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ARTICLE INFO ABSTRACT

The vulnerability of face recognition systems to different presentation attacks has aroused increasing con-
cern in the biometric community. Face presentation detection (PAD) techniques, which aim to distinguish
real face samples from spoof artifacts, are the efficient countermeasure. In recent years, various methods
have been proposed to address 2D type face presentation attacks, including photo print attack and video
replay attack. However, it is difficult to tell which methods perform better for these attacks, especially
in practical mobile authentication scenarios, since there is no systematic evaluation or benchmark of the
state-of-the-art methods on a common ground (i.e., using the same databases and protocols). Therefore,
this paper presents a comprehensive evaluation of several representative face PAD methods (30 in total) on
three public mobile spoofing datasets to quantitatively compare the detection performance. Furthermore,
the generalization ability of existing methods is tested under cross-database testing scenarios to show the
possible database bias. We also summarize meaningful observations and give some insights that will help
promote both academic research and practical applications.
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1. Introduction

Owing to the high efficiency and accuracy in identity authentica-
tion, face recognition technology has gained rapid development and
broad applications in recent years, from daily uses like smartphone
unlocking and access control, to high-security applications like pay-
ment systems, e-government affairs, and counter terrorism. This
popularity, however, also makes face recognition systems become a
major target of spoofing attack [ 1] (also known as presentation attack
in ISO/IEC 30107-1). An impostor may gain authorized access to an
unprotected face recognition system simply by presenting a face arti-
fact of a legitimate user, which can be easily generated based on a
person’s face images or videos from the ‘open’ social networks.

Based on the way to generate the face artifact, face presenta-
tion attacks can be classified into two categories: one including face
modalities in 2D, such as printed/digital photographs and recorded
videos on the mobile/tablet; another category using 3D by making
a mask or presenting face models [2,3]. These types of face arti-
facts have been proved to be easy and effective to fool different face
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recognition systems. For example, the access control system without
protection measures can be tricked by the photo attack (see Fig. 1
(a)). Printed photos can also fool Windows 10’s Hello face authen-
tication (see Fig. 1 (b)). Even the APPLE’s iPhone X has been proved
by researchers from Bkav that the Face ID can be unlocked when
pointed at a 3D mask (see Fig. 1 (c)).

The vulnerability of face recognition systems (FRSs) to such pre-
sentation attacks has raised increasing concerns in recent years.
Developing presentation attack detection (PAD) methods to deter-
mine whether the face at sensor level is real or fake is the efficient
countermeasure. Different software-based approaches have been
proposed over the last decade, which mostly focus on 2D face spoof-
ing because of its cheap and easy implementation in practice.

We classify existing methods against 2D presentation attacks
into five categories: texture based, image quality based, dynamic
approaches, learned features based, and hybrid methods. Texture
based schemes mainly explore the microtextural pattern differences
of real faces and artifacts with the help of different texture descrip-
tors, such as the widely used Local Binary Patterns (LBPs) [4] and
Local Phase Quantization (LPQ) [5]. Image quality based methods
[6,7] rely on the fact that fake faces, especially in 2D, are always vul-
nerable to image distortions caused by the recapture effect of faces
(with paper-based photos or glass-based video screens). Dynamic
approaches, exploit the temporal information to detect motion pat-
terns across the video frames [8,9]. This kind of methods performs
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well in photo attacks, but lacks robustness to replayed video attacks.
Inspired by the detection success of deep learning in several vision
tasks [10], learned features based PAD methods are proposed to
extract adaptive features which describe trainable texture to distin-
guish real faces from fake ones [1]. Another trend now is to develop
PAD methods based on hybrid techniques, which combine different
features to benefit from the strengths of each field.

With the increasing growth of different face PAD methods, there
is a critical need to overview these methods for both academia
researchers and industrial developers to have a deeper understand-
ing of the existing techniques. Some recent surveys [1,11-13] tried
to summarize the advances of face presentation attack detection
over the past decade. They all provided systematic analyses of the
recent work on both spoofing databases and detection methodolo-
gies. In addition, three face PAD competitions have been organized
[14-16] to challenge researchers to create and evaluate new counter
measures on the same spoofing database. Although these surveys or
competitions have approached various aspects of the state-of-the-
art research in face presentation attack detection, they are still faced
with the following challenges:

1. Lack of quantitative evaluation. Most existing surveys com-
pare different algorithms by simply listing the reported results,
without carrying out a quantitative evaluation on a common
ground. Therefore, based on the results on different databases
with different protocols, it is still difficult to understand how
differently the existing methods can perform and which meth-
ods perform better for common 2D presentation attacks.

2. Limited algorithms and results. The competitions and the
survey in [13] presented a common evaluation framework
for comparing different detection methods on the same face
spoofing database. However, the gathered methods and results
on only one database are limited and not thoroughly ana-
lyzed [1].

3. Lack of generalization ability evaluation. These surveys or
competitions, and some existing detection schemes as well,
pay more attention to PAD performance based on intra-
database testing or controlled environment. The robustness
and generalization ability! have not been carefully evaluated
to show how well the state-of-the-art methods can perform
in more challenging conditions, such as mobile scenarios or

1 We use ‘robustness’ to describe the performance stability of PAD methods on dif-
ferent databases in known conditions, while use ‘generalization ability’ to describe the
performance of the method against different types of unknown attacks.

Fig. 1. Face recognition systems are vulnerable to presentation attacks. (a) Spoofing the access control system’ Picture is taken from https://www.youtube.com/watch?v=1ndPi-
I_f3A. (b) Microsoft system fooled by printed photo? Picture is taken from https://www.engadget.com/2017/12/21/windows- 10-face-authentication-printed-photos-spoof]. (c)
iPhone X Face ID unlocked with 3D mask? Picture is taken from https://www.dailydot.com/debug/face-id-mask-fail/.

cross-database testing scenarios, which can reflect the real-
world applications by providing high-resolution images and
diverse attacks.

These challenges imply that a comprehensive evaluation of the
state-of-the-art PAD methods is in a high demand to establish a bet-
ter understanding of different detection techniques. Therefore, the
aim of this paper is to take the above three problems into considera-
tion, and present a quantitative evaluation of several representative
PAD algorithms on a common ground. Our main contributions are as
follows.

e Based on the overview of the recent advances in face PAD
methods, 30 representative methods from different categories
are collected and re-implemented using the original codes
or codes from the third party. They are quantitatively com-
pared on a common ground, i.e., using the same databases,
pre-processing operations, classifiers and evaluation metrics.
This helps show what are the real differences between these
methods.

o For the same PAD method, we evaluate its performance using
different pre-processing operations, databases, classifiers, and
evaluation metrics, to find what are the influencing factors to
its performance.

o We focus on presentation attack detection in more realistic
conditions. Three recently published face spoofing databases,
all created in mobile scenarios under some real-world varia-
tions, are used in the experiments. Both the intra-database and
cross-database testing are considered for each PAD method.
This helps show what performance each face PAD method can
achieve in more challenging conditions with more variations or
unknown attacks.

o Some meaningful observations are obtained and summarized
based on extensive experiments. We also give some deep
insights into the issues that will help promote both academic
research and practical applications.

The rest of the paper is organized as follows. In Section 2, we
overview several representative PAD methods. Section 3 introduces
the details of three mobile face spoofing databases used in our
experiments. The evaluation experiments and results are presented
in Section 4. We discuss the detection performance of evaluated
algorithms in Section 5, followed by conclusions in Section 6.
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2. Representative methods

Unlike hardware-based face PAD analysis, which always requires
additional hardware components or user interaction, software-based
methods are more efficient with low cost by designing an algorithm
to tell the difference between a real face and a spoofed presentation.
In this section, we first review state-of-the-art software-based face
PAD methods of different categories, and then give a summary of 30
representative methods that will be evaluated in our experiments.

2.1. Texture based methods

This kind of approach is very successful in detecting face pre-
sentation attacks, mainly because it can efficiently discriminate the
artifact characteristics such as the presence of pigments (due to
printing defects), shade deformation (due to a display attack), and
specular reflection (by the spoof medium). The most famous and
widely used approaches are based on the LBP descriptor and its
variations, including multi-scale LBP [4], grayscale LBP [17], local
binary pattern variance (LBPV) [18], modified LBP (MLBP) [19], tran-
sitional (tLBP) and direction-coded (dLBP) [19], color LBP [20], guided
scale based LBP (GSLBP) and local guided binary pattern (LGBP) [21].
These LBP based methods have shown outstanding performance
in 2D type and 3D mask attack detection. The LPQ is also popu-
lar, which has a structure similar to LBP but encodes some phase
information extracted through a short-time Fourier transform of
the local patch, rather than gradients [22]. Different types of LPQ
have achieved promising detection performance against photo and
video attacks, such as multi-level LPQ (ML-LPQ) [5], multi-block LPQ
(MB-LPQ) [16], and pyramid multi-level LPQ (PML-LPQ) [16]. Other
texture descriptors were also exploited for presentation detection.
Histogram of oriented gradients (HOG) [23-25] based methods cap-
ture the edge or gradient structures of the facial image to distinguish
real faces from artifacts. Zhang et al. [26] used the Difference of Gaus-
sian(DoG) to remove lightning variations while preserving the high
frequency information. In [27], Radon transform is used to extract
features about contrast, luminosity and shapes for face presentation
attack detection. The gray level co-occurrence matrices (GLCM) fea-
ture also achieved discriminant global representation in detecting
presentation attacks in [28]. Agarwal et al. [29] applied block-wise
Haralick features for both 2D attacks and 3D mask attacks detection.
Boulkenafet et al. [30] proposed a PAD method based on speeded-
up robust features (SURF) and Fisher vector (FV) encoding, which
yielded promising generalization capability.

Texture-based methods generally have low computation cost and
perform especially well on 2D type attacks. However, their perfor-
mance depends heavily on image qualities, and the generalizability
remains to be improved.

2.2. Image quality based methods

Image quality analysis has achieved outstanding performance in
image manipulation detection [31] of the forensic field. Face presen-
tation attack by displaying a printed photo or replayed video, can
be regarded as a type of image manipulation. Therefore, Galbally
et al. [6,32] first extracted several image quality features to distin-
guish between real access and impostor samples. It not only achieved
promising performance for both multi-biometric and multi-attack
protection, but also showed high efficiency and low cost. Wen et
al. [7] proposed another face PAD method based on image distortion
analysis (IDA). They summarized four kinds of distortions introduced
in the reflecting and capturing process, namely specular reflection,
image blurriness, chromaticity distortion, and color diversity distor-
tion. The proposed method also achieved better detection robustness
and lower computational complexity than texture features.

2.3. Dynamic approaches

Dynamic methods exploit the temporal information from videos
to detect the relative motion across frames. One motion pattern
occurs due to the intra-face variations, such as subconscious eye
blinking, head rotation, and facial muscles movements. Wei et al. [33]
introduced optical flow (OF) vectors to detect subconscious head
movements for face presentation attack detection. The histogram
of oriented optical flow (HOOF) and histogram of magnitudes of
optical flows (HMOF) were extracted to represent the facial motion
directions and magnitudes in [15]. In addition, some texture-motion
descriptors extracted texture features from three orthogonal planes
combining spatial and temporal information, such as LBP-TOP [9],
Weber Local Descriptor (WLD-TOP) [34], and Local Derivative Pat-
tern (LDP-TOP) [35]. These methods have showed effectiveness in
describing both the appearance and horizontal and vertical motion
patterns in face presentation detection.

Another way is to analyze the motion consistency of the user
interaction within the environment. The motion intensity between
face and background regions were computed in [8,36,37] to detect
photo and video attacks, which tend to have a high motion correla-
tion.

Dynamic methods are usually highly effective in detecting photo-
attacks, but they will require more computational effort in process-
ing video sequences compared with a static approach. Besides, videos
having low motion patterns or with replayed video attacks do not
give good detection results.

2.4. Learned features based methods

Following a recent trend in computer vision, deep learning mod-
els are applied and trained to provide adaptive features for face pre-
sentation attack detection. Yang et al. [38] first exploited deep convo-
lutional neural network (CNN) for face presentation attack detection
using the architecture of AlexNet [39]. This method achieved remark-
able improvement in 2D attacks compared with methods based on
hand-crafted features. Menotti et al. [40] investigated two deep rep-
resentation approaches (for architecture optimization (AO) and filter
optimization (FO)) to detect presentation attacks in multi-bimetric
modalities. Both 2D attacks and 3D mask attacks were considered for
faces, and the results indicated the detection robustness of convolu-
tional networks. Lucena et al. [41] detected photo, video and mask
attacks based on transfer learning using a pre-trained CNN model
(VGG-16). Tu and Fang [42] also proposed a fully data-driven ultra-
deep model based on transfer learning. They used the pre-trained
network, ResNet-50, to discover highly discriminative features, and
combined it with the Long Short-Term Memory (LSTM) units to learn
temporal features for classification.

These schemes are more capable of learning discriminative fea-
tures in a data-driven manner to classify real faces and impostor
samples. They also tend to achieve a better generalization ability for
both 2D and 3D type attacks detection.

2.5. Hybrid methods

This kind of methods fuses different features at the feature level
or score level to further improve the detection performance. Com-
bining different texture features is one direct way for feature fusion.
Maatta et al. [43] combined texture (LBP) and local shape features
(Gabor wavelets and histogram of oriented gradients (HOG)), for
printed photo attack detection. Kose et al. [44] also proposed a simple
approach against photo attacks using DoG filters and LBPV features.
Binarized Statistical Image Features (BSIF) and Cepstral features were
combined in [46] to extract the statistical features that can capture
the micro-texture variations, while densely sampled SIFT (DSIFT)
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features were fused with multi-scale LBP in [47] to detect Moire
Patterns caused by photo and video attacks.

Hybrid methods using texture and image quality measures also
illustrate promising performance with low computational complex-
ity. Patel et al. [48] used a fusion of LBP (effective for face texture
analysis) and color moments (effective for image quality analysis),
and Kim et al. [49] combined MLBP, GLCM, and image distortions
analysis for robust face presentation detection. Fusion methods
of motion and texture features were exploited in [37,45] using
motion correlation/magnification and LBP features. These meth-
ods improved the limitations of motion-based methods but have a
higher computation cost. In [16], two learned features based meth-
ods were fused with hand-crafted LBP features, showing outstanding
performance for face presentation attack detection in mobile sce-
narios. One fine-tuned the pre-trained network SqueezeNet [50] and
another was based on the Inception-v3 model [51].

Fusion of different methods is important in designing comple-
mentary and extensible countermeasures, and studying how differ-
ent features can be combined to construct more effective and robust
PAD frameworks, which becomes increasingly popular in recent
years.

To sum up, there are both strengths and weaknesses in each cat-
egory of the PAD methods. To quantitatively show the performance
differences, we collect several methods to carry out evaluation on a
common framework. Totally 30 methods are selected when taking
the following three factors into consideration.

1) Different from the benchmark in [52], which focuses on PAD
methods based solely on color texture analysis, we select diverse
algorithms from all the above-mentioned categories to provide a
comprehensive comparison and evaluation.

2) In each category of the methods, we try our best to include
methods with outstanding detection performance or using represen-
tative feature descriptors, such as the LBP and LPQ features in texture

analysis, the image distortion features in image quality based meth-
ods, the motion intensity analysis in dynamic approaches, and various
combination of different features in the category of hybrid methods.

3) Considering the challenge in re-implementing various face PAD
methods, especially some depth or liveness based methods (most
relying on special hardwares or without original code available to
the public), we limit the performance evaluation to software based
approaches with the original code or the code provided by the third
party. At the end, 30 methods were collected (among them, 20 with
the original code). The details of these methods are summarized in
Table 1.

3. Face spoofing databases

Several databases with different face presentation attacks have
been proposed to promote the development of new detection
schemes. Some surveys [12,13] have provided detailed information
of existing face spoofing databases. However, with the increasing
popularity of face recognition on mobile phones, new databases
focus more on generating face presentation attacks in mobile sce-
narios, where the faces are captured by high-resolution cameras on
modern smartphones. Therefore, we aim to carry out the evalua-
tion on mobile databases to compare and show how well existing
PAD methods can work in a more realistic condition. Taking both
the database size and spoofing diversity into consideration, we select
three recently released mobile spoofing databases, namely, Oulu-
NPU DB, Replay-Mobile DB, and MSU-USSA DB. Table 2 provides a
brief overview of these databases.

3.1. Oulu-NPU DB

This database consists of 4950 real access and presentation attack
videos of 55 subjects. The videos were recorded using the front

Table 1

Brief overview of the evaluated face PAD methods.
Method Reference Year Features Attacks Performance (classifier) Type
A01 Anjos and Marcel [8] 2011 Motion intensity Photo HTER = 8.98% (MLP) Dynamic
A02 Maatta et al. [4] 2011 Multi-scale LBP Photo EER = 2.90% (SVM) Texture
A03 Chingovska et al. [17] 2012 Per-image LBP Photo, video HTER = 15.16% (SVM) Texture
A04 Maatta et al. [43] 2012 LBP+Gabor+HOG Photo ACER = 1.10% (SVM) Hybrid
A05 Zhang et al. [26] 2012 DoG Photo, video EER = 17.00% (SVM) Texture
A06 Pereira et al. [9] 2012 LBP-TOP Photo, video HTER = 7.60% (LDA) Dynamic
A07 Kose et al. [44] 2012 DoG+LBPV Photo EER=11.97% (chi-square dissimilarity metric) Hybrid
AO8 Bharadwaj et al. [45] 2013 Motion+multi-scale LBP Photo, video HTER = 3.94%? (SVM) Hybrid
A09 Komulainen et al. [37] 2013 Motion+LBP Photo, video HTER=5.11% (Complex) Hybrid
A10 Galbally and Marcel [6] 2014 Image quality Photo, video HTER = 23.80%° (LDA) Quality
All Raghavendra and Busch [46] 2014 BSIF+Cepstral Photo, video ACER = 10.21% (SVM) Hybrid
A12 Wenetal. [7] 2015 Image distortions Photo, video EER = 10.15% (SVM) Quality
A13 Patel et al. [47] 2015 Multi-scale LBP+DSIFT Photo, video HTER = 4.87%% (SVM) Hybrid
Al4 Benlamoudi et al. [5] 2015 ML-LPQ Photo, video EER = 11.39% (SVM) Texture
A15 Boulkenafet et al. [20] 2015 Color LBP Photo, video EER = 3.30%* (SVM) Texture
Al6 Mei et al. [34] 2015 WLD-TOP Photo, video Accuracy=74.12%" (SVM) Dynamic
A17 Albu [27] 2015 Radon transform Photo Accuracy = 97.20% (/) Texture
A18 Menotti et al. [40] 2015 cf10-11 based Photo, video, mask HTER = 0.38% (SVM) Learned
A19 Patel et al. [48] 2016 LBP+color moment Photo, video EER = 3.84% (SVM) Hybrid
A20 Kim et al. [49] 2016 MLBP+GLCM+distortions Photo, video HTER = 4.28%% (SVM) Hybrid
A21 Agarwal et al. [29] 2016 Haralick features Photo, video, mask ~ EER = 2.03%? (SVM) Texture
A22 Phan et al. [35] 2016 LDP-TOP Photo, video HTER = 6.04%% (SVM) Dynamic
A23 Boulkenafet et al. [16] 2017 MB-LPQ Photo, video ACER=36.70%¢ (Softmax) Texture
A24 Boulkenafet et al. [16] 2017 PML-LPQ Photo, video ACER=37.50%¢ (SVM) Texture
A25 Boulkenafet et al. [30] 2017 Color SURF Photo, video EER = 1.70%? (Softmax) Texture
A26 Pengetal. [21] 2017 LBP+GSLBP Photo, video EER = 5.54%? (SVM) Hybrid
A27 Pengetal. [21] 2017 LGBP Photo, video EER = 4.88%% (SVM) Texture
A28 Boulkenafet et al. [16] 2017 SqueezeNet based+color LBP  Photo, video ACER=22.50%° (/) Hybrid
A29 Lucena et al. [41] 2017 VGG-16 based Photo, video, mask HTER = 0.60%® (Sigmoid) Learned
A30 Tu et al. [42] 2017 ResNet-50 based Photo, video HTER = 1.20%? (Softmax) Learned

a Using the average result of different databases.
b Using the result on cross-database.
¢ Using the result of the most challenging protocol.
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Table 2

Brief overview of used face spoofing databases.
Database Year #Subjects #Real/fake Attacks Captured Sample
Oulu-NPU 2017 55 990/3960 Photo, video 6 phones Video
Replay-Mobile 2016 40 550/640 Photo, video iPad, LG phone Video
MSU-USSA 2016 1040 1040/8320 Photo, video Google phone Image

cameras of six mobile devices, including Samsung Galaxy S6 edge,
HTC Desire EYE, MEIZU X5, ASUS Zenfone Selfie, Sony XPERIA C5
Ultra Dual, and OPPO N3. Three sessions with different illumination
conditions and background scenes were considered to create printed
photo attack (using two printers) and replayed video attack (on two
display devices). The whole database was divided into three subsets
for training, development, and testing, with four protocols.

3.2. Replay-Mobile DB

It contains 1190 video sequences of photo and video attack
attempts to 40 clients. These videos were recorded with an iPad
Mini2 and a LG-G4 smartphone under different lighting conditions.
The attacks were created using two spoof mediums, fixed matte-
screen and paper which was either hand-held or fixed-support.

3.3. MSU-USSA DB

This database was specifically created to simulate presentation
attacks on smartphones with diversities of environment, image qual-
ity, image acquisition device. It consists of a subset (1000 subjects)
of the web faces database [53] with celebrity images, and the MSU-
MFSD dataset (40 subjects). This database provides both live faces
and 2D presentation attacks (printed photo and replayed video
attacks) in still-images. The front and rear facing cameras with dif-
ferent resolutions on the Google Nexus 5 was used to capture the
spoofed attacks, while four kinds of spoof mediums, including Mac-
Book, Nexus 5, Tablet screens, and paper, were used to show the live
face images. Totally, 8320 images were created.

4. Evaluation

In this section, 30 representative face PAD methods are evalu-
ated and compared following a unified framework. We first test the
attack abilities of three face spoofing databases using different face
recognition systems. Then we introduce the database protocols and
evaluation environment. The influence of some pre-processing fac-
tors in detecting face presentation attacks are also demonstrated.
After that, we evaluate and analyze the detection robustness and
generalization ability of the 30 methods through intra-database and
cross-database testing.

4.1. Attack abilities of face spoofing databases

We considered three FRSs to show the vulnerability towards
detecting spoofed faces using the three mobile spoofing databases,
so that the attack abilities of these databases can be demonstrated.
For our experiments, we used a commercial system Neurotechnology

Table 3

IAPMR of three face recognition systems.
FRS Threshold Oulu-NPU Replay-Mobile MSU-USSA
VeriLook 367 99.39% 97.61% 99.04%
Openface 0.99" 98.23% 94.94% 99.41%
Face++ le-5¢ 100% 99.45% 99.57%

2 Using the matching score when FAR=0.1%.
b Using a squared L2 distance threshold.
¢ Using the confidence threshold at the 0.001% error rate.

VeriLook SDK [54], and two publicly available FRSs: OpenFace [55]
and Face++ [56]. The Impostor Attack Presentation Match Rate
(IAPMR) metric was used to report the results, which can be con-
sidered as an indication of the attack success chances if the FRS is
evaluated regarding its PAD capabilities [57]. It is defined as the
proportion of impostor attack presentations using the same Presen-
tation Attack Instrument (PAI) species in which the target reference
is matched in a full-system evaluation of a verification system [58].
The IAPMR values of the three FRSs on the Oulu-NPU, Replay-Mobile,
and MSU-USSA databases are provided in Table 3.

Table 3 shows that over 94% of the images in the three mobile
face presentation attack databases were successfully compared using
the three FRSs. Lower values of IAPMR can be seen for images in
the Replay-Mobile database, which is attributed to the lower image
quality resulting from the recording and printing process in this
database.

4.2. Evaluation protocols and environment

We followed the original evaluation protocols of each database
to evaluate the performance of the different PAD methods (as sum-
marized in Table 4). Three classifiers, namely, the Softmax classifier,
Support Vector Machine (SVM) with linear and RBF kernels, were
used to show the influence of classifiers on detection performance.
Based on the ISO/IEC metrics, we reported the results on all databases
using three evaluation metrics, the Attack Presentation Classification
Error Rate (APCER), Bona Fide Presentation Classification Error Rate
(BPCER), and the Average Classification Error Rate (ACER). They are
calculated as follows:

1
APCER = M;m — Res;) (1)
N
- Res;
BPCER = @ (2)
r
ACER — APCER ;L BPCER (3)

where Ng is the total number of attack presentations, and N; is the
number of real samples. Res; equals to 1 if the ith presentation is clas-
sified as an attack and O if classified as real. Lower values of these
metrics indicate better performance of the PAD algorithms.

In addition, two recent metrics for PAD methods defined within
the ISO/IEC FDIS 30107-3 [58]: the BPCER20 and BPCER10 (which
represent the BPCER for a fixed APCER of 5% and 10%, respectively)
were reported.

All the PAD methods were re-implemented based on the original
codes or codes realized by the third party according to the descrip-
tion in the original papers. Most methods were evaluated under

Table 4

Evaluation protocols of used face spoofing databases.
Database #Train #Dev #Test #Protocols Face size
Oulu-NPU 1800 1350 1800 4 64*64
Replay-Mobile 312 416 302 3 6464
MSU-USSA 7488 / 1872 1* 120120

* Using fivefold subject-exclusive cross validation.
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Fig. 2. Detection results under different frame numbers. (a) EER; (b) Overall ACER.

Matlab R2016b on a Windows 10 system with an Intel(R) Core(TM)
i7-7500U CPU, 2.70 GHz with a 16 GB RAM. Two motion based meth-
ods (AO1 and A09), image quality analysis based (A10 and A12), and
four learning based methods (A18, A28-30) were run in Python 2.7
under Ubuntu Linux 16.04 LTS with an Intel(R) Core(TM) i7-6850 K
CPU, 3.60GHzx 12.

4.3. Influence of pre-processing

We first studied the influence of some pre-processing factors
on the detection performance, including the number of frames for
feature extraction, the way to select frames from videos, and the
interpupillary distance (IPD) to crop face regions.

The evaluation was carried out using the Softmax classifier on
the Oulu-NPU database, which provides relatively large-size video
data. We randomly selected five algorithms from different categories
(except the motion and learning features based methods, whose
performance is not affected by the frame number or face size) as
examples to show the influence. These methods are A02 (using
multi-scale LBP), A11 (a hybrid method combining BSIF with Cep-
stral features), A12 (an image quality based method), A15 (color LBP
features based), and A20 (a hybrid method combining MLBP, GLCM,
and image distortions features). We illustrate the detection perfor-
mance in terms of the EER in the development set and the overall
ACER (corresponding to the attack with the highest APCER) in the
testing set. For simplicity, only the detection results of Protocol 4 are
shown, which combines the previous three protocols and is the most
challenging scenario.

4.3.1. Influence of the selected frame number

We studied the effect of feature extraction from different frame
numbers on face PAD performance, including randomly selected 1,
10, 30, and 50 frames. The final score for each video was computed
by averaging the output scores of all frames. We cropped the faces
based on the original codes? using the provided eye location infor-
mation and IPD value (32 pixels). The results including the detection
accuracy and calculation efficiency are shown in Fig. 2 and Table 5,
respectively.

As shown in Fig. 2, the EER and ACER values decrease when
frame number increases from 1 to 10 in most cases because more
frames make the extracted features more stable. When the number
of frames is 10, 30, and 50 respectively, there is little difference of the
performance. However, larger frame number leads to higher compu-
tational cost. Taking both the detection accuracy and efficiency into

2 https://sites.google.com/site/oulunpudatabase/.

consideration, we extract features from 10 frames in the following
experiments.

4.3.2. Influence of the way to select frames

Existing PAD methods select frames from video sequences in dif-
ferent ways, including successive frames selection, random selection,
and equal interval sampling. Therefore, we studied how these frame
selection schemes can affect the detection performance. The results
in Fig. 3 show that the overall performance of successive frames
selection (by extracting the first 10 frames) is slightly worse than
random selection and equal interval sampling (which tend to con-
tain frames with more diversity). Considering the different length
of video sequences in the database, we choose to randomly select
frames for simplicity in the following experiments.

4.3.3. Influence of face size

Most published methods extract features from cropped face
regions, which are always based on the eye or face location provided
by databases. We varied the cropping of the facial region by altering
the IPD (i.e. 24, 28, 32 and 36 pixels). Fig. 4 gives an example of the
normalized face images of one subject with different IPD values.

As shown in Fig. 5, using larger IPDs to crop the face leads to
smaller EER and ACER values, therefore better performance than
smaller IPD values. This is because more background area can be
removed while larger face region is retained when increasing the IPD
values; therefore, more discriminative features can be extracted to
distinguish live and spoofing images. As the faces are cropped into a
square shape, to guarantee the structural integrity of faces, we use
an IPD of 32 pixels to report results in all other experiments.

4.4. Robustness evaluation in mobile scenarios

With the same pre-processing operations, 30 face PAD meth-
ods were then re-implemented and evaluated on the same spoofing
databases to show how well they can work in practical mobile
authentication scenarios. Besides the Oulu-NPU database, two other
recently published mobile spoofing databases, Replay-Mobile DB
and MSU-USSA DB, were used to assess the robustness of existing
algorithms.

Table 5

Calculation time* of five algorithms under different frame numbers (/s).
#Frame A02 Al1l A12 A15 A20
1 40.88 38.50 49.18 36.03 59.50
10 162.76 60.03 56.75 109.35 222.77
30 432414 114.65 895.27 257.99 531.30
50 676.764 159.06 1868.89 408.75 845.99

* Calculation time only includes the detection process after feature extraction.
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Fig. 3. Detection results with different frame selection schemes. (a) EER; (b) Overall ACER.
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4.4.1. Results on the Oulu-NPU DB

The Oulu-NPU database provides four protocols to evaluate the
performances of the face PAD methods. They are designed to eval-
uate the effect of different environmental conditions (Protocol 1),
different presentation attack instruments (PAI) (Protocol 2), different
acquisition devices (Protocol 3), and combining all these variations
(Protocol 4). We first list the quantitative results of Protocol 4 under
Softmax classifier in Table 6 to show the detailed detection perfor-
mance of 30 algorithms under the most challenging protocol.

It can be seen that the detection results vary wildly among differ-
ent methods on this database. A30 based on ResNet-50 model [42]
performed significantly better than other methods for both photo
print and video replay attack. Besides, the learning based methods
(A28, A29 and A18) and some texture based methods, including the
LPQ based (A23 and A24), LBP based (A15 and A26) and Haralick fea-
tures method (A21), also achieved better detection results, with the
BPCER20 between 5% and 35.33%, the BPCER10 between 1.67% and
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Fig. 4. Example of face images with different face IPDs. (a) 24 pixels; (b) 28 pixels; (c) 32 pixels; (d) 36 pixels.

29.17%, and the overall ACER between 26.25% and 36.25%. By con-
trast, the overall performance was worse in some dynamic methods
(A22 and A16), DoG based methods (A05 and A07), and Radon trans-
form based method (A17), whose BPCER20 and BPCER10 were over
70% and ACER higher than 50%. For the dynamic methods, the reason
for performance degradation is the low speed motion of real access
videos in the Oulu-NPU database, leading to small differences from
the spoofing ones, while the DoG filters used to exclude the low fre-
quency information and noise of frames or the Radon transform used
to enhance the low frequency components will perform poorly in
high quality images taken on modern smartphones, which reached
a similar conclusion with [26]. By comparing the ACER values in the
two middle columns, we can also observe that the detection per-
formance against replay attack is better than print attack for most
algorithms. This suggests that the nature of print attacks may vary
more and therefore makes it difficult to detect. In addition, the per-
formance of the 30 algorithms reported using the BPCER20 and
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Fig. 5. Detection results with different face IPDs. (a) EER; (b) Overall ACER.
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Table 6
Evaluation results (%) of Protocol 4 on Oulu-NPU DB under Softmax classifier.
Method Features Feature size Dev_EER Print Replay Overall Rank
ACER ACER BPCER20 BPCER10 ACER

A01 Motion intensity [8] 170 31.89 36.67 31.25 67.50 56.67 42.92 16
A02 Multi-scale LBP [4] 10*833 9.83 40.42 33.33 63.33 50.83 42.92 16
A03 Per-image LBP [17] 10*59 16.72 35.41 30.00 60.00 55.00 37.91 12
A04 LBP+Gabor+HOG [43] 112225 18.50 41.25 36.67 65.83 58.33 42.08 15
A05 DoG [26] 10*4096 29.83 44.17 51.25 92.50 85.00 51.25 29
AO6 LBP-TOP [9] 1177 10.17 44.17 34.58 61.67 51.67 47.08 21
A07 DoG+LBPV [44] 10*59 36.28 41.67 49.17 95.83 91.67 50.00 24
A08 Motion+multi-scale LBP [45] 10*361 17.17 43.75 33.75 66.67 56.67 44.58 18
A09 Motion+LBP [37] 1129 26.06 44.58 31.67 69.17 54.17 47.08 21
A10 Image quality [6] 10%18 36.39 46.25 41.67 92.50 91.67 50.00 24
A1l BSIF+Cepstral [46] 102657 29.61 4542 46.25 89.17 89.17 48.75 23
A12 Image distortions [7] 10*121 12.06 43.33 32.08 60.83 55.00 45.42 20
A13 Multi-scale LBP+DSIFT [47] 10%4057 20.11 49.17 46.25 64.17 63.33 50.83 27
Al4 ML-LPQ [5] 10*3587 12.33 41.67 41.25 80.83 7417 44.58 18
Al5 Color LBP [20] 10*354 5.06 22.92 25.83 23.33 16.67 30.00 5
A16 WLD-TOP [34] 1*3072 25.00 55.00 35.83 84.17 80.83 55.00 30
A17 Radon transform [27] 10*1800 28.67 4791 50.41 99.17 99.17 50.41 26
A18 cf10-11 based [40] 10*40000 4.89 35.00 17.92 15.83 8.33 36.25 9
A19 LBP+color moment [48] 10*540 11.72 31.67 30.83 46.67 35.00 36.25 9
A20 MLBP+GLCM+distortions [49] 10%1047 13.78 35.42 30.83 60.83 53.33 38.33 13
A21 Haralick features [29] 10624 10.56 30.00 25.83 5.00 1.67 3542 8
A22 LDP-TOP [35] 121504 26.89 45.83 41.67 75.00 64.17 50.83 27
A23 MB-LPQ [16] 16912 4.56 26.25 21.67 26.67 19.17 26.25 2
A24 PML-LPQ [16] 1*23040 244 23.33 24.17 16.67 8.33 30.00 5
A25 Color SURF [30] 124576 6.94 35.42 30.83 1333 8.33 37.50 11
A26 LBP+GSLBP [21] 10%6372 417 24.58 29.17 10.00 5.83 31.67 7
A27 LGBP [21] 10*3186 9.11 37.92 32.08 37.50 20.83 40.00 14
A28 SqueezeNet+color LBP [16] 10*1354 6.17 16.67 2541 22.50 15.83 27.92 3
A29 VGG-16 based [41] 10*4096 15.05 2541 25.00 3533 29.17 29.16 4
A30 ResNet-50 based [42] 10*2048 371 2.50 7.50 2.50 0.83 8.33 1

BPECR10 show good agreement with the results reported using the
ACER. However, most algorithms show higher error rates under this
most challenging protocol on the Oulu-NPU database.

We further give the evaluation details on the Oulu-NPU database
to show the influence of protocols and classifiers. Fig. 6 (a—c) presents
the overall ACER of 30 PAD algorithms of four protocols under dif-
ferent classifiers. It indicates that although the ACER of different
methods using the Protocol 1, 2 and 3 with only one kind of varia-
tion is generally smaller than that of Protocol 4 (the purple columns),
the detection performance differences are almost consistent in four
protocols. By contrast, the classifiers have a relatively large influ-
ence on the detection performance. From the average ACER curves
of four protocols in Fig. 6 (d), it can be seen that for most methods,
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the SVM classifiers achieve lower ACER than the Softmax classifier,
and the linear SVM performs slightly better than RBF-SVM classifier.
Overall, the average ACER values are higher than 20% for most algo-
rithms, except some recently published methods based on texture
or deep models (A23-28 and A30), which show higher robustness in
detecting face presentation attacks on this mobile database.

4.4.2. Results on the Replay-Mobile DB

The Replay-Mobile database designs three protocols for perfor-
mance evaluation, namely mattescreen attack of photo and video
(Protocol 1), print fixed-support and hand-held attack (Protocol 2),
and a grandtest protocol for global performance evaluation (Proto-
col 3, which is the sum of the above attacks). Table 7 indicates the
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Fig. 6. Detection results of 30 algorithms on Oulu-NPU DB. (a) Overall ACER of four protocols under Softmax classifier; (b) Overall ACER of four protocols under Linear-SVM
classifier; (c) Overall ACER of four protocols under RBF-SVM classifier; (d) Average ACER of all protocols under different classifiers.
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Table 7
Evaluation results (%) on Replay-Mobile DB under RBF-SVM classifier.
Method Features Feature size Mattescreen (ACER) Print (ACER) Grandtest Rank
Photo Video Fixed Hand Dev_EER BPCER20 BPCER10 ACER

A01 Motion intensity [8] 1*100 1.14 1.14 1.14 17.61 9.38 14.55 11.82 9.55 20
A02 Multi-scale LBP [4] 10833 5.30 1.04 3.13 2.08 4.37 0 0 7.03 16
A03 Per-image LBP [17] 10*59 49.03 47.90 48.56 47.80 20.31 27.27 25.45 20.02 27
A04 LBP+Gabor+HOG [43] 1*12225 1.14 1.14 2.08 0 4.69 091 0 0.71 4
AO05 DoG [26] 10*4096 26.04 22.82 23.86 25.47 24.37 46.36 3545 26.92 29
A06 LBP-TOP [9] 1*177 7.29 2.18 322 4.36 7.81 521 4.55 4.88 13
A07 DoG+LBPV [44] 10*59 27.65 15.06 17.05 14.77 29.37 33.64 24.55 18.15 25
A08 Motion+multi-scale LBP [45] 10361 12.59 7.39 11.74 12.50 9.37 12.73 7.27 6.69 15
A09 Motion+LBP [37] 1*159 2.27 1.14 1.14 10.23 6.25 15.45 9.09 7.28 17
A10 Image quality [6] 1018 33.05 10.89 17.05 11.65 22.50 28.18 20.00 16.59 23
Al1 BSIF+Cepstral [46] 10*2657 17.33 9.75 9.75 9.75 18.12 0.91 0 24.22 28
A12 Image distortions [7] 10*121 227 4.36 3.13 2.08 2.50 0 0 254 9
A13 Multi-scale LBP+DSIFT [47] 10*4057 38.54 26.04 3437 31.25 7.50 0 0 417 12
Al4 ML-LPQ [5] 10*3587 9.37 4.17 2.08 2.08 1.95 0 0 2.86 10
Al5 Color LBP [20] 10*354 1.14 0 1.04 0 0 (1] 0 0.26 1
Al6 WLD-TOP [34] 1*3072 14.96 12.78 14.20 8.43 8.20 7.27 0.91 8.79 19
A17 Radon transform [27] 10*1800 13.26 18.47 10.04 10.89 16.41 33.64 21.82 10.72 21
A18 cf10-11 based [40] 10*40000 5.68 2.08 1.04 2.27 3.52 1.82 0 1.62 5
A19 LBP+color moment [48] 10*540 4.17 3.12 4.17 2.08 2.50 0 0 5.99 14
A20 MLBP+GLCM+distortions [49]  10%1047 0 0 0 0 1.56 0 0 234 8
A21 Haralick features [29] 10*624 50.00 50.00 341 50.00 50.00 0 0 50 30
A22 LDP-TOP [35] 1*21504 25.76 2348 22.06 11.84 21.09 45.45 35.45 18.65 26
A23 MB-LPQ [16] 1*6912 2.08 1.04 1.04 1.04 0.39 0 0 2.02 6
A24 PML-LPQ [16] 1*23040 1.04 0 0 0 1.87 1.82 0 2.27 7
A25 Color SURF [30] 1*24576 (1] 0 0 1.14 2.50 0 0 3.13 11
A26 LBP+GSLBP [21] 10*6372 0 0.17 0 0 0 0 0 0.26 1
A27 LGBP [21] 103186 4.26 4.17 2.18 2.18 3.75 091 0 7.75 18
A28 SqueezeNet+color LBP [16] 101354 1.13 227 4.54 1.14 3.13 0 0 0.26 1
A29 VGG-16 based [41] 10*4096 15.15 10.04 14.30 20.64 2437 31.82 30.00 17.16 24
A30 ResNet-50 based [42] 10*2048 1.14 3.12 15.24 5.30 16.41 22.73 20.00 14.11 22

detection performance of 30 algorithms with all protocols under the
RBF-SVM classifier.

For the Mattescreen protocol, the methods A20 combining MLBP,
GLCM and image distortions, and A25 based on color SURF achieve
0% ACER for both displayed photo and video attacks. The LBP based
methods (A15 and A26) also demonstrate outstanding performance.
It is worth noting that compared with the results in Table 6 of
the Oulu-NPU database, the performance of some dynamic methods
(A01, A09, A06, and A16) improves significantly under this protocol
because the capturing mobile device was supported on a fixed sup-
port when recording mattescreen attacks, so that the motion pattern
is distinguishable from the real access videos with relatively large
movement. Besides, the detection performance against video attack
is better than photo attack as a whole. We attribute this difference
to the fact that displaying the recorded videos on the mattescreen

(ad)

(b1)

(b2)

(b3) (b4)

(as5)

(b5)

makes more difference from real accesses than showing the photo on
the screen, as shown in Fig. 7.

For the Print protocol, similarly, the texture based methods A20,
A24, A25, A26, and A15 are quite effective in detecting both fixed and
hand print attacks, achieving around 0% ACER values. We can also
observe that the ACER for hand-held attack increases obviously for
the motion based methods, from 1.14% for fixed-support attack to
17.61% in A01, and from 1.14% to 10.23% in AO6. This suggests that
the presentation attack videos with more movement pose greater
challenges to motion based detection methods.

For the Grandtest protocol, three methods A15 (using color LBP),
A26 (using LBP+GSLBP), and A28 (combining SqueezeNet model and
color LBP features), demonstrate the best results with the BPCER20
and BPCER10 of 0%, while ACER of only 0.26%. Besides, there is no sig-
nificant differences in the detection performance of most methods,
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Fig. 7. Examples of cropped subject faces in the Replay-Mobile database. (a1), (b1) photo-lightoff attack; (a2), (b2) photo-lighton attack; (a3), (b3) video-lightoff attack; (a4), (b4)

video-lighton attack; a(5-9), b(5-9) real accesses in different scenarios.
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Fig. 8. Detection results of 30 algorithms on the Replay-Mobile DB. (a) Overall ACER of all protocols under the Softmax classifier; (b) Overall ACER of all protocols under the
Linear-SVM classifier; (c) Overall ACER of all protocols under the RBF-SVM classifier; (d) Average ACER under different classifiers.

with 17 methods’ BPCER20 and BPCER10 around 0%, and 20 meth-
ods’ ACER values lower than 10.00%. We attribute this to the fact that
both the dataset size and diversity of attack videos in this database
are smaller than those collected in the Oulu-NPU database. Note that
the method A21 seems to achieve excellent performance in terms
of BPCER20 and BPCER10 (both with 0%), but using ACER metric, its
performance is the worst. When we checked the APCER values cor-
responding to the BPCER20 and BPCER10, we found its APCERs were
100%, suggesting that the threshold for classification at APCER of 5%
or 10% on the development dataset does not apply to the testing
set. For this case, using the ACER metric to demonstrate the detec-
tion performance is more reasonable. Besides, the advantages of two
learning based methods (A29 and A30) shown on the Oulu-NPU
database are not obvious on this small-size database.

To show more details of the performance on the Replay-Mobile
database, we plot column graphs of all algorithms under different
protocols and classifiers in Fig. 8 (a-c). It can be observed that most
ACER values for Protocol 1 with photo attack (the blue columns)

are slightly larger than other attack types (because showing photo
attacks on the mattescreen, especially with light on, makes less dif-
ference from real accesses, as shown in Fig. 8). However, the overall
performance for different protocols is basically consistent for most
algorithms, suggesting the good robustness of different methods on
the same database.

Fig. 8 (d) illustrates the average ACER values of all protocols
under different classifiers. Compared with results on the Oulu-NPU
database in Fig. 6 (d), the Softmax classifier performs better on this
database. The method A21 based on Haralick features, with the aver-
age ACER of over 40.00% under the RBF-SVM classifier, achieves
about 5.00% average ACER under the Softmax classifier. The same
big difference can also be observed in A03 (from over 40% with the
SVM classifiers to about 10% with the Softmax classifier). These two
methods also show the worst performance for both the Mattescreen
and Print protocols in Table 7. The possible reason is that the smaller
dataset in the Replay-Mobile database (especially for the Matte-
screen and Print protocols) makes the RBF-SVM classifier sensitive

Table 8
Detection results (%) of the fivefold cross validation protocol on MSU-USSA DB under RBF-SVM classifier.
Method Features Feature Overall Rank
size APCER BPCER ACER

A02 Multi-scale LBP [4] 1*833 6.48 6.44 6.46 10
A03 Per-image LBP [17] 1*59 8.81 13.17 10.99 16
A04 LBP+Gabor+HOG [43] 1*14441 7.61 7.50 7.55 11
A05 DoG [26] 1*3600 32.20 36.44 34.32 23
A07 DoG-+LBPV [44] 1*59 27.74 28.08 2791 21
A10 Image quality [6] 118 24.65 27.88 26.27 20
Al1l BSIF+Cepstral [46] 1*2657 15.43 18.37 16.90 19
A12 Image distortions [7] 1*121 11.67 11.63 11.65 17
A13 Multi-scale LBP+DSIFT [47] 1*19289 7.75 7.69 7.72 12
Al4 ML-LPQ [5] 1*3584 7.79 7.69 7.74 13
A15 Color LBP [20] 1*354 2.91 3.75 333 5
A17 Radon transform [27] 1*1800 32.18 37.86 35.02 24
A18 cf10-11 based [40] 1*40000 14.84 14.90 14.87 18
A19 LBP+color moment [48] 1*1602 3.32 3.27 3.29 4
A20 MLBP+GLCM +distortions [49] 1*1047 3.79 3.85 3.82 6
A21 Haralick features [29] 1*1404 7.36 8.75 8.05 14
A23 MB-LPQ [16] 16912 2.18 2.02 2.10 2
A24 PML-LPQ [16] 1*23040 3.05 2.98 3.02 3
A25 Color SURF [30] 1*24576 5.82 5.77 5.79 9
A26 LBP+GSLBP [21] 16372 1.07 0.87 0.97 1
A27 LGBP [21] 1*3186 492 4.81 4.86 8
A28 SqueezeNet+-color LBP [16] 1*1354 4.87 4.81 4.84 7
A29 VGG-16 based [41] 1*4096 33.71 33.65 33.68 22
A30 ResNet-50 based [42] 1*2048 9.55 9.61 9.58 15
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Fig. 9. Results of 24 algorithms on MSU-USSA DB under three classifiers.

to over-fitting. Overall, similarly with the results on the Oulu-NPU
database, some methods based on texture or deep models (including
A15, A18, A23-28 and A30) are more effective and robust against face
presentation attacks on this database.

4.4.3. Results on the MSU-USSA DB

A fivefold subject-exclusive cross validation protocol is designed
for MSU-USSA database. Because this is an image based database,
the PAD methods based on dynamic features, including A01, AQ6,
AO08, A09, A16 and A22, are no longer applicable. Therefore, only
24 methods were evaluated on this database to show the detection
differences.

Table 8 presents the results under the RBF-SVM classifier. The
method combining LBP and GSLBP features (A26) indicates the best
performance with ACER of 0.97%. Besides, LPQ based methods (A23
and A24) and LBP features based hybrid methods (A19, A15, A20,
A28, A27) also show impressive detection performance, with ACER
less than 5.00%. In Fig. 9, the average ACER curves under different

classifiers demonstrate slightly better results of two SVM classifiers
than the Softmax classifier. The overall ACER values under differ-
ent classifiers are lower than 20% for most methods due to the
high-resolution images in this database.

4.5. Generalization ability in cross-database testing scenarios

Intra-database testing (with training and testing data captured in
the same scenarios) cannot represent all real world conditions [59].
To further show the generalization ability in detecting unknown
attacks, we conducted a series of cross-database experiments in this
section. Each detection method was trained on one database, and
tested on a different one. The results including both intra-database
and cross-database testing under the Softmax classifier are shown in
Table 9.

It can be seen clearly that the detection performance decreases
dramatically for most algorithms when dealing with unknown

Table 9
Performance of cross-database testing on Oulu-NPU DB, Replay-Mobile DB and MSU-USSA DB under the Softmax classifier. Performance reported in terms of ACER (%).
Method Features Oulu-NPU Replay-Mobile MSU-USSA Average Rank
Oulu Replay MSU Replay Oulu MSU MSU Oulu Replay

AO1 Motion intensity [8] 2840 227 / 11.64 6115 | | | | 31.71 4
A02 Multi-scale LBP [4] 21.98 36.15 24.64 5.85 40.10 36.09 7.42 44.48 36.67 36.36 6
AO03 Per-image LBP [17] 24.97 39.08 33.83 12.61 38.85 29.39 11.06 43.02 41.29 37.58 8
A04 LBP+Gabor+HOG [43] 25.24 45.38 51.44 7.28 43.16 53.85 23.05 52.50 58.26 50.76 27
AO5 DoG [26] 34.97 50.72 49.19 30.10 49.69 40.05 46.81 50.24 53.38 48.88 26
A06 LBP-TOP [9] 18.92 45.64 / 12.61 4135 / / / / 4350 18
A07 DoG-+LBPV [44] 46.11 62.61 40.20 19.90 51.39 51.44 24.49 44.69 58.00 51.39 28
A08 Motion+multi-scale LBP [45] 2774 3713 / 9.23 4385 | | / / 40.49 15
A09 Motion+LBP [37] 27.74 50.00 / 13.59 59.97 / / / / 54.98 30
A10 Image quality [6] 39.20 48.57 41.53 24.06 55.17 52.85 31.98 39.51 45.90 47.26 24
All BSIF+Cepstral [46] 30.80 43.69 53.34 21.85 46.08 59.68 29.09 31.22 41.74 45.96 20
A12 Image distortions [7] 15.56 16.25 33.32 2.67 42.47 42.52 13.43 35.90 14.30 30.79 2
A13 Multi-scale LBP+DSIFT [47] 26.98 41.74 46.69 7.28 38.58 21.15 17.76 47.74 47.33 40.54 16
Al4 ML-LPQ [5] 23.72 41.29 35.70 7.02 39.17 37.35 7.90 43.13 39.34 39.33 12
Al5 Color LBP [20] 7.50 45.38 39.03 1.69 36.35 32.90 3.34 40.28 34.72 38.11 9
Al6 WLD-TOP [34] 23.85 31.08 / 14.56 4622 / / / / 38.65 10
A17 Randon transform [27] 32.74 40.77 42.85 27.70 49.41 40.50 30.41 48.06 61.18 47.13 23
A18 cf10-11 based [40] 9.41 4493 40.02 1.69 46.63 58.32 11.51 36.67 4343 46.13 21
A19 LBP+color moment [48] 15.83 20.87 41.32 4.88 43.85 56.22 12.95 53.02 43.95 43.21 17
A20 MLBP+GLCM +distortions [49] 15.56 26.20 32.15 4.88 46.22 49.49 11.99 41.74 36.63 38.74 11
A21 Haralick features [29] 10.80 51.95 58.26 533 53.96 52.49 8.74 32.53 67.95 52.86 29
A22 LDP-TOP [35] 3441 37.13 / 22.11 4257 / / / / 39.85 13
A23 MB-LPQ [16] 18.30 39.79 58.86 2.21 45.83 36.60 2.31 19.58 15.00 35.95 5
A24 PML-LPQ [16] 12.67 36.67 41.56 1.24 40.52 38.61 4.03 46.39 57.28 43.51 19
A25 Color SURF [30] 12.60 52.21 46.91 0.98 43.09 45.61 17.01 50.24 39.79 46.31 22
A26 LBP+GSLBP [21] 9.97 43.69 55.50 3.38 35.87 4.81 2.46 37.53 42.72 36.69 7
A27 LGBP [21] 9.69 37.13 32.81 7.28 36.91 7.93 10.64 39.31 31.34 30.90 3
A28 SqueezeNet+color LBP [16] 7.74 36.67 35.19 1.24 49.24 41.80 3.34 37.19 40.77 40.14 14
A29 VGG-16 based [41] 20.80 43.43 51.89 12.16 48.02 54.48 32.21 49.41 41.74 48.16 25
A30 ResNet-50 based [42] 7.19 28.87 22.09 0.91 47.47 41.53 10.00 2441 10.66 29.17 1
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attack scenarios. Specifically, for the same method, the ACER val-
ues increase more significantly when using the Replay-Mobile or
MSU-USSA database as training set. The reason is that these two
databases contain less variations in the collected data than the Oulu-
NPU database. Therefore, the models optimized for these databases
are not able to generalize well in new acquisition conditions. This
also explains why the ACER values using the Oulu-NPU database as
testing are always higher. We notice one exception is that the cross-
dataset testing performance of AO1 (trained on the Oulu-NPU and
tested on the Replay-Mobile database) improves significantly instead
of degrading. This is because when training this motion inten-
sity based method on the Oulu-NPU database, whose video frames
have smaller motion amplitudes, the method can easily detect pre-
sentation attack videos with obvious movement, such as videos
in the Replay-Mobile database. Otherwise (trained on the Replay-
Mobile and tested on the Oulu-NPU database), its errors will increase
sharply, from 11.64% ACER to 61.15% in the experiment.

For different methods, we notice that the detection performance
varies widely in cross-dataset testing scenarios, ranging from 2.17%
to 67.95%. To compare the generalization ability of different meth-
ods more clearly, we averaged the ACER values of the three groups
of cross-database testing results in the second-to-last column. It can
be seen that the average ACER values are all between 29.17% and
54.39%. Specifically, the method A30 based on ResNet-50 model,
A12 using image distortions, AO1 based on motion intensity, and
most LBP based methods show a relatively better generalization
ability. But no single algorithm can work equally well in different
cross-dataset testing scenarios.

5. Discussion

Based on the evaluation results on unified evaluation frameworks
in Section 4, we summarize the main observations and give some
deep insights into the face presentation attack detection.

5.1. Detection performance

From the intra-database testing results on three face spoofing
databases, we can observe that the performance of most methods in
mobile scenarios was not as good as the reported results shown in
Table 1, suggesting the poor robustness in more realistic conditions.
For attacks in cross-database testing, these methods also showed
unstable performance based on different training datasets.

Overall, some texture features, especially the LBP based (A26,
A20,A27,A19, and A15), the LPQ (A24 and A23) and color SURF (A25)
based, showed powerful abilities to distinguish real faces from arti-
facts. Two learning based methods, the A30 using ResNet-50 model,
and A28 combining SqueezeNet model features with color LBP,
also demonstrated promising potentials for face presentation attack
detection. By contrast, quality based (A10 and A12) and dynamic
methods (AO1, A06, A16, and A22) performed worse. The reasons
behind this performance difference are analyzed as follows.

o The superior performance of LBP and LPQ based PAD meth-
ods benefits from the features’ highly discriminative power
in local texture description. The LBP feature has the ability
to code fine details by computing the gradient directions of
images, and the resistance to lighting variations due to the
invariance to monotonic gray-scale changes [60]. As a family
of LBP-based detectors, the LPQ shares some similar advan-
tages with LBP, which is more robust to blur variation. There-
fore, in face presentation attacks, the artifact characteristics
caused by printed/digital photographs or recorded videos on
the mobile/tablet can be detected by using these micropat-
tern texture desciptors. In addition, because the color gamut

of printing and display devices to create the attacks is lim-
ited [30], exploiting the intrinsic disparities in the color texture
also helps discriminate real from fake faces, especially in the
HSV and YCbCr spaces (whose luminance and chrominance
information are separated and more stable). This leads to the
more robust and generalized detection performance of the
color analysis based methods (A15 and A25).

e For the learning based methods, the A29 using the VGG-16
model performed worse than other data-driven based meth-
ods. Since the VGG-16 model has much more parameters
(134.25 million) than models ResNet-50 (23.51 million) and
SqueezeNet (1.19 million), it tends to have the overfitting
problem towards small datasets, especially on the Replay-
Mobile and MSU-USSA databases in our experiments.

o The three face presentation attack databases used in the exper-
iments all consist of high-resolution and small-motion spoof-
ing videos in mobile scenarios. Therefore, for image quality
based or dynamic methods, the quality or motion differences
between real accesses and spoofed images are more difficult to
discern.

To sum up, the performance evaluation indicates the potential of
using robust local micropattern or separated color spaces based tex-
ture descriptors to detect face presentation attacks. Also, some deep
models with less parameters to be fine-tuned trend to achieve bet-
ter results in existing small-size face spoofing databases. For the poor
generalization ability of existing methods in detecting unknown
attacks (the best average ACER in cross-database testing is about 30%,
which is far away from the requirement in practical applications),
one potential solution is to use a joint training strategy combining
data of multiple databases to reduce the database biases [59]. It is
also suggested in [38] to adapt learned models to new data based
on transfer learning to improve inevitable biases among different
datasets.

5.2. Databases

Experimental results also show the influence of databases on the
detection performance. Both the database size and attack diversity
play an important role in designing and evaluating the PAD schemes.
Limited number of samples and types of attacks will not only weaken
the detection performance in practical applications, but also limit the
detection ability of data-driven-based methods, such as deep learn-
ing based methods, which may not have enough data for training
CNNs by fine-tuning the pretrained models to their full potential
[16,61]. The database diversity can be enhanced by using different
input sensors, printers and display devices, and different acquisition
environment (as the Oulu-NPU database did), using different light-
ing conditions, and motion patterns (as the Replay-Mobile database
did), enhancing the subject diversity (as the MSU-USSA dababase
did), and including more types of attack (such as the challenging 3D
mask presentation attacks). However, there are no such comprehen-
sive, large-scale and diverse databases yet, which are in high demand
to reflect the real-world situations, and help promote more practical
and generalized PAD methods.

5.3. Evaluation metrics

Based on the APCER and BPCER metrics, we reported the detec-
tion performance using the ACER and BPCER20 and BPCER10. From
the results in Tables 6 and 7, we observe that these two kinds of met-
rics show good agreement for most algorithms, but exceptions may
occur, which will result in significant performance differences for the
same PAD method. There are cases that a lower BPCER20 or BPCER10
may result from higher APCER values (see A21 in Table 7), while a
lower ACER may come from the unbalanced APCER and BPCER values
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(see A11,Al14 in Table 6). Therefore, we emphasize the need to evalu-
ate and report the detection performance based on multiple metrics,
characterizing the methods from different aspects.

5.4. Other influencing factors

We also found that the pre-processing operations, database pro-
tocols, and classifiers all have the impact on the detection results.
To sum up, selecting an appropriate number of frames (10 frames
are preferred in the experiments) to extract features, using larger
IPD to crop faces, and applying the SVM classifiers for databases
with a larger size while Softmax classifier in smaller databases, can
contribute more to a better detection performance.

6. Conclusion

To have a deep understanding of the research and development
in face presentation attack detection, we present a comprehensive
evaluation of the state-of-the-art face PAD methods on a com-
mon ground. Totally 30 methods have been re-implemented and
evaluated in three mobile spoofing databases with high-resolution
images and real-world variations. Through the intra-database and
cross-database testing, the detection robustness for known attacks
and generalization ability for unknown attacks have been com-
pared and analyzed. Experimental results show that most detection
methods suffered from performance degradation in mobile scenar-
ios. Although some texture features and learning based features
show outstanding performance, the results in more realistic cross-
database testing scenarios are far from satisfactory. Therefore, we
highlight the importance of collecting more large-scale and high-
diversity databases, and developing more practical and generalized
PAD methods to address the database bias problems in future work.
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