the recorded videos on the mattescreen

makesmore difference from real accesses than showing the photo on

the screen, as shown in Fig. 7.

For the Print protocol, similarly, the texture based methods A20,

A24, A25, A26, and A15 are quite effective in detecting both fixed and

hand print attacks, achieving around 0% ACER values. We can also

observe that the ACER for hand-held attack increases obviously for

the motion based methods, from 1.14% for fixed-support attack to

17.61% in A01, and from 1.14% to 10.23% in A06. This suggests that

the presentation attack videos with more movement pose greater

challenges to motion based detection methods.

For the Grandtest protocol, three methods A15 (using color LBP),

A26 (using LBP+GSLBP), and A28 (combining SqueezeNetmodel and

color LBP features), demonstrate the best results with the BPCER20

and BPCER10 of 0%, while ACER of only 0.26%. Besides, there is no sig-

nificant differences in the detection performance of most methods,

Fig. 7. Examples of cropped subject faces in the Replay-Mobile database. (a1), (b1) photo-lightoff attack; (a2), (b2) photo-lighton attack; (a3), (b3) video-lightoff attack; (a4), (b4)

video-lighton attack; a(5-9), b(5-9) real accesses in different scenarios.
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Fig. 8. Detection results of 30 algorithms on the Replay-Mobile DB. (a) Overall ACER of all protocols under the Softmax classifier; (b) Overall ACER of all protocols under the

Linear-SVM classifier; (c) Overall ACER of all protocols under the RBF-SVM classifier; (d) Average ACER under different classifiers.

with 17 methods’ BPCER20 and BPCER10 around 0%, and 20 meth-

ods’ ACER values lower than 10.00%. We attribute this to the fact that

both the dataset size and diversity of attack videos in this database

are smaller than those collected in the Oulu-NPU database. Note that

the method A21 seems to achieve excellent performance in terms

of BPCER20 and BPCER10 (both with 0%), but using ACER metric, its

performance is the worst. When we checked the APCER values cor-

responding to the BPCER20 and BPCER10, we found its APCERs were

100%, suggesting that the threshold for classification at APCER of 5%

or 10% on the development dataset does not apply to the testing

set. For this case, using the ACER metric to demonstrate the detec-

tion performance is more reasonable. Besides, the advantages of two

learning based methods (A29 and A30) shown on the Oulu-NPU

database are not obvious on this small-size database.

To show more details of the performance on the Replay-Mobile

database, we plot column graphs of all algorithms under different

protocols and classifiers in Fig. 8 (a–c). It can be observed that most

ACER values for Protocol 1 with photo attack (the blue columns)

are slightly larger than other attack types (because showing photo

attacks on the mattescreen, especially with light on, makes less dif-

ference from real accesses, as shown in Fig. 8). However, the overall

performance for different protocols is basically consistent for most

algorithms, suggesting the good robustness of different methods on

the same database.

Fig. 8 (d) illustrates the average ACER values of all protocols

under different classifiers. Compared with results on the Oulu-NPU

database in Fig. 6 (d), the Softmax classifier performs better on this

database. The method A21 based on Haralick features, with the aver-

age ACER of over 40.00% under the RBF-SVM classifier, achieves

about 5.00% average ACER under the Softmax classifier. The same

big difference can also be observed in A03 (from over 40% with the

SVM classifiers to about 10% with the Softmax classifier). These two

methods also show the worst performance for both the Mattescreen

and Print protocols in Table 7. The possible reason is that the smaller

dataset in the Replay-Mobile database (especially for the Matte-

screen and Print protocols) makes the RBF-SVM classifier sensitive

Table 8

Detection results (%) of the fivefold cross validation protocol on MSU-USSA DB under RBF-SVM classifier.

Method Features Feature Overall Rank

size APCER BPCER ACER

A02 Multi-scale LBP [4] 1*833 6.48 6.44 6.46 10

A03 Per-image LBP [17] 1*59 8.81 13.17 10.99 16

A04 LBP+Gabor+HOG [43] 1*14441 7.61 7.50 7.55 11

A05 DoG [26] 1*3600 32.20 36.44 34.32 23

A07 DoG+LBPV [44] 1*59 27.74 28.08 27.91 21

A10 Image quality [6] 1*18 24.65 27.88 26.27 20

A11 BSIF+Cepstral [46] 1*2657 15.43 18.37 16.90 19

A12 Image distortions [7] 1*121 11.67 11.63 11.65 17

A13 Multi-scale LBP+DSIFT [47] 1*19289 7.75 7.69 7.72 12

A14 ML-LPQ [5] 1*3584 7.79 7.69 7.74 13

A15 Color LBP [20] 1*354 2.91 3.75 3.33 5

A17 Radon transform [27] 1*1800 32.18 37.86 35.02 24

A18 cf10-11 based [40] 1*40000 14.84 14.90 14.87 18

A19 LBP+color moment [48] 1*1602 3.32 3.27 3.29 4

A20 MLBP+GLCM+distortions [49] 1*1047 3.79 3.85 3.82 6

A21 Haralick features [29] 1*1404 7.36 8.75 8.05 14

A23 MB-LPQ [16] 1*6912 2.18 2.02 2.10 2

A24 PML-LPQ [16] 1*23040 3.05 2.98 3.02 3

A25 Color SURF [30] 1*24576 5.82 5.77 5.79 9

A26 LBP+GSLBP [21] 1*6372 1.07 0.87 0.97 1

A27 LGBP [21] 1*3186 4.92 4.81 4.86 8

A28 SqueezeNet+color LBP [16] 1*1354 4.87 4.81 4.84 7

A29 VGG-16 based [41] 1*4096 33.71 33.65 33.68 22

A30 ResNet-50 based [42] 1*2048 9.55 9.61 9.58 15
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Fig. 9. Results of 24 algorithms on MSU-USSA DB under three classifiers.

to over-fitting. Overall, similarly with the results on the Oulu-NPU

database, some methods based on texture or deep models (including

A15, A18, A23-28 and A30) aremore effective and robust against face

presentation attacks on this database.

4.4.3. Results on the MSU-USSA DB

A fivefold subject-exclusive cross validation protocol is designed

for MSU-USSA database. Because this is an image based database,

the PAD methods based on dynamic features, including A01, A06,

A08, A09, A16 and A22, are no longer applicable. Therefore, only

24 methods were evaluated on this database to show the detection

differences.

Table 8 presents the results under the RBF-SVM classifier. The

method combining LBP and GSLBP features (A26) indicates the best

performance with ACER of 0.97%. Besides, LPQ based methods (A23

and A24) and LBP features based hybrid methods (A19, A15, A20,

A28, A27) also show impressive detection performance, with ACER

less than 5.00%. In Fig. 9 , the average ACER curves under different

classifiers demonstrate slightly better results of two SVM classifiers

than the Softmax classifier. The overall ACER values under differ-

ent classifiers are lower than 20% for most methods due to the

high-resolution images in this database.

4.5. Generalization ability in cross-database testing scenarios

Intra-database testing (with training and testing data captured in

the same scenarios) cannot represent all real world conditions [59].

To further show the generalization ability in detecting unknown

attacks, we conducted a series of cross-database experiments in this

section. Each detection method was trained on one database, and

tested on a different one. The results including both intra-database

and cross-database testing under the Softmax classifier are shown in

Table 9.

It can be seen clearly that the detection performance decreases

dramatically for most algorithms when dealing with unknown

Table 9

Performance of cross-database testing on Oulu-NPU DB, Replay-Mobile DB and MSU-USSA DB under the Softmax classifier. Performance reported in terms of ACER (%).

Method Features Oulu-NPU Replay-Mobile MSU-USSA Average Rank

Oulu Replay MSU Replay Oulu MSU MSU Oulu Replay

A01 Motion intensity [8] 28.40 2.27 / 11.64 61.15 / / / / 31.71 4

A02 Multi-scale LBP [4] 21.98 36.15 24.64 5.85 40.10 36.09 7.42 44.48 36.67 36.36 6

A03 Per-image LBP [17] 24.97 39.08 33.83 12.61 38.85 29.39 11.06 43.02 41.29 37.58 8

A04 LBP+Gabor+HOG [43] 25.24 45.38 51.44 7.28 43.16 53.85 23.05 52.50 58.26 50.76 27

A05 DoG [26] 34.97 50.72 49.19 30.10 49.69 40.05 46.81 50.24 53.38 48.88 26

A06 LBP-TOP [9] 18.92 45.64 / 12.61 41.35 / / / / 43.50 18

A07 DoG+LBPV [44] 46.11 62.61 40.20 19.90 51.39 51.44 24.49 44.69 58.00 51.39 28

A08 Motion+multi-scale LBP [45] 27.74 37.13 / 9.23 43.85 / / / / 40.49 15

A09 Motion+LBP [37] 27.74 50.00 / 13.59 59.97 / / / / 54.98 30

A10 Image quality [6] 39.20 48.57 41.53 24.06 55.17 52.85 31.98 39.51 45.90 47.26 24

A11 BSIF+Cepstral [46] 30.80 43.69 53.34 21.85 46.08 59.68 29.09 31.22 41.74 45.96 20

A12 Image distortions [7] 15.56 16.25 33.32 2.67 42.47 42.52 13.43 35.90 14.30 30.79 2

A13 Multi-scale LBP+DSIFT [47] 26.98 41.74 46.69 7.28 38.58 21.15 17.76 47.74 47.33 40.54 16

A14 ML-LPQ [5] 23.72 41.29 35.70 7.02 39.17 37.35 7.90 43.13 39.34 39.33 12

A15 Color LBP [20] 7.50 45.38 39.03 1.69 36.35 32.90 3.34 40.28 34.72 38.11 9

A16 WLD-TOP [34] 23.85 31.08 / 14.56 46.22 / / / / 38.65 10

A17 Randon transform [27] 32.74 40.77 42.85 27.70 49.41 40.50 30.41 48.06 61.18 47.13 23

A18 cf10-11 based [40] 9.41 44.93 40.02 1.69 46.63 58.32 11.51 36.67 43.43 46.13 21

A19 LBP+color moment [48] 15.83 20.87 41.32 4.88 43.85 56.22 12.95 53.02 43.95 43.21 17

A20 MLBP+GLCM+distortions [49] 15.56 26.20 32.15 4.88 46.22 49.49 11.99 41.74 36.63 38.74 11

A21 Haralick features [29] 10.80 51.95 58.26 5.33 53.96 52.49 8.74 32.53 67.95 52.86 29

A22 LDP-TOP [35] 34.41 37.13 / 22.11 42.57 / / / / 39.85 13

A23 MB-LPQ [16] 18.30 39.79 58.86 2.21 45.83 36.60 2.31 19.58 15.00 35.95 5

A24 PML-LPQ [16] 12.67 36.67 41.56 1.24 40.52 38.61 4.03 46.39 57.28 43.51 19

A25 Color SURF [30] 12.60 52.21 46.91 0.98 43.09 45.61 17.01 50.24 39.79 46.31 22

A26 LBP+GSLBP [21] 9.97 43.69 55.50 3.38 35.87 4.81 2.46 37.53 42.72 36.69 7

A27 LGBP [21] 9.69 37.13 32.81 7.28 36.91 7.93 10.64 39.31 31.34 30.90 3

A28 SqueezeNet+color LBP [16] 7.74 36.67 35.19 1.24 49.24 41.80 3.34 37.19 40.77 40.14 14

A29 VGG-16 based [41] 20.80 43.43 51.89 12.16 48.02 54.48 32.21 49.41 41.74 48.16 25

A30 ResNet-50 based [42] 7.19 28.87 22.09 0.91 47.47 41.53 10.00 24.41 10.66 29.17 1
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attack scenarios. Specifically, for the same method, the ACER val-

ues increase more significantly when using the Replay-Mobile or

MSU-USSA database as training set. The reason is that these two

databases contain less variations in the collected data than the Oulu-

NPU database. Therefore, the models optimized for these databases

are not able to generalize well in new acquisition conditions. This

also explains why the ACER values using the Oulu-NPU database as

testing are always higher. We notice one exception is that the cross-

dataset testing performance of A01 (trained on the Oulu-NPU and

tested on the Replay-Mobile database) improves significantly instead

of degrading. This is because when training this motion inten-

sity based method on the Oulu-NPU database, whose video frames

have smaller motion amplitudes, the method can easily detect pre-

sentation attack videos with obvious movement, such as videos

in the Replay-Mobile database. Otherwise (trained on the Replay-

Mobile and tested on the Oulu-NPU database), its errors will increase

sharply, from 11.64% ACER to 61.15% in the experiment.

For different methods, we notice that the detection performance

varies widely in cross-dataset testing scenarios, ranging from 2.17%

to 67.95%. To compare the generalization ability of different meth-

ods more clearly, we averaged the ACER values of the three groups

of cross-database testing results in the second-to-last column. It can

be seen that the average ACER values are all between 29.17% and

54.39%. Specifically, the method A30 based on ResNet-50 model,

A12 using image distortions, A01 based on motion intensity, and

most LBP based methods show a relatively better generalization

ability. But no single algorithm can work equally well in different

cross-dataset testing scenarios.

5. Discussion

Based on the evaluation results on unified evaluation frameworks

in Section 4, we summarize the main observations and give some

deep insights into the face presentation attack detection.

5.1. Detection performance

From the intra-database testing results on three face spoofing

databases, we can observe that the performance of most methods in

mobile scenarios was not as good as the reported results shown in

Table 1, suggesting the poor robustness in more realistic conditions.

For attacks in cross-database testing, these methods also showed

unstable performance based on different training datasets.

Overall, some texture features, especially the LBP based (A26,

A20, A27, A19, and A15), the LPQ (A24 and A23) and color SURF (A25)

based, showed powerful abilities to distinguish real faces from arti-

facts. Two learning based methods, the A30 using ResNet-50 model,

and A28 combining SqueezeNet model features with color LBP,

also demonstrated promising potentials for face presentation attack

detection. By contrast, quality based (A10 and A12) and dynamic

methods (A01, A06, A16, and A22) performed worse. The reasons

behind this performance difference are analyzed as follows.

• The superior performance of LBP and LPQ based PAD meth-

ods benefits from the features’ highly discriminative power

in local texture description. The LBP feature has the ability

to code fine details by computing the gradient directions of

images, and the resistance to lighting variations due to the

invariance to monotonic gray-scale changes [60]. As a family

of LBP-based detectors, the LPQ shares some similar advan-

tages with LBP, which is more robust to blur variation. There-

fore, in face presentation attacks, the artifact characteristics

caused by printed/digital photographs or recorded videos on

the mobile/tablet can be detected by using these micropat-

tern texture desciptors. In addition, because the color gamut

of printing and display devices to create the attacks is lim-

ited [30], exploiting the intrinsic disparities in the color texture

also helps discriminate real from fake faces, especially in the

HSV and YCbCr spaces (whose luminance and chrominance

information are separated and more stable). This leads to the

more robust and generalized detection performance of the

color analysis based methods (A15 and A25).

• For the learning based methods, the A29 using the VGG-16

model performed worse than other data-driven based meth-

ods. Since the VGG-16 model has much more parameters

(134.25 million) than models ResNet-50 (23.51 million) and

SqueezeNet (1.19 million), it tends to have the overfitting

problem towards small datasets, especially on the Replay-

Mobile and MSU-USSA databases in our experiments.

• The three face presentation attack databases used in the exper-

iments all consist of high-resolution and small-motion spoof-

ing videos in mobile scenarios. Therefore, for image quality

based or dynamic methods, the quality or motion differences

between real accesses and spoofed images are more difficult to

discern.

To sum up, the performance evaluation indicates the potential of

using robust local micropattern or separated color spaces based tex-

ture descriptors to detect face presentation attacks. Also, some deep

models with less parameters to be fine-tuned trend to achieve bet-

ter results in existing small-size face spoofing databases. For the poor

generalization ability of existing methods in detecting unknown

attacks (the best average ACER in cross-database testing is about 30%,

which is far away from the requirement in practical applications),

one potential solution is to use a joint training strategy combining

data of multiple databases to reduce the database biases [59]. It is

also suggested in [38] to adapt learned models to new data based

on transfer learning to improve inevitable biases among different

datasets.

5.2. Databases

Experimental results also show the influence of databases on the

detection performance. Both the database size and attack diversity

play an important role in designing and evaluating the PAD schemes.

Limited number of samples and types of attacks will not only weaken

the detection performance in practical applications, but also limit the

detection ability of data-driven-based methods, such as deep learn-

ing based methods, which may not have enough data for training

CNNs by fine-tuning the pretrained models to their full potential

[16,61]. The database diversity can be enhanced by using different

input sensors, printers and display devices, and different acquisition

environment (as the Oulu-NPU database did), using different light-

ing conditions, and motion patterns (as the Replay-Mobile database

did), enhancing the subject diversity (as the MSU-USSA dababase

did), and including more types of attack (such as the challenging 3D

mask presentation attacks). However, there are no such comprehen-

sive, large-scale and diverse databases yet, which are in high demand

to reflect the real-world situations, and help promote more practical

and generalized PAD methods.

5.3. Evaluation metrics

Based on the APCER and BPCER metrics, we reported the detec-

tion performance using the ACER and BPCER20 and BPCER10. From

the results in Tables 6 and 7, we observe that these two kinds of met-

rics show good agreement for most algorithms, but exceptions may

occur, whichwill result in significant performance differences for the

same PADmethod. There are cases that a lower BPCER20 or BPCER10

may result from higher APCER values (see A21 in Table 7), while a

lower ACERmay come from the unbalanced APCER and BPCER values



S. Jia, G. Guo, Z. Xu, et al. / Image and Vision Computing 93 (2020) 103826 13

(see A11, A14 in Table 6). Therefore, we emphasize the need to evalu-

ate and report the detection performance based on multiple metrics,

characterizing the methods from different aspects.

5.4. Other influencing factors

We also found that the pre-processing operations, database pro-

tocols, and classifiers all have the impact on the detection results.

To sum up, selecting an appropriate number of frames (10 frames

are preferred in the experiments) to extract features, using larger

IPD to crop faces, and applying the SVM classifiers for databases

with a larger size while Softmax classifier in smaller databases, can

contribute more to a better detection performance.

6. Conclusion

To have a deep understanding of the research and development

in face presentation attack detection, we present a comprehensive

evaluation of the state-of-the-art face PAD methods on a com-

mon ground. Totally 30 methods have been re-implemented and

evaluated in three mobile spoofing databases with high-resolution

images and real-world variations. Through the intra-database and

cross-database testing, the detection robustness for known attacks

and generalization ability for unknown attacks have been com-

pared and analyzed. Experimental results show that most detection

methods suffered from performance degradation in mobile scenar-

ios. Although some texture features and learning based features

show outstanding performance, the results in more realistic cross-

database testing scenarios are far from satisfactory. Therefore, we

highlight the importance of collecting more large-scale and high-

diversity databases, and developing more practical and generalized

PAD methods to address the database bias problems in future work.
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